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Abstract

Understanding spoken language requires transforming ambiguous acoustic streams into a hierarchy of

representations, from phonemes to meaning. It has been suggested that the brain uses prediction to guide

the interpretation of incoming input. However, the role of prediction in language processing remains disputed,

with disagreement about both the ubiquity and representational nature of predictions. Here, we address

both issues by analysing brain recordings of participants listening to audiobooks, and using a deep neural

network (GPT-2) to precisely quantify contextual predictions. First, we establish that brain responses to words

are modulated by ubiquitous, probabilistic predictions. Next, we disentangle model-based predictions into

distinct dimensions, revealing dissociable signatures of syntactic, phonemic and semantic predictions. Finally,

we show that high-level (word) predictions inform low-level (phoneme) predictions, supporting hierarchical

predictive processing. Together, these results underscore the ubiquity of prediction in language processing,

showing that the brain spontaneously predicts upcoming language at multiple levels of abstraction.

INTRODUCTION1

Understanding spoken language requires trans-2

forming ambiguous stimulus streams into a hierar-3

chy of increasingly abstract representations, ranging4

from speech sounds to meaning. It is often argued5

that during this process, the brain relies on predic-6

tion to guide the interpretation of incoming informa-7

tion [1, 2]. Such a ‘predictive processing’ strategy has8

not only proven effective for artificial systems pro-9

cessing language [3, 4], but has also been found to10

occur in neural systems in related domains such as11

perception and motor control and might constitute12

a canonical neural computation [5, 6].13

There is a considerable amount of evidence that14

appears in line with predictive language processing.15

For instance, behavioural and brain responses are16

highly sensitive to violations of linguistic regularities17

[7, 8] and to deviations from linguistic expectations18

more broadly [9–13]. While such effects are well-19

documented, two important questions about the20

role of prediction in language processing remain21

unresolved [14].22

The first question concerns the ubiquity of pre-23

diction. While some models cast prediction as a24

routine, integral part of language processing [1, 15,25

16], others view it as relatively rare, pointing out26

that apparent widespread prediction effects might27

instead reflect other processes like semantic inte-28

gration difficulty [17, 18]; or that such prediction29

effects might be exaggerated by the use of artificial,30

prediction-encouraging experiments focussing on31

highly predictable ‘target‘words [17, 19]. The second32

question concerns the representational nature of33

predictions: Does linguistic prediction occur primar-34

ily at the level of syntax [15, 20–22] or rather at the35

lexical [16, 23], semantic [24, 25] or the phonological36
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Figure 1: SCHEMATIC OF EXPERIMENTAL AND ANALYTICAL FRAMEWORK a) Top row: in both experiments participants listened to

continuous recordings from audiobooks while brain activity was recorded. Bottom row: the texts participants

listened to were analysed by a deep neural network (GPT-2) to quantify the contextual probability of each word. A

regression-based technique was used to estimate the effects of (different levels of) linguistic unexpectedness on the

evoked responses within the continuous recordings. b) Datasets analysed: one group-level EEG dataset, and one

individual subject source-localised MEG dataset.

level [13, 26–29]? ERP studies have described brain37

responses to violations of, and deviations from, both38

high and low-level expectations, suggesting predic-39

tion might occur at all levels simultaneously [1, 19],40

although see [30]. However, it has been disputed41

whether these findings would generalise to natural42

language, where violations are rare or absent and43

with few highly predictable words. In these cases,44

prediction may be less relevant or might perhaps be45

limited to the most abstract levels [17, 19, 30].46

Here, we address both issues, probing the ubiq-47

uity and nature of linguistic prediction during nat-48

ural language understanding. Specifically, we anal-49

ysed brain recordings from two independent experi-50

ments of participants listening to audiobooks, and51

use a state-of-the-art deep neural network (GPT-2)52

to quantify linguistic predictions in a fine-grained,53

contextual fashion. First, we obtain evidence for pre-54

dictive processing, confirming that brain responses55

to words are modulated by probabilistic predictions.56

Critically, the effects of prediction were found over57

and above those of non-predictive factors such as58

integration difficulty, and were not confined to a59

subset of predictable words, but were widespread –60

supporting the notion of ubiquitous prediction. Next,61

we investigated at which level prediction occurs. To62

this end, we disentangled the model-based predic-63

tions into distinct dimensions, revealing dissociable64

neural signatures of syntactic, phonemic and seman-65

tic predictions. Finally, we found that higher-level66

(word) predictions constrain lower-level (phoneme)67

predictions, supporting hierarchical prediction. To-68

gether, these results underscore the ubiquity of pre-69

diction in language processing, and demonstrate70

that prediction is not confined to a a single level of71

abstraction but occurs throughout the language net-72

work, forming a hierarchy of predictions across all73

levels of analysis, from phonemes to meaning.74

RESULTS75

We consider data from two independent exper-76

iments, in which brain activity was recorded while77

participants listened to natural speech from audio-78

books. The first experiment is part of a publicly79

available dataset [31], and contains 1 hour of elec-80

troencephalographic (EEG) recordings in 19 partici-81

pants. The second experiment collected 9 hours of82

magneto-encephalographic (MEG) data in three indi-83

viduals, using individualised head casts that allowed84

us to localise the neural activity with high precision.85

While both experiments had a similar setup (see Fig-86

ure 1), they yield complementary insights, both at87

the group level and in three individuals.88
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Figure 2: NEURAL RESPONSES ARE MODULATED BY PROBABILISTIC PREDICTIONS

a)Model comparison. Cross-validated correlation coefficients for EEG (left) and each MEG participant (right). EEG:

dots with connecting lines represent individual participants (averaged over all channels). MEG: bars represent

median across runs, bars represent bootstrapped absolute deviance (averaged over language network sources).

b) EEG: coefficients describing the significant effect of lexical surprise (see Figure S3 for the full topography over

time). Highlighted area indicates extent of the cluster, shaded error bar indicates bootstrapped SE. Inset shows

distribution of absolute t-values and of channels in the cluster. c) Difference in prediction performance across cortex

(transparency indicates FWE-corrected p-values). Significance levels correspond to P<0.001 (***) in a two-tailed

one-sample Student’s t or Wilcoxon sign rank test.

Neural responses to speech are modulated by89

probabilistic linguistic predictions90

We first tested for evidence for linguistic predic-91

tion in general. We reasoned that if the brain is92

constantly predicting upcoming language, neural re-93

sponses to words should be sensitive to violations of94

contextual predictions, yielding ‘prediction error‘ sig-95

nals which are considered a hallmark of predictive96

processing [5]. To this end, we used a regression-97

based deconvolution approach to estimate the ef-98

fects of prediction error on evoked responses within99

the continuous recordings. We focus on this event-100

related, low-frequency evoked response because it101

connects most directly to earlier influential neural102

signatures of prediction in language [7, 30, 32, 33].103

To quantify linguistic predictions, we analysed the104

books participants listened to with a state-of-the-105

art neural language model: GPT-2 [34]. GPT-2 is106

a large transformer-based model that predicts the107

next word given the previous words, and is currently108

among the best publicly-available models of its kind.109

Note that we do not use GPT-2 as a model of human110

language processing, but purely as a tool to quantify111

how expected each word is in context.112

To test whether neural responses to words are113

modulated by contextual predictions, we compared114

three regression models (see S5). The baseline115

model formalises the hypothesis that natural, pas-116

sive language comprehension does not invoke pre-117

diction. This model did not include regressors re-118

lated to contextual predictions, but did include sev-119

eral potentially confounding variables (such as word120

frequency, semantic integration, and acoustics). The121

constrained guessing model formalised the hypothe-122

sis that language processing sometimes (in constrain-123

ing contexts) invokes prediction, and that such pre-124
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dictions are an all-or-none phenomenon – together125

representing how the notion of prediction was classi-126

cally used in the psycholinguistic literature [33]. This127

model included all non-predictive variables from the128

baseline model, plus, in constraining contexts, a lin-129

ear estimate of word improbability (since all-or-none130

predictions result in a linear relationship between131

word probability and brain responses; see meth-132

ods for details). Finally, the probabilistic prediction133

model included all confounding regressors from the134

baseline model, plus for every word a logarithmic135

estimate of word improbability (i.e. surprise). This136

formalises the hypothesis that the brain constantly137

generates probabilistic predictions, as proposed by138

predictive processing accounts of language [1, 32]139

and of neural processing more broadly [5, 6].140

When we compared the ability of these models141

to predict brain activity using cross-validation, we142

found that the probabilistic prediction model per-143

formed better than both other models (see Figure144

2a). The effect was highly consistent, found in virtu-145

ally all EEG participants (probabilistic vs constrained146

guessing, t18 = 5.34, p = 4.46× 10−5; probabilistic147

vs baseline, t18 = 6.43, p = 4.70× 10−6) and within148

each MEG participant (probabilistic vs constrained149

guessing, all p′s < 1.54 × 10−6; probabilistic vs150

baseline, all p′s < 5.17× 10−12).151

As the constrained guessing model differed from152

the probabilistic model in two ways – by assuming153

that predictions are (i) categorical and (ii) limited to154

constraining contexts – we also considered a control155

model. Like the constrained guessing model, this ex-156

tended guessing model included a linear estimate of157

word probability, but for every word rather than only158

for constraining contexts. Although this model did159

not outperform the probabilistic prediction model, it160

did substantially outperform the constrained model161

(Fig S5). This demonstrates that the effects of pre-162

diction are not limited to constraining contexts, but163

apply much more broadly – in line with the idea that164

predictions are ubiquitous and automatic.165

Having established that word unexpectedness166

modulates neural responses, we characterised this167

effect in space and time. In the MEG dataset, we168

asked for which neural sources lexical surprise was169

most important in explaining neural data, by com-170

paring the prediction performance of the baseline171

model to the predictive model in a spatially resolved172

manner. This revealed that overall word unexpect-173

edness modulated neural responses throughout174

the language network (see Figure 2c). To investi-175

gate the temporal dynamics of this effect, we in-176

spected the regression coefficients, which describe177

how fluctuations in lexical surprise modulate the178

neural response at different time lags – together179

forming a modulation function also known as the re-180

gression evoked response [35] or Temporal Response181

Function (TRF) [27, 36]. When we compared these182

across participants in the EEG experiment, cluster-183

based permutation tests revealed a significant effect184

(p = 2× 10−4) based on a posterio-central cluster185

with a negative polarity between 0.2 and 0.9 seconds186

(see Figure 2b and S8). This indicates that surpris-187

ing words lead to a stronger negative deflection of188

evoked responses, an effect peaking at 400 ms post189

word onset and strongly reminiscent of the classic190

N400 [7, 24, 30]. Coefficients for MEG subjects re-191

vealed a similar, slow effect at approximately the192

same latencies (see Fig S4).193

Together, these results constitute clear evidence194

for predictive processing by confirming that brain195

responses to words are modulated by predictions.196

These modulations are not confined to constraining197

contexts, occur throughout the language network,198

evoke an effect reminiscent of the N400, and are199

best explained by a probabilistic account of predic-200

tion. This suggests the brain predicts constantly and201

probabilistically – even when passively listening to202

natural language.203

Linguistic predictions are feature-specific204

The results so far revealed modulations of neural205

responses by overall word unexpectedness. What206

type of linguistic prediction might be driving these207

effects? Earlier research suggests a range of possibil-208

ities, with some proposing that the effect of overall209

word surprise primarily reflects syntax [15, 20], while210

others propose that prediction unfolds at the seman-211
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Figure 3: PARTITIONING MODEL-DERIVED PREDICTIONS INTO DISTINCT LINGUISTIC DIMENSIONS.

To disentangle syntactic, semantic and phonemic predictions, the lexical predictions from GPT-2 were analysed. For

the syntactic prediction, part-of-speech was tagging performed over all potential sentences (e.g. "It made the boy

sad to think"). To compute the phonemic prediction, each predicted word was decomposed into its constituent

phonemes, and the predicted probabilities were used as a contextual prior in a phoneme model (see Figure 6). For

the semantic prediction, a weighted average was computed over the GLoVE embeddings of all predicted words.

tic [24, 25], or the phonemic level [13, 26, 27] – or at212

all levels simultaneously [1].213

To evaluate these possibilities, we factorised the214

aggregate, word-level linguistic predictions from the215

artificial neural network into distinct linguistic dimen-216

sions (Fig 3). This allows us to derive model-based217

estimates of three feature-specific predictions: the218

syntactic prediction (defined as the conditional prob-219

ability distribution over parts-of-speech, given con-220

text), semantic prediction (defined as the predicted221

semantic embedding) and phonemic prediction (i.e.222

the conditional probability of the next phoneme,223

given the phonemes within the word so far and the224

prior context). By comparing these predictions to225

the presented words, we derived feature-specific pre-226

diction errors which quantified not just the extent to227

which a word is surprising overall, but also in what228

way: semantically, syntactically or phonemically (see229

Methods for definitions).230

We reasoned that if the brain is generating predic-231

tions at a given level (e.g. syntax), then the neural232

responses should be sensitive to prediction errors233

specific to this level. Moreover, because these differ-234

ent features are processed by partly different brain235

areas over different timescales, the prediction errors236

should be at least partially dissociable. To test this,237

we formulated a new regression model (Figure S6).238

This included all variables from the lexical prediction239

model as nuisance regressors, and added three re-240

gressors of interest: syntactic surprise (defined for241

each word), semantic prediction error (defined for242

each content word), and phonemic surprise (defined243

for each word-non-initial phoneme).244

Because these regressors were to some degree245

correlated, we first asked whether, and in which246

brain area, each of the feature-specific prediction er-247

rors explained any unique variance, not explained by248

the other regressors. In this analysis, we turn to the249

MEG data because of its spatial specificity. As a con-250

trol, we first performed the analysis for a predictor251

with a known source: the acoustics. This revealed a252

clear peak around auditory cortex (Fig S7) especially253

in the right hemisphere. This aligns with prior work254

[37] and confirms that this approach can localise255

which areas are especially sensitive to a given re-256

gressor. We then tested the three prediction errors,257

finding that each type of prediction error explained258

significant unique variance in each individual (Figure259

4), except in participant 1 where phonemic surprise260

did not survive multiple comparisons correction (but261

see Figure 6c and Discussion). This shows that the262

brain responds differently to different types of pre-263
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Figure 4: DISSOCIABLE PATTERNS OF EXPLAINED VARIANCE BY SYNTACTIC, SEMANTIC AND PHONEMIC PREDICTIONS.

Unique variance explained by syntactic, semantic and phonemic unexpectedness (quantified via surprise or pre-

diction error) across cortical sources in each MEG participant. In all plots, colour indicates amount of additional

variance explained; opacity indicates FWE-corrected statistical significance. Note that p < 0.05 is equivalent to

− log10(p) > 1.3.

diction errors, implying that linguistic predictions264

are feature-specific and occur both at high and low265

levels of processing simultaneously.266

Although we observed considerable variation in267

lateralisation and exact spatial locations between268

individuals, the overall pattern of sources aligned269

well with prior research on the neural circuits for270

each level. For instance, only for semantic predic-271

tion errors we observed a widely distributed set of272

neural sources – consistent with the fact that the273

semantic (but not the syntactic or phonological) sys-274

tem is widely distributed [38, 39]. Moreover, the275

temporal areas showing the strongest effect of syn-276

tactic surprise are indeed key areas for syntactic277

processing [40] and for the posterior temporal areas278

predictive syntax in particular [21, 41–43] – though279

a clear syntactic effect in the inferior frontal gyrus280

(IFG) was interestingly absent. When we compared281

the sources of phonemic surprise to those obtained282

for lexical surprise, we observed a striking overlap283

in all individuals (see Fig. S7, S4 and S13), suggesting284

that the phonemic predictions as formalised here285

mostly relate to predictive (incremental) word recog-286

nition at the phoneme level rather than describing287

phonological or phonotactic predictions per se.288

Dissociable signatures of syntactic, semantic289

and phonemic predictions290

Having established that syntactic, phonemic and291

semantic prediction errors independently modu-292

lated neural responses in different brain areas, we293

further investigated the nature of these effects. This294

was done by inspecting the coefficients (or modu-295

lation functions), which describe how fluctuations296

in a given regressor modulate the response over297

time. We first turn to the EEG data because there298

the sample size allows for population-level statistical299

inference on the coefficients. We fitted the same300

integrated model (Figure S6) and performed cluster-301

based permutation tests on the modulation func-302

tions. This revealed significant effects for each type303

of prediction error (Figure 5).304

First, syntactic surprise evoked an early, positive305

deflection (p = 0.027) based on a frontal cluster be-306
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Figure 5: SPATIOTEMPORAL SIGNATURES OF SYNTACTIC, SEMANTIC AND PHONEMIC PREDICTION ERRORS.

Coefficients describing the effects of each prediction-error. EEG (left column): modulation functions averaged

across the channels participating for at least one sample in the three main significant clusters (one per predictor).

Highlighted area indicates temporal extent of the cluster. Shaded area around waveform indicates bootstrapped

standard errors. Stars indicate cluster-level significance; p < 0.05 (*) , p < 0.05 (**), p < 0.001 (***). Insets

represent selected channels and distribution of absolute t-values. Note that these plots only visualise the effects; for

the full topographies of the coefficients and respective statistics, see Figure S8. MEG (right column): polarity aligned

responses averaged across the sources with significant explained variance (Figure 4) across participants. Shaded

area represents absolute deviation. Insets represent topography of absolute value of coefficients averaged across

the highlighted period. Note that due to polarity alignment, sign information is to be ignored for the MEG plots. For

average coefficients for each source, see Figure S10; for coefficients of each individual, see Figs S11 - S14.

tween 200 and 500 ms. This early frontal positivity307

converges with two recent studies that investigated308

specifically syntactic prediction using models trained309

explicitly on syntax [22, 44]. We also observed a late310

negative deflection for syntactic surprise (p = 0.025;311

Figure S9), but this was neither in line with earlier312

findings nor replicated in the MEG data. The se-313

mantic prediction error also evoked a positive effect314

(p = 9.1× 10−3) but this was based on a much later,315

spatially distributed cluster between 600 and 1100316

ms. Although such a late positivity has been promi-317

nently associated with syntactic violations [8], there318

is also a considerable body of work reporting such319

late positivities for purely semantic anomalies [45]320

which is more in line with the semantic prediction321

error as quantified here (see Discussion). Notably,322

we did not find a significant N400-like effect for se-323

mantic prediction error – possibly because this neg-324

ative deflection was already explained by the overall325

lexical surprise, which was included as a nuisance re-326

gressor (Figure S10). Finally, the phonemic surprise327

evoked a negative effect (p = 3 × 10−4) based on328

an early, distributed cluster between 100 and 500329

ms. This effect was similar to the word-level surprise330

effect (Figure 2C and S10) but occurred earlier. This331

timecourse corresponds to recent studies using simi-332

lar regression-based techniques to study (predictive)333

phoneme processing in natural listening [13, 28, 46].334
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When we performed the same analysis on the335

MEG data, we observed striking differences in the336

exact shape and timing of the modulation functions337

between individuals (see Figure S11- S14). While338

this might partly reflect variance in the coefficients339

due to inherent correlations between the variables,340

it clearly also reflects true individual differences,341

demonstrated by one of the strongest and least cor-342

related regressors (the acoustics) also showing con-343

siderable variability (see Figure S14). Overall how-344

ever, we could recover a temporal pattern of effects345

similar to the EEG results: phonemic and syntactic346

surprise modulating early responses, and seman-347

tic prediction error modulating later responses – al-348

though not as late in the EEG data. This temporal349

order holds on average (Figures 5, S10) and is espe-350

cially clear within individuals (Figure S11 - S13).351

Overall, our results (Figure 4,5) demonstrate that352

syntactic, phonemic and semantic prediction errors353

evoke brain responses that are both temporally and354

spatially dissociable. Specifically, while phonemic355

and syntactic predictions modulate relatively early356

neural responses (100-400 ms) in a set of focal357

temporal (and frontal) areas that are key for syn-358

tactic and phonetic/phonemic processing, seman-359

tic predictions modulate later responses (>400 ms)360

across a widely distributed set of areas across the361

distributed semantic system. These results reveal362

that linguistic prediction is not implemented by a363

single system but occurs throughout the speech and364

language network, forming a hierarchy of linguistic365

predictions across all levels of analysis.366

Phoneme predictions reveal hierarchical infer-367

ence368

Having established that the brain generates lin-369

guistic predictions across multiple levels of analysis,370

we finally asked whether predictions at different lev-371

els might interact. One option is that they are encap-372

sulated: Predictions in separate systems might use373

different information, for instance unfolding over374

different timescales, rendering them independent.375

Alternatively, predictions at different levels might in-376

form and constrain each other, effectively converg-377

ing into a single multilevel prediction – as suggested378

by theories of hierarchical cortical prediction [5, 6,379

47].380

One way to adjudicate between these hypothe-381

ses is by evaluating different schemes of deriving382

phoneme predictions. One possibility is that such383

predictions are only based on information unfold-384

ing over short timescales. In this scheme, the pre-385

dicted probability of the next phoneme is derived386

from the cohort of words that are compatible with387

the phonemes presented so far, with each candi-388

date word weighted by its overall frequency of oc-389

currence (see Figure 6A). As such, this scheme pro-390

poses a single-level model: phoneme predictions are391

based only on information at the level of within-392

word phoneme sequences unfolding over short393

timescales, plus a fixed frequency-based prior (cap-394

turing statistical knowledge of word frequencies395

within a language).396

Alternatively, phoneme predictions might not only397

be based on sequences of phonemes within a word,398

but also on the longer prior linguistic context. In this399

case, the probability of the next phoneme would still400

be derived from the cohort of words compatible with401

the phonemes presented so far, but now each can-402

didate word is not weighted by its overall frequency403

but by its contextual probability (Figure 6A). Such a404

model would be hierarchical, in the sense that pre-405

dictions are based both – at the first level – on short406

sequences of phonemes (i.e. of hundreds of millisec-407

onds long), and on a contextual prior which itself is408

based – at the higher level – on long sequences of409

words (i.e. of tens of seconds to minutes long).410

Here, the first model is more in line with the clas-411

sic Cohort model of incremental (predictive) word412

recognition, which suggests that context is only in-413

tegrated after the selection and activation of lexical414

candidates [48]. By contrast, the second model is415

more in line with contemporary theories of hierar-416

chical predictive processing which propose that high-417

level cortical predictions (spanning larger spatial or418

temporal scales) inform and shape low-level predic-419

tions (spanning finer spatial or temporal scales) [47,420

49]. Interestingly, recent studies of phoneme pre-421
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Figure 6: EVIDENCE FOR HIERARCHICAL INFERENCE DURING PHONEME PREDICTION.

a) Two models of phoneme prediction during incremental word recognition. Phonemic predictions were computed

by grouping candidate words by their identifying next phoneme, and weighting each candidate word by its prior

probability. This weight (or prior) could be either based on a word’s overall probability of occurrence (i.e. frequency)

or on its conditional probability in that context (from GPT-2). Critically, in the frequency-based model, phoneme

predictions are based on a single level: short sequences of within words phonemes (hundreds of ms long) plus a

fixed prior. By contrast, in the contextual model, predictions are based not just on short sequences of phonemes, but

also on a contextual prior which is itself based on long sequences of prior words (up to minutes long), rendering the

model hierarchical (see Methods). b-c) Model comparison results in EEG (b) and all MEG participants (c). EEG: dots

with connecting lines represent individual participants (averaged over all channels). MEG: bars represent median

across runs, error bars represent bootstrapped absolute deviance (averaged over language network sources).

Significance levels correspond to P<0.01 (**) or P<0.001 (***) in a two-tailed paired t or Wilcoxon sign rank test.

dictions during natural listening have used both the422

frequency-based single level model [27, 29] and a423

context-based (hierarchical) model [13]. However,424

themodels have not been explicitly compared to test425

which model can best account for prediction-related426

fluctuations in neural responses to phonemes.427

To compare these possibilities, we constructed 3428

phoneme-level regression models (see Figure S15),429

which all only included regressors at the level of430

phonemes. First, the baseline model only included431
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non-predictive control variables: phoneme onsets,432

acoustics, word boundaries and uniqueness points.433

This can be seen as the phoneme-level equivalent of434

the baseline model in Figure ??. The baseline model435

was compared with two regression models which436

additionally included phoneme surprise. In one of437

the regression models, this was calculated using a438

single-level model (with a fixed, frequency-based439

prior), in the other regression model it was derived440

from a hierarchical model (with a dynamic, contex-441

tual prior derived fromGPT-2). To improve our ability442

to discriminate between the hierarchical and single-443

level model, we not only included surprise but also444

phoneme entropy (calculated with either model) as445

a regressor [13].446

When we compared the cross-validated predictive447

performance, we first found that in both datasets448

the predictive model performed significantly better449

than the non-predictive baseline (Figure 6b-c hierar-450

chical vs baseline, EEG: t18 = 3.80, p = 1.31× 10−3;451

MEG: all p′s < 5.69 × 10−12). This replicates the452

basic evidence for predictive processing but now453

at the phoneme rather than word level (Figure ??).454

Critically, when we compared the two predictive455

models, we found that the hierarchical model per-456

formed significantly better, both in EEG (t18 = 3.03,457

p = 7.28× 10−3) and MEG (all p′s < 9.44× 10−4).458

This suggests that neural predictions of phonemes459

(based on short sequences of within-word speech460

sounds) are are informed by lexical predictions,461

effectively incorporating long sequences of prior462

words as contexts. This is a signature of hierarchi-463

cal prediction, supporting theories of hierarchical464

predictive processing.465

DISCUSSION466

Across two independent data sets, we combined467

deep neural language modelling with regression-468

based deconvolution of human electrophysiological469

(EEG and MEG) recordings to ask if and how evoked470

responses to speech are modulated by linguistic471

expectations that arise naturally while listening to472

a story. Our results demonstrated that evoked re-473

sponses are modulated by probabilistic predictions.474

We then introduced a novel technique that allowed475

us to quantify not just how much a linguistic stimu-476

lus is surprising, but also at what level – phonemi-477

cally, syntactically and/or semantically. This revealed478

dissociable effects, in space and time, of different479

types of prediction errors: syntactic and phonemic480

prediction errors modulated early responses in a481

set of focal, mostly temporal areas, while semantic482

prediction errors modulated later responses across483

a widely distributed set of cortical areas. Finally, we484

found that phonemic prediction error signals were485

best modelled by a hierarchical model incorporating486

two levels of context: short sequences of within-487

word phonemes (up to hundreds of milliseconds488

long) and long sequences of prior words (up to min-489

utes long). Together, these results demonstrate that490

during natural listening, the brain is engaged in pre-491

diction across multiple levels of linguistic represen-492

tation, from speech sounds to meaning. The find-493

ings underscore the ubiquity of prediction during494

language processing, and fit naturally in predictive495

processing accounts of language [1, 2] and neural496

computation more broadly [5, 6, 49, 50].497

A primary result of this paper is that evoked re-498

sponses to words are best explained by a predic-499

tive processing model: regression models including500

unexpectedness performed better than strong non-501

predictive baseline models, demonstrating that the502

effects of prediction on brain responses cannot be503

reduced to confounding simple features like seman-504

tic incongruency. This aligns with recent ERP studies505

aimed specifically at distinguishing prediction from506

semantic integration [51, 52] and extends those find-507

ings by analysing not just specific (highly predictable)508

‘target‘ words, but all words in a natural story. In-509

deed, when we further compared different accounts510

of prediction, responses were best explained by a511

regression model casting linguistic predictions as512

ubiquitous and probabilistic. This supports the no-513

tion of continuous, graded prediction – as opposed514

to the classical view of prediction as the all-or-none515

pre-activation of specific words in highly constrain-516

ing contexts [33].517

Because our deconvolution analysis focussed on518
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evoked responses, the results can be linked to the519

rich literature on linguistic violations using tradi-520

tional ERP methods. This is powerfully illustrated521

by the modulation function of lexical surprise (Fig-522

ure 2b) tightly following the N400 modulation effect,523

one of the first proposed, most robust and most524

debated ERP signatures of linguistic prediction [7,525

24, 30]. Similarly, the early negativity we found for526

phonemic surprise and later positivity for seman-527

tic prediction error (Fig 5) align well with N200 and528

the semantic P600 or PNP effects of phonological529

mismatch and semantic anomaly respectively [33,530

53]. Unlike most ERP studies, we observed these531

effects in participants listening to natural stimuli –532

without any anomalies or violations – not engaged in533

any task. This critically supports the idea that these534

responses reflect deviations from predictions inher-535

ent to the comprehension process – rather than536

reflecting either detection of linguistic anomalies or537

expectancy effects introduced by the experiment538

[17, 19].539

While we found several striking correspondences540

between the modulation functions recovered from541

the data and classic effects from the ERP literature,542

there were also some differences. Specifically, for543

syntactic surprise, we found neither a late positive544

effect resembling the syntactic P600 [8] nor an early545

negative effect akin to the ELAN [54]. One potential546

explanation for this is that our formalisation (part-of-547

speech surprise) might not fully capture syntactic vi-548

olations used in ERP studies. Indeed, a recent paper549

on syntactic prediction using a similar model-based550

approach found a P600-like effect not for syntactic551

surprise but for the number of syntactic reinterpre-552

tation attempts a word induced [22]. Conversely, the553

early positive effect of syntactic surprise we found554

– which replicated other model-based findings, de-555

spite using a different formalisation of syntactic sur-556

prise [22, 44] – does not have a clear counterpart in557

the traditional ERP literature. Better understanding558

such systematic differences between the traditional559

experimental and model-based approach provides560

an interesting challenge for future work.561

Beyond the ERP literature, there has also been562

earlier model-based work on prediction. How-563

ever, these studies have mostly quantified feature-564

unspecific lexical unexpectedness [10, 12, 32, 55,565

56] or modelled feature-specific predictions at a sin-566

gle level such as syntax [11, 22, 44, 57], phonemes567

[13, 27, 28] or semantics [24]. We extend these568

studies by probing predictions at all these levels si-569

multaneously. This is important because it allows570

to control for correlations between levels – since571

words that are, for instance, syntactically surprising572

are, on average, also semantically surprising. More-573

over, prior modelling of feature-specific predictions574

used domain-specific models that had to be inde-575

pendently trained, and typically incorporated linguis-576

tic context in a limited way. By contrast, our method577

(Figure 3) allows to derive multiple predictions from578

a single, large pre-trained model (like GPT-2) which579

has a much deeper grasp of linguistic context. How-580

ever, a limitation of this method is that the resulting581

predictions are not independent. Therefore, you582

cannot test if levels interact without also creating a583

separate, domain-specific model. As such, the disen-584

tangling approach we used is complementary to the585

domain-specific modelling approach. Future work586

could combine the two, for instance to test if the hi-587

erarchical prediction we observed for phonemes ap-588

plies to all linguistic levels – or whether predictions589

at some levels (e.g. syntax) might be independent.590

In this study, we combined group-level analysis591

(of the EEG data) and individual-level analysis (of592

the MEG data). These approaches are complemen-593

tary. While including more participants allows one to594

perform population-level inference, acquiring more595

data per participant allows one to evaluate effects596

within individuals. By combining both forms of analy-597

sis, we found that on the one hand, the basic effects598

of prediction and the comparison of hypotheses599

about its computational nature (probabilistic predic-600

tion, hierarchical prediction) were identical within601

and across each individual (Figure 2, 6, S5). But on602

the other hand, the exact spatiotemporal character-603

istics of these effects showed substantial variability604

(Figure 4, 5, S4, S7-S14). This suggest that while the605

prediction effects themselves at the EEG group-level606
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are likely present in each individual, the precise spa-607

tiotemporal signatures (Figure 5) are probably best608

understood as a statistical average that is not neces-609

sarily representative of underlying individuals.610

Because our analysis focused on evoked re-611

sponses, we chose to probe predictions indirectly:612

via the neural markers of deviations from these pre-613

dictions. As such, we cannot rule out that the ef-614

fects might partly reflect ‘postdiction‘. However, a615

purely postdictive explanation appears unlikely as it616

implies that after recognition, the brain computes a617

prediction of the recognised stimulus based on infor-618

mation available before recognition. While the data619

therefore indirectly support pre-activation, the rep-620

resentational format of these pre-activations is still621

an open question. In our analyses – and many theo-622

retical models [6, 49]) – predictions are formalised623

as explicit probability distributions, but this is almost624

certainly a simplification. It remains unclear whether625

the brain represents probabilities implicitly. Alterna-626

tively, it might use a kind of approximation: graded,627

anticipatory processing that is perhaps functionally628

equivalent to probabilistic processing, but avoids629

having to represent (and compute with) probabili-630

ties. A potential way to address this question is to631

try to decode predictions before word onset [58].632

Interestingly, this approach could be extended to633

assess whether predicted probabilities are repre-634

sented before onset at different levels of the linguis-635

tic hierarchy, to test whether and which predicted636

distributions are reflected in pre-stimulus activity.637

Why would the brain constantly predict upcoming638

language? Three – mutually non-exclusive – func-639

tions have been proposed. First, predictions can640

be used for compression: if predictable stimuli are641

represented succinctly, this yields an efficient code642

[6, 49] – conversely, optimising efficiency can make643

predictive coding emerge in neural networks [59].644

A second, perhaps more studied function is that645

predictions can guide inference. Our analysis only646

probed prediction errors, and hence does not speak647

directly to such inferential effects of prediction – but648

earlier work suggests that linguistic context can in-649

deed enhance neural representations in a top-down650

fashion [60, 61]; but see [62, 63]. Finally, predictions651

may guide learning: prediction errors can be used to652

perform error-driven learning without supervision.653

While learning is perhaps the least-studied function654

of linguistic prediction in cognitive neuroscience (but655

see [16]), it is its primary application in Artificial Intel-656

ligence [64, 65]. In fact, the language model we used657

(GPT-2) was created to study such predictive learn-658

ing. These models are trained only to predict words,659

but learn about language more broadly, and can660

then be applied to practically any linguistic task [34,661

65]. Interestingly, models trained with this predic-662

tive objective also develop representations that are663

‘brain-like’, in the sense that they are currently the664

best encoders of linguistic stimuli to predict brain665

responses [66–69]. And yet, these predictive mod-666

els are also brain-unlike in an interesting way – they667

predict upcoming language only at a single (typically668

lexical) level.669

When prediction is used for compression or infer-670

ence, it seems useful to predict at multiple levels,671

since redundancies and ambiguities also occur at672

multiple levels. But if predictions drive learning, why673

would the brain predict at multiple levels, when ef-674

fective learning can be achieved using simple, single-675

level prediction? One fascinating option is that it676

might reflect the brain‘s way to perform credit as-677

signment within biological constraints. In artificial678

networks, credit assignment is typically done by first679

externally computing a single, global error term, and680

then ‘backpropagating‘ this error through all levels681

of the network – but both these steps are biolog-682

ically implausible [70]. Interestingly, it has been683

shown that hierarchical predictive coding networks684

can approximate or even implement classical back-685

propagation while using only Hebbian plasticity and686

local error computation [6, 70, 71]. Therefore, if687

the brain uses predictive error-driven learning, one688

might expect such prediction to be hierarchical, so689

error-terms can be locally computed throughout the690

hierarchy – which is in line with what we find.691

Beyond the domain of language, there have been692

other reports of hierarchies of neural prediction, but693

these have been limited to artificial, predictive tasks694
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or to restricted representational spans, such as suc-695

cessive stages in the visual system [72–74]. Our re-696

sults demonstrate that even during passive listening697

of natural stimuli, the brain is engaged in prediction698

across disparate levels of abstraction (from speech699

sounds to meaning) based on timescales separated700

by three orders of magnitude (hundreds of millisec-701

onds to minutes). These findings provide important702

evidence for hierarchical predictive processing in703

cortex. As such, they highlight how language pro-704

cessing in the brain is shaped by a domain-general705

neurocomputational principle: the prediction of per-706

ceptual inputs across multiple levels of abstraction.707

METHODS708

We analysed EEG and source localised MEG data from709

two experiments. The EEG data is part of a public dataset710

that has been published about before [27].711

Participants712

All participants were native English speakers. In the713

EEG experiment, 19 subjects (13 male) between 19 and 38714

years old participated; in the MEG experiment, 3 subjects715

participated (2 male) aged 35, 30, and 28. Both exper-716

iments were approved by local ethics committees (EEG:717

ethics committee of the School of Psychology at Trinity718

College Dublin; MEG: CMO region Arnhem-Nijmegen).719

Stimuli and procedure720

In both experiments, participants were presented con-721

tinuous segments of narrative speech extracted from au-722

diobooks. The EEG experiment used a recording of Hem-723

ingway’s The Old Man and the Sea. The MEG experiment724

used 10 stories from the The Adventures of Sherlock Holmes725

by Arthur Conan Doyle. In total, EEG subjects listened to726

∼1 hour of speech (containing∼11,000 words and∼35,000727

phonemes); MEG subjects listened to ∼9 hours of speech728

(containing ∼85,000 words and ∼290,000 phonemes).729

In the EEG experiment, each participants performed730

only a single session, which consisted of 20 runs of 180s731

long, amounting to the first hour of the book. Partici-732

pants were instructed to maintain fixation and minimise733

movements but were otherwise not engaged in any task.734

In the MEG experiment, each participant performed a735

total of ten sessions, each ∼1 hour long. Each session was736

subdivided in 6-7 runs of roughly ten minutes, although737

the duration varied as breaks only occurred at meaning-738

ful moments (making sure, for example, that prominent739

narrative events were not split across runs). Unlike in the740

EEG experiment, participants in the MEG dataset partici-741

pants were asked to listen attentively and had to answer742

questions in between runs: one multiple choice compre-743

hension question, a question about story appreciation744

(scale 1-7) and a question about informativeness.745

MRI acquisition and headcast construction746

To produce the headcast, we needed to obtain accurate747

images of the participants’s scalp surface, which were748

obtained using structuralMRI scans with a 3T MAGNETOM749

Skyra MR scanner (Siemens AG). We used a fast low angle750

shot (FAST) sequence with the following image acquisition751

parameters: slice thickness of 1 mm; field-of-view of 256752

× 256 × 208 mm along the phase, read, and partition753

directions respectively; TE/TR = 1.59/4.5 ms.754

Data acquisition and pre-processing755

The EEG data were originally acquired using a 128-756

channel (plus two mastoid channels) using an ActiveTwo757

system (BioSemi) at a rate of 512 Hz, and downsampled758

to 128 Hz before being distributed as a public dataset. We759

visually inspected the raw data to identify bad channels,760

and performed independent component analysis (ICA) to761

identify and remove blinks; rejected channels were linearly762

interpolated with nearest neighbour interpolation using763

MNE-python.764

The MEG data were acquired using a 275 axial gra-765

diometer system at 1200 Hz. For the MEG data, prepro-766

cessing and source modelling was performed in MATLAB767

2018b using fieldtrip [75]. We applied notch filtering (But-768

terworh IIR ) at the bandwidth of 49–51, 99–101, and 149–769

151 Hz to remove line noise. Artifacts related to muscle770

contraction and squidjumps were identified and removed771

using fieldtrip’s semi-automatic rejection procedure. The772

data were downsampled to 150 Hz. To identify and re-773

move eye blink artifacts, ICA was performed using the774

FastICA algorithm.775

For both MEG and EEG analyses, we focus on the slow,776

evoked response and hence restricted our analysis to low-777

frequency components. To this end, we filtered the data778

between 0.5 and 8 Hz using a bidirectional FIR bandpass779

filter. Restricting the analysis to such a limited range of low780

frequencies (which are known to best follow the stimulus)781

is common when using regression ERP or TRF analysis,782

especially when the regressors are sparse impulses [28,783
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31, 36]. The particular upper bound of 8 Hz is arbitrary but784

was based on earlier papers using the same EEG dataset785

to study how EEG tracks acoustic and linguistic content of786

speech [31, 56, 61].787

Head and source models788

The MEG sensors were co-registered to the subjects’789

anatomical MRIs using position information of three local-790

ization coils attached to the headcasts. To create source791

models, FSL’s Brain Extraction Tool was used to strip non-792

brain tissue. Subject-specific cortical surfaces were recon-793

structed using Freesurfer, and post-processing (downsam-794

pling and surface-based alignment) of the reconstructed795

cortical surfaces was performed using the Connectome796

Workbench command-line tools (v 1.1.1). This resulted797

in cortically-constrained source models with 7,842 source798

locations per hemisphere. We created single-shell volume799

conduction models based on the inner surface of the skull800

to compute the forward projection matrices (leadfields).801

Beamformer and parcellation802

To estimate the source time series from the MEG data,803

we used linearly constrained minimum variance (LCMV)804

beamforming, performed separately for each session, us-805

ing Fieldtrip’s ft_sourceanalysis routine. To reduce806

the dimensionality, sources were parcellated, based on a807

refined version of the Conte69 atlas, which is based on808

Brodmann’s areas. We computed, for each session, parcel-809

based time series by taking the first principal component810

of the aggregated time series of the dipoles belonging to811

the same cortical parcel .812

Self-attentional language model813

Contextual predictions were quantified using GPT-2814

– a large, pre-trained language model [34]. Formally,815

a language model can be cast as a way of assigning a816

probability to a sequence of words (or other symbols),817

(x1, x2, ..., xn). Because of the sequential nature of lan-818

guage, the joint probability, P (X) can, via the chain rule,819

be factorised as the product of conditional probabilities:820

P (X) = p(x1)× p(x2 | x1)× · · · × p(xn | xn−1, . . . , x1)

=

x
∏

i=1

p (xn | x1, . . . , xn−1)

(1)

Since the advent of neural language models, as op-821

posed to statistical (Markov) models, methods to compute822

these conditional probabilities have strongly improved.823

Improvements have been especially striking in the past824

two years with the introduction of the Transformer [76]825

architecture, which allows efficient training of very large826

networks on large, diverse data. This resulted in models827

that dramatically improved the state-of-the art in language828

modelling on a range of domains.829

GPT-2 [34] is one of these large, transformer-based lan-830

guage models and is currently among the best publcicly831

released models of English. The architecture of GPT-2 is832

based on the decoder-only version of the transformer. In833

a single forward pass, it takes a sequence of tokens U =834

(u1, . . . , uk) and computes a sequence of conditional835

probabilities, (p(u1), p(u2|u1), . . . , p(uk | u1, ..., uk−1)).836

Roughly, the full model (see Figure S1) consists of three837

steps: first, an embedding step encodes the sequence of838

symbolic tokens as a sequence of vectors which can be839

seen as the first hidden state ho. Then, a stack of trans-840

former blocks, repeated n times, each apply a series of841

operations resulting in a new set of hidden states hl, for842

each block l. Finally, a (log-)softmax layer is applied to843

compute (log-)probabilities over target tokens. Formally,844

then, the model can be summarised in three equations:845

h0 = UWe +Wp (2)

hl = transformer_block (hl−1) ∀i ∈ [1, n] (3)

P (u) = softmax
(

hnW
T
e

)

, (4)

whereWe is the token embedding andWp is the posi-846

tion embedding (see below).847

The most important component of the transformer-848

block is themasked multi-headed self-attention (Fig S1). The849

key operation is self-attention, a seq2seq operation turn-850

ing a sequence of input vectors (x1,x2, . . .xk) into a851

sequence of output vectors (y1,y2, . . . ,yk). Fundamen-852

tally, each output vector yi is a weighted average of the853

input vectors: yi =
∑k

j=1 wijxj . Critically, the weight854

wi,j is not a parameter but is derived from a function over855

input vectors xi and xj . The Transformer uses (scaled) dot856

product attention, meaning that the function is simply a dot857

product between the input vectors xT
i xj , passed through858

a softmax make sure that the weights sum to one, scaled859

by a constant determined by the dimensionality, 1√
dk
(to860

avoid the dot-products growing too large in magnitude):861

wij = (expx
T
i xj/∑k

j=1 expx
T
i xj)

1√
dk
.862

In self-attention, then, each input xi is used in three863

ways. First, it is multiplied by the other vectors to derive864
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the weights for its own output, yi (as the query). Second, it865

is multiplied by the other vectors to determine the weight866

for any other output yj (as the key). Finally, to compute867

the actual outputs it is used in the weighted sum (as the868

value). Different (learned) linear transformations are ap-869

plied to the vectors in each of these use cases, resulting in870

the Query, Key and Value matrices (Q,K, V ). Putting this871

all together, we arrive at the following equation:872

self_attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V, (5)

where dk is dimension of the keys/queries. In other words,873

self_attention simply computes a weighted sum of the874

values, where the weight of each value is determined by875

the dot-product similarity of the query with its key. Be-876

cause the queries, keys and values are linear transforma-877

tions of the same vectors, the input attends itself.878

To be used as a language model, two elements need879

to be added. First, the basic self-attention operation is880

not sensitive to the order of the vectors: if the order of881

the input vectors is permuted, the output vectors will be882

identical (but permuted). To make it position-sensitive, a883

position embeddingWp is simply added during the em-884

bedding step – see Equation 2. Second, to enforce that885

the model only uses information from one direction (i.e886

left), a mask is applied to the attention weights (before887

the softmax) which sets all elements above the diagonal888

to−∞. This makes the self-attentionmasked.889

To give the model more flexibility, each transformer890

block actually contains multiple instances of the basic self-891

attention mechanisms from (5). Each instance (each head)892

applies different linear transformations to turn the same893

input vectors into a different set ofQ,K and V matrices,894

returning a different set of output vectors. The outputs of895

all heads are concatenated and then reduced to the initial896

dimensionality with a linear transformation. This makes897

the self-attentionmulti-headed.898

In total, GPT-2 (XL) contains n = 48 blocks, with 12899

heads each; a dimensionality of d = 1600 and a context900

window of k = 1024, yielding a total 1.5×109 parameters.901

We used the PyTorch implementation of GPT-2 provided902

by HuggingFace’s Transformers package [77].903

Lexical predictions904

We passed the raw texts through GPT-2 (Equations 2-4)905

for each run independently (assuming that listeners’ ex-906

pectations would to some extent ’reset’ during the break).907

This resulted in a (log-)probability distribution over to-908

kens P (U). Since GPT-2 uses Byte-Pair Encoding, a token909

can be either punctuation or a word or (for less frequent910

words) a word-part. How many words actually fit into a911

context window of length k therefore depends on the text.912

For words spanning multiple tokens, we computed word913

probabilities simply as the joint probability of the tokens.914

‘For window-placement, we used the constraint that the915

windows had an overlap of at least 700 tokens, and that916

they could not start mid-sentence (ensuring that the first917

sentence of the window was always well-formed).918

As such, for each word wi we computed p(wi|context),919

where ’context’ consisted either of all preceding words in920

the run, or of a sequence of prior words constituting a921

well-formed context that was at least 700 tokens long.922

Syntactic and semantic predictions923

Feature-specific predictions were computed from the924

lexical prediction. To this end, we first truncated the un-925

reliable tail from the distribution using a combination of926

top-k and nucleus truncation. The nucleus was defined927

as the "top" k tokens with the highest predicted probablil-928

ity, where k was set dynamically such that the cumulative929

probability was at least 0.9. To have enough information930

also for very low entropy cases (where k becomes small),931

we forced k to be a least 40.932

From this truncated distribution, we derived feature-933

specific predictions by analysing the predicted words. For934

the syntactic predictions, we performed part of speech935

tagging on every potential sentence (i.e. the context plus936

the predicted word) with Spacy to derive the probability937

distribution over parts-of-speech, fromwhich the syntactic938

surprise was calculated as the negative log probability of939

the POS of a word,− log(P (POSn |context)).940

For the semantic prediction, we took a weighted941

average of the glove embeddings of the predicted942

words to compute the expected vector: E[G(wn)] =943

∑k

i=1 P (xi)G(xi), whereG(wi) is the GloVe embedding944

for predicted wordwi. From this prediction, we computed945

the semantic prediction error as the cosine distance be-946

tween the predicted and observed vector:947

PEsemantic = 1− E [G (wn)]G (wn)

‖E [G (wn)]‖ ‖G(wn)‖
(6)

Phonemic predictions948

Phonemic predictions were formalised in the context949

of incremental word recognition [27, 29]. This process950

can be cast as probabilistic prediction by assuming that951
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brain is tracking the cohort of candidate words consistent952

with the phonemes so far, each word weighted by its prior953

probability. We compared two such models that differed954

only in the prior probability assigned to each word.955

The first model was the single-level or frequency-956

weighted model (Fig 6), in which prior probability of words957

was fixed and defined by a word’s overall probability of958

occurrence (i.e. lexical frequency). The probability of a959

specific phoneme (A), given the prior phonemes within a960

word, was then calculated using the statistical definition:961

P (ϕt = A | ϕ1:t−1) =
f(Cϕt=A)

f(Cϕ1:t−1)
. (7)

Here, f(Cϕt=A) denotes the cumulative frequency of962

all words in the remaining cohort of candidate words963

if the next phoneme were A, and f(Cϕ(1:t−1)
) denotes964

the cumulative frequency of all words in the prior cohort965

(equivalent to f(C) of all potential continuations). If a cer-966

tain continuation did not exist and the cohort was empty,967

f(Cϕt=A) was assigned a laplacian pseudocount of 1. To968

efficiently compute (7) for every phoneme, we constructed969

a statistical phonetic dictionary as a digital tree that com-970

bined frequency information from SUBTLEX database and971

pronunciation from the CMU dictionary.972

The second model was equivalent to the first model,973

except that the prior probability of each word was not de-974

fined by its overall probability of occurrence, but by its con-975

ditional probability in that context (based on GPT-2). This976

was implemented by constructing a separate phonetic dic-977

tionary for every word, in which lexical frequencies were978

replaced by implied counts derived from the lexical predic-979

tion. We truncated the unreliable tail from the distribution980

and replaced that by a flat tail that assigned each word981

a pseudocount of 1. This greatly simplifies the problem982

as it only requires to assign implied counts for the top k983

predicted words in the dynamic nucleus. Since all counts984

in the tail are 1, the cumulative implied counts of the nu-985

cleus is complementary to the the length of the tail, which986

is simply the difference between the vocabulary size and987

nucleus size (V − k). As such a little algebra reveals:988

freqsn = Ptr(w
(i)|context) V − k

1−
∑k

j=1 P (w
(i)
j |context)

,

(8)

where Ptr(w
(i)|context) is the trunctated lexical lexical989

prediction, and P (w
(i)
j |context) is predicted probability990

that word i in the text is word j in the sorted vocabulary.991

Although we computed probabilities using the simple992

statistical definition of probability, these two ways of as-993

signing lexical frequencies are equivalent to two kinds of994

priors in a Bayesian model. Specifically, in the first model995

the prior over words is the fixed unconditional word proba-996

bility, while in the second model the prior is the contextual997

probability, itself based on a higher level (lexical) predic-998

tion. This makes the second computation hierarchical be-999

cause phoneme predictions are based on not just (at the1000

first level) on short sequences of within-word phonemes,1001

but also on a contextual prior which itself (at the second1002

level) is based on long sequences of prior words.1003

Non-predictive control variables1004

To ensure we were probing effects of predictions, we1005

had to control for various non-predictive variables: onsets,1006

acoustics, frequency and semantic congruency. We will1007

briefly outline our definitions of each.1008

For speech, it is known that the cortical responses are1009

sensitive to fluctuations in the envelope – which is specifi-1010

cally driven by rapid increases of the envelope amplitude1011

(or ‘acoustic edges’) [78]. To capture these fluctuations1012

in a sparse, impulse-based regressor we quantified the1013

amplitude of these edges as the variance of the envelope1014

over each event (e.g. phoneme) following [61]. A sec-1015

ond non-predictive variable is frequency. We accounted1016

for frequency as the overall base rate or unconditional1017

probability of a word, defining it similarly to lexical sur-1018

prise as the unigrams surprise − logP (word) based on1019

its frequency of occurrence in subtlex.1020

The final non-predictive variable was semantic congru-1021

ency or integration difficulty. This speaks to the debate1022

wether effects of predictability reflect prediction or rather1023

post-hoc effects arising when integrating a word into the1024

semantic context. This can be illustrated by considering1025

a constraining context (’coffee with milk and . . . ’). When1026

we contrast a highly expected word (’sugar’) and an unex-1027

pected word (e.g. ’dog’), the unexpected word is not just1028

less likely, but also semantically incongruous in the prior1029

context. As such, the increased processing cost reflected1030

by effects like N400 increases might not (only) be due to1031

a violated prediction but due to difficulty integrating the1032

target word (’dog’) in the semantic context (’coffee with1033

milk’) [7, 18, 51, 52]. As a proxy for semantic integration1034

difficulty we computed the semantic congruency of a word1035

in its context defined as the cosine dissimilarity (see (6))1036

between the average semantic vector of the prior context1037

words and the target content word, following [31]. This1038

metric is known to predict N400-like modulations and can1039

hence capture the extent to which such effects can be1040
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explained by semantic congruency only [31, 52].1041

Word-level regression models1042

The word-level models (see Fig S2 for graphical repre-1043

sentation) captured neural responses to words as a func-1044

tion of word-level variables. The baselinemodel formalised1045

the hypothesis that responses to words were not affected1046

by word unexpectedness but only by the following non-1047

predictive confounds: word onsets, envelope variability1048

(acoustic edges), semantic congruency (integration diffi-1049

culty) and word frequency.1050

The probabilistic prediction model formalised the hy-1051

pothesis that predictions were continuous and probabilis-1052

tic. This model was identical to the baseline model plus1053

the lexical surprise (or negative log probability of a word),1054

for every word. This was based on normative theories of1055

predictive processing which state that the brain response1056

to a stimulus should be proportional to the negative log1057

probability of that stimulus [6].1058

The constrained guessing model formalised the classical1059

psycholinguistic notion of prediction as the all-or-none pre-1060

activation of specific words in specific (highly constraining)1061

contexts [33]. We translated the idea of all-or-none predic-1062

tion into a regression model using an insight by Smith and1063

Levy which implied that all-or-none predictions result in1064

a linear relationship between word probability and brain1065

responses [9]. The argument follows from two assump-1066

tions: (1) all predictions are all-or-none; and (2) incorrect1067

predictions incur a cost, expressed as a prediction error1068

brain response (fixed in size because of assumption 1).1069

For simplicity, we first consider the unconstrained case1070

(i.e. subjects make a prediction for every stimulus), and1071

we bracket all other factors affecting brain responses by1072

absolving them into an average brain response, ybaseline.1073

As such, the response to any word is either ybaseline (if the1074

prediction is correct) or ybaseline + yerror (if it was false).1075

For any individual stimulus, this equation cannot be used1076

(as we don’t know what a subject predicted). But if we1077

assume that predictions are approximately correct, then1078

the probability of a given prediction to be incorrect simply1079

becomes ∼(1 − p). As such, on average, the response1080

becomes yresp = ybaseline + (1 − p)yerror. In other words,1081

a linear function of word improbability. To extend this1082

to the constrained case, we only define the improbability1083

regressor for constraining contexts, and add a constant1084

to those events to capture (e.g. suppressive) effects of1085

correct predictions (Figure S2). To identify ‘constraining1086

contexts‘, we simply took the 10% of words with the lowest1087

prior lexical entropy. The choice of 10% was arbitrary –1088

however, using a slightly more or less stringent definition1089

would not have changed the results because the naive1090

guessing model (which included linear improbability for1091

every word) performed so much better (see Figure S5).1092

Integrated regression model1093

For all analyses on feature-specific predictions, we for-1094

mulated an integrated regression model with both word-1095

level and phoneme-level regressors (Figure S6). To avoid1096

collinearity between word and phoneme level regressors,1097

phoneme-level regressors were only defined for word-1098

non-initial phonemes, and word-level regressors were de-1099

fine for word-onset. As regressors of interest this model1100

included phonemic surprise, syntactic surprise and se-1101

mantic prediction error. In principle, we could have also1102

included phoneme and syntactic entropy rather than just1103

surprise (e.g. [13]) – however, these were highly corre-1104

lated with the respective surprise. Since this was already1105

a complex regression model, including more correlated1106

regressors would have made the coefficients estimates1107

less reliable and hence more difficult to interpret. As such,1108

we did not include both but focussed on surprise because1109

it has the most direct relation to stimulus evoked effect.1110

Phoneme-level regression models1111

To compare different accounts of phoneme prediction,1112

we formulated three regression models with only regres-1113

sors at the individual phoneme level (Figure S15). In all1114

models, following [27] we used separate regressors for1115

word-initial and word-non-initial phonemes, to account1116

for juncture phonemes being processed differently. The1117

baseline model only included non-predictive factors of1118

word-boundaries, phoneme onsets, envelope variability,1119

and uniqueness points. The two additional models also1120

included phoneme surprise and phoneme entropy from1121

either the hierarchical model or non-hierarchical model.1122

To maximise our ability to dissociate the hierarchical pre-1123

diction and non-hierarchical prediction, we included both1124

entropy and surprise. Although these metrics are corre-1125

lated, adding both should add more information to the1126

model-comparison, assuming that there is some effect of1127

entropy [13]. (Note that here, we were only interested in1128

model comparison, and not in comparing the coefficients,1129

which may become more difficult when including both.)1130
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Time resolved regression1131

As we were interested in the evoked responses, vari-1132

ables were regressed against EEG data using time-resolved1133

regression, within a regression ERP/F (or impulse TRF)1134

framework [31, 35]. Briefly, this involves using impulse1135

regressors for both constants and covariates defined at1136

event onsets, and then temporally expanding the design1137

matrix such that each predictor column C becomes a se-1138

ries of columns over a range of temporal lags Ctmax
tmin

=1139

(Ctmin
, ..., Ctmax). For each predictor one thus estimates1140

a series of weights βtmax
tmin

(Fig 1) which can be understood1141

as themodulation function describing how a given regres-1142

sor modulates the neural response over time, and which1143

corresponds to the effective evoked response that would1144

have been obtained in a time-locked ERP/ERF design. Here,1145

we used a range between -0.2 and 1.2 seconds. All data1146

and regressors were standardised and coefficients were1147

estimated with ℓ2-norm regularised (Ridge) regression:1148

β̂ = argmin
β

‖y −Xβ‖22 + λ‖β‖22, (9)

using the scikit learn sparse matrix implementation. In1149

both datasets, models were estimated by concatenating1150

the (time-expanded) design matrix across all runs and ses-1151

sions. Regularisation was set based on leave-one-run-out1152

R2 comparison; for inference on the weights in the EEG1153

data this was done across subjects to avoid doing statistics1154

over coefficients with different amounts of shrinkage.1155

Model comparison1156

In both datasets, model comparison was based on1157

comparing cross-validated correlation coefficients. Cross-1158

validation was performed in a leave-one-run-out cross-1159

validation scheme, amounting to 19-fold cross-validation1160

in the EEG data and between 63 and 65-fold cross-1161

validation for the MEG data (in some subjects, some runs1162

were discarded due to technical problems).1163

For the EEG data, models’ cross-validated prediction1164

performance was performed across subjects to perform1165

population-level inference. To this end, we reduced the1166

scores into a single nsubs dimensional vector by taking1167

the median across folds and the mean across channels.1168

Critically, we did not select any channels but used the av-1169

erage across the scalp. For the MEG data, models were1170

only statistically compared on a within within-subject ba-1171

sis. Because the MEG data was source localised we could1172

discard sources known to be of no interest (e.g. early vi-1173

sual cortex). To this end, we focussed on the language1174

network, using a rather unconstrained definition encom-1175

passing all Brodmann areas in the temporal lobe, plus the1176

temporo-parietal junction, and inferior frontal gyrus and1177

dorsolateral prefrontal cortex; all bilaterally (see Figure1178

S16).1179

Statistical testing1180

All statistical tests were two-tailed and used an alpha of1181

0.05. For all simple univariate tests performed to compare1182

model-performance within and between subjects, we first1183

verified that the distribution of the data did not violate nor-1184

mality and was outlier free, determined by the D‘Agostino1185

and Pearson’s test implemented in SciPy and the 1.5 IQR1186

criterion, respectively. If both criteria were met, we used a1187

parametric test (e.g. paired t-test); otherwise, we resorted1188

to a non-parametric alternative (e.g. Wilcoxon sign rank).1189

In EEG, we performed mass-univariate tests on the1190

coefficients across participants between 0 and 1.2 sec-1191

onds. This was firstly done using cluster-based permuta-1192

tion tests [79, 80] to identify clustered significant effects1193

as in Figure 5 (10,000 permutations per test). Because1194

the clustered effects as in Figure 5 only provide a partial1195

view, we also reported more comprehensive picture of the1196

coefficients across all channels (Figure S3,S8); there, we1197

also provide multiple-comparison corrected p-values to1198

indicate statistical consistency of the effects; these were1199

computed using TFCE. In the MEG, multiple comparison1200

correction for comparison of explained variance across1201

cortical areas was done using Treshold Free Cluster En-1202

hancement (TFCE). In both datasets, mass-univariate test-1203

ing was performed based on one-sample t-tests plus the1204

’hat’ variance adjustment method with σ = 10−3.1205

Polarity-alignment1206

In the source localised MEG data, the coefficients in1207

individuals (e.g. Figure S11-S14) are symmetric in polar-1208

ity, with the different sources in a single response having1209

an arbitrary sign due to ambiguity of the source polar-1210

ity. To harmonise the polarities, and avoid cancellation1211

when visualising the average coefficient, we performed1212

a polarity-alignment procedure. This was based on first1213

performing SVD, A = AΣV⊤, where A is the m × n1214

coefficient matrix, with m being the number of sources1215

and n the number of regressors; and then multiplying1216

each row ofA by the sign of the first right singular vector.1217

Because the right singular vectors (columns ofU) can be1218

interpreted as the eigen vectors of the source-by-source1219

correlation matrix, this can be thought of as flipping the1220
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sign of each source as a function of its polarity with respect1221

to the dominant correlation. This procedure was used for1222

visualisation purposes only (see Fig S4 and S11-S14).1223

Data and code availability1224

Data and code to reproduce all results will be made1225

public at the Donders Repository. The full MEG dataset1226

will be made public in a separate resource publication.1227
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Supplementary materials1

Figure S1 – GPT-2 ARCHITECTURE. Note that this panel is a re-rendered version of the original GPT

schematic, slightly modifyied and re-arranged to match the architecture of GPT-2. For more

details on the overall architecture and on the critical operation of self-attention, see Methods.

In this graphic, Layer Norm refers to layer normalisation as described by Ba et al. Not

visualised here is the initial tokenisation, mapping a sequence of characters into tokens.
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Figure S2 – WORD-LEVEL REGRESSION MODELS. Schematic of the main models plus the control model of the

initial model comparison to test for predictive processing at the word level. Because we use a

regression ERP/ERF scheme [35], aimed at capturing (modulations of) the evoked response to

discrete events like words or phonemes, all regressors are modelled as impulses (see Methods).

Figure S3 – FULL EEG TOPOGRAPHIES OF THE EFFECTS OF LEXICAL SURPRISE These topographies show the average

t-statistics of the coefficients (upper row) and respective FWE-corrected significance (lower

row) of the lexical surprise regressor from the probabilistic prediction model (Figure S2). As

such, while Figure 2b shows the coefficients averaged over channels participating in the cluster

(thereby only visualising the effect) these topographies visualise the results comprehensively

across all channels over time.
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Figure S4 – COEFFICIENTS FOR LEXICAL SURPRISE FROM THE LEXICAL MODEL (FIGURE S2) Left column: timecourses

of the coefficients at each MEG source-localised parcel for lexical surprise for all MEG

participants, and the polarity-aligned average across them. Right column: Absolute value of

the coefficients averaged across the highlighted period plotted across the brain.
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Figure S5 – MODEL COMPARISON RESULTS ACROSS ALL CHANNELS (EEG) AND THE FULL LANGUAGE NETWORK (MEG).

Same as in Figure 2a, but now including the ’naive guessing’ control model. Like the

constrained guessing model, this model included a linear estimate of word probability, but

defined for every word rather than only for constraining contexts. This model was introduced

to identify which of the two differences between the probabilistic prediction and constrained

guessing model – i.e. assuming that predictions are (i) categorical vs. probabilistic and (ii)

occasional vs. continuous – made the largest difference in model performance. As can be seen,

the naive guessing model performed considerably better than the constrained guessing model,

but consistently worse than the probabilistic prediction model. This clearly shows that the

modulatory effect of unexpectedness is not limited to only highly constraining contexts, but

that that it applies much more generally – in line with the notion of continuous prediction.

Strictly speaking, the naive guessing model formalises the hypothesis that the brain

’naively’ makes all-or-none guesses about every upcoming word. Given that this hypothesis

is a-priori so implausible, it may seem surprising that the model still performs comparably

well. However, we should note that the probabilistic prediction regressor (surprise) and

the categorical prediction regressor (linear (im)probability) are highly correlated (∼0.7)

because one is a monotonic function of the other. Therefore, we suggest the results are

better interpreted the other way around: the fact that – despite being so correlated – the

log-probability is consistently a better linear predictor of neural responses than the linear

probability clearly supports predictive processing theories, which postulate that the neural

response to a stimulus should be proportional to negative log-probability of that stimulus.

4
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Figure S6 – REGRESSORS OF THE INTEGRATED FEATURE-SPECIFIC MODEL. Same as Figure S5, but for the integrated

feature-specific regression model. The three regressors of interest – syntactic surprise, semantic

prediction error and phonemic surprise – are coloured, all control regressors are in black.

Following the regression ERP/ERF scheme [35], aimed at capturing (modulations of) the

evoked response to discrete events like words or phonemes, all regressors are modelled as

impulses (see Methods). To avoid collinearity between word an and phoneme regressors,

phoneme regressors (both events and covariates) are restricted to all non-initial phonemes.

5
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Figure S7 – UNIQUE EXPLAINED VARIANCE FOR FIVE REGRESSORS ACROSS THE BRAIN.

Same as Figure 4, but including 2 control regressors (lexical surprise and acoustic variance)

for comparison. Colours indicate amount of additional variance explained by each regressor;

opacity indicates the FWE-corrected statitsical significance (across cross-validation folds).

Note that p < 0.05 is equivalent to − log
10
(p) > 1.3.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2020.12.03.410399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S8 – FULL TOPOGRAPHIES OF THE COEFFICIENTS AND SIGNIFICANCE OF FEATURE-SPECIFIC PREDICTION ERRORS

For each feature-specific prediction error regressor, the topographies show the t-statistics of

the coefficients (upper row) and the respective TFCE-corrected significance (lower row). So

while Figure 5 only shows the coefficients averaged over channels participating in the cluster

(thereby only visualising the effect) these topographies visualise the results comprehensively

across all channels, over time.
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Figure S9 – SIGNIFICANT EFFECTS OF SYNTACTIC SURPRISE IN THE EEG DATA. Two significant effects were observed

in the modulation functions for syntactic surprise: an early positive effect with a frontal

topography (upper panel) and a later negative effect based on a distributed cluster (lower

panel). The early effect tightly replicates recent model-based studies on EEG effects of

syntactic surprise, and was also found in the MEG data. By contrast, the late effect of

syntactic surprise is not in line with any earlier study (note that it is negative unlike the

syntactic P600) and importantly was not replicated in the MEG data. Therefore we only

consider the early effect a ‘main’ effect of syntactic surprise (visualised in the main Figure 5)

and we advice to refrain from interpreting the late effect before it is independently replicated.
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Figure S10 – COEFFICIENTS FOR EACH PREDICTION ERROR, PLUS TWO CONTROL VARIABLES.

EEG (left column): coefficient modulation function averaged across the channels participating

for at least one sample in the significant clusters. Highlighted area indicates temporal extent

of the cluster. Shaded area around waveform indicates bootstrapped standard errors. Stars

indicate cluster-level significance; p < 0.05 (*) , p < 0.05 (**), p < 0.001 (***). Insets

represent channels assigned to the cluster (white dots) and the distribution of absolute values

of t-statistics. MEG (right column): polarity aligned responses averaged across participants

for all sources (same as in Figure 5 but without averaging over sources, and including two

control variables). Insets represent topography of absolute value of coefficients averaged

across the highlighted period. Note that due to polarity alignment, sign information is to be

ignored for the MEG plots. 9
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Figure S11 – COEFFICIENTS FOR SYNTACTIC SURPRISE FROM THE INTEGRATED MODEL (FIGURE S6)

Left column: coefficients for each source for each individual in the MEG experiment, and the

polarity-aligned average across participants. Right column: absolute value of the coefficients

across the brain, averaged across the highlighted time-period.

10
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Figure S12 – COEFFICIENTS FOR SEMANTIC PREDICTION ERROR FROM THE INTEGRATED MODEL (FIGURE S6)

Left column: coefficients for each source for each individual in the MEG experiment, and the

polarity-aligned average across participants. Right column: absolute value of the coefficients

across the brain, averaged across the highlighted time-period.
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Figure S13 – COEFFICIENTS FOR PHONEMIC SURPRISE FROM THE INTEGRATED MODEL (FIGURE S6)

Left column: coefficients for each source for each individual in the MEG experiment, and the

polarity-aligned average across participants. Right column: absolute value of the coefficients

across the brain, averaged across the highlighted time-period..

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2020.12.03.410399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S14 – COEFFICIENTS FOR ENVELOPE VARIABILITY FROM THE INTEGRATED MODEL (FIGURE S6)

Left column: coefficients for each source for each individual in the MEG experiment, and the

polarity-aligned average across participants. Right column: absolute value of the coefficients

across the brain, averaged across the highlighted time-period.
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Figure S15 – REGRESSORS OF THE PHONEME MODEL. As indicated by the different colours, both the constants

and covariates were modelled separately for word-initial and word-non-initial phonemes.

Figure S16 – LANGUAGE NETWORK DEFINITION The language network was defined as temporal cortex plus

temporo-parietal junction, and IFG and dorsolateral prefrontal cortex; all bilaterally. In

terms of Brodmann areas this corresponded to 20, 21, 22, 38, 39, 40, 41, 42, 44, 45, 46 and

47, amounting to a total of 100 out of 370 cortical parcels.
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