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Seizure localisation with attention-based graph
neural networks
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Abstract—In this paper, we introduce a machine learn-
ing methodology for localising the seizure onset zone
in subjects with epilepsy. We represent brain states as
functional networks obtained from intracranial electroen-
cephalography recordings, using correlation and the phase
locking value to quantify the coupling between different
brain areas.

Our method is based on graph neural networks (GNNs)
and the attention mechanism, two of the most signifi-
cant advances in artificial intelligence in recent years.
Specifically, we train a GNN to distinguish between
functional networks associated with interictal and ictal
phases. The GNN is equipped with an attention-based
layer that automatically learns to identify those regions of
the brain (associated with individual electrodes) that are
most important for a correct classification. The localisation
of these regions does not require any prior information
regarding the seizure onset zone.

We show that the regions of interest identified by
the GNN strongly correlate with the localisation of the
seizure onset zone reported by electroencephalographers.
We report results both for human patients and for sim-
ulators of brain activity. We also show that our GNN
exhibits uncertainty on those patients for which the clinical
localisation was unsuccessful, highlighting the robustness
of the proposed approach.

I. INTRODUCTION

Epilepsy is a neurological disorder characterised
by recurrent episodes of excessive neuronal firing
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(Stafstrom and Carmant, 2015). In approximately
a third of the patients, epilepsy cannot be treated
with anti-seizure drugs and resective surgery can
be considered as a possible treatment (Kwan and
Brodie, 2000). The outcome of surgery is cru-
cially dependent on the successful localisation of
the seizure onset zone (SOZ) (Burns et al., 2014;
Van Mierlo et al., 2014).

Electroencephalography (EEG) is the mainstay
for studying and diagnosing epilepsy, and it is
widely used to detect, classify, and localise seizures
by recording and processing the electrical activity
of groups of neurons (Nunez et al., 2006). How-
ever, due to their low spatial resolution, scalp EEG
recordings in some cases are not informative enough
to successfully localise seizures (Shah and Mittal,
2014). In these cases, intracranial EEG recordings
(iEEG), in which electrodes are placed directly on
or within the brain, provide better spatio-temporal
resolution to capture the dynamics of seizure gen-
eration and propagation (Hashiguchi et al., 2007).
However, the high temporal resolution of iEEG
and the complex functional interaction of distant
brain areas, especially during seizures, make the
interpretation and processing of raw iEEG data a
non-trivial task for clinicians. For this reason, a
significant branch of epilepsy research is concerned
with summarising iEEG data by considering the
pairwise (statistical) dependencies between the ac-
tivity of different brain areas over time (Van Mierlo
et al., 2014). These dependencies are usually repre-
sented by functional networks (FNs), in which each
node represents a sensor and edges are weighted by
a functional connectivity (FC) metric (Bastos and
Schoffelen, 2016).

FNs are a widespread tool to study seizure lo-
calisation, with early approaches dating back to the
1970s (Gersch and Goddard, 1970; Brazier, 1972).
Seizures have been observed to affect the functional
organisation of brain activity at the mesoscale, both
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from a node-centric (Burns et al., 2014) and an
edge-centric (Khambhati et al., 2015) perspective. In
particular, Burns et al. (2014) identified sets of brain
states that emerge by clustering FNs, consistent in
interictal and ictal periods for individual patients.
They observed that changes in node centrality in
FNs accurately predict the SOZ. Khambhati et al.
(2015) observed a strengthening of FC in the SOZ
during seizures, also coinciding with a topological
tightening of the connections (i.e., strong connec-
tions also become physically closer). Khambhati
et al. (2016) proposed virtual cortical resection,
i.e., the removal of nodes from FNs, in order to
study changes in network synchronizability, which
is a known predictor for the spread of seizures
(Schindler et al., 2008). Lopes et al. (2017) also
observed that the resection of brain areas associ-
ated with rich-club hubs in FNs correlates with
a good postoperative outcome. Seizure localisation
has also been studied in FNs obtained from func-
tional magnetic resonance imaging (fMRI) (Lee
et al., 2014; Weaver et al., 2013) and scalp EEG
(Staljanssens et al., 2017) data. Recent work by
Covert et al. (2019) used spatio-temporal graph
convolutional networks (ST-GCNs) (Yu et al., 2017)
to perform seizure detection. They conducted an ex-
post analysis similar to that of Khambhati et al.
(2016) to quantify the importance of a node by
observing the effect of its removal on the down-
stream detection accuracy. Gadgil et al. (2020) also
proposed a methodology based on ST-GCNs to
identify high-interest areas in fMRI by learning to
estimate edge importance, although they did not
apply it to seizure localisation. For a more in-depth
review of approaches to seizure localisation with
FNs, we refer the reader to Van Mierlo et al. (2014).

This paper aims to use the representation of brain
states as FNs to automate the localisation of seizures
using deep learning. Advances in deep learning
techniques over the past decade have revolutionised
how high-dimensional, high-volume data can be
used in the context of artificially intelligent systems.
In particular, deep learning techniques for computer
vision have shown how artificial intelligence can
be successfully adopted in clinical settings to aid
human experts in their decision making (Litjens
et al., 2017). Despite these successes, traditional
deep learning methods are limited to processing
regular structures like images and time series, and
cannot naturally consider the relations that exist in

a complex system with multiple interacting compo-
nents, such as those described by FNs evolving over
time. For this reason, recent literature has seen the
rise of Graph Neural Networks (GNNs) (Battaglia
et al., 2018; Bronstein et al., 2017) as a generali-
sation of deep learning techniques to process data
represented as arbitrary graphs.

In this paper, we introduce a GNN-based method-
ology for seizure localisation, using FNs to effi-
ciently represent brain states. The core of our algo-
rithm is a GNN equipped with an attention-based
readout. By training the GNN to perform seizure de-
tection, the readout automatically learns to pay more
attention to those nodes that are more important for
a correct classification. Then, we propose a simple
and fast way of analysing the attention coefficients
over time, so that we obtain a ranking of the nodes
based on their overall importance in detecting a
seizure. Crucially, our methodology does not require
a priori information regarding the SOZ, but only
weak supervision in the form of annotated seizure
onsets and offsets. A schematic representation of
our approach is shown in Figure 1.

We validate the proposed methodology on clinical
iEEG data collected from eight human subjects and
show that the electrode rankings computed with our
localisation procedure are highly correlated with
the true SOZs. We also validate our algorithm on
simulated data, using a simple model of seizure ini-
tiation (Benjamin et al., 2012) and a more complex
brain simulator (Sanz Leon et al., 2013) based on
the Epileptor model (Jirsa et al., 2014). Our main
contributions and results are summarised as follows:
• We present a new algorithm for seizure local-

isation based on GNNs, which uses FNs to
represent brain states in a compact form and
requires no explicit supervision on the SOZ;

• We show that the attention coefficients learned
by the GNN correlate with clinically-identified
SOZs and accurately predict the presence of
ictal activity;

• We show that, when electroencephalographers
were not able to identify the SOZ from the
iEEG data, the GNN also shows uncertainty in
the localisation;

• We show that, as expected, the choice of FC
metric used to estimate FNs is important for
an accurate localisation;

• Finally, we show that our methodology per-
forms well on very imbalanced datasets,
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Fig. 1: Schematic view of our GNN-based pipeline for seizure detection and localisation. Starting from
raw iEEG data, we compute a functional network to represent the spatio-temporal dynamics of the signals
compactly. The FN is then given as input to a GNN composed of an edge-aware message passing
operation followed by an attention-based readout to compute a graph-level embedding. The embedding
is then classified to perform seizure detection, while the attention scores are analysed to perform seizure
localisation.

achieving a good localisation accuracy even on
patients for which we observe as few as five
seizures during training.

II. METHODS

Notation. We denote a time series xi(t) to represent
the i-th iEEG channel at time t. We define a graph
as a tuple G = (V , E), where V = {v1, . . . ,vN}
represents the set of attributed nodes with attributes
vi ∈ RF , and E = {ei→j|vi,vj ∈ V} represents the
set of attributed edges with attributes ei→j ∈ RS

indicating a directed edge between the i-th and the
j-th node. We indicate the neighbourhood of node
i with N (i) = {vk|ek→i ∈ E}. We say that a graph
is undirected if ei→j ∈ E ⇐⇒ ej→i ∈ E . Note that
in the text, for simplicity, we refer to nodes using
their index, e.g., node i.

A. Functional networks
Choosing a suitable FC metric to model the

pairwise interaction between brain areas is a non-
trivial challenge, as there exist a large variety of
methods with their advantages and disadvantages.
FC metrics can be characterised according to several
properties, including whether they are in the time
or frequency domain, whether they are directed
or undirected (i.e., if they model asymmetric or
symmetric couplings), or whether they are model-
free or model-based (Bastos and Schoffelen, 2016).
Here, we focus on undirected FC metrics to sim-
plify the GNN computation, and on model-based
approaches to reduce the computational costs of

estimating the FC metrics directly from data. We do,
however, consider two different metrics to highlight
the practical differences that emerge between time-
and frequency-domain metrics.

FNs are generated by computing a FC value
for each pair of iEEG channels xa(t) and xb(t)
over a time window of length T . For the time-
domain metric, we consider Pearson’s correlation
coefficient:

ea→b = eb→a =

T∑
t=1

(xa(t)− x̄a)(xb(t)− x̄b)√
T∑
t=1

(xa(t)− x̄a)2
√

T∑
t=1

(xb(t)− x̄b)2
,

(1)

where x̄a = 1
T

T∑
t=1

xa(t) and analogously for x̄b.

Correlation allows to quantify symmetric linear in-
teractions, it is easy to compute and, as such, it
is often used in the literature. For the frequency
domain, we consider the phase-locking value (PLV)
(Lachaux et al., 1999):

ea→b = eb→a =

∣∣∣∣∣ 1

T

T∑
t=1

ei(ϕa(t)−ϕb(t))

∣∣∣∣∣ , (2)

where ϕa(t) indicates the instantaneous phase of
signal xa(t) obtained via Hilbert transform (and
similarly for ϕb(t)). A significant advantage of
PLV over correlation is that it is less sensitive to
artefacts in the iEEG signals (such as those caused
by the patient’s movements). After computing the
FC metrics for each pair of channels, we sparsify the
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resulting FNs by removing those edges for which
|ei→j| < 0.1, i.e., those indicating weak coupling.
The choice of sparsification threshold is generally
an important hyperparameter when studying FNs.
For example, a principled way of computing a
dynamic sparsification for each individual FN is
described in the work of Kramer et al. (2009).
However, in this case, we are not interested in fine-
tuning the threshold nor do we wish to devise a
dynamic sparsification scheme to process each FN
independently. As long as the same threshold is
consistently used for different FNs, then the GNN
will learn to deal with the resulting distribution of
FNs. We report an additional discussion regarding
the threshold in the Appendix.

We generate a dataset of FNs for each patient,
dividing the FNs into ictal and interictal classes and
proceeding in a per-seizure fashion. Let fs be the
sampling rate of the iEEG signal, L the duration of
a seizure, t0 the time indicating the seizure onset,
k ≥ 1 a subsampling factor, and T the length of
the time windows. Additionally, let y(t) ∈ {0, 1}
be a binary signal indicating whether the patient is
having a seizure at time t (i.e., y(t) = 1 if t ≥ t0 and
0 otherwise). Note that we consider each seizure to
end at time t0 +L and we do not compute FNs for
the data immediately following a seizure offset.

Given a time window [t−T, ..., t], we compute a
FN G(t) and label it with class

Y(t) =

{
1, if

∑τ
τ=t−T y(τ) > T/2

0, otherwise.
(3)

To generate the FNs associated with seizures
(class 1), we consider the data interval [t0 −
T/2, ..., t0 + L] and take overlapping windows of
size T with a stride of 1/fs. For the interictal
FNs (class 0), instead, we consider a longer period
preceding the seizure onset, [t0 − kL, ..., t0 + T/2],
and we take windows at a larger stride of k/fs. In
this work, we consider k = 10 and T = 1s for all
experiments, although other values are possible.

This procedure to generate the FNs (summarised
in Figure 2) results in a balanced dataset and has
two advantages. First, it allows us to fully use all the
available (and rare) ictal events. Second, it allows us
to consider a more diverse sample for the interictal
class. The small differences between consecutive
FNs of the positive class, due to the small stride at
which windows are taken, can be seen as a form of

sample weighting to account for the class unbalance
characterising the problem.

In order to have initial node features that can
be processed by the GNN, we consider dummy
attributes set to 1 for all nodes. Other choices that
depend on the actual iEEG signals are possible (e.g.,
the signal power or wavelet coefficients) but were
not explored in this work.

B. Attention mechanism

Attention (Bahdanau et al., 2014; Vaswani et al.,
2017) is a processing technique for neural networks
to learn how to selectively focus on parts of the
input. Originally developed for aligning sentences in
neural machine translation (Bahdanau et al., 2014;
Vaswani et al., 2017), the attention mechanism has
been used to achieve state-of-the-art results on dif-
ferent tasks like language modelling (Brown et al.,
2020), image processing (Xu et al., 2015), and even
learning on graphs (Velickovic et al., 2018).

In this paper, we focus on the concept of self -
attention, which indicates a class of attention mech-
anisms that learn to attend to the output of a
layer using the output itself (in contrast to classical
attention, which uses the output of one layer to
focus on the output of another – e.g., the sentence
of the source language is used to focus on the
target language). At its core, self-attention consists
of computing a compatibility score αij ∈ [0, 1]
between two vectors hi,hj ∈ RF (both part of the
same sequence, image, graph, etc.):

αij = SOFTMAXj(eij) =
exp (eij)∑N
k=1 exp (eik)

, (4)

where
eij = a(hi,hj) (5)

and a is called an alignment model, which is usually
learned end-to-end along with the other parameters
of the neural network. The compatibility score is
then used to compute a representation of element i
as:

zi =
∑
j

αijhj. (6)

Intuitively, the attention mechanism learns the im-
portance of element j to describe element i, and
computes score αij to quantify this importance. The
alignment model can be seen as a similarity function
between the two elements, which is then normalised
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Fig. 2: Schematic representation of the procedure used to generate FNs. For each seizure of length L
starting at t0 (marked in red), we consider an interictal interval of length kL. Interictal FNs are generated
taking windows of length T at stride k/fs, while ictal windows are taken with stride 1/fs (in green). For
each window and each pair of electrodes i and j, we compute the FC value ei→j (in blue) to obtain the
full FN. This figure is only meant to represent the procedure and is not shown in any physical temporal
scale.

via the SOFTMAX function. Different implementa-
tions of the alignment model are possible, although
often it is implemented as a multi-layer perceptron.

Attention mechanisms are usually trained without
direct supervision and automatically learn to focus
on different parts of the data according to the loss
of the given task. By optimising the overall task
loss, the attention layers in a neural network learn
to compute the optimal compatibility scores. This is
a key aspect of our proposed methodology, where
we use self-attention to automatically detect those
brain areas (monitored via different iEEG channels)
that are important to detect a seizure. We stress that,
crucially, using attention allows us to perform local-
isation without ever providing our neural network
with ground truth information on the SOZ.

C. Graph neural networks for seizure localisation

Graph Neural Networks (GNNs) are a class of
neural networks designed to perform inference on
graph-structured data (Battaglia et al., 2018). At
their core, GNNs learn to represent the nodes of
a graph by propagating information between con-
nected neighbours, whereas a global representation
of the entire graph is usually obtained by computing
a readout of the nodes, like a sum, average, or
component-wise maximum vector. In this work, we
focus on the family of message-passing networks

(Gilmer et al., 2017), in which the l-th layer maps
the attributes h

(l−1)
i ∈ RF (l−1) of the i-th node to:

h
(l)
i = γ

(
h
(l−1)
i ,�j∈N (i) φ

(
h
(l−1)
i ,h

(l−1)
j , ej→i

))
,

(7)
where h

(l)
i ∈ RF (l) , h

(0)
i = vi, and φ and γ are

differentiable functions equivariant to node permu-
tations, respectively called the message and update
functions, while � is a permutation-invariant func-
tion (such as the sum or the average) to aggregate
incoming messages.

Many recent papers have introduced methods for
graph representation learning based on this gen-
eral scheme, with different implementations ranging
from polynomial (Defferrard et al., 2016) or rational
(Bianchi et al., 2019) graph convolutional filters, to
attentional mechanisms (Velickovic et al., 2018). In
most of these works the creation of messages is only
dependent on the node attributes, although some
methods have been proposed that also explicitly
take edge attributes into account (Simonovsky and
Komodakis, 2017; Schlichtkrull et al., 2018). In par-
ticular, the Edge-Conditioned Convolutional (ECC)
operator proposed by Simonovsky and Komodakis
(Simonovsky and Komodakis, 2017) incorporates
edge attributes into the message-passing scheme
by using a kernel-generating network f (l)(·) that
dynamically computes messages between each pair
of connected nodes. An ECC layer is thus defined
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as:

h
(l)
i = h

(l−1)
i ·W(l)

root +
∑
j∈N (i)

h
(l−1)
j · f (l)(ej→i), (8)

where W
(l)
root ∈ RF (l−1)×F (l) is a learnable kernel

applied to the root node itself and the kernel-
generating network is usually a multi-layer percep-
tron f (l) : RS → RF (l−1)×F (l) .

Our method for seizure localisation can be sum-
marised as follows. First, we train a GNN with
an attention-based readout to detect seizures from
FNs. This is a graph-level classification problem
where a label (ictal or interictal) is assigned to
each FN. Then, we analyse the compatibility scores
learned by the attentional mechanism to identify
those nodes that the model consistently considers
as important. Although we train the GNN to do
seizure detection in a supervised way, i.e., it requires
manually-annotated seizure onsets and offsets, the
localisation is fully unsupervised. This is one of the
main strengths of the proposed method, as signifi-
cantly less manual work is required to annotate the
temporal boundary for each seizure, rather than the
SOZ.

There are two main components in our GNN
architecture. First, the connectivity information is
propagated to the node attributes via an edge-aware
message-passing operation like ECC. A single layer
is sufficient because the input FNs are densely
connected, and most nodes will receive information
from the whole graph in a single step of message
passing.

Then, we use a self-attentional mechanism to
compute the graph readout:

z = ATTN-RO(h) =
N∑
j=1

αjhj (9)

where

αj =
exp (hj · a)∑N
k=1 exp (hk · a)

, (10)

hj ∈ RF out is the embedding of the j-th node
computed by the ECC layer, and a ∈ RF out is a
vector of learnable weights. Note that, compared
to Equation (6), here index i is left implicit as the
attention is only computed once for all nodes, to
reduce the graph to a vector. This is also reflected
in the fact that the alignment model is a function
of only one node at a time, e.g., hj · a. For a

more general way of applying attention to every
possible pair of nodes (while maintaining the graph
structure), see (Velickovic et al., 2018).

Finally, a multi-layer perceptron MLP(·) with
sigmoid activation computes the probability that the
input FN represents an ictal window of iEEG data.

The full architecture is written as:

ŷ = MLP(ATTN-RO(ECC(G))) (11)

where G represents an input FN (cf. Figure 1).
By training the GNN to correctly distinguish the

ictal FNs from the non-ictal ones, we also implicitly
train the attentional readout ATTN-RO to assign
higher attention to those nodes of the FNs that
maximise the confidence in the prediction. We then
analyse how the attention scores assigned to nodes
change over time, and rank the nodes according to
the overall amount of attention that they receive be-
fore and during a seizure. The localisation procedure
is described in the following section.

D. Localising the seizure onset zone

For each seizure in the data, we consider sym-
metric intervals of length 2L centred at the seizure
onset, so that the first L timesteps are pre-ictal and
the remaining L cover the beginning of the seizure.
For each of the 2L timesteps, we compute a FN G(t)
from a T = 1s window ending at time t, obtaining a
sequence of FNs [G(1), . . . ,G(2L)] (this is equivalent
to how we generate the training datasets, except that
the subsampling is set at k = 1). For each FN in the
sequence, we use the GNN to compute the attention
scores over the nodes according to Equation (10).
We thus compute a sequence of attention scores
[α

(1)
i , . . . , α

(2L)
i ] for each node i.

We then sum the sequence of attention scores to
obtain the overall importance of the node over the
considered time interval:

σi =
2L∑
t=1

α
(t)
i , (12)

and normalise the importance scores to the [0, 1]
interval as:

s
(s)
i =

σ
(s)
i −minj∈V σ

(s)
j

maxj∈V σ
(s)
j −minj∈V σ

(s)
j

. (13)

Finally, we rank the nodes according to their impor-
tance and predict the SOZ accordingly.
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III. RESULTS

We report the results obtained on real iEEG data
collected from eight patients. Additional results on
two brain activity simulators (a simple network
model (Benjamin et al., 2012) and The Virtual
Brain simulator (Sanz Leon et al., 2013)) and all
experimental details regarding the GNN are reported
in the appendix.

A. Data collection and pre-processing

We used iEEG data recorded from eight hu-
man subjects with medically refractory epilepsy, the
recordings obtained as part of their standard clin-
ical pre-surgical investigations. The patients were
selected among a larger pool of patients based on
certain criteria, chiefly having at least 5 clinical
seizures recorded in our database and having a
recorded clinical history of at least 2 years.

The study was approved by the Research Ethics
Board at the University Health Network (ID number
12-0413) and written consent for data collection was
obtained from all participants. Each patient had a
varying number of recorded clinical seizures and
the number of electrodes also varied from patient
to patient (cf. Table I). The data was recorded
from subdural or intracerebral depth electrodes at
fs = 500Hz over the course of several days per
patient, and seizures were manually annotated by
electroencephalographers, inspecting both raw iEEG
and video recordings of the patient. The iEEG signal
was notch-filtered at 60Hz and related harmonics to
remove powerline trends, and then filtered with an
order-3 low-pass filter at 100Hz to remove any high-
frequency noise. Then, each electrode channel was
independently re-referenced to have zero mean and
rescaled to have unit variance.

Before pre-processing, we visually inspected the
raw data of each patient and each seizure to as-
sess the presence of bad channels: we considered
symmetric windows around each labelled seizure
onset and we removed from the data any channels
that exhibited abnormal (i.e., either flat or excessive)
activity in at least one seizure.

B. Per-patient analysis of the SOZ

This section reports the available clinical data for
the patients considered in our study. For all patients,
both the seizure onset time instants and the SOZ

8 6 4 2 0 2 4 6 8
Seconds from seizure onset

LPIH4

LPIH5

RPIH3

RPIH4

(a) Patient 1

4 2 0 2 4
Seconds from seizure onset

RINS1

(b) Patient 2

Fig. 3: Examples of raw iEEG traces for patients 1
and 2. The two plots show the activity of electrodes
that were identified as SOZs by electroencephalog-
raphers. The vertical line marks the seizure onset,
as reported in the patients’ clinical records.

annotations were provided by electroencephalogra-
phers.

Patient 1 demonstrated ictal activity in both the
left and right posterior interhemispheric regions
(Figure 3a), with interictal epileptiform discharges
recorded independently from the left anterior frontal
and right middle frontal lobes. The patient did not
undergo resective surgery due to a low confidence in
the identification of the SOZ. Patient 2 showed clear
seizures originating in the right posterior insular
region (Figure 3b). The patient underwent laser
interstitial thermal therapy targeting a focal cortical
dysplasia in the area. The patient continued to
have some post-operative seizures, although these
were reduced in frequency and intensity, indicating
that the SOZ was identified correctly. Patient 3
had seizure onsets recorded independently from
both temporal lobes and thus was not a candidate
for surgery. Patient 4 had no clear ictal activity
identified by electroencephalographers in the iEEG
recordings and was thus not a candidate for surgery,
the SOZ evidently not captured by the intracra-
nial electrode placements. Patient 5 demonstrated
ictal activity in the left hippocampal body, and
underwent a left anterior temporal resection. The
patient continued to have seizures after the surgery,
but of reduced frequency and intensity, indicating
a successful localisation of the SOZ. Patient 6
had multiple seizures recorded with poorly defined,
inconsistent ictal onsets over the temporoparietal
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TABLE I: Summary of the patients considered for this study. The columns indicate (left-to-right): the
number of recorded seizures, the number of implanted electrodes, the presence of ictal activity (IA)
marked by electroencephalographers on one or more channels, whether the patient had surgery, and the
outcome of the surgery.

Patient Seizures Electrodes IA identified Surgery Outcome

1 15 100 Yes, low confidence No -
2 9 96 Yes Yes Seizures reduced
3 10 23 Yes No -
4 5 74 No No -
5 11 38 Yes Yes Seizures reduced
6 18 45 Yes, poorly defined No -
7 5 45 Yes No -
8 16 69 Yes No -

sensory cortex and was deemed not a candidate
for surgical resection due to uncertainty on the
SOZ. Patient 7 had seizures recorded in the left
hemisphere, with onsets involving a broad region
of the temporal lobe neocortex. The patient was
not subject to resection due to the epileptogenic
zone being too large, and near eloquent language
cortex. Patient 8 exhibited abnormal activity in the
left amygdala and hippocampus. The patient had
already undergone contralateral right anterior tem-
poral resective surgery years prior to the collection
of the iEEG data and was not a candidate for further
resections.

Table I summarises the relevant details of the
eight patients. In particular, six patients had clin-
ically identified, well-defined information regarding
the SOZ, whereas in two patients the SOZ could
not be clearly identified in the iEEG data by elec-
troencephalographers. Despite not having ground
truth information related to the SOZ for these two
patients, we still included them as part of our study
to analyse the behaviour of our algorithm in such
cases of high uncertainty. The question that we aim
to answer with this analysis is: what does the GNN
see when professional electroencephalographers are
uncertain about the SOZ? A strong attention score
in such cases would raise concerns about the sound-
ness of our method. Instead, we observe in the
following Section that the GNN shows uncertainty
in those cases where professionals are also uncer-
tain. This is a valuable result that, in our opinion,
strengthens the contributions of the paper.

C. Results on seizure detection and localisation
Table II reports the Area Under the Receiver

Operating Characteristic Curve (ROC-AUC) and the

Area Under the Precision-Recall Curve (PR-AUC)
obtained by the GNN on the seizure detection task.
We report the results obtained using both FC metrics
(correlation and PLV) to generate the FNs. We
also report the detection performance of a baseline
convolutional neural network for time series classi-
fication (details in the Appendix). We repeat each
experiment five times and, where appropriate, report
the average and standard deviation of the results.

The GNN achieved an average ROC-AUC score
of 79.56 and an average PR-AUC of 81.24 (the
average is computed over all patients) when using
correlation as FC metric. These results are aligned
with the performance of the baseline, which our
method slightly outperformed on average, and in-
dicate that 1) our choice of architecture was rea-
sonable and 2) using graph-structured data is an
interesting direction for future research on efficient
seizure detection. We also recall that the detection
task is only meant to provide a weak supervision
for the more interesting challenge of localisation,
and that better detection results could be achieved
by increasing the capacity of the GNN or collecting
more training data.

Tables III and IV report the performance of the
model on the patients with a known SOZ, respec-
tively using correlation and PLV to generate FNs.
In particular, we report three main performance
measures:
(a) the average precision at K (AP@K) (Sander-

son et al., 2010) obtained by the GNN when
computing an average ranking of the elec-
trodes. Each electrode is re-ranked by con-
sidering five models trained on the same data
and taking the average score assigned to each
electrode over all models and all seizures. This

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2020.12.03.409979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409979
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

TABLE II: Average ROC-AUC score and average PR-AUC score for seizure detection on unseen test data.
These scores represent the model’s ability to correctly classify the FNs as interictal or ictal. The last row
reports the average score over all patients. The highest ROC-AUC and PR-AUC scores are reported in bold
for each patient. We report the average and standard deviation over all test seizures and all repetitions.

Baseline GNN Corr. GNN PLV
Patient ROC PR ROC PR ROC PR

1 62.54 ± 22.5 70.06 ± 17.8 68.63 ± 11.43 75.20 ± 10.30 75.68 ± 23.3 77.51 ± 20.1

2 80.19 ± 15.5 85.96 ± 10.6 86.87 ± 9.07 89.04 ± 9.35 65.36 ± 20.1 72.91 ± 14.8

3 82.32 ± 14.19 87.25 ± 9.24 93.35 ± 3.12 94.34 ± 2.72 71.50 ± 14.8 71.02 ± 16.3

4 67.81 ± 8.75 69.83 ± 13.12 60.40 ± 14.41 61.11 ± 14.82 53.83 ± 6.6 51.67 ± 6.4

5 76.18 ± 15.41 80.42 ± 14.26 77.04 ± 11.98 76.39 ± 13.03 71.46 ± 12.1 71.45 ± 12.9

6 76.32 ± 17.2 80.94 ± 13.5 73.72 ± 17.14 76.02 ± 14.53 63.81 ± 17.2 71.06 ± 12.4

7 76.46 ± 11.24 81.22 ± 7.65 85.52 ± 10.95 85.92 ± 13.65 69.32 ± 2.6 65.55 ± 1.8

8 85.60 ± 14.6 89.29 ± 10.7 90.97 ± 5.51 91.89 ± 3.49 77.69 ± 11.5 78.32 ± 11.3

Avg. 75.93 ± 7.06 80.62 ± 6.86 79.56 ± 10.82 81.24 ± 10.37 68.58 ± 7.08 69.94 ± 7.86

measure quantifies the GNN’s ability to cor-
rectly identify the SOZ for a patient in general,
which is the most clinically relevant scenario.

(b) The mean AP@K (MAP@K) obtained by the
GNN on different individual seizures. In this
case, the ranking for each seizure is compared
to the ground truth independently of the others
(i.e., without averaging the scores), and the
scores are averaged a posteriori (also con-
sidering five repetitions of the experiments).
This measure quantifies the GNN’s ability to
correctly identify target electrodes in a given
seizure.

(c) The MAP@K obtained by the GNN on differ-
ent individual seizures, but considering groups
of electrodes belonging to the same strip (im-
plying spatial locality of the electrodes). This
allows us to evaluate the performance of the
model at a coarser scale.

From the results we see that, while correlation
was a clearly better metric for the task of seizure
detection, the localisation performance can vary
depending on the particular FC metric used. In
particular, the localisation for patients 1 and 5 was
better when using correlation networks, but PLV
yielded better results for patients 3, 7, and 8.

In general, however, we note that the (M)AP@5
score is positive for both FC metrics, for all per-
formance measures and all patients, meaning that at
least one SOZ-associated electrode was ranked in
the top five every time. We also note that the GNN
achieves a perfect AP@2 score (average rankings)
in six out of eight cases when using PLV, indicating
a high chance of localising at least two relevant

electrodes per patient.
Remarkably, we see that these results were ob-

tained even when considering small datasets, e.g.,
down to only five seizures for patient 7 (cf. Table
I). While this result is encouraging and highlights
the sample efficiency of our approach, we stress that
a higher amount of training data can only improve
the detection and, likely, localisation performance
of our method, as well as giving a higher statistical
certainty about the results.

D. Comparison with clinical information

Figure 5 shows a graphical visualisation of the
scores and rankings used to compute the values
in Tables III and IV. The figure summarises our
results and provides an overview of the importance
scores, their variability across different models and
seizures, and their agreement with the ground truth.
For every electrode, we report the average score and
its standard deviation over all test seizures and all
repetitions.

The results for patient 5 can be considered a
complete success, with the highest AP@K scores
among all patients and very little uncertainty in the
ranking by the GNN. Crucially, the successful post-
operative outcome confirms that the localisation of
the SOZ for this patient was accurate and points to
a strong localisation ability of the GNN. For patient
2, ictal activity was evident and well-localised on a
specific depth electrode placed in the right insular
complex (RINS1). The clinical localisation of the
SOZ was therefore likely accurate, even if the out-
come of the surgery was not completely successful.
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TABLE III: Localisation performance for patients with a known SOZ, when using Pearson’s correlation as
FC metric. We report: (a) the average precision at K for averaged rankings, which evaluates the localisation
for the patient overall; (b) the mean average precision at K for single rankings, which evaluates the
localisation for a given seizure; (c) the mean average precision at K for single rankings and groups of
electrodes, which is equivalent to (b) but at a coarser scale. We report scores for K = 2, 5, 10. Bold
indicates that the results are better than the ones obtained with PLV as FC metric (cf. Table IV).

(a) AP@K - Avg. rank (b) MAP@K - Single (c) MAP@K - Groups
Patient K = 2 K = 5 K = 10 K = 2 K = 5 K = 10 K = 2 K = 5 K = 10

1 50.00 20.00 12.50 22.31 12.0 7.24 26.92 21.48 31.64
2 100.00 100.00 100.00 51.11 54.8 56.71 53.33 58.48 60.73
3 0.00 16.67 38.96 20.37 26.51 28.98 36.11 45.09 50.07
5 100.00 55.00 55.00 97.73 48.55 54.71 99.09 99.09 99.09
7 25.00 20.00 10.00 22.00 20.56 16.76 78.00 72.03 82.70
8 0.00 6.67 5.56 19.69 13.00 7.42 20.00 36.43 44.07

TABLE IV: Localisation performance for patients with a known SOZ, when using PLV as FC metric.
Bold indicates that the results are better than the ones obtained with correlation as FC metric (cf. Table
III).

(a) AP@K - Avg. rank (b) MAP@K - Single (c) MAP@K - Groups
Patient K = 2 K = 5 K = 10 K = 2 K = 5 K = 10 K = 2 K = 5 K = 10

1 0.00 5.00 5.83 8.67 5.97 4.67 16.67 18.82 31.78
2 100.00 100.00 100.00 50.00 54.33 56.65 50.00 58.04 60.21
3 100.00 55.00 45.46 60.00 40.82 32.58 66.88 45.16 51.36
5 100.00 40.00 48.57 66.82 38.28 45.27 91.82 93.48 93.48
7 100.00 40.00 35.71 70.00 43.84 30.45 82.00 74.22 84.22
8 50.00 20.00 10.00 15.62 9.15 6.43 16.56 20.07 32.30

More importantly, we notice that the GNN was
strongly aligned with the human analysis given the
same information, and similarly focused on the
same electrode (which is ranked first using either
of the FC metrics). Our methodology also con-
firms the conclusions reached by electroencephalo-
graphers for patients 3, 7 and 8, although further
studies would be required to give a more precise
interpretation of the results (including, possibly,
the outcome of future surgeries). The results for
patient 8 are particularly uncertain, despite the GNN
achieving a good detection accuracy (cf. Table II). In
general, however, the rankings provided by the GNN
show a high agreement with the medical assessment
in those cases where the SOZ was successfully
identified.

For patients with no known SOZ (4, 6) the GNN
has a low detection performance and the average
attention scores assigned by the GNN are uniformly
distributed across all electrodes around an average
score of 0.5. On the contrary, patients with a known
SOZ have a few electrodes that are assigned a
majority of the attentional budget. This difference

between the two cases is more clearly visualised
in Figure 4, which shows the distribution of the
scores given to different electrodes at the seizure
onset (patient 5 is taken as representative of the case
in which the SOZ is known).

For patient 1, the GNN did not identify any
particularly important regions despite there being
some clinical evidence of ictal activity in the pos-
terior interhemispheric region. Two posterior inter-
hemispheric electrodes are indeed ranked in the
top ten (averaged rankings) by the GNN when
using correlation FNs, although with very high
uncertainty. We note, however, that the uncertainty
showed by the GNN was also reflected clinically in
the electroencephalographers’ interpretations and in
the final decision to not operate on this patient.

Our analysis for patients 1, 4, and 6 shows that the
uncertainty of the GNN correlates with uncertainty
or inability on the part of electroencephalographers
to identify the SOZ in iEEG, and can still be useful
to support their decision making (e.g., deciding to
not operate a patient can be just as valuable as a
successful localisation).
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Fig. 4: Histograms of the attention scores over a
2-second window starting from a seizure onset.
Each bin represents the frequency with which the
corresponding attention score is assigned to ten
randomly-selected electrodes. Figure (a) shows a
patient with a known SOZ, while Figures (b) and (c)
show patients without a known SOZ. For Figure (a),
the contribution to each bin of those electrodes that
are part of the SOZ ground truth are highlighted in
orange. Note how the score distribution for SOZ-
associated electrodes is spread out towards higher
values, while for patients with no known SOZ the
scores are similar for all channels.

IV. DISCUSSION

Our work introduces a methodology for auto-
mated seizure localisation using graph-based ma-
chine learning. Our approach does not require any
manual annotation of the SOZ in order to work,
making it cheaper to train and easier to scale to a
larger number of patients. Our method is also data-
efficient: we were able to provide a good – and
clinically verified – localisation using as little as
five annotated seizures per patient.

The goal of the proposed approach is to provide
a support tool for clinicians to allocate precious
resources in the analysis of iEEG data, and to
improve the efficiency of the decision-making pro-
cess. Crucially, in this regard, we note that our
algorithm is conservative in scoring potential SOZ
candidates. When the SOZ was not identifiable
by electroencephalographers, the GNN also showed
uncertainty in the scoring (rather than making high-
confidence predictions). Contrarily, a high impor-
tance score consistently correlated with clinically-
identified SOZs. With this premise, we believe that
our approach could have practical value if deployed
to epilepsy monitoring units to provide real-time
analysis of iEEG recordings.

A. Future work

There are several directions for future research
that could stem from this work. First, we note that
by 1) increasing the capacity of the network (in
terms of parameters and depth), 2) performing a
patient-specific hyperparameter search, and 3) hav-
ing more seizures on which to train the model, it is
likely that both the detection and localisation perfor-
mance would significantly improve. Also, a possible
extension of the proposed methodology could be to
explicitly introduce a supervised objective to train
the attentional readout using the available informa-
tion on the SOZ. This would require a per-seizure
annotation of every electrode (or, even better, an
annotation over time), but could lead to a more
accurate localisation. An interesting application of
this methodology could also be to provide a patient-
agnostic localisation, by training the GNN concur-
rently on seizures of different patients.

Our current study focuses on eight patients, six of
which have an identifiable SOZ. For two of these,
we have post-surgical confirmation of the SOZ. Our
results are encouraging, but studies on larger sample
(with possibly longer-term clinical information on
the patients) is required before recommending our
approach for clinical practice.

Future work could also explore more in-depth
the use of different or combined FC metrics and
their impact on the detection and localisation per-
formance. For example, we have observed that using
correlation leads to a better detection performance,
while we had better localisation results when us-
ing PLV. Correlation is the simplest measure for
non-directed model-based interactions and is more
sensitive to outliers. This sensitivity may result
in less uniform FNs between interictal and ictal
periods, making it easier for the GNN to detect
seizures. However, we argue that it is also this
lack of robustness that makes correlation FNs less
suitable for localising the SOZ. On the other hand,
frequency-domain functional measures like PLV are
better for describing whether different brain areas
have a preferred phase difference when engaging in
oscillatory coupling Bastos and Schoffelen (2016).
Due to the synchronous nature of ictal activity, we
can assume that PLV will also better highlight those
regions of the brain with consistent coupling during
seizures and therefore the GNN will be able to
assign a high importance score to those regions.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2020.12.03.409979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409979
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

0.00 0.25 0.50 0.75 1.00
Normalized score

RPF2
LPT1

RPIH3
LPT5
LPT3
RPF4
RPF3
LPF3
LPF2

LPIH5
Top-10 electrodes

(a) Patient 1

0.0 0.5 1.0
Normalized score

LPIH1
RAT3

LFP10
LFP6
RPT1
RHD1
RAF2
RAF1

RPIH4
RINS1

Top-10 electrodes

(b) Patient 2

0.00 0.25 0.50 0.75 1.00
Normalized score

LAT3
LAT2
LAT4
LTS3
RHD4
LPT6

LMT3
LPT1

LMT2
LTS4

Top-10 electrodes

(c) Patient 3

0.00 0.25 0.50 0.75 1.00
Normalized score

LAF5
LFP10
LPF4
LPH3
RAF3
LPH2
LAF4
LAF2
LPH1
LPF7

Top-10 electrodes

(d) Patient 4

0.00 0.25 0.50 0.75 1.00
Normalized score

RHH9
LHB8
RHB8
LHB9

RI5
RHB7
LHB3

RHH10
LHB1
LHB2

Top-10 electrodes

(e) Patient 5

0.0 0.5 1.0
Normalized score

LHD1
L26

LOT6
LPT2

L2
LMT 12

LOT5
L23

LMT 11
L24

Top-10 electrodes

(f) Patient 6

0.00 0.25 0.50 0.75 1.00
Normalized score

LAHC7
LMPH2
LAHC8
LPPH8
LMPH7
LPHC8
LMHC8
LMPH3
LPPH6
LPPH7

Top-10 electrodes

(g) Patient 7

0.0 0.5 1.0
Normalized score

LDAC3
ROFC3

LPH2
RPHG4
RPHG3

LPH3
ROFC4

RAH4
RAH5
LAD6

Top-10 electrodes

(h) Patient 8

Fig. 5: Top ten electrodes when considering the averaged rankings. We report the ranking obtained with
the best-performing FC metric for each patient, according to the AP@10 score for average rankings
reported in Tables III and IV. The two plots in red indicate those patients for which the SOZ was not
identified clinically. Bold labels indicate that the corresponding electrode was marked as a potential SOZ
by electroencephalographers. For every electrode, we report the average score and its standard deviation
over all test seizures and all repetitions. We refer the reader to the appendix for an extended version of
this figure.

Another reason why PLV could be more suitable
for localisation is that the SOZ displays internal syn-
chronous activity but also a desynchronisation from
the surrounding areas of the brain, possibly making
it easier to identify the SOZ. This is discussed in-
depth in a study by Le Van Quyen et al. (2001). A
way to identify a priori the best FC metric to build
FNs for a specific patient could bring significant
benefits.

V. CONCLUSION

We presented a methodology for unsupervised
seizure localisation based on GNNs with an atten-
tion mechanism. Our approach takes advantage of a
compact representation of brain states as FNs, and
uses machine learning methods for graph-structured
data to automatically detect those regions of the
brain that are important for localising seizure onsets.

The main advantage of our approach is that it does
not require any a priori knowledge of the SOZ. The
GNN is not forced to focus on any part of the input
FNs but, remarkably, learns to focus on areas of the
brain that correlate strongly with the true SOZ. We
showed the effectiveness of our method in localising
the SOZ on real-world data consisting of iEEG
recordings from eight human subjects, using two
different FC metrics to compute FNs. Our results
show a very high accuracy in localising the SOZ.
However, we also observed that the GNN exhibits
uncertainty in those cases where human analysis
was also uncertain, indicating a reliable and safe
behaviour to support decision-making.

We believe that this work represents a step to-
wards AI-aided analysis of iEEG data and could
potentially lead to faster and more accurate treat-
ment of epilepsy.
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APPENDIX

A. Seizure generator from Benjamin et al. (2012)
In this experiment we considered a simple net-

work model of seizure initiation presented by Ben-
jamin et al. (2012), and also used by Lopes et al.
(2017, 2020) to study the effect of network structure
on the generation of seizures. The model consists of
a network of N bi-stable oscillators

ż = f(z) = (λ− 1 + iω)z + 2z|z|2 − z|z|4 (14)

where z ∈ C. Equation (14) describes a dynamical
system with a stable fixed point at the origin of
the complex plane (which we consider as interictal),
and an oscillating attractor with frequency ω (which
we consider as ictal). Parameter λ controls the
location of the oscillator in phase space. Nodes are
interconnected in a graph described by adjacency
matrix A with a coupling factor β, such that the
dynamic of a single node reads:

dzi(t) =
(
f(zi) + β

∑
j 6=i

Aji(zj − zi)
)

+ α dWi(t)

where Wi(t) is a stochastic Wiener process rescaled
by a factor of α.

All nodes in the model are initialised at the fixed
point and, due to the presence of noise and the
interaction between nodes, eventually switch to the
oscillation state. We identify the activity of the
whole system as ictal if any of the nodes meets
the condition |Re(zi)| > 1, and the SOZ as the first
node that escapes the fixed regime.

We consider a complete graph without self-loops
to describe the interaction of the nodes. The config-
uration of the parameters is summarised in Table V.
The hyperparameters used for creating the FNs and
training the GNN are the same ones that we used
for the real iEEG data, and we only report results
obtained using PLV as FC metric.

TABLE V: Configuration used for the simulator by
Benjamin et al. (2012).

Parameter Value

N 3
ω 20
λ 0.5
β 0.1
α 0.05

The GNN achieves an almost perfect detection
score with a ROC-AUC of 99.61 ± 0.0 and a

PR-AUC of 99.69 ± 0.0 (averaged over five runs,
evaluated on hold-out test data). Figure 6 compares
the generated node activity with the attention scores
assigned by the GNN over time. The SOZ channel
(green) is assigned the highest attention since the
beginning of the seizure until all nodes are simul-
taneously oscillating, at which point the attention
scores converge to be evenly distributed. A similar
even distribution is observed in the interictal state,
indicating that the network has correctly learned
to identify the SOZ electrode without defaulting
to assign a high score to just one electrode. This
behaviour is confirmed by the spikes in attention
assigned to channels 0 and 1, which happen as
soon as the node dynamics escape the fixed-point
attractor.

B. The Virtual Brain Simulator
In this experiment we use The Virtual Brain

simulator (TVB) (Sanz Leon et al., 2013) to model
a patient with temporal lobe epilepsy.

We follow the same approach described in TVB’s
documentation to configure the simulator.1 We as-
sign the Epileptor neural mass model (Jirsa et al.,
2014) to all the controllable brain regions of TVB.
We set the epileptogenicity of the right limbic areas
(rHC, rPHC and rAMYG) to −1.6, the superior
temporal cortex (rTCI) and the ventral temporal
cortex (rTCV) to −1.8, while for all other areas to
−2.2. The remaining parameters are kept as default.
The hyperparameters used for creating the FNs and
training the GNN are the same ones that we used
for the real iEEG data.

We select a subset of 34 sEEG virtual sensors
among the ones provided for the default subject
of TVB. Of this subset, electrode 33 shows strong
epileptogenic activity, while electrodes 18, 19, and
20 show mild activity. We generate clips of roughly
1 minute at 20Hz so that there is a simulated onset in
the middle of each clip. An example of a generated
clip is shown in Figure 7.

The GNN achieved an average detection ROC-
AUC of 98.87 ± 0.18 and an average PR-AUC of
99.18 ± 0.07 (averaged over five runs, evaluated on
hold-out test data). The electrode with a strong ictal
activity is consistently assigned a maximum score

1https://github.com/the-virtual-brain/tvb-root/blob/master/tvb
documentation
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Fig. 6: Top: a clip showing the generated activity of a 3-node simulator, compared to the attention
coefficient assigned by the GNN at each node over time. Colours indicate the same node in both plots.

of 1 by all models and electrode 19 is also ranked
in the top-5 electrodes (see Figure 8).

C. GNN training details
We consider each patient separately and train a

GNN from scratch to build patient-specific models.
The GNN architecture is the one given in Equation
(11). The ECC layer has 32 output units with
ReLU activation and a kernel-generating network
f(·) consisting of a two-layer MLP with 32 hidden
units and ReLU activation. All parameters of the
layer are regularised with an L2 penalty with a factor
of 10−5.

The MLP classifier following the ATTN-RO read-
out has 2 layers, with the hidden one having 32
units and ReLU activation and with 25% dropout
in-between. Both layers are regularised with an L2

penalty with factor 10−5.
The model is trained using Adam, with a learning

rate of 10−3 and a batch size of 32 graphs. The
model is trained to convergence with 10 epochs
of patience, using the data from d0.1 · ne seizures
selected randomly (n being the overall number of

seizures) for early stopping. We then test the model
on a held-out set of d0.1·ne seizures. The remaining
seizures are used for training. All experiments are
repeated 5 times using different random data splits.

D. Baseline training details
The baseline is a simple 1D convolutional neural

network (CNN) based on the architecture described
by Wang et al. (2017). The CNN operates directly
on iEEG time series and hence does not take into
account any graph-based representation for the data.
Similarly to how we create the input-output pairs for
the GNN, here we consider windows of size T taken
at a stride of k/fs for the interictal class and stride
1/fs for the ictal class, and we associate to each
window a class label corresponding to the majority
class of y(t) in the corresponding window.

In particular, we shrink the model to make it
comparable in terms of number of parameters and
depth to the GNN one, and also to prevent over-
fitting (which we experimentally encountered as a
significant problem with the model). We consider a
single convolutional layer with a kernel of size 3, 8
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Fig. 7: A virtual seizure generated with TVB. The vertical line denotes the annotated seizure onset in
time.
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showed ictal activity. As desired, electrode 33 shows
strong epileptogenic activity.

output channels, and ReLU activations, followed by
a global average pooling and a single-layer MLP
to output the classification decision. We train the
model using Adam with learning rate 0.001, batch

size of 32 and early stopping with a patience of 5
epochs.

E. Additional results
Detection A notable behaviour of the GNN can

be observed from Figure 9, which shows the output
of the GNN (i.e., the detection score outputted by
the model) on a symmetrical window around the
onset, for randomly sampled seizures of the six
patients with a known SOZ. We empirically ob-
served that the model is robust to the onset labelling
provided by electroencephalographers. Notably, by
analysing the prediction of the GNN in the time
instants prior to the seizure onset, we can see
that the confidence with which the GNN detects
a seizure starts to gradually increase towards the
seizure onset, but does not always peak at the on-
set time marked by electroencephalographers. This
suggests that the GNN is learning to detect the
anomalous brain activity rather than overfitting to
the known onset labels.

Localisation We show in Figures 11 and 12 the
top 10 electrodes by AP@10 score for all patients,
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Fig. 9: Example of the detection score outputted by the GNN, for all patients with a known SOZ. We
show a window of 50 seconds around the marked onset for random test seizures. The darker line is a
smoothed trendline of the true prediction, shown in lighter colour.
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Fig. 10: Average detection and localisation perfor-
mance as a function of the sparsification threshold.
We report the average over all metrics and all
patients, as reported in Tables II and III of the
manuscript.

respectively when using correlation and PLV as FC
metrics.

Threshold To demonstrate that our approach is
robust to the choice of sparsification threshold for
the FNs, as argued in Section II-A, We report in
Figure 10 the average localisation performance over
all patients and all metrics for different thresholds
(that is, we average all the values reported in Table
III after re-computing the tables with different spar-
sification thresholds). While this is a coarse-grained
analysis, it shows that there are no significant differ-

ences in the downstream performance for thresholds
up to 0.7, with two-sided t-tests over all pairs
yielding p-value p � 0.05 up until threshold 0.7.
Above this value, we see a significant performance
degradation.

While this is a coarse-grained analysis, it indi-
cates that the most meaningful edges to perform
seizure localisation are those that indicate a strong
functional connectivity, with values higher than 0.7.
At the same time, a higher sparsification threshold
can improve the computational cost of the GNN,
which is linear in the number of edges. However,
it is beyond the scope of this work to provide
a biological interpretation of this threshold and
we do not make claims regarding the generality
of this threshold. Our general recommendation, if
computational cost is not a priority, is to keep the
threshold conservatively low so as to not remove
potentially informative edges from the FNs. The
value of 0.1 that we use in our experiments appears
to be a reasonable choice, although we leave further
exploration of this matter as future work.
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Fig. 11: Top ten electrodes by AP@10 score for the average rankings, using correlation as FC measure.
The two plots in red indicate those patients for which the SOZ was not identified clinically. Bold labels
indicate that the corresponding electrode was marked as a potential SOZ by electroencephalographers.
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Fig. 12: Top ten electrodes by AP@10 score for the average rankings, using PLV as FC measure. The two
plots in red indicate those patients for which the SOZ was not identified clinically. Bold labels indicate
that the corresponding electrode was marked as a potential SOZ by electroencephalographers.
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