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Abstract 

5-methylcytosine (5mC) is a modified base often described as necessary for the proper 
regulation of genes and transposons and for the maintenance of genome integrity in plants. 
However, the extent of this dogma is limited by the current phylogenetic sampling of land plant 
species diversity. Here, we report that a monocot plant, Spirodela polyrhiza, has lost CG gene 
body methylation, genome-wide CHH methylation, and the presence or expression of several 
genes in the highly conserved RNA-directed DNA methylation (RdDM) pathway. It has also lost 
the CHH methyltransferase CHROMOMETHYLASE 2. Consequently, the transcriptome is 
depleted of 24-nucleotide, heterochromatic, small interfering RNAs that act as guides for the 
deposition of 5mC to RdDM-targeted loci in all other currently sampled angiosperm genomes. 
Although the genome displays low levels of genome-wide 5mC primarily at LTR 
retrotransposons, CG maintenance methylation is still functional. In contrast, CHG methylation 
is weakly maintained even though H3K9me2 is present at loci dispersed throughout the 
euchromatin and highly enriched at regions likely demarcating pericentromeric regions. 
Collectively, these results illustrate that S. polyrhiza is maintaining CG and CHG methylation 
mostly at repeats in the absence of small RNAs. S. polyrhiza reproduces rapidly through clonal 
propagation in aquatic environments, which we hypothesize may enable low levels of 
maintenance methylation to persist in large populations.  
 
Significance Statement: DNA methylation is a widespread chromatin modification that is 
regularly found in all plant species. By examining one aquatic duckweed species, Spirodela 
polyrhiza, we find that it has lost highly conserved genes involved in methylation of DNA at 
sites often associated with repetitive DNA, and within genes, however DNA methylation and 
heterochromatin is maintained during cell division at other sites. Consequently, small RNAs that 
normally guide methylation to silence repetitive DNA like retrotransposons are diminished. 
Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs 
that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps 
due in part to the rapid, clonal growth lifestyle of duckweeds.  
 
Introduction 
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Evolutionary theory predicts that asexual populations should become less fit over time 
due to an irreversible accumulation of deleterious alleles (1) . Duckweeds are perhaps the most 
striking counter-example in plants, given their cosmopolitan distribution and ability to survive in 
diversely harsh environments (2) . Duckweed is a common name for all 36 species in the 
Lemnaceae family of monocots, divided across five genera: Spirodela, Lemna, Landoltia, 
Wolffia, and Wolffiella ( Figure 1A). Most duckweed species rarely flower, instead reproducing 
primarily by rapid, clonal reproduction that occurs at one of the fastest rates in any angiosperm 
(3) . The largest duckweed species Spirodela polyrhiza (~1 cm wide) intriguingly has the smallest 
genome size (~158 megabases) (3–5) , and several genome assemblies consistently annotate 
fewer than 20,000 genes (6) . Compared to the Arabidopsis thaliana genome that is roughly the 
same total genome size, S. polyrhiza has nearly 25% fewer genes. Without much meiotic 
recombination through sexual reproduction, and fewer genes for selection to act upon, epigenetic 
variation could instead be a promising mechanism to explain the global success of clonal 
duckweeds (7) . 

Sexual reproduction in plants is often accompanied by widespread genome-wide 
reinforcement of DNA methylation with localized epigenetic reprogramming in gametes (8–10) . 
This results in patterns of both stable DNA methylation inheritance and infrequent spontaneous 
epialleles (11) . However, nearly 60% of global crops can be bred through clonal propagation 
(12) , highlighting the need to illustrate how epigenetics can be used to improve plant breeding 
efforts. Cytosine DNA methylation or 5-methylcytosine (5mC), is found in species spanning the 
flowering plant phylogeny (13) . As the number and phylogenetic diversity of plant genomes and 
DNA methylomes increases, so does the observed diversity of 5mC levels, specificity and DNA 
methyltransferase enzymes. 5mC DNA methylation in plants occurs at three major sequence 
contexts, each of which require different sets of enzymes to function: CG, CHG, and CHH 
(where H = A, C, T). Methylation at these different contexts is established by both de novo and 
maintenance methyltransferase enzymes. DNA methylation at CG and CHG sites is typically 
symmetrical across the Watson and Crick strands, whereas DNA methylation at CHH sites is 
asymmetrical. The observed symmetry is due to the mechanisms by which 5mC is maintained 
after DNA replication. Methylation at CG sites relies on the maintenance methyltransferase 
METHYLTRANSFERASE 1 (MET1) (14–16) , whereas maintenance of methylation at CHG 
sites relies on a positive feedback loop between dimethylation of lysine 9 on histone 3 
(H3K9me2) and CHROMOMETHYLASE 3 (CMT3) (17–20) . DNA methylation at CHH sites is 
asymmetrical and is further classified into CWA (where W = A or T) and non-CWA, based on 
targeting by CHROMOMETHYLASE 2 (CMT2) or by 24-nt siRNAs and DOMAINS 
REARRANGED METHYLTRANSFERASE 2 (DRM2), which are associated with the 
RNA-directed DNA methylation (RdDM) pathway, respectively (21, 22) .  

Variation in DNA methylation has been connected to pathogen response (23) , 
temperature tolerance (24) , and geography (25) , which could be crucial attributes for clonal 
duckweeds given their reduced ability generate genetic variation through recombination. 
Intriguingly, the duckweed S. polyrhiza displays particularly low levels of 5mC, with evidence 
that low DNA methylation levels are likely related to its small genome size with the low amounts 
of repetitive DNA (26) . However, the mechanisms underlying this variation in DNA methylation 
are unknown (6) . Here we dissect 5mC DNA methylation patterns, histone modifications, small 
RNAs, and the genes that control major methylation pathways in S. polyrhiza. We discover that 
S. polyrhiza has lost the activity of key, canonical DNA methylation and small RNA pathway 
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genes that consequently diminish gene body methylation, the RNA-directed DNA methylation 
pathway, and genome-wide CHH methylation.  

 
Results and Discussion 

To test if low levels of 5mC might be a conserved feature across the diversity of S. 
polyrhiza, we performed whole genome bisulfite sequencing across two different genotypes 
(lines 7498 and 9509) (Supplemental Table 1 ). Both genotypes show similar patterns: roughly 
10% of the CG sites in the genome are methylated (Figure 1B). Fewer than 3.28% and 3.67% of 
CHG and 0.0065% and 0.035% CHH sites are significantly methylated (Figure 1B). In S. 
polyrhiza, mCG and some mCHG (specifically CAG and CTG) are symmetrically maintained 
through equal DNA methylation on the Watson and Crick strands, which are normal features of 
maintenance methylation (Figure 1C). However, the maintenance of mCHG in S. polyrhiza is 
weak in comparison to other species that possess a functional CMT3 (13) . CG methylation is 
present at small clusters of Long Terminal Repeat (LTR) retrotransposons in the genome (Figure 
1D), but CHH methylation which is normally enriched in repetitive elements like LTR 
retrotransposons (27) , is absent (Figure 1C-D ). 

 
Figure 1: A) A condensed species tree of the Lemnaceae family, with five genera: Spirodela, 
Landoltia, Lemna, Wolffia, Wolffiella. B) DNA methylation level for whole genome, genes, 
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CDS, introns, and repeats, across CG, CHG, and CHH site contexts, in two genotypes of 
Spirodela polyrhiza. C) Site-wise methylation symmetry of CG and CHG on Watson and Crick 
strands. D) DNA methylation levels across LTR retrotransposons, across CG, CHG, and CHH 
sites, in two genotypes of Spirodela polyrhiza. 
 

DNA methylation at some CHH sites is guided by small RNAs (sRNAs) generated 
through the RdDM pathway (28)  ( Figure 2A ), so small RNA (sRNA) sequence reads were 
generated for both S. polyrhiza lines to test for functional defects in the pathway (Supplemental 
Table 2). Both lines display a distinct lack of 24-nucleotide (nt), heterochromatic siRNAs 
(het-siRNAs) which are typically the most abundant size class of angiosperm sRNAs (29, 30) 
( Figure 2B). The highly conserved, canonical RdDM pathway produces these 24 nt het-siRNAs 
via DICER-LIKE 3 (DCL3) processing of an RNA Polymerase IV (Pol IV)-derived 
double-stranded RNA (31, 32) . These DCL3-derived sRNAs are loaded into ARGONAUTE 4 
(AGO4) and guided to their sites of action (Figure 2A) (28, 33, 34) . Due to the reduction of 24 
nt het-siRNAs, available whole plant mRNA-seq data was mined for evidence of the expression 
of RdDM-related genes (Figure 2C). DCL3 is present in the genome as a seemingly full-length 
sequence with no in-frame stop codons, but no gene expression was detectable (FPKM <1). 
DCL3 expression is also not detected under various growth and stress conditions in S. polyrhiza, 
including copper, kinetin, nitrate and sucrose additions (35)  ( Supplemental Fig. 1). The DCL3 
upstream region is short (fewer than 200 nt), and possibly interrupted by another gene, which 
may entirely disrupt DCL3  gene activity (Supplemental Fig. 2).  

Given an absence of detectable DCL3 expression (Figure 2C ), we investigated the 
presence and expression of orthologs of other plant Dicer-like genes (DCL1, DCL2, DCL4). 
DCL1, which functions in microRNA (miRNA) production, is expressed and produces many 
conserved miRNAs, indicating it functions normally (36) . However, DCL2, which functions 
largely in viral defense, is missing from the S. polyrhiza genome (37)  ( Supplemental Fig. 3 ). 
DCL4, which generates 21-nt siRNAs, is present in the genome and expressed (38–40) . DCL5, 
which is implicated in phased siRNA production in maize (41)  and has a role in flower fertility 
(42) , is also not present in the genome (30)  ( Supplemental Fig. 3). In addition to DCL2 and 
DCL3, there was no detectable expression for AGO4, nor the genes encoding the two major 
catalytic subunit genes of the Pol IV complex (NRPD1 and NRPE1 ) that transcribe 
single-stranded RNA precursors from RdDM regions and are required for siRNA and 
methylation-dependent heterochromatin formation (43)  ( Figure 2C). CMT3 and MET1  are 
expressed in S. polyrhiza , consistent with their roles in the maintenance of CG and CHG 
methylation in the A. thaliana genome (Figure 2C ). We next tested whether the lack of 
expression of some RdDM genes is a conserved phenomenon across some or all duckweed 
species in the Lemnaceae family. De novo transcriptome assemblies of publicly available whole 
plant RNA-seq data for species from two genera of duckweeds, Landoltia punctata and Lemna 
minor ( Figure 1A), were interrogated for Dicer-like gene expression. In both L. punctata and L. 
minor, de novo transcripts were assembled for DCL1 and DCL4 , however there were no 
assemblies with BLASTX hits (1e-10) to DCL2 and DCL3 . Although whole genome assemblies 
of species representing all five genera of duckweeds will be needed to definitively test this 
hypothesis, these data suggest that the expression loss of DCL2 and DCL3 , possibly leading to 
the loss of canonical RdDM, may be a widespread phenomenon across several genera of the 
Lemnaceae family (Figure 1A). 
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Figure 2: A) Diagram of the canonical RNA-directed DNA methylation (RdDM) pathway in 
plants. RNA Polymerase IV (Pol IV) transcribes a single-stranded RNA (ssRNA) which is 
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converted to a double-stranded RNA (dsRNA) by RNA-DIRECTED RNA POLYMERASE 2 
(RDR2). DICER-LIKE 3 (DCL3) then cleaves those dsRNA products into 24 nucleotide small 
RNA (sRNA) products. One strand of each sRNA is loaded into ARGONAUTE 4 (AGO4), and 
the AGO-sRNA complex binds to complementary RNA sequences transcribed by RNA 
Polymerase V (Pol V), guided by interaction with SUVH2 and SUVH9. DOMAINS 
REARRANGED METHYLTRANSFERASE 2 (DRM2) is then recruited, which guides 
methylation of DNA at those sites. B) The distribution of small RNA sequence read abundance 
between 20-25 nucleotides in two genotypes of S. polyrhiza . C) Gene expression in S. polyrhiza 
line 9509 and A. thaliana measured by RNA-seq for several RdDM and methylation-related 
genes. 

Although RdDM is one route to forming CHH methylation, an RdDM-independent 
mechanism is through the action of CHROMOMETHYLASE 2 (CMT2), a plant-specific DNA 
methyltransferase that is highly conserved across angiosperms (21, 44, 45)  ( Figure 3A). CHH 
sites targeted by the RdDM pathway typically show enrichment at all contexts (21, 46) , which S. 
polyrhiza does not exhibit (Figure 3A). In A. thaliana, CHH methylation deposited via CMT2 
can be distinguished from RdDM-targeted sites given that they show an enrichment of CWA 
methylation (W = A or T) relative to other contexts (21, 46)  and they are enriched at regions 
possessing H3K9me2 (44) . However, a CMT2 homolog is missing from the S. polyrhiza genome 
(lines 7498 and 9509) (Figure 3B ). As expected given the loss of CMT2 , there is no enrichment 
of CWA methylation in either genotype (Figure 3C). There is a low level of CWG methylation 
in both lines, though (Figure 3C). CWG methylation is dependent on CMT3  (21) , which is 
present and expressed (Figure 2C). Across the global range of A.  thaliana, there is extensive 
variation at the CMT2 locus including a non-functional cmt2 allele that is associated with 
reduced genome-wide CHH methylation, but also the benefit of an increased tolerance to heat 
stress (24, 47) . Given that S. polyrhiza is globally distributed and thrives in a variety of climates 
and stresses, increased genotyping and phenotyping of diverse populations may reveal similar 
patterns of methylation-sensitive phenotypes. Intriguingly, CMT2 is missing in the maize 
genome (48) , but also missing from the aquatic seagrass Zostera marina genome assemblies and 
annotations (Figure 3B), suggesting that CMT2 loss may be a shared feature that has evolved in 
multiple aquatic plants in the Alismatales order. Despite a lack of expression of key RdDM 
genes and sRNAs that normally function to target repetitive DNA, there has not been a recent 
detectable expansion of LTR retrotransposons in the S. polyrhiza genomes (Figure 3D ) (3, 26) , 
nor are they methylated in the typical CHH context (Figure 1D). Specifically, only 3/1114 
(0.003%) and 6/1510 (0.004%) LTR retrotransposons are enriched for CHH methylation in 7498 
and 9509 genomes, respectively, and likely false positives (48) .  
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Figure 3: A) Diagram of the canonical CHROMOMETHYLASE 2 (CMT2) pathway. B) 
Presence (filled circles) and absence (empty circles) of CMT2 homologs in genomes across the 
monocots. C) Genome-wide DNA methylation of two genotypes of S. polyrhiza split into all 
possible contexts. D) Relative LTR retrotransposon insertion timings between S. polyrhiza and 
Zostera marina, based on LTR percent identity comparisons.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.410332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410332
http://creativecommons.org/licenses/by-nc-nd/4.0/


The loss of CHH methylation, 24 nt het-siRNAs, and CMT2 suggests that the abundance 
of heterochromatin may also be low. Cao et al. (49)  made an observation using 5mC and histone 
3 lysine 9 di-methylated (H3K9me2) immunostaining, a common histone modification in 
heterochromatic regions of the genome (50) , that S. polyrhiza and four other genera of the 
Lemnaceae lack strong signals of concentrated heterochromatic blocks of DNA. H3K9 
methylation mediates CHG and CHH methylation through the action of CMT3 and CMT2, 
respectively (44) . To test if the CMT2 loss and the weak levels of CHG methylation is tied to a 
reduction of H3K9 methylation in S. polyrhiza, we performed chromatin immuno-precipitation 
sequencing (ChIP-seq) of H3K9me2 (Supplemental Table 3 ). H3K9me2 is sparsely distributed 
throughout the euchromatic chromosome arms and shows a discrete enrichment of a large 
domain within each chromosome (Fig 4A). These relatively larger domains of H3K9me2 are 
approximately 400-600 kb and presumably reflect the pericentromeric regions similar to 
observations in other angiosperms like A. thaliana ( Fig 4A) . H3K9me2 occupies ~15% of the 
line 9509 genome. In the 9509 genome, 746/1,510 (49.40%) LTR retrotransposon annotations 
overlap H3K9me2 (Fisher’s Exact Test, p < 0.001; Supplemental Table 4, Supplemental Fig, 
4). Overall, H3K9me2 and heterochromatin appears normal in S. polyrhiza , especially when 
considering the small genome size split into 20 chromosomes.  

Maintenance of DNA methylation at heterochromatin is associated with the establishment 
and maintenance of gene body DNA methylation (gbM) (46, 51–53) . It is characterized by an 
enrichment of CG DNA methylation between the transcription start site and transcription 
termination site of genes (45, 54) . Genes with gbM are typically moderately expressed 
throughout all tissues, long and exhibit low rates of nucleotide substitutions compared to 
non-gbM genes (55, 56) . We blindly quantified CG methylation in coding regions of each gene, 
only accounting for the number of methylated CG sites, total CG sites, and read coverage 
( Figure 4C). In S. polyrhiza, this resulted in 541 and 520 putative gbM genes in lines 7498 and 
9509, respectively, or 2-3% of the total gene annotation set. Comparing the two putative gbM 
gene sets, 118 genes overlap between the two genomes (blastp 1e-40), which is unexpected as 
gbM genes are often highly conserved (53, 55)  ( Figure 4B). These results are similar to another 
species that has lost gbM, Eutrema salsugineum , where roughly 500 genes were 
bioinformatically detected as having gbM signatures using similar methodology (52) . This result 
is likely driven by a similar false positive rate of gbM gene detection in both species, as well as 
transposon misannotation, and that like E. salsugineum, gbM has been lost in S. polyrhiza .  
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Figure 4: A) Distribution of H3K9me2 ChIP-seq peaks in A. thaliana and S. polyrhiza line 9509. 
B) Weighted gene body methylation plotted along CDS regions spanning from Transcription 
Start Site (TSS) to Transcription Termination Site (TTS), plus or minus 1 kilobase. C) The 
overlap of blindly calling putative gene body methylated genes in two genotypes of S. polyrhiza . 
 

The faithful establishment and maintenance of gbM is tied to a self-reinforcing feedback 
loop that relies on the interplay between CMT3 and H3K9me2 (17, 46, 53, 57) . This is further 
supported by studies in A. thaliana whereby mutants that result in a loss of maintenance of 
heterochromatin lead to ectopic activity of CMT3 in gbM genes (58–60) . In S. polyrhiza, we 
show that the CMT3/H3K9me2 feedback loop is weak in comparison to other angiosperms, even 
though H3K9me2 has a typical distribution throughout the genome. Therefore, it is possible that 
CMT3 activity is impaired, which leads to a weakly functioning feedback loop in S. polyrhiza 
and the loss of gbM. These results are consistent with proposed models from Wendte et al. (46) 
and Inigaki and Kakutani (51) , in which CMT3 and H3K9me2 work coordinately to establish de 
novo gbM.  

Ecological life history and developmental traits may strongly influence genome-wide 
patterns of DNA methylation and inheritance, especially relating to the suppression of 
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transposon expansion over time. S. polyrhiza primarily reproduces via rapid clonal propagation 
rather than by flower production and sex (61) , though some low frequency instances of flowering 
have been reported (62, 63) . The methylomes of other clonally propagated species (Eucalyptus 
grandis, Fragaria vesca , Manihot esculenta, Theobroma cacao , and Vitis vinifera ) possess 
mCHH, although the levels are lower than non-clonally reproducing angiosperms (13, 64) . This 
suggests that CHH reinforcement is linked to sexual reproduction, but isn’t necessary for 
transposon silencing as clonally propagated species rely more on maintenance DNA methylation. 
Resequencing of globally distributed S. polyrhiza accessions reveals very little per-site genetic 
diversity within the species, a low recombination rate, and weak purifying selection, but still a 
large effective population size (N e) (65, 66) . Few transposons exist in the ~150 Mb S. polyrhiza 
genome, but a high ratio of solo-LTRs to intact LTR retrotransposons (26)  suggests that LTR 
excision is actively occurring despite weak purifying selection. Individuals with fewer 
transposons and the ability to excise them may have selective advantages in large populations 
(67) , given that a deleterious transposon insertion is unlikely to propagate and fix in a large 
clonal population, possibly compensating for the lack of a canonical RdDM pathway. 

Several alternative hypotheses could explain the lack of CHH methylation and 24 nt 
het-siRNAs. DNA methylation and sRNA production may be limited to cell or tissue-specific 
regions, such as the developing meristematic region where daughter plantlets emerge. Tissue 
sampling for duckweeds is often performed on several individual plantlets combined, given the 
small size, which would reduce the detectable signal of tissue- or cell type-specific changes and 
require more precise excision or cell sorting techniques. Overall, S. polyrhiza displays a loss of 
CHH-type DNA methylation and heterochromatic siRNAs, which may be tied to its rapid 
asexual reproduction. Our work in S. polyrhiza demonstrates that reproductive success through 
rapid clonal propagation may benefit from the sacrifice of the RdDM and CMT2 pathways. 
 
Data Availability 
All raw small RNA, DNA methylation, and H3K9me2 ChIP-seq data is available at BioProject 
GSE161234. Epigenome browsers are available for S. polyrhiza line 7498 
( http://epigenome.genetics.uga.edu/SchmitzLab-JBrowse/?data=spi_pol_7498) and for line 9509 
( http://epigenome.genetics.uga.edu/SchmitzLab-JBrowse/?data=spi_pol_9509).  
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Materials and Methods 
DNA methylation sequencing and sequence alignment 

Whole-genome bisulfite sequencing data were generated according to (68) . Single-end 
short read libraries (150 bp) were aligned using the methylpy pipeline (69)  to the S. polyrhiza 
7498 and 9509 genomes. Methylpy calls programs for read processing and aligning: (i) reads 
were trimmed of sequencing adapters using Cutadapt (70) , (ii) and then mapped to both a 
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converted forward strand (cytosines to thymines) and converted reverse strand (guanines to 
adenines) using bowtie (71) . Reads that mapped to multiple locations, and clonal reads were 
removed. The chloroplast genome (GenBank: JN160603.2) was used to estimate a rate of sodium 
bisulfite non-conversion. 
 
DNA methylation analyses 

DNA methylation levels were estimated as weighted DNA methylation, which is the total 
number of aligned DNA methylated reads divided by the total number of methylated plus 
un-methylated reads with a minimum coverage of at least 5 reads (72) . Global weighted DNA 
methylation was estimated across the entire genome, within intergenic regions, transposons, 
genes (exons+introns), exons and introns. Additionally, the genome was divided into 
non-overlapping 50000 bp windows, and weighted DNA methylation was estimated for each 
window. 

For metaplots, the locus body – start-to-stop codon for genes and first to last bp for 
transposons – was divided into 20 proportional windows based on locus length. Within gene 
bodies only sequenced reads mapping to coding, exonic DNA were used. Additionally, 1000 bp 
upstream and downstream were divided into 20 proportional windows. A single weighted DNA 
methylation value was calculated for each window across all loci.  

For each gene, a binomial test with a Benjamini–Hochberg False Discovery Rate (FDR) 
correction was applied to determine enrichment of DNA methylation at the three sequence 
contexts (CG, CHG, and CHH). Only CG, CHG and CHH sites found within coding, exonic 
sequences were considered. The weighted DNA methylation level of cytosines at CG, CHG and 
CHH sites across all coding regions were used as the probability of success, respectively. 
Enrichment tests for gene body methylation were performed using code from (53) , found at 
https://github.com/schmitzlab/Natural_variation_in_DNA_methylation_homeostasis_and_the_e
mergence_of_epialleles.  

To determine per-site methylation levels, the weighted DNA methylation level for each 
cytosine with ≥ 3 reads of coverage was calculated. Additionally, DNA methylation levels of 
symmetrical cytosines (CG or CWG, W = A|T) with ≥ 3 sequencing coverage were estimated for 
each strand (Watson and Crick). All plots were generated in R v3.2.4 
( https://www.r-project.org/).  
 
sRNA and mRNA sequencing analysis 

sRNA sequencing reads were generated using whole plant total RNA isolated using TRI 
reagent and the Somagenics RealSeq-AC kit with 100 ng of total RNA as input. Reads were 
adapter-trimmed with cutadapt v2.0 (70)  with options “–m 15 
TGGAATTCTCGGGTGCCAAGG”. Cleaned reads were aligned to the reference genome using 
bowtie with settings “-a -v 0” to only report end-to-end alignments with zero mismatches.  

Raw mRNA-Seq reads from strain 9509 were retrieved from the Sequence Read Archive 
(SRR3090696), cleaned with Trimmomatic v0.32 with settings “ILLUMINACLIP:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50” and aligned to the reference 
genome with TopHat v2.1.1 with default settings other than “-i 25”. Per-gene expression was 
calculated with Cufflinks v2.2.1 with default settings. 
 
Chromatin immunoprecipitation sequencing (ChIP-seq) and analysis 
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ChIP was performed as previously described (73) . Briefly, 1 g of fresh duckweed 
plantlets were crosslinked in 1% formaldehyde for 10 min. Nuclei were then isolated and 
sonicated for 15 min, twice. Histone-DNA complexes were pulled down with anti-H3K9me2 
(Cell Signaling Technology antibody #9753s). DNA was isolated and used to prepare ChIP-seq 
libraries with the TruSeq ChIP Library Preparation Kit (Illumina, IP-202-1012 ). Sequencing was 
performed on an Illumina NextSeq500 in Georgia Genomics and Bioinformatics Core (GGBC) 
in the University of Georgia.  

Raw ChIP reads were trimmed for adapters and low-quality bases using Trimmomatic 
with the following options: reads were trimmed for TruSeq version 3 single-end adapters with a 
maximum of two seed mismatches, palindrome clip threshold of 30, and simple clip threshold of 
10. Trimmed reads were mapped to the genome using bowtie1 with “-v 2 --best --strata -m 1” 
(71) . Mapped reads were sorted using SAMtools (74)  and then clonal duplicates were removed 
using picard ( http://broadinstitute.github.io/picard/ ). Remaining reads were converted to BED 
format with Bedtools (75) . H3K9me2 enriched regions were identified with MACS2 with 
parameter “--keep-dup all --broad” (76) . Enrichment of H3K9me2 overlaps with LTR 
retrotransposons was tested using a Fisher’s Exact Test implemented in bedtools v2.26.0.  
 
Phylogenetic analyses 

CHROMOMETHYLASE (CMT) protein sequences were obtained from (45) , and 
additional sequences were identified in monocot species listed on Phytozome v12 
(https://phytozome.jgi.doe.gov/pz/portal.html) using best blastp hit e-value ≤ 1E-06 and bit score 
≥ 200) to A. thaliana CMT1 (AT1G80740.1), CMT2 (AT4G19020.1) and CMT3 
(AT1G69770.1). Similarly, DICER-LIKE (DCL) homologs were identified in all monocot 
species listed on Phytozome v12 using best BLASTP hit to A. thaliana DCL1 (AT1G01040.2), 
DCL2 (AT3G03300.1), DCL3 (AT3G43920.2), and DCL4 (AT5G20320.1). Protein sequences 
were aligned using the program PASTA with default parameters. Following alignment, 
GBblocks was used to identify conserved amino acid positions. All parameters were kept at the 
default setting except –b2=n 0.66 where n  is the number of sequences and –b5=h. BEAST v2.3.2 
was used to estimate the phylogeny with a BLOSUM62 substitution matrix. The MCMC chain in 
BEAST was allowed to run until stationarity and convergence (ESS ≥200) was reached, and was 
assessed using the program Tracer v1.6. A maximum clade credibility tree was generated from 
the posterior distribution of trees with the burn-in removed using the program TreeAnnotator 
v2.3.2. Finally, the program FigTree (http://tree.bio.ed.ac.uk/software/figtree/) was used to 
visualize the tree and exported for stylization. Alignment, site filtering, and tree estimation was 
performed identically and separately for CMT and DCL phylogenies.  
 
Comparative transcriptome analyses 

To estimate the phylogenetic placement of the loss of DCL2 and DCL3 expression, SRA 
RNA-seq data were downloaded for Landoltia punctata (SRR647050 ) and Lemna minor 
(SRR2917879). Data were cleaned and assembled using Trinity v2.5.1 with default options. 
Assemblies were subject to blastx searches (1e-10) against the present, but not expressed 
Spirodela DCL3 gene model annotation predicted peptide (Spipo14G0010100).  
 
LTR Retrotransposon annotation 
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LTR retrotransposons were annotated de novo using GenomeTools LTRharvest with options 
“-similar 85 -mindistltr 1000 -maxdistltr 15000 -mintsd 5 -maxtsd 20”.  
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