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Abstract 
 
Diffusion weighted imaging (DWI) allows investigators to identify microstructural differences between subjects, 
but variability due to session and scanner biases is still a challenge. To investigate DWI variability, we present 
MASiVar, a multisite dataset consisting of 319 diffusion scans acquired at 3T from b = 1000 to 3000 s/mm2 across 
97 different healthy subjects and four different scanners as a publicly available, preprocessed, and de-identified 
dataset. With these data we characterize variability on the intrasession intrascanner (N = 158), intersession 
intrascanner (N = 328), intersession interscanner (N = 53), and intersubject intrascanner (N = 80) levels. Our 
baseline analysis focuses on four common DWI processing approaches: (1) a tensor signal representation, (2) a 
multi-compartment neurite orientation dispersion and density model, (3) white matter bundle segmentation, and (4) 
structural connectomics. Respectively, we evaluate region-wise fractional anisotropy (FA), mean diffusivity, and 
principal eigenvector; region-wise cerebral spinal fluid volume fraction, intracellular volume fraction, and 
orientation dispersion index; bundle-wise shape, volume, length and FA; and connectome correlation and 
maximized modularity, global efficiency, and characteristic path length. We plot the scan/re-scan discrepancies in 
these measures at each level and find that variability generally increases with intrasession to intersession to 
interscanner to intersubject effects and that sometimes interscanner variability can approach intersubject variability. 
This baseline study suggests harmonization between scanners for multisite analyses is critical prior to inference of 
group differences on subjects and demonstrates the potential of MASiVar to investigate DWI variability across 
multiple levels and processing approaches simultaneously. 
 
Keywords: Diffusion MRI, variability, reproducibility, tensor, microstructure, DTI, NODDI, bundle segmentation, 
connectome 
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Introduction 
 
Diffusion weighted MRI imaging (DWI) is a noninvasive way of elucidating the brain’s microstructural makeup 
(O’Donnell and Westin, 2011). Common modes of DWI analysis include representing the diffusion signal with 
tensors (Assaf and Pasternak, 2008), representing biological tissues with multi-compartment models (Jelescu et al., 
2015; Zhang et al., 2012), identifying white matter bundles (Schilling et al., 2020b), and investigating the human 
structural connectome (Sotiropoulos and Zalesky, 2019). These approaches form the basis for many studies 
including those investigating a wide range of neurological disorders including autism (Di Martino et al., 2017; 
Travers et al., 2012), diabetes (Kodl et al., 2008; Repple et al., 2019), multiple sclerosis (De Santis et al., 2019), 
and schizophrenia (Cetin-Karayumak et al., 2019) as well as differences due to aging (Westlye et al., 2010) and sex 
(Menzler et al., 2011). These types of studies, however, rely on the identification of group differences with respect 
to an independent variable. Often this variable is whether the scanned subject has a particular disease, or the age or 
sex of the subject. Robust study design can control for additional subject-level confounders through age- and sex-
matching and related approaches. However, one level of potential confounding in DWI studies that has not been 
thoroughly characterized is the variability of calculations due to differences within and between imaging sessions 
and scanners. 
 
One particular reason for this is the difficulty in acquiring data configured to perform such a characterization. For 
instance, to quantify within session variation, imaging sessions with multiple scans are needed. To quantify between 
session and between scanner variation, multiple imaging sessions on at least one scanner and at least one imaging 
session on multiple scanners are required, respectively. Last, to assess the session and scanner effects relative to the 
subject effect size, multiple scanned subjects are needed as well.  
 
Another reason for this is the low number of properly configured publicly available datasets. Some of the few that 
exist that allow for investigations of DWI variability are the MASSIVE dataset (Froeling et al., 2017), the Human 
Connectome Project (HCP) 3T dataset (Van Essen et al., 2013), the MICRA dataset (Koller et al., 2020), the SIMON 
dataset (Duchesne et al., 2019), and the multisite dataset published by Tong et al. (Tong et al., 2020). MASSIVE 
consists of one subject scanned repeatedly on one scanner (Froeling et al., 2017); HCP consists of multiple subjects 
with multiple acquisitions per session all on one scanner (Van Essen et al., 2013); MICRA consists of multiple 
subjects scanned repeatedly on one scanner (Koller et al., 2020); SIMON consists of one subject scanned at over 
70 sites (Duchesne et al., 2019), and the Tong dataset consists of multiple subjects each scanned on multiple 
scanners (Tong et al., 2020).  
 
Thus, the release of additional publicly available datasets specifically configured to study DWI variability on the 
session and scanner level in addition to the subject level would be an asset to the field. A baseline characterization 
of this variability is also needed to inform investigators about the degree to which session and scanner effects may 
be impacting their analyses. To fill the first need, we propose MASiVar, a multisite, multiscanner, and multisubject 
dataset designed for characterization of DWI variability due to session, scanner, and subject effects. To fill the 
latter, we present a baseline quantification of these effects on four different common diffusion approaches using 
MASiVar and hypothesize that intrasession variability will be less than intersession variability which will be less 
than interscanner and finally intersubject variability. 
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Methods 
 
Data acquisition  
 
We acquired data for MASiVar from 2016 to 2020 in three cohorts, designated I, II, and III (Figure 1).  
 

 
 
Figure 1. Overview of the MASiVar dataset. This dataset consists of three cohorts. Cohort I consists of one subject 
scanned repeatedly on one scanner. This subject underwent three separate imaging sessions and acquired 3-4 scans 
per session. Cohort II consists of 5 subjects each scanned on 3-4 different scanners across 3 institutions. Each subject 
underwent 1-2 sessions on each scanner and had one scan acquired per session. Cohort III consists of 91 subjects all 
scanned on one scanner. Each subject underwent 1-5 sessions on the scanner and had two scans acquired per session. 

 
Cohort I consists of one healthy adult subject (male, age 25 years) with multiple imaging sessions on a 3T Philips 
Achieva scanner at site 1 (scanner A). This subject underwent three imaging sessions, one each consecutive day, 
and received two to three scans during each session. Each scan consisted of 96-direction acquisitions at b = 1000, 
1500, 2000, 2500, and 3000 s/mm2 (Table 1). These scans were acquired at 2.5mm isotropic resolution.  
 
Cohort II consists of five healthy adult subjects (3 male, 2 female, age 27 to 47 years) scanned for one to two 
sessions on each of three to four different scanners. Each subject underwent all sessions within one year. The 
scanners included scanner A, another 3T Philips Achieva scanner at site 1 (scanner B), a 3T General Electric 
Discovery MR750 scanner at site 2, and a 3T Siemens Skyra scanner at site 3 (Figure 1). For each imaging session, 
each subject received one scan, consisting of 96-direction acquisitions at b = 1000, 1500, 2000, 2500 (or 2465 at 
site 3 due to hardware limitations) s/mm2 and a 30- to 33-direction acquisition at b = 1000 s/mm2 (Table 1). The 
scans acquired on scanner B, at site 2, and at site 3, and all the 30- to 33-direction scans were acquired at 2.5mm 
isotropic resolution. On scanner A, one subject’s 96-direction acquisitions were also acquired at 2.5mm isotropic 
resolution while the remainder were acquired at 1.9mm by 1.9mm by 2.2mm (sagittal, coronal, and axial) resolution. 
For consistency, all sessions acquired on scanner A that contained scans of varying resolution were resampled to 
match the resolution of the 96-direction acquisitions prior to analysis. 
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Cohort III consists of 8 healthy adult subjects (4 male, 4 female, ages 21 to 31 years) scanned for one to six sessions 
on scanner B, and 83 healthy child subjects (48 male, 35 female, ages 5 to 8 years) scanned for one to two sessions 
on scanner B (Figure 1). Each adult subject underwent all sessions within one year, and for the 35 child subjects 
scanned twice, their sessions were spaced approximately one year apart. Each subject received one to two scans 
during each session, with each scan consisting of a 40-direction b = 1000 s/mm2 and a 56-direction b = 2000 s/mm2 
acquisition (Table 1). These scans were acquired at 2.1mm by 2.1mm by 2.2mm (sagittal, coronal, and axial) 
resolution.  
 

Table 1. Acquisitions acquired in each scan for the different MASiVar cohorts.  
 

Acquisitions Per Scan 

Cohort Shell 
(b-value) 

Number of 
Directions 

I 

1000 96 

1500 96 

2000 96 

2500 96 

3000 96 

II 

1000 30 to 33 

1000 96 

1500 96 

2000 96 

2465 or 2500 96 

III 
1000 40 

2000 56 

 
All images were phase encoded in the posterior to anterior direction (APP) and were acquired with b = 0 s/mm2 
volumes. Reverse phase encoded (APA) b = 0 s/mm2 volumes were also acquired for all scans in all cohorts except 
for those from one subject in cohort II at site 3. Most sessions also included a T1-weighted image. All images were 
deidentified and all scans were acquired only after informed consent under supervision of the project Institutional 
Review Board. 
 
Data preprocessing 
 
Prior to analysis, all scans in MASiVar were preprocessed and quality checked with the PreQual pipeline (Cai et 
al., 2020). In brief, all acquisitions per scan were denoised with the Marchenko-Pastur technique (Cordero-Grande 
et al., 2019; Veraart et al., 2016b, 2016a), intensity normalized such that the average b = 0 s/mm2 intensity 
distributions within the brain maximally intersected, and distortion corrected. Distortion correction included 
susceptibility-induced distortion correction (Andersson et al., 2003) using APA b = 0 s/mm2 volumes when 
available and the Synb0-DisCo deep learning framework (Schilling et al., 2020a) when not, eddy current-induced 
distortion correction, intervolume motion correction, and slice-wise signal drop out imputation (Andersson et al., 
2016; Andersson and Sotiropoulos, 2016).  
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Data processing 
 
We sought to investigate the variability of four types of common diffusion processing approaches: the diffusion 
tensor imaging (DTI) signal representation, the multi-compartment neurite orientation dispersion and density 
imaging (NODDI) model (Zhang et al., 2012), the RecoBundles white matter bundle segmentation technique 
(Garyfallidis et al., 2018), and a connectomics representation with graph-based measures (Rubinov and Sporns, 
2010) (Figure 2). 
 
For the DTI approach, we extract the b = 1000 s/mm2 acquisition from each scan with the largest number of 
directions. We then calculate the diffusion tensor for each scan using an iteratively reweighted least squares 
approach implemented in MRtrix3 (Veraart et al., 2013). The tensors are subsequently converted to fractional 
anisotropy (FA), mean diffusivity (MD), and principal eigenvector (V1) representations of the data (Westin et al., 
1997). These images are then deformably registered to the Montreal Neurological Institute (MNI) image space with 
the ANTs software package (Avants et al., 2008; Tustison et al., 2014). From there, we identify the 48 regions of 
interest (ROIs) in each image defined by the Johns Hopkins white matter atlas (Hua et al., 2008; Mori et al., 2005; 
Wakana et al., 2007). 
 
For the NODDI approach, we extract the b = 1000 and 2000 s/mm2 acquisitions from each scan with the largest 
number of directions. We then fit the multicompartment model with the UCL NODDI Toolbox as implemented in 
MATLAB (Zhang et al., 2012). The models are subsequently converted to cerebrospinal fluid (CSF) volume 
fraction (cVF), intracellular volume fraction (iVF), and orientation dispersion index (ODI) representations. These 
images are then deformably registered to MNI space with the ANTs software package. From there, we identify the 
48 regions of interest (ROIs) in each image defined by the Johns Hopkins white matter atlas. 
 
For the white matter segmentation approach, we extract the b = 2000 s/mm2 acquisition from each scan with the 
largest number of directions. We calculate a whole-brain tractogram with DIPY of 2 million streamlines 
(Garyfallidis et al., 2014). We use the constrained spherical deconvolution model (Tournier et al., 2007) with 
probabilistic local tracking with a maximum angle of 25°, a seeding criterion of FA > 0.3, and a stopping criterion 
of FA < 0.2. We extract 43 white matter bundles (Supplementary Table 1) from each tractogram using the 
RecoBundles algorithm as implemented in DIPY. In short, each tractogram is registered to an MNI tractogram 
template and streamlines from each tractogram are assigned to bundles within the template (Garyfallidis et al., 
2018). The length, volume, and FA of each bundle are then calculated. We calculate bundle length by calculating 
the median streamline length. We calculate volume by first converting each bundle to a tract density image 
representation. From there, a binary bundle mask is calculated by thresholding the tract density image at 5% of the 
99th percentile density. Volume is calculated by multiplying the number of voxels in the mask by the volume of 
each voxel. FA is calculated by first converting the image to a tensor representation (Veraart et al., 2013) and then 
to an FA representation (Westin et al., 1997). Each bundle’s binary mask is then applied to obtain the voxel-wise 
median FA value per bundle. 
 
For the connectomics approach, we extract the b = 2000 s/mm2 acquisition from each scan with the largest number 
of directions. We then calculate a whole-brain tractogram with MRtrix3 (Tournier et al., 2019). We first use the 
constrained spherical deconvolution model with probabilistic tracking with a maximum angle of 25°, a seeding 
criterion of FA > 0.3 and a stopping criterion of FA < 0.2 to calculate a 10 million streamline tractogram. The 
tractogram is then filtered with the SIFT approach to 2 million streamlines (Smith et al., 2013). We parcellate the 
brain into 96 cortical regions using the Harvard-Oxford cortical atlas (Desikan et al., 2006; Frazier et al., 2005; 
Goldstein et al., 2007; Makris et al., 2006) and compute a connectome where each edge represents the average 
streamline distance connecting the two nodes. The maximum modularity, global efficiency, and characteristic path 
length are then calculated from each connectome using the Brain Connectivity Toolbox as implemented in 
MATLAB (Rubinov and Sporns, 2010). 
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Figure 2. Outline of scan/re-scan discrepancy calculations in four types of common diffusion MRI processing. 

 
Overview of Variability Analysis 
 
The unique configuration of the MASiVar dataset allows for the extraction of four different levels of scan/re-scan 
pairs of images for variability analysis (Figure 3). This includes intrasession intrascanner (N = 158), intersession 
intrascanner (N = 328), intersession interscanner (N = 53), and intersubject intrascanner (N = 80) scan/re-scan pairs. 
For the intersubject intrascanner pairings, we omit cohort III to prevent bias of results toward scanner B. For all 
pairings we do not consider direction and consider the pairing of scan X and scan Y to be the same as scan Y and 
scan X. Using these pairs, we calculate the scan/re-scan discrepancy at the four different levels for the four 
processing approaches.  
 

 
 
Figure 3. Example identification of scan/re-scan pairs at the four levels of variation. The MASiVar dataset consists 
of scan/re-scan pairs on four different levels: intrasession intrascanner, intersession intrascanner, intersession 
interscanner, and intersubject intrascanner. Identification of scan/re-scan pairs allows for quantification of variability 
at the four different levels. 
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Calculation of scan/re-scan discrepancy at a given level of variation 
 
For a given level of variation, we identify all scan/re-scan pairs for that level in MASiVar. We then compute the 
scan/re-scan discrepancies within all pairs and take the median across pairs as the discrepancy at that level of 
variation, bootstrapping the image pairs used to obtain a 95% confidence interval (Efron, 1979). For the DTI, 
NODDI, and bundle segmentation analyses, we do this for each of multiple regions or bundles. An example of this 
is shown in Figure 4 for the FA DTI analysis. The remaining are shown in Supplementary Figures 1-9. In these 
cases, our final analysis is performed on the distribution of discrepancies across regions or bundles (Figures 5-7). 
Since we do not have multiple regions or bundles for the connectomics analysis, we use the bootstrapped distribution 
of discrepancies in their place (Figure 8). 
 

 
 
Figure 4. Bootstrapped scan/re-scan discrepancies of FA across 48 Johns Hopkins white matter atlas regions. The 
session and scanner effects across the white matter regions range from roughly 5% to 30%. For most regions, the 
scan/re-scan discrepancies increase from intrasession intrascanner to intersession intrascanner to intersession 
interscanner to intersubject intrascanner, suggesting the relative magnitude of session and scanner effects in white 
matter DWI analyses. The bootstrapped confidence intervals are generally tight and non-overlapping, supporting that 
these results are robust.  

 
To compare the scan/re-scan discrepancies across levels, we use non-parametric statistical tests for all four 
processing approaches and report the uncorrected p-values. For the DTI, NODDI, and bundle segmentation 
analyses, we use the Wilcoxon signed-rank test for paired distributions, as all points in each distribution are 
measured from the same regions or bundles (Hollander et al., 2013). For the connectomics analysis, we use the 
Wilcoxon rank-sum test for unpaired distributions, as the distributions were constructed from bootstrapping and 
thus do not have correspondence (Hollander et al., 2013). 
 
Calculation of scan/re-scan discrepancy within an image pair 
 
We perform the region-based DTI and NODDI discrepancy analyses in MNI space with voxel-wise correspondence 
between images (Figure 2). For a given region and level of variation, we calculate the scan/re-scan discrepancy for 
FA, MD, cVF, iVF, and ODI as the median voxel-wise percent absolute difference. For V1, we define it as the 
median voxel-wise angular difference in degrees. 
 
Because streamline-wise and subsequent voxel-wise correspondence cannot be achieved with tractography and 
bundle segmentation, we perform this analysis differently (Figure 2). For a given bundle and level of variation, we 
calculate the scan/re-scan discrepancy of bundle shape with the Dice similarity index (Dice, 1945) between the tract 
density images from the two paired images. We define the discrepancy of bundle volumes as the percent absolute 
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difference. We calculate the discrepancy of bundle FA as the percent absolute difference between the voxel-wise 
medians from each image and the discrepancy of bundle length as the percent absolute difference between the 
streamline-wise medians from each image.  
 
To evaluate the scan/re-scan discrepancy of connectomics, we characterize each pair of connectomes as both (1) a 
whole and (2) through scalar measures (Figure 2). First, we calculate the Pearson correlation between the 
connectomes within each image pair as an estimate for connectome agreement within a pair. Second, we calculate 
the percent absolute difference in maximum modularity, global efficiency, and characteristic path length (Rubinov 
and Sporns, 2010) between the connectomes in the pair. 
 
Analysis of Intrasubject to Intersubject Discrepancy Ratios 
 
To understand how intrasubject variation compares to intersubject variation, we calculate the ratios of each of the 
intrasubject scan/re-scan discrepancy estimates to the corresponding intersubject intrascanner estimate. For the DTI, 
NODDI, and bundle segmentation analysis, we compute this ratio on a region- or bundle-wise basis, and for the 
connectome analysis, we compute this ratio on the bootstrapped distributions. For the Dice and correlation similarity 
measures, we first subtract them from 1 to obtain dissimilarity estimates. With this design, ratios of <1, 1, and >1 
indicate the intrasubject variation is less than, equal to, or greater than the intersubject variation, respectively. 
 
Results 
 
Variability in tensor signal representations 
 
We find that intrasession intrascanner FA measurements can vary as much as 7.6%, that intersession intrascanner 
measurements can vary as much as 9.5%, that intersession interscanner measurements can vary as much as 13.7%, 
and that intersubject intrascanner measurements can vary as much as 17.7%. We find the corresponding 
measurements in the MD case to be 2.8%, 4.8%, 8.6%, and 9.1% and for the V1 case to be 9.7°, 12.4°, 14.5°, and 
20.2°, respectively. All these differences were statistically significant (p < 0.0005, Wilcoxon signed-rank test), 
except for the intersession interscanner and intersubject intrascanner comparison for MD (Figure 5). 
 

 
 
Figure 5. Scan/re-scan discrepancies of tensor signal representations at four levels of variability across 48 Johns 
Hopkins white matter atlas regions. Statistical significance was determined with the Wilcoxon signed-rank test.  
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Variability in multi-compartment modeling 
 
We find that the intrasession intrascanner cVF measurements can vary as much as 50.1%, that intersession 
intrascanner measurements can vary as much as 56.6%, that intersession interscanner measurements can vary as 
much as 57.5%, and that intersubject intrascanner measurements can vary as much as 61.9%. We find the 
corresponding measurements in the iVF case to be 6.2%, 8.2%, 11.8%, and 12.1% and for the ODI case to be 10.2%, 
14.0%, 19.1%, and 26.5%, respectively. All these differences were statistically significant (p < 0.0005, Wilcoxon 
signed-rank test), except for the intersession intrascanner and intersession interscanner cVF comparison (p < 0.005) 
and the intersession interscanner and intersubject intrascanner iVF comparison (Figure 6). We evaluated cVF only 
in white matter regions defined by the Johns Hopkins atlas and thus dealt with very low cVF values when calculating 
percent difference. 
 

 
 
Figure 6. Scan/re-scan discrepancies of multi-compartment NODDI models at four levels of variability across 48 
Johns Hopkins white matter atlas regions. Statistical significance was determined with the Wilcoxon signed-rank test. 
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Variability in white matter bundle segmentation 
 
We find that intrasession intrascanner bundles overlap at 0.60 Dice, that intersession intrascanner bundles overlap 
at 0.59 Dice, that intersession interscanner bundles overlap at 0.57 Dice, and that intersubject intrascanner bundles 
overlap at 0.53 Dice. We find the measurements for the corresponding levels of variation in the bundle volume 
comparisons to be 11.0%, 10.8%, 12.8%, and 17.9%, in the FA case to be 1.6%, 2.0%, 5.0%, and 4.9%, and in the 
bundle length case to be 3.7%, 4.0%, 4.0%, and 8.0%, respectively. All these differences were statistically 
significant (p < 0.0005, Wilcoxon signed-rank test), except for the intrasession intrascanner and intersession 
intrascanner shape (p < 0.05), volume, and length (p < 0.005) comparisons as well as the intersession interscanner 
and intersubject intrascanner FA comparison and the intersession intrascanner and intersession interscanner length 
comparison (p < 0.05) (Figure 7).  
 

 
 
Figure 7. Scan/re-scan discrepancies of white matter bundle segmentation at four levels of variability across 43 
bundles. Statistical significance was determined with the Wilcoxon signed-rank test. 
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Variability in connectomics 
 
We find that the intrasession intrascanner connectomes correlate at 0.61, that the intersession intrascanner 
connectomes correlate at 0.59, that the intersession interscanner connectomes correlate at 0.59 and that the 
intersubject intrascanner connectomes correlate at 0.54. We find the measurements for the corresponding levels of 
variation in the maximum modularity case to be 4.7%, 6.4%, 9.5%, and 13.1%, in the global efficiency case to be 
1.2%, 1.9%, 6.1%, and 6.2%, and in the characteristic path length case to be 1.1%, 1.9%, 6.2%, and 6.1%, 
respectively. All these differences were statistically significant (p < 0.0005, Wilcoxon rank-sum test) except for the 
intersession interscanner and intersubject intrascanner comparison of characteristic path length (Figure 8). 
 

 
 
Figure 8. Scan/re-scan discrepancies of connectomics analysis at four levels of variability with bootstrapped 
distributions. Statistical significance was determined with the Wilcoxon rank-sum test. 
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Ratios of Intrasubject Discrepancies to Intersubject Discrepancies 
 
We plot the intrasubject to intersubject discrepancy ratios in Figure 9. We consider a ratio of <0.6 to represent good 
reproducibility, 0.6-0.8 to represent moderate, and >0.8 to represent poor reproducibility. With this model, we find 
good to moderate intrasession intrascanner and intersession intrascanner reproducibility for most DTI- and NODDI-
based microstructural measures. The bundle volume, FA, length, and the connectomics graph estimates also exhibit 
this behavior, with the graph measures even demonstrating ratios <0.4. Notably, the white matter cVF, bundle shape, 
and connectome correlation investigations exhibit moderate to poor intrasession intrascanner and intersession 
intrascanner reproducibility. Last, across the board we find that intersession interscanner effects can introduce 
variability that is on par with variability from intersubject intrascanner effects. We find this trend is most striking 
for the global efficiency and characteristic path length analyses that demonstrated intrasession intrascanner ratios 
of around 0.2 but intersession interscanner ratios near 1. In summary, we find that across all four DWI analysis 
approaches, intrasubject variability is within an order of magnitude of intersubject variability, and the size of 
interscanner effects can approach the size of intersubject effects. 
 

  
 
Figure 9. The ratio of intrasubject to intersubject discrepancies across all four DWI analysis approaches. Average 
ratios are reported with error bars denoting standard deviation.  

 
Discussion and Conclusions 
 
Here, we present, MASiVar, a dataset designed for investigation of DWI variability. We characterize intrasession 
intrascanner, intersession intrascanner, intersession interscanner, and intersubject intrascanner variability in four 
common diffusion processing approaches. In support of our hypothesis, we consistently find across all approaches 
that variability increases with consideration of session, scanner, and subject effects. We also find that intrasubject 
variability accounts for a non-negligible portion of intersubject variability and that at times intersession interscanner 
variability can approach intersubject intrascanner variability. We interpret these results to mean that harmonization 
between scanners for multisite analyses is critical prior to inference of group differences on subjects. We do not 
perform harmonization here. Instead we hope that our baseline estimates for variability will provide a benchmark 
for future investigations into harmonization and allow investigators looking to make group inferences from DWI 
data to optimize the study designs needed to resolve certain effects in their research. 
 
The reproducibility of DWI analysis has received significant attention in the field, including the analysis of tensor 
representations (Andica et al., 2020; Magnotta et al., 2012; Palacios et al., 2017; Vollmar et al., 2010), multi-
compartment models (Andica et al., 2020; Tariq et al., 2013), tractography and bundle segmentation (Besseling et 
al., 2012; Nath et al., 2020), and connectomics (Prčkovska et al., 2016; Roine et al., 2019). However, these studies 
have each primarily focused on one type of approach and one or two levels of variation. Thus, to the best of our 
knowledge, this study and dataset represent the first attempt and first dataset configured to characterize all four 
types of diffusion processing and all four levels of variation simultaneously. 
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For instance, regarding DTI, previous studies have estimated within and between scanner coefficients of variation 
(CVs) for regional FA at roughly 1% and up to 3% (Magnotta et al., 2012), at 1-2% and 2-4% (Vollmar et al., 2010), 
and at roughly 3% and 8% (Palacios et al., 2017), respectively. The same estimates of variability for regional MD 
have been estimated at roughly 1% and up to 2% (Magnotta et al., 2012) and 2% and 6% (Palacios et al., 2017). 
Another study put white matter FA between session and between scanner CVs at 0.5% and 2% and at 0.2% and 3% 
for MD, respectively (Andica et al., 2020). Intra- and intersession variability of FA for white matter regions have 
also been estimated with a CV of 2% and 3%, respectively, and at 1% for both for MD (Farrell et al., 2010). Between 
session variability of V1 has been estimated at roughly 7° to 10° (Farrell et al., 2010). We find the same general 
trends in our results that variation in DTI measures increases from consideration of session effects to consideration 
of scanner effects. Our results, however, are larger overall with session and scanner effects ranging from roughly 5 
to 15% difference in scan/re-scan pairs for FA and MD. Our between session V1 error at 10-15° is also larger than 
the prior estimate.  
 
Previously, one study estimated between session and between scanner CVs for NODDI measures at roughly 1-4% 
and 2-14%, respectively (Andica et al., 2020). Another study estimated the between session CV to be around 4-5% 
(Tariq et al., 2013). Our NODDI results place the percent difference for iVF and ODI at 5-15% for between session 
effects and 10-20% for between scanner effects. As with the DTI analysis, we observe consistent increases in 
variation from session to scanner effects, but larger estimates of variation overall.  
 
Another study quantified estimates of bundle shape reproducibility at around 0.65 to 0.92 Dice for between sessions 
comparisons (Besseling et al., 2012). Another study similarly demonstrated between session bundle shape Dice 
greater than 0.88 was achievable (Nath et al., 2020). Between session comparisons of bundle-based volume and FA 
estimates with CV were calculated around 3-22% and 1-4%, respectively (Besseling et al., 2012). We observe 
similar bundle shape consistency around 0.6 Dice. We also observe similar estimates of variation for bundle volume 
and FA due to between session effects. 
 
Between session connectome correlations have previously been calculated to range between 0.6 and 0.95 
(Prčkovska et al., 2016). The between session CV of global efficiency and characteristic path length has been 
calculated as roughly 31% and 2% (Roine et al., 2019), respectively. Our intersession connectome correlations were 
roughly just under 0.6. In addition, our intersession estimates for global efficiency and characteristic path length 
were both around 2%. 
 
Additionally, the within and between scanner intraclass correlation coefficient (ICC) for regional FA have 
previously been estimated at 0.90-0.99 and 0.82-0.99, respectively (Vollmar et al., 2010), and at 0.74-1.00 and 0.54-
0.97, respectively (Andica et al., 2020). Other studies have placed the ICC for the cVF, iVF, and ODI NODDI 
measures in white matter regions at 0.133-0.997, 0.773-0.989, and 0.789-0.998, respectively, for between session 
analysis and at 0.013-0.545, 0.300-0.935, and 0.181–0.962 for between scanner analysis (Andica et al., 2020). 
Between session ICC for bundle volume and FA have been estimated at 0.53-0.96 and 0.65-0.94, respectively 
(Besseling et al., 2012), and between session ICC for global efficiency and characteristic path length have been 
calculated at 0.78 and 0.77, respectively. We observe similar trends in our discrepancy ratios that variability between 
subjects can be more largely attributed to scanner effects than session effects.  
 
In summary, when comparing to previous variability studies, we find similar trends across all approaches that 
variation increases with session and scanner biases. We also find that our estimates of variation are generally larger 
than previously reported, especially for the DTI approach. These existing studies were also limited in their ability 
to do a full characterization of DWI variability. Whether due to limited subject number, missing acquisitions, or 
missing multiple sessions or scanners, they all fell short of being able to characterize all four levels of variability at 
once for multiple different diffusion approaches. As a result, it was difficult to obtain a full picture of DWI 
variability. Thus, we hope that MASiVar and the baseline characterization presented here will promote further 
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investigation into a wide spectrum of DWI variability issues from a large pool of models to push the field toward a 
global understanding of the effects of session, scanner, and subject biases on DWI measurements.  
 
Of note, the bulk of existing studies used CV to estimate variation and ICC to characterize the proportion of between 
subjects variation attributable to session or scanner effects. In contrast, we used a paired intrasubject and intersubject 
percent difference approach for the former and quantified their ratios for the latter. We chose these approaches to 
improve isolation of session and scanner effects. For instance, by pairing images, we remove other potential 
confounders like subject or acquisition effects. This approach also has the benefit of characterizing the relative sizes 
of within and between subjects variation without the necessary assumptions of traditional ICC, including not having 
additional confounders within each class, an assumption that is inherently violated when looking at sessions nested 
within scanners nested with subjects.  
 
For this study, we chose popular software toolboxes to do all the analyses, parameter configurations that we were 
familiar with, and common similarity assessments that we found to be interpretable. However, we recognize that 
there are many other software options available to do similar tasks, each with a large number of different 
configurations, and a large number of ways to assess variability. For instance, there are different methods for fitting 
tensors (Chang et al., 2005; Cook et al., 2006; Hernandez-Fernandez et al., 2019), for identifying regions (Desikan 
et al., 2006; Figley et al., 2017; Hansen et al., 2020; Volz et al., 2018) and bundles (Warrington et al., 2020; Yeh, 
2020; Yeh et al., 2013; Yendiki et al., 2011), for comparing bundles (Rheault et al., 2020), and for configuring and 
representing connectomes (Hagmann et al., 2008; Roine et al., 2019; Rubinov and Sporns, 2010; Sporns et al., 
2005). Additionally, there are a number of other microstructural measures that can be characterized as well (Koller 
et al., 2020). Thus, the goal of the present study was not to provide an analysis between different processing 
toolboxes, parameters, or analysis approaches. Specifically, since each approach was not necessarily optimized, we 
do not recommend thorough comparisons of reproducibility between the four different approaches. Instead, we 
aimed to establish a baseline understanding of DWI variability and its trends across sessions, scanners, and subjects 
in four common processing approaches and DWI characterizations in a generally interpretable way that 
demonstrated the potential of the dataset. As such, we hope that the release of MASiVar will prompt other 
investigators in the field to further characterize differences between software tools and their parameters, different 
DWI processing and variability measures, and other potential confounders in DWI analysis. 
 
In addition to the ability of MASiVar to serve as a utility for variability analysis, we note that the pediatric subjects 
in cohort III present another unique resource for the field. The majority of the existing DWI datasets and studies for 
variability use adult subjects. Of existing pediatric datasets, many have focused on older age ranges. For example, 
the Adolescent Brain Cognitive Development project (Casey et al., 2018) and the Lifespan Human Connectome 
Project in Development (Somerville et al., 2018) contain longitudinal DWI data acquired from children starting at 
age 9 and 10 through adolescence. Thus, to the best of our knowledge, MASiVar represents one of the first publicly 
available longitudinal DWI datasets of children prior to adolescence aged 5-8 years old and is further distinguished 
by its inclusion of repeated scans within each session. We hope that investigators in developmental neuroscience 
and pediatric neurology will be able to take advantage of this resource for their work.  
 
One limitation of the variability study is the differences in number of gradient directions between the different 
cohorts. Cohort III consists of a 40-direction b = 1000 s/mm2 acquisition and a 56-direction b = 2000 s/mm2 
acquisition in contrast to the 96 directions for cohorts I and II. There is a potential effect that could be biasing the 
results. However, our study design focuses on scan/re-scan pairs and thus all variability measurements are between 
acquisitions of the same configuration, which should minimize this effect. In a similar vein, due to hardware 
limitations, the data collected at site 3 in cohort II was collected at a maximum shell of 2465 s/mm2 as opposed to 
the 2500 s/mm2 across the rest of MASiVar. This shell was not used for the present variability analysis, but this 
discrepancy should be noted on future studies using the dataset. Additionally, considerations for the pediatric 
subjects in cohort III that contributed to this study must be taken into account. One aspect is that pediatric patients 
often move more while being scanned. All images were preprocessed, motion corrected, and quality checked prior 
to analysis (Cai et al., 2020), but small residual artifacts may remain thus potentially increasing variability estimates. 
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Another aspect that must be considered is that for some of the intersession measurements, the one-year separation 
between sessions may result in increased variability from inherent white matter changes in the developing brain. 
Due to the paired approach and the omission of cohort III from the intersubject analysis, we do not expect this to 
impact the other variability levels, and thus do not expect it to significantly impact the overall conclusions of this 
study. 
 
Last, we have made the MASiVar dataset publicly available at https://openneuro.org/datasets/ds003416 in Brain 
Imaging Data Structure (BIDS) format (Gorgolewski et al., 2016) with deidentified metadata and defaced images.  
 
Acknowledgements 
 
The authors thank E. Brian Welch for his help with image acquisition and study design and Zachary J. Williams for 
his insight into bootstrapping. This work was conducted in part using the resources of the Advanced Computing 
Center for Research and Education at Vanderbilt University, Nashville, TN. This work was supported by the 
National Institutes of Health (NIH) under award numbers 5R01EB017230, 5T32EB001628, 5T32GM007347, and 
1UL1RR024975. This work was also supported by the National Science Foundation (NSF) under award numbers 
1452485, 1660816, and 1750213. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the NIH or NSF. 
 
References 
 
Andersson, J.L.R., Graham, M.S., Zsoldos, E., Sotiropoulos, S.N., 2016. Incorporating outlier detection and 

replacement into a non-parametric framework for movement and distortion correction of diffusion MR 
images. Neuroimage 141, 556–572. https://doi.org/10.1016/j.neuroimage.2016.06.058 

Andersson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in spin-echo echo-
planar images: Application to diffusion tensor imaging. Neuroimage 20, 870–888. 
https://doi.org/10.1016/S1053-8119(03)00336-7 

Andersson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-resonance effects and 
subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078. 
https://doi.org/10.1016/j.neuroimage.2015.10.019 

Andica, C., Kamagata, K., Hayashi, T., Hagiwara, A., Uchida, W., Saito, Y., Kamiya, K., Fujita, S., Akashi, T., 
Wada, A., Abe, M., Kusahara, H., Hori, M., Aoki, S., 2020. Scan–rescan and inter-vendor reproducibility of 
neurite orientation dispersion and density imaging metrics. Neuroradiology 62, 483–494. 
https://doi.org/10.1007/s00234-019-02350-6 

Assaf, Y., Pasternak, O., 2008. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A 
review. J. Mol. Neurosci. 34, 51–61. https://doi.org/10.1007/s12031-007-0029-0 

Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic image registration with 
cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 
12, 26–41. https://doi.org/10.1016/j.media.2007.06.004 

Besseling, R.M.H., Jansen, J.F.A., Overvliet, G.M., Vaessen, M.J., Braakman, H.M.H., Hofman, P.A.M., 
Aldenkamp, A.P., Backes, W.H., 2012. Tract specific reproducibility of tractography based morphology and 
diffusion metrics. PLoS One 7. https://doi.org/10.1371/journal.pone.0034125 

Cai, L.Y., Yang, Q., Hansen, C.B., Nath, V., Ramadass, K., Johnson, G.W., Conrad, B.N., Boyd, B.D., Begnoche, 
J.P., Beason-Held, L.L., Shafer, A.T., Resnick, S.M., Taylor, W.D., Price, G.R., Morgan, V.L., Rogers, B.P., 
Schilling, K.G., Landman, B.A., 2020. PreQual: An automated pipeline for integrated preprocessing and 
quality assurance of diffusion weighted MRI images. bioRxiv 2020.09.14.260240. 
https://doi.org/10.1101/2020.09.14.260240 

Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M., Soules, M.E., Teslovich, T., 
Dellarco, D. V., Garavan, H., Orr, C.A., Wager, T.D., Banich, M.T., Speer, N.K., Sutherland, M.T., Riedel, 
M.C., Dick, A.S., Bjork, J.M., Thomas, K.M., Chaarani, B., Mejia, M.H., Hagler, D.J., Daniela Cornejo, M., 
Sicat, C.S., Harms, M.P., Dosenbach, N.U.F., Rosenberg, M., Earl, E., Bartsch, H., Watts, R., Polimeni, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

J.R., Kuperman, J.M., Fair, D.A., Dale, A.M., 2018. The Adolescent Brain Cognitive Development (ABCD) 
study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54. 
https://doi.org/10.1016/j.dcn.2018.03.001 

Cetin-Karayumak, S., Di Biase, M.A., Chunga, N., Reid, B., Somes, N., Lyall, A.E., Kelly, S., Solgun, B., 
Pasternak, O., Vangel, M., Pearlson, G., Tamminga, C., Sweeney, J.A., Clementz, B., Schretlen, D., Viher, 
P.V., Stegmayer, K., Walther, S., Lee, J., Crow, T., James, A., Voineskos, A., Buchanan, R.W., Szeszko, 
P.R., Malhotra, A.K., Hegde, R., McCarley, R., Keshavan, M., Shenton, M., Rathi, Y., Kubicki, M., 2019. 
White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI 
study. Mol. Psychiatry. https://doi.org/10.1038/s41380-019-0509-y 

Chang, L.C., Jones, D.K., Pierpaoli, C., 2005. RESTORE: Robust estimation of tensors by outlier rejection. 
Magn. Reson. Med. 53, 1088–1095. https://doi.org/10.1002/mrm.20426 

Cook, P. a, Bai, Y., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C., 2006. Camino: Open-Source 
Diffusion-MRI Reconstruction and Processing. 14th Sci. Meet. Int. Soc. Magn. Reson. Med. 14, 2759. 

Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A.N., Hajnal, J. V., 2019. Complex diffusion-weighted 
image estimation via matrix recovery under general noise models. Neuroimage 200, 391–404. 
https://doi.org/10.1016/j.neuroimage.2019.06.039 

De Santis, S., Bastiani, M., Droby, A., Kolber, P., Zipp, F., Pracht, E., Stoecker, T., Groppa, S., Roebroeck, A., 
2019. Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7 T and 
3 T: The Impact of the Experimental Design. Neuroscience 403, 17–26. 
https://doi.org/10.1016/j.neuroscience.2018.03.048 

Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., 
Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated labeling system for 
subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 
968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 

Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J.S., Assaf, M., Balsters, J.H., Baxter, L., 
Beggiato, A., Bernaerts, S., Blanken, L.M.E., Bookheimer, S.Y., Braden, B.B., Byrge, L., Castellanos, F.X., 
Dapretto, M., Delorme, R., Fair, D.A., Fishman, I., Fitzgerald, J., Gallagher, L., Keehn, R.J.J., Kennedy, 
D.P., Lainhart, J.E., Luna, B., Mostofsky, S.H., Müller, R.A., Nebel, M.B., Nigg, J.T., O’Hearn, K., 
Solomon, M., Toro, R., Vaidya, C.J., Wenderoth, N., White, T., Craddock, R.C., Lord, C., Leventhal, B., 
Milham, M.P., 2017. Enhancing studies of the connectome in autism using the autism brain imaging data 
exchange II. Sci. Data 4, 170010. https://doi.org/10.1038/sdata.2017.10 

Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology 26, 297–302. 
Duchesne, S., Chouinard, I., Potvin, O., Fonov, V.S., Khademi, A., Bartha, R., Bellec, P., Collins, D.L., 

Descoteaux, M., Hoge, R., McCreary, C.R., Ramirez, J., Scott, C.J.M., Smith, E.E., Strother, S.C., Black, 
S.E., 2019. The Canadian Dementia Imaging Protocol: Harmonizing National Cohorts. J. Magn. Reson. 
Imaging 49, 456–465. https://doi.org/10.1002/jmri.26197 

Efron, B., 1979. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 7, 1–26. 
https://doi.org/10.1214/aos/1176344552 

Farrell, J.A.D., Landman, B.A., Jones, C.K., Smith, A., Prince, J.L., Zijl, P.C.M. Van, Mori, S., 2010. Effects of 
SNR on the Accuracy and Reproducibility of DTI-derived Fractional Anisotropy, Mean Diffusivity, and 
Principal Eigenvector Measurements at 1.5T. J. Magn. Reson. 26, 756–767. 
https://doi.org/10.1002/jmri.21053.Effects 

Figley, T.D., Mortazavi Moghadam, B., Bhullar, N., Kornelsen, J., Courtney, S.M., Figley, C.R., 2017. 
Probabilistic white matter atlases of human auditory, basal ganglia, language, precuneus, sensorimotor, 
visual and visuospatial networks. Front. Hum. Neurosci. 11, 1–12. 
https://doi.org/10.3389/fnhum.2017.00306 

Frazier, J.A., Chiu, S., Breeze, J.L., Makris, N., Lange, N., Kennedy, D.N., Herbert, M.R., Bent, E.K., Koneru, 
V.K., Dieterich, M.E., Hodge, S.M., Rauch, S.L., Grant, P.E., Cohen, B.M., Seidman, L.J., Caviness, V.S., 
Biederman, J., 2005. Structural brain magnetic resonance imaging of limbic and thalamic volumes in 
pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265. https://doi.org/10.1176/appi.ajp.162.7.1256 

Froeling, M., Tax, C.M.W., Vos, S.B., Luijten, P.R., Leemans, A., 2017. “MASSIVE” brain dataset: Multiple 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

acquisitions for standardization of structural imaging validation and evaluation. Magn. Reson. Med. 77, 
1797–1809. https://doi.org/10.1002/mrm.26259 

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., Nimmo-Smith, I., 2014. 
Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 1–17. 
https://doi.org/10.3389/fninf.2014.00008 

Garyfallidis, E., Côté, M.A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D., Cunanne, S., Descoteaux, M., 
2018. Recognition of white matter bundles using local and global streamline-based registration and 
clustering. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.07.015 

Goldstein, J.M., Seidman, L.J., Makris, N., Ahern, T., O’Brien, L.M., Caviness, V.S., Kennedy, D.N., Faraone, S. 
V., Tsuang, M.T., 2007. Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic 
Vulnerability. Biol. Psychiatry 61, 935–945. https://doi.org/10.1016/j.biopsych.2006.06.027 

Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G., Ghosh, S.S., 
Glatard, T., Halchenko, Y.O., Handwerker, D.A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., 
Nichols, B.N., Nichols, T.E., Pellman, J., Poline, J.B., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., 
Turner, J.A., Varoquaux, G., Poldrack, R.A., 2016. The brain imaging data structure, a format for organizing 
and describing outputs of neuroimaging experiments. Sci. Data 3, 160044. 
https://doi.org/10.1038/sdata.2016.44 

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Van Wedeen, J., Sporns, O., 2008. Mapping 
the structural core of human cerebral cortex. PLoS Biol. 6, 1479–1493. 
https://doi.org/10.1371/journal.pbio.0060159 

Hansen, C.B., Yang, Q., Lyu, I., Rheault, F., Kerley, C., Chandio, B.Q., Fadnavis, S., Williams, O., Shafer, A.T., 
Resnick, S.M., Zald, D.H., Cutting, L., Taylor, W.D., Boyd, B., Garyfallidis, E., Anderson, A.W., 
Descoteaux, M., Landman, B.A., Schilling, K.G., 2020. Pandora: 4-D white matter bundle population-based 
atlases derived from diffusion MRI fiber tractography. bioRxiv 2020.06.12.148999. 
https://doi.org/10.1101/2020.06.12.148999 

Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., Sotiropoulos, S.N., 2019. Using GPUs to 
accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. 
Neuroimage 188, 598–615. https://doi.org/10.1016/j.neuroimage.2018.12.015 

Hollander, M., Wolfe, D.A., Chicken, E., 2013. Nonparametric statistical methods. John Wiley & Sons. 
Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., Calabresi, P.A., Pekar, J.J., van Zijl, P.C.., Mori, S., 

2008. Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific 
quantification. Neuroimage 39, 336–347. https://doi.org/10.1016/j.neuroimage.2007.07.053 

Jelescu, I.O., Veraart, J., Adisetiyo, V., Milla, S.S., Novikov, D.S., Fieremans, E., 2015. One diffusion acquisition 
and different white matter models: How does microstructure change in human early development based on 
WMTI and NODDI? Neuroimage 107, 242–256. https://doi.org/10.1016/j.neuroimage.2014.12.009 

Kodl, C.T., Franc, D.T., Rao, J.P., Anderson, F.S., Thomas, W., Mueller, B.A., Lim, K.O., Seaquist, E.R., 2008. 
Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes 
that correlate with reduced neurocognitive function. Diabetes 57, 3083–3089. https://doi.org/10.2337/db08-
0724 

Koller, K., Rudrapatna, S.U., Chamberland, M., Raven, E.P., Parker, G.D., Tax, C.M.W., Drakesmith, M., Fasan, 
F., Owen, D., Hughes, G., Charron, C., Evans, J.C., Jones, D.K., 2020. MICRA: Microstructural Image 
Compilation with Repeated Acquisitions. Neuroimage 225, 117406. 
https://doi.org/10.1016/j.neuroimage.2020.117406 

Magnotta, V.A., Matsui, J.T., Liu, D., Johnson, H.J., Long, J.D., Bolster, B.D., Mueller, B.A., Lim, K., Mori, S., 
Helmer, K.G., Turner, J.A., Reading, S., Lowe, M.J., Aylward, E., Flashman, L.A., Bonett, G., Paulsen, J.S., 
2012. Multicenter Reliability of Diffusion Tensor Imaging. Brain Connect. 2, 345–355. 
https://doi.org/10.1089/brain.2012.0112 

Makris, N., Goldstein, J.M., Kennedy, D., Hodge, S.M., Caviness, V.S., Faraone, S. V., Tsuang, M.T., Seidman, 
L.J., 2006. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 
155–171. https://doi.org/10.1016/j.schres.2005.11.020 

Menzler, K., Belke, M., Wehrmann, E., Krakow, K., Lengler, U., Jansen, A., Hamer, H.M., Oertel, W.H., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Rosenow, F., Knake, S., 2011. Men and women are different: Diffusion tensor imaging reveals sexual 
dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54, 2557–
2562. https://doi.org/10.1016/j.neuroimage.2010.11.029 

Mori, S., Wakana, S., Van Zijl, P.C.M., Nagae-Poetscher, L.M., 2005. MRI atlas of human white matter. Elsevier. 
Nath, V., Schilling, K.G., Parvathaneni, P., Huo, Y., Blaber, J.A., Hainline, A.E., Barakovic, M., Romascano, D., 

Rafael-Patino, J., Frigo, M., Girard, G., Thiran, J.P., Daducci, A., Rowe, M., Rodrigues, P., Prčkovska, V., 
Aydogan, D.B., Sun, W., Shi, Y., Parker, W.A., Ould Ismail, A.A., Verma, R., Cabeen, R.P., Toga, A.W., 
Newton, A.T., Wasserthal, J., Neher, P., Maier-Hein, K., Savini, G., Palesi, F., Kaden, E., Wu, Y., He, J., 
Feng, Y., Paquette, M., Rheault, F., Sidhu, J., Lebel, C., Leemans, A., Descoteaux, M., Dyrby, T.B., Kang, 
H., Landman, B.A., 2020. Tractography reproducibility challenge with empirical data (TraCED): The 2017 
ISMRM diffusion study group challenge. J. Magn. Reson. Imaging 51, 234–249. 
https://doi.org/10.1002/jmri.26794 

O’Donnell, L.J., Westin, C.F., 2011. An introduction to diffusion tensor image analysis. Neurosurg. Clin. N. Am. 
https://doi.org/10.1016/j.nec.2010.12.004 

Palacios, E.M., Martin, A.J., Boss, M.A., Ezekiel, F., Chang, S., Yuh, E.L., Vassar, M.J., Schnyer, D.M., Donald, 
C.L. Mac, Crawford, K.L., Irimia, A., Toga, A.W., 2017. Towards Precision and Reproducibility of DTI. 
AJNR Am J Neuroradiol. 38, 537–545. https://doi.org/10.3174/ajnr.A5025.Towards 

Prčkovska, V., Rodrigues, P., Puigdellivol Sanchez, A., Ramos, M., Andorra, M., Martinez-Heras, E., Falcon, C., 
Prats-Galino, A., Villoslada, P., 2016. Reproducibility of the Structural Connectome Reconstruction across 
Diffusion Methods. J. Neuroimaging 26, 46–57. https://doi.org/10.1111/jon.12298 

Repple, J., Karliczek, G., Meinert, S., Förster, K., Grotegerd, D., Goltermann, J., Redlich, R., Arolt, V., Baune, 
B.T., Dannlowski, U., Opel, N., 2019. Variation of HbA1c affects cognition and white matter microstructure 
in healthy, young adults. Mol. Psychiatry 1–10. https://doi.org/10.1038/s41380-019-0504-3 

Rheault, F., De Benedictis, A., Daducci, A., Maffei, C., Tax, C.M.W., Romascano, D., Caverzasi, E., Morency, 
F.C., Corrivetti, F., Pestilli, F., Girard, G., Theaud, G., Zemmoura, I., Hau, J., Glavin, K., Jordan, K.M., 
Pomiecko, K., Chamberland, M., Barakovic, M., Goyette, N., Poulin, P., Chenot, Q., Panesar, S.S., Sarubbo, 
S., Petit, L., Descoteaux, M., 2020. Tractostorm: The what, why, and how of tractography dissection 
reproducibility. Hum. Brain Mapp. 41, 1859–1874. https://doi.org/10.1002/hbm.24917 

Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Sijbers, J., Leemans, A., 2019. Reproducibility 
and intercorrelation of graph theoretical measures in structural brain connectivity networks. Med. Image 
Anal. 52, 56–67. https://doi.org/10.1016/j.media.2018.10.009 

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: Uses and interpretations. 
Neuroimage 52, 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 

Schilling, K.G., Blaber, J., Hansen, C., Cai, L., Rogers, B., Anderson, A.W., Smith, S., Kanakaraj, P., Rex, T., 
Resnick, S.M., Shafer, A.T., Cutting, L.E., Woodward, N., Zald, D., Landman, B.A., 2020a. Distortion 
correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS One 15, 
e0236418. 

Schilling, K.G., Petit, L., Rheault, F., Remedios, S., Pierpaoli, C., Anderson, A.W., Landman, B.A., Descoteaux, 
M., 2020b. Brain connections derived from diffusion MRI tractography can be highly anatomically 
accurate—if we know where white matter pathways start, where they end, and where they do not go. Brain 
Struct. Funct. 225, 2387–2402. https://doi.org/10.1007/s00429-020-02129-z 

Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A., 2013. SIFT: Spherical-deconvolution informed filtering 
of tractograms. Neuroimage 67, 298–312. https://doi.org/10.1016/j.neuroimage.2012.11.049 

Somerville, L.H., Bookheimer, S.Y., Buckner, R.L., Burgess, G.C., Curtiss, S.W., Dapretto, M., Elam, J.S., 
Gaffrey, M.S., Harms, M.P., Hodge, C., Kandala, S., Kastman, E.K., Nichols, T.E., Schlaggar, B.L., Smith, 
S.M., Thomas, K.M., Yacoub, E., Van Essen, D.C., Barch, D.M., 2018. The Lifespan Human Connectome 
Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. 
Neuroimage 183, 456–468. https://doi.org/10.1016/j.neuroimage.2018.08.050 

Sotiropoulos, S.N., Zalesky, A., 2019. Building connectomes using diffusion MRI: why, how and but. NMR 
Biomed. 32, 1–23. https://doi.org/10.1002/nbm.3752 

Sporns, O., Tononi, G., Kötter, R., 2005. The human connectome: A structural description of the human brain. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

PLoS Comput. Biol. 1, 0245–0251. https://doi.org/10.1371/journal.pcbi.0010042 
Tariq, M., Schneider, T., Alexander, D.C., Wheeler-Kingshott, C.A., Zhang, H., 2013. Assessing scan-rescan 

reproducibility of the parameter estimates from NODDI. Proc. Intl. Soc. Mag. Reson. Med. 21 21, 3187. 
Tong, Q., He, H., Gong, T., Li, C., Liang, P., Qian, T., Sun, Y., Ding, Q., Li, K., Zhong, J., 2020. Multicenter 

dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci. Data 7. 
https://doi.org/10.1038/s41597-020-0493-8 

Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., 
Yeh, C.-H., Connelly, A., 2019. MRtrix3: A fast, flexible and open software framework for medical image 
processing and visualisation. https://doi.org/10.1016/j.neuroimage.2019.116137 

Tournier, J.D., Calamante, F., Connelly, A., 2007. Robust determination of the fibre orientation distribution in 
diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459–
1472. https://doi.org/10.1016/j.neuroimage.2007.02.016 

Travers, B.G., Adluru, N., Ennis, C., Tromp, D.P.M., Destiche, D., Doran, S., Bigler, E.D., Lange, N., Lainhart, 
J.E., Alexander, A.L., 2012. Diffusion Tensor Imaging in Autism Spectrum Disorder: A Review. Autism 
Res. https://doi.org/10.1002/aur.1243 

Tustison, N.J., Cook, P.A., Klein, A., Song, G., Das, S.R., Duda, J.T., Kandel, B.M., van Strien, N., Stone, J.R., 
Gee, J.C., Avants, B.B., 2014. Large-scale evaluation of ANTs and FreeSurfer cortical thickness 
measurements. Neuroimage 99, 166–179. https://doi.org/10.1016/j.neuroimage.2014.05.044 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., 2013. The WU-Minn 
Human Connectome Project: An overview. Neuroimage 80, 62–79. 
https://doi.org/10.1016/j.neuroimage.2013.05.041 

Veraart, J., Fieremans, E., Novikov, D.S., 2016a. Diffusion MRI noise mapping using random matrix theory. 
Magn. Reson. Med. 76, 1582–1593. https://doi.org/10.1002/mrm.26059 

Veraart, J., Novikov, D.S., Christiaens, D., Ades-aron, B., Sijbers, J., Fieremans, E., 2016b. Denoising of 
diffusion MRI using random matrix theory. Neuroimage 142, 394–406. 
https://doi.org/10.1016/j.neuroimage.2016.08.016 

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B., 2013. Weighted linear least squares estimation of 
diffusion MRI parameters: Strengths, limitations, and pitfalls. Neuroimage 81, 335–346. 
https://doi.org/10.1016/j.neuroimage.2013.05.028 

Vollmar, C., O’Muircheartaigh, J., Barker, G.J., Symms, M.R., Thompson, P., Kumari, V., Duncan, J.S., 
Richardson, M.P., Koepp, M.J., 2010. Identical, but not the same: Intra-site and inter-site reproducibility of 
fractional anisotropy measures on two 3.0T scanners. Neuroimage 51, 1384–1394. 
https://doi.org/10.1016/j.neuroimage.2010.03.046 

Volz, L.J., Cieslak, M., Grafton, S.T., 2018. A probabilistic atlas of fiber crossings for variability reduction of 
anisotropy measures. Brain Struct. Funct. 223, 635–651. https://doi.org/10.1007/s00429-017-1508-x 

Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, 
H., Dubey, P., Blitz, A., van Zijl, P., Mori, S., 2007. Reproducibility of quantitative tractography methods 
applied to cerebral white matter. Neuroimage 36, 630–644. 
https://doi.org/10.1016/j.neuroimage.2007.02.049 

Warrington, S., Bryant, K.L., Khrapitchev, A.A., Sallet, J., Charquero-Ballester, M., Douaud, G., Jbabdi, S., 
Mars, R.B., Sotiropoulos, S.N., 2020. XTRACT - Standardised protocols for automated tractography in the 
human and macaque brain. Neuroimage 217, 1–15. https://doi.org/10.1016/j.neuroimage.2020.116923 

Westin, C.F., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.A., 1997. Geometrical Diffusion Measures for 
MRI from Tensor Basis Analysis. Proc. 5th Annu. Meet. ISMRM 1742. 

Westlye, L.T., Walhovd, K.B., Dale, A.M., Bjørnerud, A., Due-Tønnessen, P., Engvig, A., Grydeland, H., 
Tamnes, C.K., Østby, Y., Fjell, A.M., 2010. Life-span changes of the human brain white matter: Diffusion 
tensor imaging (DTI) and volumetry. Cereb. Cortex 20, 2055–2068. https://doi.org/10.1093/cercor/bhp280 

Yeh, F.C., 2020. Shape analysis of the human association pathways. Neuroimage 223. 
https://doi.org/10.1016/j.neuroimage.2020.117329 

Yeh, F.C., Verstynen, T.D., Wang, Y., Fernández-Miranda, J.C., Tseng, W.Y.I., 2013. Deterministic diffusion 
fiber tracking improved by quantitative anisotropy. PLoS One 8, 1–16. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

https://doi.org/10.1371/journal.pone.0080713 
Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R., Salat, D., Ehrlich, S., 

Behrens, T., Jbabdi, S., Gollub, R., Fischl, B., 2011. Automated probabilistic reconstruction of white-matter 
pathways in health and disease using an atlas of the underlying anatomy. Front. Neuroinform. 5, 1–12. 
https://doi.org/10.3389/fninf.2011.00023 

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: Practical in vivo neurite 
orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016. 
https://doi.org/10.1016/j.neuroimage.2012.03.072 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/

