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Abstract 1

Systems memory consolidation involves a transfer of declarative memories that initially 2

depend on the hippocampal formation into long-term memory traces in neocortical 3

networks. This consolidation process is thought to rely on replay of recently acquired 4

memories, but the cellular and network mechanisms that mediate the memory transfer 5

are poorly understood. Here, we suggest that systems memory consolidation could arise 6

from Hebbian plasticity in networks with parallel synaptic pathways — two ubiquitous 7

features of neural circuits in the brain. We explore this hypothesis in a computational 8

model to illustrate how memories are transferred across circuits and why their 9

representations could change. These modelling results are in quantitative agreement 10

with lesion studies in rodents. A hierarchical iteration of the mechanism yields 11

power-law forgetting — as observed in psychophysical studies in humans. The predicted 12

circuit mechanism thus bridges spatial scales from single cells to cortical areas and time 13

scales from milliseconds to years. 14
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Introduction 15

Clinical and lesion studies suggest that declarative memories initially depend on the 16

hippocampus, but are later transferred to other brain areas (Dudai et al., 2015; Squire 17

et al., 2015; Sekeres et al., 2017). Some forms of memory eventually become 18

independent of the hippocampus and depend only on a stable representation in the 19

neocortex (Dudai et al., 2015; Squire et al., 2015; Sekeres et al., 2017). This process — 20

termed systems memory consolidation — is thought to prevent newly acquired 21

memories from overwriting old ones, thereby extending memory retention times 22

(“plasticity-stability dilemma”; Grossberg (1987); Abraham and Robins (2005); Fusi 23

et al. (2005); Leibold and Kempter (2008); Roxin and Fusi (2013)), and to enable a 24

simultaneous acquisition of episodic memories and semantic knowledge of the world 25

(McClelland et al., 1995; Kumaran et al., 2016). While specific neuronal activity 26

patterns, including for example an accelerated replay of recent experiences (Lee and 27

Wilson, 2002; Skaggs and McNaughton, 1996), are involved in the transfer of memories 28

from hippocampus to neocortex (Diekelmann and Born, 2010), the mechanisms 29

underlying systems memory consolidation are not well understood. Specifically, it is 30

unclear how this consolidation is shaped by the anatomical structure and the plasticity 31

of the underlying neural circuits. This poses a substantial obstacle for understanding 32

into which regions memories are consolidated; why some memories are consolidated 33

more rapidly than others (Nadel and Moscovitch, 1997; Tse et al., 2007; Brodt et al., 34

2018); why some memories stay hippocampus dependent, and why and how the 35

character of memories changes over time (Dudai et al., 2015); and whether the 36

consolidation of declarative and non-declarative memories (Karni et al., 1994; 37

Brashers-Krug et al., 1996; Dudai et al., 2015) are two sides of the same coin. These 38

questions are hard to approach within phenomenological theories of systems 39

consolidation such as the standard consolidation theory (Squire and Alvarez , 1995; 40

McClelland et al., 1995), the multiple trace theory (Nadel and Moscovitch, 1997), and 41

the trace transformation theory (Winocur et al., 2010; Winocur and Moscovitch, 2011). 42

Here, we propose a mechanistic foundation of the consolidation process that accounts 43

for several experimental observations and could contribute to understanding the transfer 44

of memories and the reorganisation of memories over time on a neuronal level. 45
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Our focus lies on simple forms of memory that can be phrased as cue-response 46

associations. We assume that such associations are stored in synaptic pathways between 47

an input area — neurally representing thec cue — and an output area — neurally 48

representing the response. Our central hypothesis — the parallel pathway theory (PPT) 49

— is that systems memory consolidation arises naturally from the interplay of two 50

abundantly found neuronal features: parallel synaptic pathways and Hebbian plasticity 51

(Van Essen et al., 1992; Malenka and Bear , 2004). First, we illustrate this theory in a 52

simple hippocampal circuit motif and show that Hebbian plasticity can consolidate 53

previously stored associations into parallel pathways. The mechanism reproduces the 54

results of a hippocampal lesion study in rodents (Remondes and Schuman, 2004). 55

Iterated in a cascade, it can achieve a full consolidation into neocortex and result in 56

power-law forgetting of memories as is observed in psychophysical studies in humans 57

(Wixted , 2004). 58

Results 59

A mechanistic basis for systems memory consolidation 60

The suggested parallel pathway theory (PPT) relies on a parallel structure of 61

feedforward connections onto the same output area: a direct, monosynaptic and an 62

indirect, multisynaptic pathway. We propose that memories are initially stored in the 63

indirect pathway and are subsequently transferred to the direct pathway via Hebbian 64

plasticity. Because the indirect pathway is multisynaptic, it transmits signals with a 65

longer time delay than the direct pathway (Fig. 1A). This allows the indirect pathway 66

to act as a teacher for the direct pathway. The mechanism can be exemplified in the 67

hippocampal formation (Amaral , 1993) as follows. We assume that CA3 is involved in 68

the original storage of declarative memories (Marr , 1969; Treves and Rolls, 1994; 69

Nakazawa et al., 2003). The indirect pathway then corresponds to the classical 70

trisynaptic pathway from entorhinal cortex (EC) through dentate gyrus (DG) and CA3, 71

reaching CA1 through the Schaffer collaterals (SC; Fig. 1B, blue; Amaral (1993)). A 72

memory can be recalled by a specific neural activity pattern in EC — a cue — that 73

triggers spikes in a subset of CA1 cells through this indirect pathway, representing the 74
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Figure 1. A mechanistic basis for systems memory consolidation. (A) Circuit
motif for the parallel pathway theory. Cue-response associations are initially stored
in an indirect synaptic pathway (blue) and consolidated into a parallel direct pathway
(red). (B) Hippocampal connectivity. The entorhinal cortex projects to CA1 through
an indirect pathway via DG-CA3 and the Schaffer collaterals (SC, blue arrow), and
through the direct perforant path (PPCA1, red arrow). (C) Model of consolidation
through STDP. Left: before consolidation, a strong SC input (middle, blue vertical bar)
causes a large EPSP and triggers a spike in CA1 (bottom, black vertical bar). A weak
PPCA1 input (top, red) that precedes the SC input is potentiated by STDP. Right: after
consolidation through STDP, the PPCA1 input (top) can trigger a spike in CA1 by itself
(bottom). (D-E) Consolidation in a single integrate-and-fire CA1 cell receiving 1000
PPCA1 and 1000 SC excitatory inputs. (D) PPCA1 activity consists of independent
poisson spike trains; the SC activity is an exact copy of the PPCA1 activity, delayed by
5 ms. (E) Consolidation of a synaptic weight pattern from non-plastic SC synapses to
plastic PPCA1 synapses. Left and middle: normalized synaptic weights before and after
consolidation. Right: time course of correlation between SC and PPCA1 weight vectors
during consolidation (mean ± SEM for 10 trials).
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associated response. The same cue reaches CA1 also through the perforant path, a 75

parallel, direct pathway (PPCA1, Fig. 1B, red). We assume that this direct input from 76

EC initially fails to trigger spikes because the synaptic weight pattern in the 77

PPCA1 does not match the cue. However, PPCA1 inputs that are activated by the cue 78

precede the spikes in CA1 pyramidal cells that are triggered by the indirect pathway by 79

5-15 ms (Yeckel and Berger , 1990). Presynaptic spikes preceding postsynaptic spikes 80

with a short delay favour selective long-term potentiation by spike timing-dependent 81

plasticity (STDP, Fig. 1C) (Bi and Poo, 1998; Markram et al., 1997; Gerstner et al., 82

1996). Consequently, cue-driven PPCA1 synapses onto activated CA1 cells are 83

strengthened until the memory that was initially stored in the indirect pathway can be 84

recalled via the direct pathway alone. The indirect pathway thus acts as a teacher for 85

the direct pathway. 86

To illustrate this mechanism, we first used a simple integrate-and-fire neuron model 87

of a CA1 cell that receives inputs through the SC and the PPCA1. We also considered 88

the two pathways to contain the same number of synapses and transmit identical spike 89

patterns apart from a 5-ms delay in the SC (Fig. 1D). Consolidation then corresponds 90

to copying the synaptic weight pattern of the SC to the PPCA1. In line with our 91

hypothesis, such a consolidation was indeed achieved by STDP in the PPCA1 synapses 92

(Fig. 1E). A consolidation in the opposite direction, i.e., from the PPCA1to the SC 93

cannot be achieved by STDP, because the temporal order of spiking activity is reversed 94

and hence does not favour synaptic potentiation (Supplementary Fig. 1). A 95

mathematical analysis suggests that STDP in the direct pathway implements a linear 96

regression that approximates the input-output mapping of the indirect pathway by that 97

of the direct pathway (Supplementary Sec. 1, 2). 98

Consolidation of spatial representations 99

So far, we illustrated the PPT in a simple integrate-and-fire model, in which the neural 100

representations in the two pathways were identical, leading to a very strong correlation 101

between the inputs to CA1. We next show the robustness of the suggested mechanism 102

in a more biologically plausible setting. 103

Firstly, we show that the mechanism is robust to differing cue representations in the 104
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two pathways and to weaker correlations among them (O’Neill et al., 2017). To this 105

end, we used place cell representations (O’Keefe and Dostrovsky , 1971) for the SC input 106

from CA3 and grid cell representations (Hafting et al., 2005; Moser et al., 2008) for the 107

PPCA1input from EC (Fig. 2A). 108

Secondly, we show that the suggested mechanism is compatible with the biophysical 109

properties of CA1 neurons, which receive inputs in different subcellular compartments. 110

To this end, we simulated a multicompartmental CA1 pyramidal cell (Fig. 2B) that was 111

endowed with active ion channels supporting backpropagating action potentials and 112

dendritic calcium spikes (Fig. 2C, Methods). 113

The use of spatial representations in the input pathways allows us to consider simple 114

forms of memories in a navigational context, in which a given location on a linear track 115

is associated with the activity of a given CA1 cell. Effectively, such an association 116

generates a CA1 place cell. In line with the PPT, we assumed that the spatial 117

selectivity of this CA1 place cell is initially determined solely by the indirect pathway 118

via the SC, i.e., by place cell input from CA3. The goal of systems memory 119

consolidation is then to transfer this spatial association to the direct input, which 120

reaches the CA1 cell via the PPCA1 derived from grid cells in EC. In other words, 121

place-cell input should supervise grid-cell input to develop a place-cell tuning. 122

SC place field inputs were modelled by synapses that were active only in a small 123

region of the track, whereas individual PPCA1 grid cell inputs were active in multiple, 124

evenly spaced regions along the track (Fig. 2A). The SC and PPCA1 inputs projected to 125

proximal and distal dendrites, respectively (Fig. 2B, Stuart et al., 2007). Synapses were 126

initialised such that the SC input conductances were spatially tuned and resulted in 127

place field-like activity in the CA1 cell, while the PPCA1 input had no spatial tuning 128

(Fig. 2D). 129

During consolidation, SC and PPCA1 input to the CA1 cell consisted of replays of 130

previously encountered sequences of locations (Skaggs and McNaughton, 1996; Lee and 131

Wilson, 2002), with a replay speed 20 times faster than physical motion (Lee and 132

Wilson, 2002). During replay, the SC input led to somatic spikes, which in turn 133

triggered backpropagating action potentials that caused calcium spikes in the distal 134

dendrites where the PPCA1 synapses arrive (Fig. 2E, Larkum et al., 1999). Through 135

synaptic plasticity, PPCA1 synapses active in the place field of the neuron were 136
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Figure 2. Consolidation of spatial representations. (A) Replay of PPCA1 and
SC activity during sleep. 500 PPCA1 inputs and 2500 SC inputs are spatially tuned
on a linear track with periodic grid fields (top, red) and place fields (bottom, blue).
Spiking activities are independent Poisson processes (10 spikes/s) inside place/grid fields,
otherwise silent. SC activity is delayed by 5 ms. (B) Multi-compartmental model of
a reconstructed CA1 pyramidal neuron (see Methods). PPCA1 and SC inputs project
to distal apical tuft dendrites (red dots) and proximal apical and basal dendrites (blue
dots). (C) Active neuron properties. Top: somatic sodium spike (black) propagates to
the distal tuft and initiates a dendritic calcium spike (red) and further sodium spikes.
Bottom: dendritic calcium spike leads to bursts of somatic spikes. (D) Spatial tuning
before consolidation. SC provides place field-tuned input to the CA1 cell (left, blue),
which yields spatially tuned spiking activity (right, blue); PPCA1 input is not spatially
tuned (left, red), and (alone) triggers low and untuned spiking activity (right, red). (E)
Somatic and dendritic activity during consolidation. During replay, SC input generates
backpropagating sodium spikes (black vertical lines) that generate dendritic calcium
spikes (red). (F) After consolidation. Spatial tuning is consolidated from the indirect
SC pathway into the direct PPCA1 pathway. Left: spatial tuning of total PPCA1 input
(red) approaches theoretically derived PPCA1 input tuning (magenta; see Methods).
Right: CA1 output is place field-tuned through either SC or PPCA1 input alone. (G)
Evolution of correlation between actual and optimal PPCA1 input tuning (see F) for
replay speeds corresponding to hippocampal replay events (black) and real-time physical
motion (grey). Position in D, E, and F normalised to [0,1].
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potentiated. Over time, the PPCA1 input adopted the spatial tuning of the SC input 137

(Fig. 2F, left) and reproduced the original SC-induced place field output (Fig. 2F, right). 138

Therefore, the PPT mechanism consolidated associations even though 1) the spatial 139

representations in the two pathways differed (cf. also mathematical analysis in 140

Supplementary Sec. 2) and 2) the two pathways targeted different neuronal 141

compartments in the CA1 neuron with complex morphology. Note that consolidation 142

failed when replay speed was reduced to that of physical motion (Fig. 2G), because the 143

time scale of rate changes in place and grid cell activity is then much longer than the 144

delay between the two pathways and the time scale of STDP (Supplementary Sec. 3 & 145

Supplementary Fig. 2). Accelerated replay during sleep (Lee and Wilson, 2002) hence 146

supports systems memory consolidation within the PPT by aligning the time scales of 147

neural activity and synaptic plasticity (D’Albis et al., 2015). 148

Consolidation of place-object associations in multiple 149

hippocampal stages 150

Ultimately, to consolidate memories into neocortex, they have to move beyond the 151

PPCA1. Notably, the PPCA1 is itself part of an indirect pathway from EC to the 152

subiculum (SUB) that is shortcut by a direct connection from EC to SUB (referenced as 153

PPSUB; Fig. 3A, left; Amaral (1993)). This suggests that the PPT can be reiterated to 154

further consolidate memories from the PPCA1 to the PPSUB and beyond. 155

To illustrate this idea, we considered a standard paradigm for memory research in 156

rodents: the Morris water maze (Morris and Lecar , 1981). In the water maze, the 157

rodent needs to find a submerged platform (object), i.e., it must store an object-place 158

association. Thus this paradigm requires neural representations of objects (such as the 159

submerged platform) and places. We hence constructed a model in which subregions of 160

the hippocampal formation included neurons that encode places and neurons that 161

encoded the identity of objects (Fig. 3A, right). 162

For simplicity and computational efficiency we switched to a rate-based neuron 163

model (Methods). An object was chosen from a set of 128 different objects and placed 164

in a circular open field environment (Fig. 3B, top). We implemented object-to-place 165

associations in our model by enhancing, as before, synaptic connections in the SC, but 166
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Figure 3. Consolidation of place-object associations in multiple hippocampal
stages (A) Structure of the extended model. PPSUB: perforant path to the subicu-
lum. Each area (EC, DG-CA3, CA1, SUB) contains object-coding and place-coding
populations. Open arrows: all-to-all connections between these areas. (B) Decoding of
consolidated associations. Top: The location of a platform in a circular environment
is stored as an object-place association in the SC (thick diagonal arrows in A, right).
Middle: Platform position probability maps given the platform object cue, inferred
from the CA1 output resulting from SC or PPCA1 alone, at different times during
consolidation (Methods). Bottom: Platform-in-quadrant probabilities (±SEM) given
PPCA1 input alone during consolidation. Quadrant with correct platform position (target
quadrant) in orange. (C) Consolidation from SC to PPCA1 and to PPSUB over four
weeks. Each day, a new association is first stored in SC and then partially consolidated.
An association on day 0 is monitored in SC, PPCA1, and PPSUB. Panels as in B. (D)
Effects of PPCA1 lesions on memory consolidation, model and experiment (data with
permission from Remondes and Schuman (2004)). Histograms of time (±SEM) spent
in quadrants at different delays after memory acquisition (“probe”). Dashed lines at
25% are chance levels. T: target quadrant; Left, Right: adjacent quadrants; O: opposite
quadrant. Top: Control without lesion. Middle: Lesion before memory acquisition.
Bottom: Lesion 21 days after memory acquisition.
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now between object-encoding neurons in CA3 and place-specific neurons in CA1 167

(Fig. 3A, right). Here, we did not consider place-to-object associations. These are less 168

relevant for the water maze task, where the task is to recall the location of a given 169

object — the platform — rather than to recall which object was encountered at a given 170

location. We tested object-to-place associations stored in the SC by activating the 171

object representation in EC — as a memory cue — and determining the activities in 172

CA1, triggered by the SC alone. From these activities we inferred a spatial probability 173

map of the recalled object location (Fig. 3B; Methods). 174

We first stored a single object-place assocation in the SC. During a subsequent 175

consolidation cycle — representing one night — place and object representations in EC 176

were then randomly and independently activated. Consistent with our previous results, 177

the object-place association was gradually consolidated from the SC to the PPCA1: 178

after one night of consolidation, the correct spatial probability map of an object 179

location was inferrable from CA1 activity triggered by the PPCA1 alone (Fig. 3B). 180

To track the consolidation process over longer times, we assumed that a new random 181

object-place association is stored in the SC every day. This caused a decay of previous 182

SC memory traces due to interference with newly stored associations (Fig. 3C, Lux et al. 183

(2016); Fusi and Abbott (2007)). During the night following each day, associations in the 184

SC were partially consolidated into the PPCA1, such that the consolidated association 185

could be decoded from the PPCA1 after a single night, but previously consolidated 186

associations were not entirely overwritten. As a result, object-place associations were 187

maintained in the PPCA1 for longer periods than in the SC, thus extending their 188

memory lifetime (Fig. 3C). Eventually, a given PPCA1 memory trace would also 189

degrade as new interfering memories from the SC are consolidated. However, as noted 190

above, the PPCA1 itself is part of an indirect pathway from EC to the SUB, for which 191

there is in turn a parallel, direct perforant pathway PPSUB. The association in the 192

PPCA1 (and SC) could therefore, in turn, be partially consolidated into the PPSUB, 193

further extending memory lifetime (Fig. 3C). 194

The model suggests that the PPCA1 serves as a transient memory buffer that 195

mediates a further consolidation into additional shortcut pathways downstream. This 196

hypothesis is supported by navigation studies in rats. Using PPCA1 lesions, Remondes 197

and Schuman (2004) have shown that the PPCA1 is not required for the original 198
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acquisition of spatial memories, but that it is critically involved in their long-term 199

maintenance. However, lesioning the PPCA1 21 days after acquiring a memory did not 200

disrupt spatial memories, suggesting that the PPCA1 is not the final storage site 201

(Fig. 3D) and further supporting the idea that the PPCA1 is important to enable a 202

transition from short-term to long-term memories. 203

To test whether our model could reproduce these experimental results, we simulated 204

PPCA1 lesions either before the acquisition of an object-place association or 21 days 205

later. Assuming that the rat’s spatial exploration is determined by the probability map 206

of the object location (Herrnstein, 1961), the model provided predictions for the time 207

spent in different quadrants of the environment, which were in quantitative agreement 208

with the data for all experimental conditions (Fig. 3D). Our model thus suggests that a 209

hierarchical reiteration of parallel shortcuts — the central circuit motif of the PPT — 210

could explain these experiments. 211

Consolidation from hippocampus into neocortex by a 212

hierarchical nesting of consolidation circuits 213

Given that shortcut connections are widespread throughout the brain (Van Essen et al., 214

1992; Morgenstern et al., 2016; Constantinople and Bruno, 2013), we next hypothesized 215

that a reiteration of the PPT can also achieve systems consolidation from hippocampus 216

into neocortex. To test this hypothesis, we studied a network model (Fig. 4A), in which 217

the hippocampus (now simplified to a single area) receives input from a hierarchy of 218

cortical areas, representing, e.g., a sensory system. It provides output to a different 219

hierarchy of areas, representing, e.g., the motor system. The network also contained 220

shortcut connections that bypassed the hippocampus (Methods). As in the previous 221

section, new memories were stored in the hippocampus every day — leading to a decay 222

of previously stored hippocampal memories — and were consolidated by Hebbian 223

plasticity in parallel pathways. Tracing a specific memory over time revealed a gradual 224

consolidation into the cortical shortcut connections, forming a “memory wave” (Roxin 225

and Fusi , 2013) that travels from hippocampus into neocortex (Fig. 4B, Supplementary 226

Sec. 4). By exponentially decreasing the shortcut learning rate with distance from the 227

hippocampus, a power-law decay of memories can be observed in the union of all 228
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shortcuts, e.g., by reading out the shortcut with the strongest memory trace at any 229

moment in time (Fig. 4B). This observation is in line with a rich history of 230

psychological studies on the mathematical shape of forgetting curves (Wixted , 2004). 231

Notably, we achieved memory retention times of years through only a small number 232

(∼5) of iterations of the PPT. Finally, we found that memory retrieval accelerates 233

during consolidation (Fig. 4C), in line with consolidation studies for motor skills 234

(Walker et al., 2002). In our consolidation model, the time to recall decreases because 235

the path from peripheral input to output becomes shorter through the use of more 236

direct (peripheral) shortcut connections (Fig. 4A and B). 237
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Figure 4. Consolidation from hippocampus into neocortex by a hierarchical
nesting of consolidation circuits. (A) Schematic of the hierarchical model. The
hippocampal formation (HPC) is connected to cortical input circuit 1 and output
circuit 1. Increasing numbers indicate circuits further from the HPC and closer to the
sensory/motor periphery. Each direct connection at one level (e.g., dark blue arrow
between input 1 and output 1) is part of the indirect pathway of the next level (e.g., for
pathways from input 2 to output 2). Learning rates of the direct connections decrease
exponentially with increasing level (i.e., from blue to red). (B) Memories gradually
propagate to circuits more distant from the HPC. The correlation of the initial HPC
weights with the direct pathways is shown as a function of time and reveals a memory wave
from HPC into neocortex. The maximum of the output circuits follows approximately a
power-law (black curve). Noise level indicates chance level correlations between pathways.
(C) Consolidated memories yield faster responses (from sensory periphery, e.g., Input 8,
to system output) because these memories are stored in increasingly shorter synaptic
pathways.
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Discussion 238

We proposed the parallel pathway theory (PPT) as a mechanistic basis for systems 239

memory consolidation. This theory relies on two abundant features in the nervous 240

system: parallel shortcut connections between brain areas and Hebbian plasticity. We 241

applied the PPT to hippocampus-dependent memories and showed that the proposed 242

mechanism can transfer memory associations across parallel synaptic pathways. This 243

transfer is robust to different representations in those pathways and requires only weak 244

correlations. Our theory is in quantitative agreement with lesion studies of the 245

perforant path in rodents (Remondes and Schuman, 2004) and is able to reproduce 246

forgetting curves that follow a power-law as observed in humans (Wixted , 2004). 247

Theory requirements 248

In addition to the anatomical motif of shortcut connections and Hebbian synaptic 249

plasticity, the parallel pathway theory relies on four further requirements during the 250

consolidation phase. 251

First, temporal correlations between the inputs from the two input pathways are 252

necessary. For example, in the hippocampus the mechanism assumes such correlations 253

between CA3 and EC inputs to CA1 during consolidation, the presence of which is not 254

fully resolved (O’Neill et al., 2017). A consolidation from hippocampus into neocortex 255

would require correlations between cortical and hippocampal activity (Ji and Wilson, 256

2007). 257

Second, the direct pathway should be plastic during consolidation, while the stored 258

associations in the indirect path remain sufficiently stable. In practise, this requires the 259

degree of plasticity to differ between periods of storage and consolidation (e.g., due to 260

neuromodulation (Hasselmo, 1999; Papouin et al., 2017)), in a potentially 261

pathway-dependent manner. In other words, the requirement is that the content of a 262

memory should not be altered much while creating a backup. 263

Third, plasticity in the shortcut pathway should be driven by a teaching signal from 264

the indirect pathway. This can be achieved by STDP in combination with longer 265

transmission delays in the indirect pathway, as suggested here, but other neural 266

implementations of supervised learning may be equally suitable (Legenstein et al., 2005; 267
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Pfister et al., 2006; Urbanczik and Senn, 2014). 268

Fourth, within the present theory, a systematic decrease in learning rates within the 269

consolidation hierarchy (Fig. 4) is needed to achieve memory lifetimes on the order of 270

years. That is, synapses involved in later stages of consolidation should be less plastic 271

during consolidation periods such as sleep, as also suggested by Roxin and Fusi (2013). 272

A similar approach for obtaining power-law forgetting has been used in models of 273

synaptic memory consolidation (Fusi et al., 2005; Benna and Fusi , 2016). 274

What limits systems memory consolidation? 275

Our account of systems memory consolidation explains how memories are re-organized 276

and transferred across brain regions. However, certain forms of episodic memory remain 277

hippocampus-dependent throughout life (Winocur and Moscovitch, 2011). 278

In the context of the present model, this restriction could result from different 279

factors. The PPT simplifies memory engrams by replacing multisynaptic by 280

monosynaptic connections whenever possible. However, a shortcut pathway may not be 281

present anatomically, or it may not host an appropriate representation for a given 282

cue-response association in question. For example, it may be difficult to consolidate a 283

complex visual object detection task into a shortcut from primary visual cortex (V1) to 284

a decision area, because the low-level representation of the visual cue in V1 may not 285

allow it (DiCarlo and Cox , 2007; Majaj et al., 2015). The same applies to tasks that 286

require a mixed selectivity of neural responses (Rigotti et al., 2013). Such tasks cannot 287

be fully consolidated into shortcuts with simpler representations of cues and/or 288

responses that do not allow a linear separation of the associations. On the basis of 289

similar arguments, early work suggested that the hippocampus could be critical for 290

learning tasks that are not linearly separable (Sutherland and Rudy , 1989). 291

Within the present framework, the consolidated memory is in essence a linear 292

approximation of the original cue-response association (Supplementary Sec. 2). The 293

resulting simplification of the memory content could underlie the commonly observed 294

semantisation of memories and the loss of episodic detail (Winocur et al., 2010; 295

Winocur and Moscovitch, 2011). Such a semantisation could already occur in the 296

earliest shortcut connections (Schapiro et al., 2017), but could also gradually progress in 297
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a multi-stage consolidation process. 298

Relation to phenomenological models of systems consolidation 299

The basic mechanism of our theory explains memory transfer between brain regions, 300

which is in line with the Standard Consolidation Theory (SCT) (Squire and Alvarez , 301

1995; McClelland et al., 1995). Our theory is closely related to the Complementary 302

Learning Systems Theory (CLST) (McClelland et al., 1995; McClelland , 2013), which 303

posits that slow and interleaved cortical learning is necessary to avoid catastrophic 304

interference of new memory items with older memories (McCloskey and Cohen, 1989). 305

In our model, later — presumably neocortical — shortcut connections have lower 306

learning rates to achieve longer memory retention times. Interleaved learning could be 307

achieved by interleaved replay (Foster , 2017; Schuck and Niv , 2019; Liu et al., 2019) 308

during consolidation. Thereby, the results of CLST can be directly applied to learning in 309

shortcuts in our model, such as the rapid neocortical consolidation of new memories that 310

are in line with a previously learned schema (Tse et al., 2007, 2011; McClelland , 2013). 311

Limitations of memory transfer between brain regions — as discussed above — can 312

impair the consolidation process, resulting in memories that remain hippocampus- 313

dependent throughout life. Hence, our theory is also in agreement with the Multiple 314

Trace Theory (MTT) (Nadel and Moscovitch, 1997) and the Trace Transformation 315

Theory (TTT) (Winocur et al., 2010; Winocur and Moscovitch, 2011). 316

The MTT postulates that memories are re-encoded in the hippocampus during 317

retrieval, generating multiple traces for the same memory. Our model maintains 318

multiple memory traces in different shortcut pathways, even without a retrieval-based 319

re-encoding. The consolidation mechanism of the PPT, however, could also transfer a 320

specific memory multiple times if it is re-encoded during retrieval. If neocortex extracts 321

statistical regularities from a collection of memories (McClelland et al., 1995), the 322

consolidation of such a repeatedly re-encoded memory could then lead to a gist-like, 323

more semantic version of that memory in neocortex (Nadel and Moscovitch, 1997; 324

Winocur and Moscovitch, 2011; Levine et al., 2002), as emphasised by the TTT. 325

The premise of our model is that memories are actively transferred between brain 326

regions. This premise has recently been subject to debate (Yonelinas et al., 2019a; 327
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Antony and Schapiro, 2019; Yonelinas et al., 2019b), following the suggestion of the 328

Contextual Binding (CB) theory. The CB theory argues that amnesia in lesion studies 329

and replay-like activity can be explained by simultaneous learning in hippocampus and 330

neocortex, together with interference of contextually similar episodic memories 331

(Yonelinas et al., 2019a). Note, however, that our theory does not exclude a 332

simultaneous encoding in neocortex and hippocampus, which can be combined with 333

active consolidation (Dudai et al., 2015; Pöhlchen and Schönauer , 2020). 334

Hence, our mechanistic approach is in agreement with and may allow for a 335

unification of several phenomenological theories of systems consolidation. 336

Consolidation of non-declarative memories 337

Given that shortcut connections are widespread throughout the central nervous system 338

(Van Essen et al., 1992; Morgenstern et al., 2016), the suggested mechanism may also 339

be applicable to the consolidation of non-declarative memories, e.g., of perceptual 340

(Karni et al., 1994) and motor skills (Brashers-Krug et al., 1996), fear memory 341

(Kitamura et al., 2017) or to the transition of goal-directed to habitual behaviour (Aarts 342

and Dijksterhuis, 2000). 343

Several studies have suggested two-pathway models in the context of motor learning 344

(Makino et al., 2016; Pyle and Rosenbaum, 2019; Teşileanu et al., 2017; Murray and 345

Escola, 2020). In particular, Murray and Escola (2020) recently used a two-pathway 346

model to investigate how repeated practice affects future performance and leads to 347

habitual behaviour. While their model does not incorporate an active consolidation 348

mechanism or multiple learning stages, the basic mechanism is the same: A fast learning 349

pathway from cortex to sensorimotor striatum first learns a motor skill and then teaches 350

a slowly learning pathway from thalamus to striatum during subsequent repetition. 351

Limitations of the model and future directions 352

The present work focuses on feedforward networks and local learning rules. Hence, the 353

model cannot address how systems memory consolidation affects the representation of 354

sensory stimuli and forms schemata that facilitate future learning (Tse et al., 2007, 355

2011) because representation learning typically requires a means of backpropagating 356
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information through the system, e.g., by feedback connections (Lillicrap et al., 2020). 357

The interaction of synaptic plasticity with recurrent feedback connections generates a 358

high level of dynamical complexity, which is beyond the scope of the present study. Our 359

framework also does not explain reconsolidation, that is, how previously consolidated 360

memories become labile and hippocampus-dependent again through their reactivation 361

(Debiec et al., 2002; Dudai , 2012). 362

On the mechanistic level, the theory predicts temporally specific deficits in memory 363

consolidation when relevant shortcut connections are lesioned, that is, a tight link 364

between the anatomical organisation of synaptic pathways and their function for 365

memory. These predictions may be most easily tested in non-mammalian systems, 366

where connectomic data are available (Xu et al., 2020). 367

The parallel pathway theory could provide an inroad to a mechanistic understanding 368

of the transformation of episodic memories into more semantic representations. This 369

could be modelled, e.g, by encoding a collection of episodic memories that share 370

statistical regularities and studying the dynamics of statistical learning and 371

semantisation in the shortcut connections during consolidation. Such future work may 372

allow to ultimately bridge the gap between memory consolidation on the mechanistic 373

level of synaptic computations and the behavioural level of cognitive function. 374
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Methods

Consolidation in a single integrate-and-fire neuron

For the results shown in Fig. 1E and Supplementary Fig. 1 we used a single

integrate-and-fire model neuron that received excitatory synaptic input. The membrane

potential V (t) evolved according to

τm
dV

dt
= Vrest − V + gsyn(t)(Esyn − V ) , (1)

with membrane time constant τm = 20 ms, resting potential Vrest = −70 mV, and

synaptic reversal potential Esyn = 0 mV. When the membrane potential reached the

threshold Vthresh = −54 mV, the cell produced a spike and the voltage was reset to

−60 mV during an absolute refractory period of 1.75 ms.

The total synaptic conductance gsyn(t) in Eq. (1) is denoted in units of the leak

conductance and thus dimensionless (parameters are taken from Troyer and Miller

(1997)). The total synaptic conductance was determined by the sum of 1000 Schaffer

collateral (SC) inputs and 1000 perforant path (PPCA1) inputs. Activation of input i

(where i denotes synapse number) leads to a jump gi > 0 in the synaptic conductance:

gsyn(t)→ gsyn(t) + gi . (2)

All synaptic conductances decay exponentially,

τsyn
dgsyn

dt
= −gsyn , (3)

with synaptic time constant τsyn = 5 ms. The PPCA1 inputs were activated by mutually

independent Poisson processes with a mean rate of 10 spikes/s. The activity patterns of

the SC fibers were identical to those of the PPCA1 fibers but were delayed by 5 ms.

The synaptic peak conductances or weights, gi, were either set to a fixed value or

were determined by additive STDP (Song et al., 2000). A single pair of a presynaptic

spike (at time tpre) and a postsynaptic spike (at time tpost) with time difference
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∆t ≡ tpre − tpost induced a modification of the synaptic weight ∆gi according to

∆gi = L(∆t) =


+A+ exp(∆t/τSTDP) if ∆t < 0,

−A− exp(−∆t/τSTDP) if ∆t ≥ 0,

(4)

with τSTDP = 20 ms. L(∆t) is the learning window of STDP (Song et al., 2000). Hard

upper and lower bounds were imposed on the synaptic weights, such that 0 ≤ gi ≤ ḡmax

for all i, where the dimensionless maximum synaptic weight was ḡmax = 0.006.

Parameters A+ = 0.005 · ḡmax and A− = 1.05 ·A+ determine the maximum amounts of

LTP and LTD, respectively.

Synaptic weights were initialized to form a bimodal distribution, such that it agrees

with the steady state weight distribution resulting from additive STDP, when

presynaptic input consists of uncorrelated Poisson spike trains (Song et al., 2000).

Specifically, half the weights were sampled from an exponential distribution with mean

0.05 · ḡmax, the other half as ḡmax minus that same exponential distribution.

The dynamics were integrated numerically using the forward Euler method, with an

integration time step of 0.1 ms.

Consolidation of spatial representations in a multi-compartment

neuron model

The results presented in Fig. 2C-G relied on numerical simulations of a

conductance-based compartmental model of a reconstructed CA1 pyramidal cell (cell

n128 from Cannon et al. (1998)). Passive cell properties were defined by the membrane

resistance Rm = 30 kOhm cm2 with reversal potential EL = −70 mV, intracellular

resistivity Ri = 150 Ω cm, and membrane capacitance Cm = 0.75µF/cm2. Dendrites

were discretized into compartments with length smaller than 0.1 times the

frequency-dependent passive space constant at 100 Hz. Three types of

voltage-dependent currents and one calcium-dependent current, all from Mainen and

Sejnowski (1996), were distributed over the soma and dendrites. Gating dynamics of the

currents evolved according to standard first-order ordinary differential equations. The

steady state (in)activation functions x∞ and voltage-dependent time constants τ∞ for

each gating variable (i.e., x = m,h, n; see below) were calculated from a first-order
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reaction scheme with forward rate αx and backward rate βx according to

x∞(V ) = αx(V )/(αx(V ) + βx(V )) and τx(V ) = 1/(αx(V ) + βx(V )) where V was the

membrane potential. All used current densities and time constants were selected for a

temperature of 37 ◦C (see Mainen and Sejnowski (1996)).

A fast sodium current, INa, was distributed throughout the soma

(ḡNa = 130 pS/µm2) and dendrites (ḡNa = 260 pS/µm2), except from the distal apical

dendritic tuft,

INa = ḡNam
3h(V − ENa) , (5)

with reversal potential ENa = 60 mV. The dynamics of activation gating variable m and

inactivation gating variable h were characterised by

αm = −0.584
V + 30

e−(V+30)/9 − 1

βm = 0.398
V + 30

e(V+30)/9 − 1

αh = −0.077
V + 45

e−(V+45)/5 − 1

βh = 0.0292
V + 70

e(V+70)/5 − 1
.

(6)

Here and in the following, we dropped units for simplicity, assuming that the membrane

potential V is given in units of mV.

The steady-state inactivation function was defined directly as

h∞ =
1

1 + e(V+60)/6.2
. (7)

A fast potassium current, IKv, was present in the soma (ḡKv = 95 pS/µm2) and

throughout the dendrites (ḡKv = 190 pS/µm2),

IKv = ḡKvn(V − EK) , (8)

with reversal potential EK = −90 mV and with activation gating variable n
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characterized by

αn = −0.064
V − 25

e−(V−25)/9 − 1

βn = 0.0064
V − 25

e(V−25)/9 − 1
.

(9)

A high-voltage activated calcium current, ICa, was distributed throughout the apical

dendrites (ḡCa = 30 pS/µm2) with an increased density (ḡCa = 35 pS/µm2) for

dendrites distal from the main apical dendrite’s bifurcation,

ICa = ḡCam
2h(V − ECa) , (10)

with reversal potential ECa = 140 mV and with activation gating variable m and

inactivation gating variable h characterised by

αm = −0.177
V + 27

e−(V+27)/3.8 − 1

βm = 3.02 e−(V+75)/17

αh = 4.89 · 10−4 e−(V+13)/50

βh =
0.0071

e−(V+15)/28 + 1
.

(11)

A calcium-dependent potassium current, IKCa, was similarly distributed throughout

the apical dendrites (ḡKCa = 30 pS/µm2) with an increased density (ḡKCa = 35 pS/µm2)

beyond the main bifurcation of the apical dendrite,

IKCa = ḡKCan(V − EK) , (12)

with activation gating variable n characterised by

αn = 0.032([Ca2+]i)
6

βn = 0.064

(13)

with [Ca2+] in µM.

Internal calcium concentration in a shell below the membrane surface was computed
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using entry via ICa and removal by a first-order pump,

d[Ca2+]i
dt

= −10, 000

2Fd
ICa +

[Ca2+]∞ − [Ca2+]i
τR

, (14)

with Faraday constant F , depth of shell d = 0.1µm and with [Ca2+]∞ = 0.1µM, and

τR = 80 ms. To account for dendritic spines, the membrane capacitance and current

densities were doubled throughout the dendrites. An axon was lacking in the cell

reconstruction and was added as in Mainen and Sejnowski (1996).

Excitatory synaptic inputs were distributed over the membrane surface. Upon

activation of a synapse, the conductance with a reversal potential of 0 mV increased

instantaneously and subsequently decayed exponentially with a time constant of 3 ms.

The PPCA1 provided 500 inputs that were distributed with uniform surface density

throughout the distal apical tuft dendrites; the SC provided 2500 inputs, distributed

uniformly over basal dendrites and proximal apical dendrites (Stuart et al., 2007).

All inputs were spatially tuned on a 2.5 m long linear track over which the simulated

rat walked. The PPCA1 inputs showed periodic, grid field-like spatial tuning with

periodicity ranging from 2 to 6 grid fields along the entire track with random phase:

Gi(x) = rH(cos(2πkx+ ξi)), where H is the Heaviside step function, r is the mean

firing rate within the grid field, k is the spatial frequency, and ξi is the random spatial

phase offset for neuron i (for i = 1, . . . , 500). The 2500 SC inputs showed place field-like

tuning, having single, 25 cm long place fields distributed uniformly random along the

track. When the virtual rat was within the place or grid field of an SC or PPCA1 fiber,

respectively, the input was activated as an independent Poisson process with a mean rate

of r =10 spikes/s. Outside of the place/grid fields the fibers were quiescent. Simulations

of the consolidation phase considered replay of the rat walking back and forth along the

linear track, with running speeds increased, compared to realistic speeds, by a factor 20

(5 m/s; Lee and Wilson (2002)). SC input activity to the CA1 cell was delayed by 5 ms

with respect to the PPCA1 input (Yeckel and Berger , 1998), accounting for the extra

processing stages involved for information reaching CA1 from the entorhinal cortex

through DG and CA3, compared to the direct entorhinal PPCA1 input.

The PPCA1 and/or SC inputs showed additive STDP, operating in the same manner

as defined in the Methods for Fig. 1. (Eq. (4)). Post-synaptic spikes were defined as
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local voltage crossings of a threshold at −30 mV. The maximum synaptic weight for the

SC inputs was 400 pS and 140 pS for the PPCA1 inputs.

The reference tuning curve shown in Fig. 2F (PPCA1 inputs theory) was computed

by adding up all grid field tuning functions that had an active field in the SC-encoded

spatial position (i.e., halfway along the linear track).

Simulations were carried out with a fixed time step of 25 µs using the NEURON

simulation software (Hines and Carnevale, 1997).

Consolidation of place-object associations in multiple

hippocampal stages

The Results related to Fig. 3 show the acquisition and consolidation of place-object

associations in a hippocampal network model. Every day a virtual animal learns the

position of one of many possible objects in a circular open field environment. The

simulations show that during a subsequent sleep phase, replay of the hippocampal

activity that is associated with runs through this environment allows for the

consolidation of the place-object association. We call the imprinting of a new memory

and the subsequent memory consolidation phase a consolidation cycle. In the

simulations, a place-object association learned at time t = 0 is tracked for Ncycle

consolidation cycles, i.e., nights after memory acquisition. Between consolidation cycles,

the memory in the system is assessed as described below.

Model architecture

The model consists of four neuronal layers: entorhinal cortex (EC), dentate gyrus/CA3

(DG-CA3; note that the dentate gyrus is not explicitly included as a separate area),

CA1, and the subiculum (SUB). Each layer consists of a population of place-coding cells

and a population of object-coding cells. The connectivity is depicted in Fig. 3A: EC

projects to DG-CA3, which connects to CA1 (through the SC pathway), which in turn

connects to the SUB. EC provides also shortcut connections to CA1 (PPCA1 pathway)

and the SUB (PPSUB pathway).

The SC, PPCA1, and PPSUB pathways consist of four different connection types

among populations of neurons that represent either place or object: (i) from object
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(populations) to object (populations), (ii) from place to place, (iii) from object to place,

and (iv) from place to object. For simplicity, the pathway from CA1 to the SUB

consists only of place-to-place and object-to-object connections, because we never store

object-place or place-object associations in this pathway. The pathway from EC to

DG-CA3 was not explicitly modelled. Instead, we assumed that the same location (of

the virtual animal) is represented in both areas, but with a grid cell code and a place

cell code, respectively. We assumed that all connections have the same transmission

delay, which is equal to one time step D = ∆T = 5 ms in the simulation (see Table 1 for

parameter values). In practise, this meant that the activities in the SC pathway and the

connection from CA1 to the SUB each had a transmission delay D relative to the

activities in the connections from EC to CA1 and from EC to SUB.

Activities of neurons in each layer were described as firing rates and were determined

by a linear model,

yCA1(t) = WT
PP-CA1(t)xEC(t) + VT

SC xCA3(t−D), (15)

ySUB(t) = WT
PP-SUB(t)xEC(t) + VT

CA1-SUB yCA1(t−D), (16)

where xEC(t) and xCA3(t) are the activities in the input layers EC and DG-CA3,

respectively, and yCA1(t) and ySUB(t) represent the activities in the output layers CA1

and SUB, respectively. Time is denoted by t. The symbols WPP-CA1 and WPP-SUB

denote the weight matrices of the pathways from EC to CA1 and from EC to SUB,

respectively. The matrices VSC and VCA1-SUB summarise the weights from DG-CA3 to

CA1 and from CA1 to SUB, respectively, which mediate the transmission delay D.

As already mentioned above, each neuron in a layer is assumed to primarily encode

either place or object information (see Fig. 3A). To simplify the mathematical analysis,

we turn to a notation where we write a layer’s activity vector z (where

z = xEC, xCA3, yCA1, or ySUB) as a concatenation of place and object vectors:

z =

 zplace

zobject

 , (17)

where the number of place- and object-coding cells is identical,
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dim(zplace) = dim(zobject) = N , hence dim(z) = 2N . Correspondingly, the weight

matrices M (where M = WPP-CA1,WPP-SUB,VSC, or VCA1-SUB) are composed of four

submatrices, connecting the corresponding feature encoding sub-vectors (place-place,

place-object, object-place, and object-object):

M =

Mplace,place Mobject,place

Mplace,object Mobject,object

 . (18)

Associations between objects and places were initially stored in VSC as described below.

To achieve a consistency in the code for places and objects, the weights in VSC and

VCA1-SUB that connect neurons coding for the same feature (i.e., place-place or

object-object) were set proportional to identity matrices I,

Vplace,place
SC = Vobject,object

SC = wid
SCI (19)

Vplace,place
SC = Vobject,object

CA1-SUB = wid
CA1-SUBI . (20)

The scaling factors wid
SC = 1

4 and wid
CA1-SUB = 1

2 ensure that these pathways had similar

impact as the other pathways projecting to CA1 cells and SUB cells, respectively, and

wid
CA1-SUB is twice as large as wid

SC to account for the fact that only in the CA1-SUB

pathway the object-place and place-object connections were set to zero. The matrices

WPP-CA1 and WPP-SUB, which represent shortcuts, were plastic during a consolidation

cycle and evolved according to the learning rule described below. Their initial values

were chosen as a random permutation of an equilibrium state, taken from a long

running previous simulation.

Place- and object-coding cells

Place-coding cells in EC and DG-CA3 were assumed to respond deterministically, given

a two-dimensional position variable p(t) ∈ [0, 1]2, which evolves in time.

Place-coding cells in entorhinal cortex show grid field spatial tuning (Moser et al.,

2008), which we modelled as a superposition of 3 plane waves with relative angles of π
3 :

xplace
EC,i (t) = rmax

2

9

3∑
l=1

[
1

2
+ cos

(
mik

l
i(p(t)− pi)

)]
, (21)
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where the spacing mi = 2π
(
2 + 4i

N

)
, ∀i ∈ [1, N ], is chosen so that a total range of 2 to

6 periods fit into the circular environment. The orientation of the plane waves is

determined by the vector kli = [cos(lπ3 + θi), sin(lπ3 + θi)] where θi are uniformly chosen

random angles, and pi ∈ [0, 1]2 are uniformly sampled random phases of the grid field

(Solstad et al., 2006). Each cell’s output rate varies between 0 to rmax spikes per second.

Place-coding cells in DG-CA3 show place-field tuning and were assumed to have a

2D Gaussian activity profile

xplace
CA3,i (t) = rmax exp

(
− (p(t)− ci)

2

2σ2

)
, (22)

where rmax is the maximum rate, σ the field size, and ci the centre of field i. The

centres ci were chosen to lie on a regular grid.

The object-coding cells in EC and DG-CA3 respond with fixed deterministic

responses xobject
EC and xobject

CA3 to each of Nobject objects. Given that they are located in

the same brain region, we assumed that the firing-rate statistics of the object-coding

cells and the place-coding cells were similar, both in EC and CA1. This was ensured by

calculating the rates of the object-coding cells in two steps. First, we used the same

equations as for the place-coding cells (i.e., Eq. (21) for EC cells and Eq. (22) for

DG-CA3 cells) with a randomly selected “object position” oi, i ∈ {1, .., Nobject} for each

of the Nobject objects. Subsequently the rates of the neurons within the population were

randomly permuted for each object, to avoid an artificial constraint of the population

activity onto a 2-dimensional manifold.

Imprinting of place-object associations in the SC pathway

The virtual animal learned a single new object-to-place association each day. Storing

more memories per day would not qualitatively change the results, but would merely

alter the time scale at which a given memory is overwritten in the SC pathway.

Memories were imprinted in VSC by first determining the activities of the object-coding

DG-CA3 cells and place-coding CA1 cells given a random object and a random position

where the object was encountered (see previous section). The weights in VSC that
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connect object cells to place cells were then updated according to

VSC ←

[
VSC +

λSC
[
xCA3y

T
CA1

]norm
1− λSC

]norm
, (23)

where 0 < λSC < 1 (numerical values of parameters are summarised in Table 1) denotes

the strength of the new memory and controls the rate of forgetting. The symbol

[M]
norm

denotes the normalised version of the matrix M; the normalisation ensures

that the biggest sum along the columns of [M]
norm

was 1 by rescaling all entries of M

with the same factor. The specific choice of the normalisation does not alter the results.

The inner norm in Eq. (23) ensures the same relative influence of different memories,

irrespective of the associated activity levels. This ensures an approximately constant

rate of overwriting/forgetting. The outer norm guarantees that the weights VSC stay

bounded and hence induces forgetting. As a consequence of this updating scheme, the

memories are lost over time. Note that before we imprint a new memory to VSC (other

than on day 0 on which the place-object association is learned that is tracked during the

simulation), the place-coding cells in DG-CA3 are remapped, i.e., they are assigned to

new random positions. This corresponds to learning the new object in a new

environment/room, and effectively reduces the amount in interference between

memories. Before starting a simulation, we imprinted Nmem place-object associations to

VSC to ensure an equilibrium state.

The weights from place-to-object coding cells could be updated analogously. This

would allow to decode the identity of a stored object given a location. We did not test

this direction of the object-place association, because this is not relevant for the water

maze task.

Learning rule operating on PPCA1 and PPSUB pathways

The plastic weight matrices WPP-CA1 and WPP-SUB changed according to a

timing-based learning rule (Dayan and Abbott , 2001):

dW

dt
=

∫ ∞
0

dτ
[
L(τ) xEC(t− τ) yT(t−D) + L(−τ) xEC(t) yT(t−D − τ)

]
, (24)
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where W is either WPP-CA1 or WPP-SUB, and y correspondingly yCA1 or ySUB. The

learning window L(τ) (see Eq. (4)) determines the learning dynamics.

We integrated the learning dynamics using the Euler method, with time steps ∆T

equal to the inverse pattern presentation rate. In practise, we used the standard method

of calculating pre- and postsynaptic traces x̂ and ŷ to integrate the equation

dW

dt
= A+ x̂EC(t) yT(t−D) +A− xEC(t) ŷT(t−D) (25)

where A+ and A− again determine the maximum amount of potentiation and

depression of the synaptic weights, respectively. Note that these parameters effectively

control the learning rate and are chosen twice as large in the PPCA1 than in the

PPSUB (Table 1), to increase memory lifetime in the latter shortcut. Again, we used an

exponential window function L(τ), so that exponentially filtered activities x̂ and ŷ can

be calculated as in Song et al. (2000):

τSTDP
dx̂EC(t)

dt
= xEC(t)− x̂EC(t) and τSTDP

dŷ(t)

dt
= y(t)− ŷ(t), (26)

where τSTDP determines the width of the learning window.

Weight values are constrained to the interval [0, wmax]. The weights of WPP-CA1

and WPP-SUB were initialised to small random values from a uniform distribution in

[0, wmax
init ].

For each iteration in a consolidation cycle of duration T , i.e., every ∆t = 5ms, we

chose a random input position and a random object to calculate the activities in all

layers. These activities were then used to update the weights as given in Eq. (25).

Assessing the strength of memories in SC, PPCA1, and PPSUB

To assess the memory strength encoded in a pathway, we determine the activity yplace

of place-coding cells (in either CA1 or SUB) in response to an object o ∈ {1, ..., Nobjects}

along the object-to-place pathway under consideration (e.g., for PPCA1 it would be from

object-coding cells in EC to place-coding cells in CA1). From this response we decode

the memorised place of the object using Bayesian inference. However, the response is

usually corrupted due to various factors such as imperfect imprinting, consolidation, or
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interference with other memories. Assuming that these imperfections result from a

superposition of many statistically independent factors, we use a Gaussian likelihood:

p(yplace|p) = N (µ(p), σnoiseI), (27)

where N is the multivariate Gaussian probability density function, σnoise is the

standard deviation of the noise, i.e., the imperfections. I is the identity matrix, i.e., we

assumed uncorrelated noise in the responses.

The expected activity µ(p) depends on the location p and is given by the activity

that would result from the activation of place-coding cells in EC or DG-CA3, i.e., by

Eqs. (22, 15, 16). Because the connections between place-coding cells in DG-CA3, CA1,

and SUB are scaled identity matrices, the expected activity µ(p) is essentially a

place-cell code:

µ(p) ∝ xplace
CA3 (p). (28)

To avoid a dependence on overall activity levels, µ(p) and yplace are normalised to zero

mean and unit variance.

Using Bayes’ theorem we can now calculate the posterior probabilities of the places

that coded for the given response yplace:

p(p|yplace) =
p(yplace|p)p(p)∑
p p(y

place|p)p(p)
(29)

=
p(yplace|p)∑
p p(y

place|p)
(assuming a flat prior) (30)

∝ exp

(
−
(
yplace − µ(p)

)2
2σ2

noise

)
, (31)

where for Eq. (30) we used a flat prior, because the environment was uniformly sampled

in the simulations. To avoid the explicit evaluation of the sum in the denominator, we

normalise the evaluated place probabilities to sum to one. We make use of the linear

relationship of the place response given an object (see Eqs. (15) to (18)):

yplace(o) =
(
Mobject,place

)T
xobject(o) (32)
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where the matrix Mobject,place is either Vobject,place
SC , Wobject,place

PP-CA1 , or Wobject,place
PP-SUB ,

depending on the pathway for which the strength of the memory is assessed. This

allows to compute the posterior probability of the place given an object (Fig. 3 B,C):

p(p|o) ∝ exp

(
−
(
yplace(o)− µ(p)

)2
2Nσ2

noise

)
. (33)

Memory consolidation over many days

To simulate a single consolidation cycle (i.e., a storage of a new memory followed by a

single consolidation phase), we alternated the imprinting of a new place-object

association (Eq. (23)) with a consolidation phase of length T . Before starting the

experiments, we equilibrated the weights WPP-CA1 and WPP-SUB by simulating Nequi

consolidation cycles. At day 0 we imprinted the object ô the memory of which was

tracked. After each following consolidation phase the place probabilities along the

different pathways were calculated for object ô according to Eq. (33) (see Fig. 3C of

main text).

Lesion experiments

Remondes and Schuman (2004) lesioned the perforant path (temporoammonic pathway)

during a Morris water maze consolidation experiment. Their finding evidenced a role of

the perforant path in memory consolidation by showing that the precise time-point of

the lesion after memory acquisition determined whether the memory persisted (see

Fig. 3D of main text).

In our simulations we implemented a lesion by setting all PPCA1 weights to 0

(WPP-CA1 = 0) and by disabling their plasticity. Like in the experimental setup of

Remondes and Schuman (2004), we lesioned either right before or 21 days after

presentation of object ô. For each day and lesioning protocol, the place probabilities,

Eq. (33), along the pathways can then be calculated. The pathway with the highest

inferred object position probability was then selected, and the summed probabilities per

quadrant were calculated for this pathway. To account for exploration versus

exploitation (see, e.g., Sutton and Barto (1998)) of the rats, the inferred probabilities

were linearly mixed with a uniform distribution over the quadrants. We used 70%

explore versus 30% exploit for the plots in Fig. 3D. Note that we assumed that the
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Ncycle 31 number of consolidation cycles

T 150 s consolidation time per sleep cycle

∆T 5 ms integration time step

N 256 neurons per place- or object-coding population

Nobject 128 number of different objects

rmax 10 spikes/s maximum output firing rate

σ 0.1 size of place field standard deviation

D 5 ms transmission delay

wid
SC

1
4 weight between object-object and place-place coding

cells in DG-CA3 and CA1

wid
CA1-SUB

1
2 weight between object-object and place-place coding

cells in CA1 and SUB

λSC 0.6 relative strength of new place-object association in
VSC

Nmem 125 number of associations stored to initialize VSC

wmax
1
N maximum weight values for WPP-CA1 and WPP-SUB

wmax
init

1
10 · wmax maximum initial weight values for WPP-CA1 and

WPP-SUB

A+
PP-CA1 0.05 · wmax height of potentiating learning window for WPP-CA1

A−PP-CA1 −1.00025 ·A+
PP-CA1 height of depressing learning window for WPP-CA1

A+
PP-SUB 0.5 ·A+

PP-CA1 height of potentiating learning window for WPP-SUB

A−PP-SUB 0.5 ·A−PP-CA1 height of depressing learning window for WPP-SUB

τSTDP 20 ms time constants of learning window

Nequi 10 equilibration sleep phases run before the simulation
starts

σnoise 4.8 noise level assumed for place inference

Table 1. Parameters for simulations shown in Fig.3

probabilities per quadrant correspond to the time spent in each quadrant.
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Consolidation in a hierarchical rate-based network

The model used in Fig. 4 of the main text demonstrates the consolidation of memories

in a hierarchy of connected neural populations (see Fig. 4A). In the model, signals flow

along distinct neocortical neural populations to the hippocampal formation (HPC) and

back into neocortex (black arrows in Fig. 4A). Shortcut connections exist between the

neocortical populations (colored arrows in Fig. 4A). All connections carry the same

transmission delay D.

Every day new memories are imprinted into the weight matrix connecting the

neocortex to the HPC. The model describes the transfer of the memories into neocortex

during Ncycle consolidation phases, of which there is one per night. In contrast to the

model for Fig. 3, we do not consider object-place associations, but directly analyse

correlations between a stored memory weight matrix and the weight matrices that

describe the neocortical shortcut connections.

Model details

We consider a hierarchy of 2L neocortical populations with L shortcut connections.

Activities of the populations that project towards the HPC are given by xi(t) and the

activities of the populations leading away from the HPC by yi(t) (i ∈ {1, ..., L}). At

each iteration, the activities xL(t) (i.e., the neocortical population most distal from the

HPC) are sampled from a Gaussian distribution with a mean input rate r (see Table 2)

and a standard deviation r/2. The sampled activities are rectified to be non-negative

(r → max(r, 0)), hence yielding a rectified Gaussian distribution. The activities on all

other layers are then determined by their respective connections. For simplicity, we

assume that weight matrices connecting subsequent populations in the hierarchy (black

arrows in Fig. 4A) are identity matrices that are scaled such that activity levels remain

comparable along the hierarchy (see below). The results do not depend on this

simplifying assumption. The population activities along the HPC directed path are then

given as

xi = xi+1(t−D), ∀i ∈ {1, .., L− 1}. (34)
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In Fig. 4, we modelled the HPC as a single neural population, with activities given by

yHPC(t) = WT
HPCx1(t−D). (35)

Here, WHPC is the hippocampal-formation weight matrix into which new memories are

imprinted (see below).

The first outward-directed neocortical population receives input from the HPC and

through a shortcut connection from the activities x1,

y1(t) = 1
2W

T
1 x1(t−D) + 1

2yHPC(t−D), (36)

and subsequent activities yi of populations projecting away from HPC are calculated in

analogy to the previous section as

yi(t) = 1
2W

T
i xi(t−D) + 1

2yi−1(t−D), ∀i ∈ {2, .., L}, (37)

where Wi are the direct shortcut connections from the populations xi to the

populations yi. Activities were updated in the order given by the black arrows in

Fig. 4A, i.e., starting with xL to x1, then yHPC, and afterwards y1 to yL.

Memory imprinting to the HPC weight matrix WHPC is analogous to the section for

Fig. 3 (compare Eq. (23)). Before each consolidation phase, new memories were sampled

from a binomial distribution B(1, 0.5). The HPC weights were then updated as

WHPC ←
[
WHPC +

λ [B(1, 0.5)]
norm
1

1− λ

]norm
1

, (38)

where [M]
norm
1 now denotes the L1 normalization of the matrix M.

All shortcut connections Wi showed plasticity according to Eqs. (25) and (26) with

parameters A+
i and A−i specified in Table 2. Weights were constrained to the interval

[0, wmax] with wmax = 2
N and N being the number of neurons per layer. Initial weights

were drawn from a uniform distribution in this interval. To increase memory lifetime in

the system, learning rates were decreased along the hierarchy, such that the learning

rate in layer i is smaller than that in layer 1 by a factor qi−1. Hence, layers closer to the

HPC are more plastic than more remote layers.
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Ncycle 1000 number of consolidation cycles

T 150 s consolidation time per sleep cycle

∆T 5 ms integration time step

N 256 neurons per neuron population

L 8 number of neocortical populations

r 10 spikes/s mean firing rate

D 5 ms transmission delay

λ 0.5 relative strength of new memory to HPC weights (see
eq 38)

wmax 2/N maximum weight

A+
i 0.4 · wmax · qi−1 height of potentiating learning window for connec-

tions between populations at level i

A−i −1.00008 ·A+
i height of depressing learning window for connections

between populations at level i

q 0.5 learning rate decrease factor

τSTDP 20 ms time constants of learning window (see eq 26)

Nequi 1000 equilibration consolidation cycles run before the sim-
ulation starts

Table 2. Parameters for simulations in Fig. 4

Before starting the main simulation of Ncycle consolidation cycles, we equilibrated

the weight matrices by simulating Nequi consolidation cycles.

Assessing the strength of memories in neocortical weight matrices

To assess the decay of memory in the system, a reference memory Wref was imprinted

according to Eq. (38) to WHPC at time t = 0. The memory pathway correlation, i.e.,

the Pearson correlation of this reference memory with all shortcut weight matrices Wi

was then calculated.

In analogy to the section for Fig. 3, the maximum correlation (across layers) was

taken as the overall memory signal of the system. This yields the power law in Fig. 4B.

The noise level indicated in Fig. 4B is the standard deviation of the correlation between

the two random matrices M and Wref , both having sample size N2. Considering the

central limit theorem, the noise level will be approximately 1/N .
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Code availability

The code will be made available upon publication.
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Supplementary Figure 1. Failure of consolidation of a synaptic weight pat-
tern from non-plastic PPCA1 to plastic SC synapses. Panels as in Fig. 1E. Left
and middle column: normalised synaptic weights before and after consolidation. Right
column: time course of correlation between SC and PPCA1 weight vectors during consol-
idation (mean ± SEM for 10 trials).
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Theoretical analysis 587

1 STDP in a single cell with two input pathways. 588

Let us first consider a single cell (which could be located in CA1) that receives inputs 589

through two pathways (Fig. 1). We assume that memories, i.e., associations, are stored 590

during the day in the weight vector V of the indirect path, and that consolidation occurs 591

by transferring this information into the weights W of the direct path. For simplicity, 592

we consider the case of a single rate-based neuron, which represents one of the output 593

neurons in the simulated network. The spiking case of linear Poisson neurons leads to 594

very similar results, apart from additional contributions from spike-spike correlations, 595

which can be neglected for a large number of synapses (Kempter et al., 1999). 596

The output y of the neuron is assumed to be given by a linear function of the input:

y(t) = WTx(t) + VTx′(t−D) , (39)

where x and x′ denote the input arising from the direct and indirect pathway, 597

respectively. We assume that the inputs x and x′ are related by some kind of 598

(potentially nonlinear) statistical dependency, and that x′ arises from an indirect 599

pathway and is therefore delayed by a time interval D > 0. The notation is chosen such 600

that the case where the two inputs to the two pathways are the same (apart from the 601

delay) reduces to the condition x(t) = x′(t). This case corresponds to Fig. 1 of the main 602

text. It is important to emphasise that in the following analysis of the learning 603

dynamics, we consider the input arising during consolidation, e.g., during sleep, which 604

may be statistically different from the input during memory storage or, more 605

importantly, recall. If the correlation structure between the two pathways is different 606

during consolidation and during recall, the consolidation process leads to a distortion of 607

the memory in the sense that a different cue would be required to retrieve the memory. 608

In the following, we will only consider the case where the correlation structure during 609

consolidation is the same as during storage and recall. 610

We now consider the learning dynamics of a simple additive STDP rule that would
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result from a rate picture (neglecting spike-spike correlations; cf., Kempter et al. (1999)):

∆W

T
= η

∫ ∞
−∞

dτ
1

T

∫ T

0

dt L(τ)x(t)y(t+ τ) = η

∫ ∞
−∞

dτ L(τ)〈x(t)y(t+ τ)〉T , (40)

where L(τ) is the learning window, which determines how much a pair of pre- and 611

postsynaptic activity pulses (i.e., spikes) with a time difference τ changes the synaptic 612

weight, and η is a learning rate that scales the size of these changes. We adopt the 613

convention that the time difference τ is positive when a presynaptic spike occurs before 614

a postsynaptic spike. The notation 〈· · ·〉T = 1/T
∫ T
0
· · · dt indicates averaging over an 615

interval of length T . 616

We assume that the integration time window T can be chosen such that the weights

do not change significantly during the integration time (i.e., a small learning rate), but

that the statistics of the input are sufficiently well sampled so that boundary effects in

the temporal integration are negligible. We also assume that the statistics of the inputs

x and x′ are stationary, i.e., they do not change over time. Under these assumptions, we

can insert the output firing rate from Eq. (39) into the learning rule and get

∆W

T
= η

∫ ∞
−∞

dτ L(τ)
〈
x(t)

[
WTx(t+ τ) + VTx′(t+ τ −D)

]〉
T

(41)

≈ η

[∫ ∞
−∞

dτ L(τ)〈x(t)x(t+ τ)T〉t
]
W

+ η

[∫ ∞
−∞

dτ L(τ)〈x(t)x′(t+ τ −D)T〉t
]
V

where 〈· · ·〉t denotes the average over all times. Eq. (41) describes the dynamics of the 617

weights W in the direct pathway, which is given by an interplay of the correlation 618

structure within and between the two pathways as well as the shape of the learning 619

window L. In the following, we study under which conditions this weight update 620

generates a consolidation of the input-output associations stored in the weights V of the 621

indirect pathway into the weights W of the direct pathway. 622
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2 Learning dynamics implement memory consolidation by a 623

linear regression. 624

In general, the learning dynamics is hard to analyse if the covariance

matrices 〈x(t)x(t+ τ)T〉t and 〈x(t)x′(t+ τ −D)T〉t are arbitrary objects. A case that

can be studied analytically is that of separable statistics in which each of the two

correlation matrices can be written as a product of a scalar function of the delay τ (here

we use f(τ) and g(τ)) and the covariance matrices for zero delay (denoted by 〈xxT〉 and

〈xx′T〉, in which we omitted, for simplicity, the lower index t). In other words, we

assume 〈x(t)x(t+ τ)T〉t = 〈xxT〉f(τ) and 〈x(t)x′(t+ τ)T〉t = 〈xx′T〉g(τ). Note that

this separability assumption is consistent with the simulations in Figs. 1, 3, and 4 of the

main text. It is inconsistent with sequence replay during consolidation, because the

time-delayed covariance of different place cells then depends on the relative spatial

location of their place fields. The separable case is nevertheless an instructive scenario

that provides insights into the dynamics of the consolidation process. For separable

input statistics, the learning dynamics can then be simplified to

1

η

∆W

T
=

[∫ ∞
−∞

dτ L(τ)f(τ)

]
︸ ︷︷ ︸

=:A

〈xxT〉W +

[∫ ∞
−∞

dτ L(τ)g(τ −D)

]
︸ ︷︷ ︸

=:B

〈xx′T〉V . (42)

If the scalar constant A is negative (see below for conditions when this is the case), the

learning dynamics is stable and converges to a unique fixed point that is given by

W = −B
A

[
〈xxT〉

]−1 〈xx′T〉V . (43)

Note that apart from the factor −BA =: β, this fixed point has the same structure as the

closed-form solution of a linear regression. In fact, it is straightforward to show that the

learning dynamics in Eq. (42) performs a gradient descent on the error function

E(W) :=
〈

(W · x− βV · x′)2
〉
t
. (44)

If the scalar constant B – and thus β – is positive, the learning dynamics in the direct 625

path converges to a weight configuration, for which the input W · x from the direct 626
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path is an optimal linear approximation of the input V · x′ from the indirect path, in 627

the sense of minimal mean squared error. If the constant β is larger than 1, the direct 628

pathway would contribute more to a potential recall than the original memory trace in 629

the indirect pathway. 630

In terms of systems memory consolidation, the weights V of the indirect path 631

change as new memories are acquired, so the fixed point in Eq. (43) for the weights W 632

of the direct path is usually never reached. If it were, the direct pathway would merely 633

represent a copy of the memories that are currently stored in the indirect path, rather 634

than retaining older memories, as intended. The time scale of the learning dynamics of 635

the direct path should therefore be longer than the memory retention time in the 636

indirect path. In this case, the transient dynamics of the system is more important for 637

the consolidation process than the fixed point. 638

Another important aspect to emphasise is that the consolidation is influenced by the 639

correlation structure 〈xx′T〉 between the pathways that is encountered during the 640

consolidation period. Intuitively, consolidation is achieved by matching the input V · x′ 641

that is caused by “cues” x in the indirect path with the input W · x caused by the 642

associated “cues” x′ in the direct path. In order for the consolidated memories to be 643

accessible during recall, the relation between the “cues” in the two pathways (i.e., the 644

correlation 〈xx′T〉 between the two pathways) should be the same during recall as 645

during consolidation. In terms of the hippocampus, this generates the prediction that 646

during hippocampal replay, activity in layer III of entorhinal cortex should replay the 647

same locations replayed in hippocampus proper, but represented in terms of the spatial 648

coding scheme in the entorhinal cortex (i.e., grid cells). 649

The objective function argument in Eq. (44) only holds when the constant A is 650

negative. For positive A, the learning dynamics suffers from the common Hebbian 651

instability and thus has to be complemented by a weight-limiting mechanism. The 652

choice of this weight limitation (e.g., subtractive or divisive normalisation, weight 653

bounds) will then have an impact on the dynamics and the fixed point of the learning 654

process (Miller and MacKay , 1994; Dayan and Abbott , 2001). For the simulations in the 655

main text, the parameters were always chosen such that the learning dynamics were 656

stable (A < 0). Although this suggests that no weight limiting mechanism was required 657

in principle, upper and lower bounds for the weights were nevertheless used, with no 658
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qualitative impact on the results. 659

3 Effects of temporal input statistics: Speed-up of input 660

activity improves consolidation. 661

The constants A and B, which were defined in Eq. (42) as A :=
∫

dτ L(τ)f(τ) and 662

B :=
∫

dτ L(τ)g(τ −D), play an important role for the learning dynamics. The sign of 663

A determines the stability of the learning dynamics, while B should be positive to 664

obtain memory consolidation. For negative B, memories in the indirect path are 665

actively deleted from the direct path rather than consolidated therein. Both of these 666

constants depend on the interplay between the learning window L and the temporal 667

input statistics, characterised by the functions f and g. For the assumed separable 668

statistics, the function f is fully determined by the autocorrelation function of the input 669

in the direct path and is therefore symmetric in time τ . 670

A first interesting observation is that for an antisymmetric learning window L, the 671

constant A vanishes for symmetry reasons, A = 0. Mathematically, this implies that the 672

first term of the learning dynamics in Eq. (42) — the dependence on the weights in the 673

direct path — vanishes. The weight update is then purely determined by activity arising 674

from the indirect pathway. Intuitively, the balance of potentiation and depression in an 675

antisymmetric learning window implies that the direct path, although able to drive the 676

postsynaptic neuron, is causing equal amounts of potentiation and depression in all of 677

its synapses. On average, synaptic changes are caused only by the indirect pathway, 678

which therefore acts as a supervisor for the learning dynamics in the direct path. A 679

thorough analysis under which conditions STDP can be used for supervised learning has 680

been provided elsewhere (Legenstein et al., 2005; Pfister et al., 2006), and the results of 681

this analysis are applicable in the present case. Functionally, the depressing part of the 682

STDP learning window serves to neutralise the impact of the direct pathway on its own 683

learning dynamics, effectively creating a supervised learning scenario. 684

Another interesting factor that determines the magnitude of the terms A and B is 685

the time scale on which the inputs change (reflected, e.g., in the time constants of the 686

correlation functions f and g). Let us assume that both correlation functions f and g 687

are maximal for τ = 0 and that they decay for large |τ |, conditions that are reasonable 688

53/60

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.408344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408344
http://creativecommons.org/licenses/by/4.0/


delay

relative timingrelative timing

D

delay

relative timing

Ddelay

relative timing

correlation function

STDP learning window L (τ )

g(τ − D )

A B

C D

D

correlation function

STDP learning window L (τ )

g(τ − D )correlation function

STDP learning window L (τ )

f (τ )

correlation function

STDP learning window L (τ )

g(τ − D )

Supplementary Figure 2. Interaction of temporal correlations and the STDP
learning window. The degree to which the weight dynamics of the direct path is
driven by input from the direct and indirect pathways, respectively, is determined
by the integrated products of the learning window L(τ), which is a function of the
“relative timing” τ , and the correlation functions f (autocorrelation of inputs in the
direct pathway) and g (cross-correlation between input from the direct and indirect
pathways). (A) For separable statistics, the autocorrelation function f in the direct
pathway is symmetric. If the learning window L is antisymmetric, the integrated product
(coefficient A in Eq. (42)) vanishes for symmetry reasons, and learning is driven by input
from the indirect pathway alone. Then, on average, postsynaptic activity driven by the
direct pathway does not interfere with consolidation. (B) The indirect pathway primarily
induces potentiation in the direct pathway (coefficient B > 0 in Eq. (42)), if i) the
delay D between the pathways is positive, ii) the learning window is positive for positive
delays, iii) the time scale of the decay of cross-correlations is shorter than the delay D
and the width of the learning window. These three conditions favor consolidation. (C)
If the cross-correlations decay on a time scale that is much longer than the width of the
learning window and the delay D, the indirect pathway can drive both potentiation and
depression, and consolidation is weaker (i.e., the coefficient B is smaller) than for shorter
correlations. (D) If the delay D between the direct and the indirect paths is longer
than the width of the learning window L, the indirect pathway cannot induce systematic
changes in the weights of the direct pathway (coefficient B ≈ 0) and consolidation is
ineffective.
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for most correlation structures. We also assume that the learning window has the 689

typical structure of potentiation for causal timing (L(τ) > 0 for τ > 0) and depression 690

for acausal timing (L(τ) < 0 for τ < 0) (Bi and Poo, 1998; Markram et al., 1997; 691

Sjöström et al., 2008). The delay D > 0 in the indirect path shifts the maximum of the 692

cross-correlation function g into the potentiating part of the learning window 693

(Supplementary Fig. 2B-D), while the maximum of f remains in the transition region of 694

potentiation and depression (Supplementary Fig. 2A). The following observations can 695

be made concerning the constant B as defined by the integral in Eq. (42). If the 696

cross-correlation function g(τ) has a narrow enough peak at τ = 0 (i.e., narrower than 697

the time scale of the learning window and the delay D), B is positive, suggesting that 698

consolidation can occur. The sharp localization of the correlation function g 699

corresponds to rapidly changing input signals. On the other hand, if the decay time 700

constant of the correlation function g is large compared to that of the learning window 701

(Supplementary Fig. 2C), the depressing component of the learning window has more 702

impact and reduces the constant B and thus the efficiency of consolidation. In the case 703

where the learning window is dominated by depression (as in our simulations), B can 704

even get negative for large time constants of the correlation function g, abolishing 705

consolidation altogether. In summary, this dependence of the consolidation process on 706

the time constants of the correlation functions suggests that during consolidation, the 707

time scale of the activity in the two input pathways should be on the order of the time 708

scale of the learning window. For the concrete example of a cell in CA1, the direct 709

input x corresponds to perforant path inputs from the entorhinal cortex, while the 710

indirect input x′ corresponds to Schaeffer collateral input from CA3. The time 711

constants of behavioral experiences are typically slower (e.g., rate changes of place or 712

grid cells in CA3 & entorhinal cortex during exploration) than the learning window, 713

suggesting that a real-time replay of recent experiences would not provide a favorable 714

substrate for the consolidation of memories. The observed speedup of replay events 715

during sleep could thus functionally serve the purpose of enabling consolidation by 716

matching the time scales of activity and plasticity. 717

A final observation is that the time delay along the indirect path should not be 718

excessively long, i.e., it should be on the order of the time scale of the learning window. 719

Otherwise, the delayed correlations between the two pathways are too large to be 720
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exploited by spike timing-dependent plasticity (Supplementary Fig. 2D). This will limit 721

the ability to consolidate from very long indirect paths into shortcuts, e.g., during the 722

hierarchical consolidation scheme in Figure 4 in the main text. 723

4 Hierarchical consolidation 724

As outlined in the main text and illustrated in Fig. 4, the suggested consolidation 725

mechanism can be hierarchically iterated and leads to power law forgetting when the 726

learning rates in the various pathways are suitably chosen. To get a theoretical 727

understanding of this behaviour, let us consider the architecture shown in the 728

Supplementary Fig. 3A, which is a generalised version of Fig. 4A. The network consists 729

of a hierarchy of N + 1 input layers and N + 1 output layers. For mathematical 730

simplicity, the network is assumed to be linear, and the representation in the input 731

layers is assumed to be the same, i.e., the weight matrices between the input layers 732

(indicated in black in Supplementary Fig. 3A) are all simply the identity matrix. 733

Similarly, we also assume that all weight matrices between the output layers are also the 734

identity matrix. The mathematical derivations presented in the following can be 735

generalised to arbitrary weight matrices both in the input and the output pathways, but 736

we prefer to treat the simple case to avoid cluttered equations and to make the 737

theoretical approach more accessible. 738

We assume that due to newly acquired memories during the day, the weight 739

matrix W0(t) that represents the memory trace in the hippocampus is varying in time, 740

with an exponentially decaying autocorrelation function with time constant τoverwrite: 741〈
tr
(
W0(0)TW0(t)

)〉
t
∝ exp(−t/τoverwrite)., where tr denotes the trace of a square 742

matrix. 743

All other pathways that project from an input layer to an output layer are plastic

according to STDP. To derive the learning dynamics for these pathways, we first have

to calculate the activity yi in the i-th output layer,

yi(t) =
i∑

j=0

cijW
T
j xj(t−Dij) , (45)

where xj denotes the activity in input layer j and cij denote weighting factors that

determine the impact of the jth pathway, i.e. the indirect pathway via Wj , on output
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layer i. These weighting factors are needed, because we would like to keep the weight

matrices on a similar scale, but avoid that the activity increases from one output region

to the next, because more synaptic pathways converge onto “later” output layers. The

symbol Dij = 2D(i− j) denotes the total delay that is accumulated on the connection

from the i-th input layer to the i-th output layer that traverses the j-th direct

“shortcut” pathway, relative to the direct shortcut from input layer i to output layer i.

For simplicity, we assumed that all connections have the same delay D. In a very

similar way as in Eq. (41), the learning dynamics of the weight matrix Wi in the direct

path can be written as

dWi

dt
≈ ∆Wi

T
≈ ηi

i∑
j=0

cij

[∫
L(τ)〈xi(t)xT

i (t+ τ −Dij)〉t dτ

]
Wj (46)

where ηi denotes the learning rate for the i-th pathway. For simplicity, we will assume

that the different components of the input signal vector xi(t) are uncorrelated amongst

each other, and have identical temporal autocorrelations that are also independent of

the layer index: 〈xi(t)xT
i (t+ τ)〉t = If(τ), where I is the identity matrix. The learning

dynamics then simplify to

dWi

dt
≈ ηi

i∑
j=0

cijA(Dij)Wj (47)

with A(D) :=
∫
L(τ)f(τ −D) dτ . 744

To measure the degree to which a memory trace that is stored in the weight

matrix W0 at time t = 0 is still present in the j-th shortcut pathway at a later time t,

we compare the weight matrix Wj(t) at time t to the weight matrix W0(0) at time t = 0.

We quantify the correlation of these two matrices by calculating the summed overlap of

the column vectors:

Oi(t) = tr
[
W0(0)TWi(t)

]
. (48)

Note that the overlaps Oi(t) are real numbers, and that their temporal dynamics for the 745

shortcut connections (i.e., for all i > 0) are dictated by the dynamics of the weight 746

matrices in the network: 747
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d

dt
Oi(t) = tr

[
W0(0)T

dWi(t)

dt

]
(49)

= ηi

i∑
j=0

cijA(Dij) tr
[
W0(0)TWj(t)

]
(50)

= ηi

i∑
j=0

cijA(Dij)Oj(t) . (51)

To capture the exponential decay of the initially stored memories in the “hippocampal”

weight matrix W0 due to the storage of new memories, the set of dynamical equations is

completed by

d

dt
O0(t) = − 1

τoverwrite
O0(t) . (52)

Note that the dynamics of the overlaps Oi form a linear dynamical system. 748

To show that this mathematical description shows a power-law behavior akin to the 749

simulated system in Fig. 4 of the main text, we simulated the equations with the 750

following parameter choices. Consistent with the exponential decay of the learning rates 751

in the simulations, we chose the learning rates as ηi = 2−i. The weighting factors cij 752

were chosen based on the assumption that output layer i (for i > 0) receives a 753

fraction α of its input from the output layer i− 1 below, and a fraction 1− α via its 754

direct shortcut connection (associated with the weight matrix Wi). Taking into account 755

that the signal reaching layer i through shortcut connection j traverses several of these 756

weighting stages (see Supplementary Fig. 3A), this choice yields cij = (1− α)jαi−j . 757

Note that
∑i
j=0 cij = 1, so the activity level in different output layers should be similar. 758

Finally, we assume that each synaptic transmission generates a fixed delay D and that 759

the autocorrelation function f(τ) decays much more quickly than the STDP learning 760

window. In this case, we can approximate A(Dij) = exp
(
−2D (i−j)

τSTDP

)
. We chose 761

τSTDP = 40 ms as the decay time of the STDP learning window for positive delays 762

τ > 0 and D = 2 ms. Potential factors in A(Dij) are absorbed in the learning rates. As 763

shown in the Supplementary Fig. 3B, the maximum of the overlaps Oj indeed shows a 764

power law decay. 765
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Supplementary Figure 3. Mathematical analysis of the hierarchical consolidation
network. (A) The mathematical analysis is performed for a network consisting of N +1 input
and N + 1 output layers. All output layers (except output layer 0) weight the input from the
previous layer with a factor α and the input via the shortcut pathway with a factor 1− α, to
ensure that activity does not rise as increasingly many pathways converge onto the output
layers. Input layer i is hence connected to output layer i through a shortcut connection with
weight matrix (1− α)Wi (except for the bottom-most layers i = 0, for which no factor 1− α
is required). All connections between input layers are set to the identity matrix I, and all
connections between output layers are set to αI, for notational simplicity in the derivations.
The math can be generalized to arbitrary connection matrices, as long as the network is linear.
Each connection introduces a synaptic delay of D. The multi-synaptic pathway from input
layer i to output layer i via shortcut connection j 6= i has a total delay of (2(i−j)+1) ·D, so the
difference in delays between the pathway through shortcut i and shortcut j is Dij = 2(i− j) ·D.
(B) The similarity Oi of the weight matrix W0 (in which memory traces are initially stored)
and the shortcut connection Wi as a function of the time elapsed after storage (colored lines),
and their maximum (black line). Simulations shown for D = 2 ms, α = 0.8, ηi = 2−i and STDP
time constant τSTDP = 40 ms.
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