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ABSTRACT 

Background: Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, 

is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, 

particularly in Chile. Host resistance is a heritable trait, and functional genomic studies 

have highlighted genes and pathways important in the response of salmon to the 

bacteria. However, the functional mechanisms underpinning genetic resistance are not 

yet well understood. In the current study, a large population of salmon pre-smolts were 

challenged with P. salmonis, with mortality levels recorded and samples taken for 

genotyping. In parallel, head kidney and liver samples were taken from animals of the 

same population with high and low genomic breeding values for resistance, and used for 

RNA-Sequencing to compare their transcriptome profile both pre and post infection.  

Results: A significant and moderate heritability (h2 = 0.43) was shown for the trait of 

binary survival. Genome-wide association analyses using 38K imputed SNP genotypes 

across 2,251 animals highlighted that resistance is a polygenic trait. Several thousand 
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genes were identified as differentially expressed between controls and infected samples, 

and enriched pathways related to the host immune response were highlighted. In 

addition, several networks with significant correlation with SRS resistance breeding 

values were identified, suggesting their involvement in mediating genetic resistance. 

These included apoptosis, cytoskeletal organisation, and the inflammasome. 

Conclusions: While resistance to SRS is a polygenic trait, this study has highlighted 

several relevant networks and genes that are likely to play a role in mediating genetic 

resistance. These genes may be future targets for functional studies, including genome 

editing, to further elucidate their role underpinning genetic variation in host resistance.  

Keywords: SRS, aquaculture, genetics, genomics, RNA-Seq, disease, salmon, 

breeding, GWAS 

 

BACKGROUND 

Finfish aquaculture is a fast-growing industry with a worldwide production of 54.3 

million tonnes during 2018, corresponding to an estimated value of USD 139.7 billion 

[1]. Atlantic salmon (Salmo salar) comprises 4.5% of global finfish trade, and demand 

for salmon has grown steadily since 2010 [1]. However, the expansion of salmon 

aquaculture has been associated with a concurrent increase in the occurrence and impact 

of infectious diseases, which can cause major welfare and production challenges. One of 

the most serious of these diseases is Salmon Rickettsial Syndrome (SRS), caused by the 

Gram-negative bacterium Piscirickettsia salmonis, which can cause severe morbidity 

and mortality in salmonid species. SRS is particularly problematic for salmon 

aquaculture in Chile, the world’s second largest producer, and is responsible for 47.5% 

of the total mortality due to infectious disease in this industry [2]. SRS has also been 

reported in other salmon-producing countries such as Norway, Ireland, Canada or 
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Scotland. The morbidity and mortality caused by SRS occur at the seawater stage, 

where economic losses in relation to biomass are highest. The direct losses through 

mortality are exacerbated by indirect losses through reduced growth rates and premature 

harvests [3]. Several strategies for SRS control have been developed, such as 

vaccination, antibiotics and biosecurity measures, however, they have shown only 

partial efficacy under field conditions [3]. Development of novel strategies to control 

SRS requires improved knowledge of the genetic and functional aspects of P. salmonis 

host-pathogen interaction, such as the process of entry into host cells, intracellular 

replication, virulence mechanisms, and genetic variation in host response [3]. 

A promising avenue to mitigate the impact of SRS in Atlantic salmon aquaculture is to 

improve SRS disease resistance traits through selective breeding. This is possible due to 

naturally occurring genetic variation (heritability) for disease resistance, which has been 

observed in other infectious diseases impacting farmed populations of farmed salmonids 

[4–6]. Significant additive genetic variation for resistance to SRS has been found in 

various farmed populations, with family mortality levels ranging from 5% to 82% and 

heritability estimates from 0.11 to 0.41 [7, 8]. The genetic architecture of resistance to 

SRS has been studied using genome-wide association studies (GWAS) in populations of 

different salmonid species, suggesting that SRS resistance is a polygenic trait [9–11]. 

For such traits, genomic selection has been shown to be effective in increasing accuracy 

of breeding value prediction in commercial aquaculture breeding programmes [12, 13]. 

In the case of SRS resistance, the use of genomic information was shown to improve 

prediction accuracy by up to 30% compared to pedigree approaches [14].  

While selective breeding and genomic selection for improved resistance to SRS can be 

performed without knowledge of the mechanisms underlying genetic resistance, 

understanding these mechanisms is a major goal for aquaculture research. Such 
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information can yield novel disease treatment and mitigation options, including possible 

targets for vaccination and therapeutants. Furthermore, knowledge of functional genes 

and polymorphisms can be applied in functionally-enriched genomic selection, which 

can further improve prediction accuracy relative to the use of anonymous markers [15]. 

Finally, putative causative genes and variants can be targeted by CRISPR/Cas genome 

editing, initially to confirm their role, and ultimately to edit broodstock to carry resistant 

variants pending a suitable regulatory environment [16].  

P. salmonis infects and replicated in salmonid macrophages, and stimulates a significant 

innate immune response together with an oxidative defence response [17, 18]. The host 

response to infection in Atlantic salmon has been assessed in a number of studies using 

microarrays and RNA-Sequencing. Their findings suggest that P. salmonis modulates 

the pro-inflammatory cytokine response, the iron deprivation system and the 

cytoskeletal reorganization, and interferes with protein transportation and vesicle 

trafficking to evade immune response, increase persistence and aid replication [19, 20]. 

However, while gene expression differences between families with different levels of 

resistance have been examined using microarrays [20], the functional mechanisms 

underpinning genetic variation in resistance to SRS remain poorly understood.  

 Therefore, the aims of this study were i) to evaluate the genetic architecture of SRS 

resistance in a large Atlantic salmon population from a commercial breeding 

programme, ii) to improve our understanding of the molecular basis of host response, 

and iii) to discover functional genes and pathways contributing to host genetic 

resistance to SRS.  

 

RESULTS 

Genetics of resistance to SRS 
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A large-scale P. salmonis injection challenge was performed on a population of salmon 

pre-smolts from a commercial breeding programme with fish distributed evenly across 

three tanks. The challenge was terminated after 47 days, and there were a total of 756 

mortalities and 1509 survivors, corresponding to a mortality rate of 33%. The 

challenged fish started to die 17 days post-challenge, and mortality rate was consistent 

across the three tanks (Figure 1A). The estimated heritability of mortality as measured 

on the binary scale was 0.43 ± 0.04. 

The genome-wide association analysis revealed a polygenic architecture for the trait of 

resistance to SRS, although a few SNPs reached the suggestive level of significance 

(Figure 1B). These SNPs were situated on chromosomes 1, 2, 12 and 27, indicative of 

putative QTL on these chromosomes. However, no single SNP explained more than 1% 

of the genetic variation in resistance to SRS. 

 

 

Figure 1. SRS disease challenge survival data and genome-wide association analysis 

A) Percentage of survival in the population throughout the duration of the challenge in 

each of 3 tanks, and B) Manhattan plot showing the p-values of the GWAS for each 

SNP, the red line represents the Bonferroni corrected significance threshold and the 

blue line the suggestive significance threshold.  
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Transcriptomic response to SRS infection 

To examine the transcriptomic response to infection, 48 fish were euthanized and 

sampled pre-challenge, 3 days post-challenge and 9 days post-challenge from the same 

tank (total n = 144). Head kidney and liver samples were obtained from each animal and 

stored in RNAlater at 4 ºC for 24 h, and then at -20ºC until RNA extraction. A total of 

133 samples were then selected for RNA sequencing (74 liver and 59 head kidney 

samples; Supplementary file 2) based on (i) high and low EBVs for resistance to SRS, 

and (ii) RNA quality. An average of ~40M reads per sample were produced using RNA 

Sequencing of the head kidney and liver samples collected at 3 and 9 days post-

challenge. Hierarchical clustering of all the samples using gene expression data 

clustered head kidney and liver separately, as expected (Figure 2A). Principal 

Component Analysis was performed in each tissue separately to assess the sample 

clustering within tissue. Liver samples showed a clear separation between controls and 

the 9 days post infection samples, with the samples from 3 days post infection falling in 

between and showing a significant overlap with the other two groups (Figure 2B). In the 

case of head kidney, the infected samples clustered separately from controls, but a clear 

separation between 3 and 9 days post infections was not observed (Figure 2C). 
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Figure 2. Sample clustering based on RNA-Sequencing data from liver and head 

kidney samples. A) Hierarchical clustering of all samples, and B) principal component 

analyses of the liver samples and C) of the head kidney samples. 

 

Differential expression analyses between controls and infected samples highlighted a 

very large number of differentially expressed genes (9K to 12.5K per comparison, FDR 

p-value < 0.05), which was expected considering the high statistical power associated 

with the large sample size in this experiment. To facilitate downstream analyses and 

interpretation, only genes with FDR p-value < 0.01, normalized mean expression > 10 

reads, and log2FC > 0.5 were considered. This resulted in 5,000 to 7,000 differentially 

expressed genes in each comparison, with an even number of up-regulated and down-

regulated genes (Table 1, Figure 3, Supplementary file 3). Several innate immune genes 

were regulated in response to SRS, including interleukins, tumor necrosis factor related 

genes, caspases and interferon genes (Figure 3).  
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Table 1. Differential expression between control and SRS challenged samples. 

Upregulated and downregulated refers to the challenged samples versus the 

unchallenged controls.  

 3 dpi 9 dpi 

 Upregulated  Downregulated Upregulated Downregulated 

Head kidney 2603 2831 2705 2529 

Liver 3117 3453 3260 3111 

 

 

Figure 3. Volcano plots of RNA-Seq data comparing control vs SRS infected 

samples. Each point in the plots represents a gene, with its log2 fold change in the x-

axis and its –log10 p-value in the y-axis. Positive fold change means upregulated in 

infected samples. Genes are classified in 4 categories depending on their FC and FDR 

corrected p-value: i) grey = p-value > 0.01 and log2 fold change between -0.5 and 0.5; 
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ii) green = p-value > 0.01 and log2 fold change < -0.5 or > 0.5; iii) blue = p-value < 

0.01 and log2 fold change between -0.5 and 0.5; and iv) red = p-value < 0.01 and log2 

fold change < -0.5 or > 0.5). 

 

Between 15 and 55 KEGG pathways were enriched for differentially expressed genes in 

the four comparisons (Figure 4, Supplementary File 4). Generally, immune pathways 

such as cytokine-cytokine receptor interactions, apoptosis, and Toll-like receptor 

signaling showed enrichment for gene upregulation in both organs, albeit more strongly 

in head kidney than liver at 3dpi. TNF signaling and bacterial invasion of epithelial cells 

were only enriched for upregulated genes in head kidney, while evidence for 

Staphylococcus aureus infection and phagosome upregulation was liver-specific. 

Energy metabolism pathways showed evidence for downregulation in both organs, 

including glycolysis / gluconeogenesis or fatty acid degradation (Figure 4). 

 

 

Figure 4. KEGG pathways enriched for genes showing significant differential 

expression between SRS infected and control samples. Heatmap showing the fold 
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enrichment of selected KEGG pathways showing significant up- (positive values) or 

down-regulation (negative) in response to SRS infection.  

 

Signatures of resistance to SRS 

SRS resistance breeding values for all the RNA-Seq animals were estimated according 

to the linear mixed model described in the methods. To investigate the association 

between gene expression and resistance to SRS, a network correlation analysis was 

performed. Head kidney and liver transcriptomes clustered into 30 and 22 putative gene 

networks respectively, with each network containing between 25 and 7,000 genes. The 

correlation between the SRS resistance EBVs at each time point and average network 

gene expression (Supplementary Figure 1) revealed significant associations for 6 and 2 

gene networks in head kidney and liver, respectively (|r| > 0.45, p < 0.001; 

Supplementary files 5 and 6, respectively), suggesting that these networks may play a 

functional role in defining host resistance to SRS. KEGG enrichment analysis of the 

gene networks associated with resistance revealed genes involved in the apoptotic 

processes, such as BCL2L1, ITP3 and BNIP3, in the Cytoskeletal reorganization 

pathway such as SPTB, and in Bacterial invasion and Intracellular trafficking such as 

CBL and RAB9A (Figure 5). 
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Figure 5. Correlation between gene expression and breeding values for resistance 

to SRS. Correlation between the expression of 6 genes of interest (normalized read 

counts) and the estimated breeding values (EBVs) for resistance to SRS. The six genes 

are Bcl-2-like protein 1 (BCL2L1), Ion transport peptide 3 (ITP3), BCL2/adenovirus 

E1B 19 kDa protein-interacting protein 3 (BNIP3), Spectrin beta chain (SPTB), E3 

ubiquitin-protein ligase CBL (CBL), and Ras-related protein Rab-9a (RAB9A). 

 

DISCUSSION 

Improving our understanding of the functional basis of genetic resistance and host 

response to SRS in Atlantic salmon is valuable for the development of new strategies of 

disease control. To this end, this large-scale study has provided further evidence for 

significant heritability of host resistance to SRS, and suggested that the genetic 

architecture of resistance is polygenic in nature. Furthermore, RNA-Sequencing of liver 

and head kidney samples from SRS-challenged salmon pre-smolts highlighted a large-
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scale up-regulation of immune pathways and down-regulation of energy metabolic 

pathways compared to controls.  

Resistance to SRS in the population studied herein has a moderate level of genetic 

control, with a heritability estimate of 0.43 (binary survival). This estimate is towards 

the upper limit of those reported in previous studies for Atlantic salmon, which ranged 

between 0.11 and 0.41 [7, 21, 22], and is also similar to those reported for resistance to 

SRS in rainbow trout (ranging between 0.38 and 0.54) [8, 23], but somewhat higher to 

the values found in coho salmon (ranging between 0.16 to 0.31) [24, 25]. The genetic 

variation in resistance to SRS appears to be polygenic in nature, without any significant 

major QTL, and suggestive QTLs on only four chromosomes. This polygenic 

architecture was also reported in previous studies [9–11]. Chromosomes 1 and 12 have 

also been found harbouring genomic regions associated with resistance to SRS in 

previous studies carried out in a different Atlantic salmon population, raising the 

possibility the QTL are the same [9, 10]. The putative QTL found herein on 

chromosomes 2 and 27 identified here differ from previous studies, which can be 

explained by differences in disease challenge conditions (discussed below), different 

genetic background between populations and the polygenic nature of the trait. 

Nonetheless, the moderate heritability and polygenic architecture of resistance to SRS 

in Atlantic salmon make this trait an ideal candidate for genomic selection in salmon 

breeding programmes, which has proved to be an efficient method to select for 

resistance to SRS and other diseases with a polygenic background in salmon [14, 26–

29]. However, it should be noted that the intraperitoneal injection model used for SRS 

challenges will have significant impact on the interpretation of the trait of genetic 

resistance. For example, the route of entry for P. salmonis is via epithelial tissues (skin 

and gills), and these tissues are known to present a critical barrier against bacterial 
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infection [30]. The intraperitoneal injection bypasses this, and therefore it is to be 

expected that only part of the mechanisms of genetic resistance are being captured. For 

this reason, benchmarking genetic resistance measured in the laboratory injection 

challenge with mortality levels observed in the field is an important consideration [31].  

SRS infected animals showed major transcriptional differences compared to uninfected 

controls in both the head kidney and the liver, involving the differential expression of 

thousands of genes, similarly to previous studies that also reported a significant gene 

expression modulation in liver and head kidney in response to SRS [20, 32, 33]. Several 

important innate immune response pathways were up-regulated in both organs, such as 

Apoptosis, NOD-like receptor signalling, NF-kappa B signalling and Bacterial invasion 

of epithelial cells (Figure 4). Likewise, several energy metabolism pathways are down-

regulated in response to the infection, probably as a result of diversion of cellular 

resources towards immune response, as has been suggested in previous studies of 

macrophage cell lines response to P. salmonis infection [17]. The integration of the 

transcriptomic response to infection and the gene network analysis to identify signatures 

of resistance to SRS allowed us to identify four key biological processes that seem to be 

important for the outcome of the infection: i) cytoskeleton reorganization, ii) apoptosis, 

iii) bacterial invasion and intracellular trafficking, and iii) the inflammasome.  

 

Cytoskeleton reorganization 

Genes and pathways related to cytoskeleton reorganization featured heavily in the lists 

of differential expression genes in response to infection. The cytoskeleton plays an 

active role in the innate immune response: cytoskeletal activation is involved in 

pathogen detection, phagocytosis, cell-cell signalling, cell migration, and secretion [34]. 

Furthermore, major disruptions in actin components have been described during the 
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infection process of intracellular bacteria such as Legionella pneumophila, Coxiella 

burnetii and Listeria monocytogenes [35–38]. Similarly, P. salmonis modulates the 

cytoskeleton by inducing actin depolymerization [39], which results in cytoskeletal 

reorganization [19]. This is consistent with our results, where several cytoskeleton 

associated genes showed high correlation with estimated breeding values for resistance. 

A notable example is the Rho-associated coiled-coil kinase 1 (ROCK1; r = 0.27), a 

serine/threonine kinase downstream effector of the Rho family, described as an essential 

regulator of actin cytoskeleton [40]. ROCK kinases participate in the bacterial invasion 

of Coxiella burnetii in human cells, and the use of ROCK inhibitors during infection 

hampered the bacterial internalization process [41]. Furthermore, genes highly 

correlated with SRS susceptibility such as SPTB (r = -0.57) and SEPTIN3 (-0.42) are 

cytoskeleton constituents that participate in protein linking (SPTB; [42]) and GTP-

binding (SEPTIN3; [43]), respectively. This high correlation of these genes with 

susceptibility may be explained by the availability of actin in these structures, which is a 

target for modulation by the bacterium during cytoskeletal depolymerisation, and 

therefore disrupting this modulation of the cytoskeleton may be a strategy to increase 

resistance to SRS.  

 

Apoptosis and cell survival promotion 

Apoptosis is a programed cell-death mechanism essential to development and 

maintenance of homeostasis [44]; but induction of apoptosis has also been observed 

during bacterial and viral infection, hampering microbial replication and dissemination 

[45]. Intracellular bacteria actively modulate cellular apoptosis to enable their 

replication within the cells [46]. Previous studies suggest that P. salmonis modulates the 

apoptotic process of the host as a strategy to ensure intracellular survival [19, 47]. In 
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line with this, apoptotic genes and pathways were heavily modulated during SRS 

infection in the current study. Furthermore, the expression of two different inhibitors of 

apoptosis, BCL2L1 (r = -0.62) and ITP3 (r = -0.50), was negatively correlated with 

resistance to SRS. BCL2L1 inhibits caspase-1 activation by interfering with NLRP1 

oligomerization, a key component of the inflammasome immune response [48], and 

ITP3 has an anti-apoptotic effect in mammalians cancer cells [49]. In contrast, apoptosis 

promoting genes, such as BNIP3 (r = 0.33) [50, 51] and Bim (BCL2L11 r = 0.18) [52], 

were positively correlated with genetic resistance. These findings support the hypothesis 

that apoptosis is initiated as a host strategy to mitigate pathogen dissemination, which is 

subverted by SRS to promote cell survival and bacterial replication.  

 

Bacterial invasion and intracellular trafficking 

The intracellular environment provides diverse advantages to pathogens, for example 

protection against humoral and complement-mediated host defence mechanisms, and 

availability of nutrients and direct access to metabolic pathways to modulate in their 

favour. In order to stablish an intracellular infection, pathogens utilise a wide range of 

mechanisms for internalization and survival [53]. Once inside host cells, P. salmonis is 

capable of establishing intracellular infections, and replicate in macrophages within 

cytoplasmic vacuole-like structures [54]. In P. salmonis, this is facilitated by a virulence 

factor that encodes a type IVB secretion system [17, 55]. The Dot/Icm type IVB 

secretion system allows bacteria to translocate proteins into host cells, and manipulate 

host pathways [56]. In P. salmonis, this may involve modulation of the host cell 

intracellular trafficking, leading to disrupted phagosome-lysosome pathogen clearance 

[55]. Interestingly, in this study key genes participating in intracellular trafficking such 

as RAB1B (r = 0.24) and RAB9A (r = 0.63) are positively correlated with genetic 
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resistance to SRS. RAB1B is a Rab protein modulated by Legionella pneumophila 

Dot/Icm T4SS effectors to recruit endoplasmic reticulum-derived vesicles to stablish 

bacterial replication vacuoles [57]. Conversely, RAB9A is involved in the transport 

between endosome vesicles and the trans Golgi network [58], and is interrupted by 

Salmonella enterica SifA effector to attenuate the lysosomal activity in Salmonella 

containing vacuoles (SCV) [59]. In the current study a strong negative correlation was 

found between the gene CBL (r = -0.52) and resistance to SRS, suggesting that P. 

salmonis virulence factors may target this gene to facilitate bacterial internalization. 

Furthermore, E3 ubiquitin-protein ligase CBL-like isoform X1 (CBL) was found in 

chromosome 2, located in the most significant QTL region for resistance to P. salmonis 

infection. Interestingly, Listeria monocytogenes, another intracellular bacteria, 

expresses surface proteins to modulate host proteins like Met and CBL and hijack the 

clathrin-dependent endocytosis process [60], and previous studies indicate that P. 

salmonis internalization process is mediated by clathrin endocytosis [39]. 

 

Inflammasome 

Another interesting result was the large number of genes differentially expressed in 

response to infection involved in the inflammasome. The inflammasome is an 

intracellular sensing system activated by a broad range of microorganisms that has a 

pivotal role in the innate immune response to infection [61]. Activation of the 

inflammasome initiates a signalling cascade that culminates in caspase-1 expression and 

maturation of the proinflammatory cytokine IL-1β [62]. Numerous studies suggest that 

genes participating in the inflammasome assembly may be conserved in teleost fish [63, 

64]. Moreover, gene activation of inflammasome associated components such as 

NLRP1, ASC and caspase-1 has been described in response to bacterial infection in 
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zebrafish (Danio rerio) and turbot (Scophthalmus maximus) [65, 66]. In the current 

study, genes involved in the activation of the inflammasome had higher expression on 

average in resistant fish, suggesting that overexpression of this pathway could be 

protective during SRS infection. The expression of NLRP1, a sensor that initiates the 

inflammasome response, is significantly positively correlated with genetic resistance (r 

= 0.20). NLRP1 is a NOD-like receptor (NLR) that detects pathogen molecules and 

triggers the activation of effector caspases (caspases 1, 4, 5 and 11) [65]. Similarly, 

NLRC3 is another component of the inflammasome positively correlated with 

resistance (r = 0.31). While in humans it has been described as an inhibitor of the innate 

immune response through the inhibition of NF-kB activity [64], in teleosts NLRC3 

expression is significantly increased in mucosal tissue after exposure to bacteria, 

implying an involvement in the early immune response [67, 68]. In contrast, NLRP12 (r 

= -0.4774) is a regulator of inflammation which acts as a suppressor of pro-

inflammatory cytokines interfering with the NF-kB pathway [69], and therefore its 

negative correlation with genetic resistance suggests that the activation of the 

inflammasome pathway is beneficial in response to SRS. In summary, these findings 

suggest that the activation of the inflammasome pathway is important for a successful 

immune response against P.salmonis. 

 

CONCLUSIONS 

This study highlights a significant genetic component to SRS resistance in Atlantic 

salmon, underpinned by a polygenic architecture. The RNA-Sequencing comparison of 

control and infected fish identified a major signature of host response evident in both 

head kidney and liver tissues. When comparing this response between individual fish of 

high and low resistance breeding values, several interesting gene expression networks 
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were identified that correlate with genetic resistance. These include genes related to 

cytoskeleton, apoptosis and cell survival, bacterial invasion/intracellular trafficking, and 

the inflammasome. Considering the scale and complexity of the transcriptomic response 

observed in salmon challenged with P. salmonis, and the lack of any significant QTL 

associated with host resistance, the potential mechanisms leading to genetic resistance 

are likely to be heterogeneous and vary across different families and individuals. 

However, the pathways and genes highlighted by this study are potential candidates for 

functional studies, and downstream applications in salmon production. For example, 

strategies to increase resistance to the bacteria can focus on disrupting its modulation of 

cellular homeostasis (i.e. cytoskeleton or apoptosis) or on boosting the immune 

processes that prevent or restrain the infection (i.e. inflammasome). Such strategies may 

include CRISPR/Cas knockout or modulation in cell line models, or ultimately in vivo 

to interrogate the impact of perturbation of the identified genes on genetic resistance.   

 

MATERIALS AND METHODS 

Experimental design 

2,265 Atlantic salmon pre-smolts (average weight 174 g) from 96 full sibling families 

from the breeding population of AquaInnovo (Salmones Chaicas, Xth Region, Chile) 

were experimentally challenged with Piscirickettsia salmonis (strain LF-89) in 3 x 7 m3 

tanks. Fish were intraperitoneally injected with 0.2 mL of a 1/2030 dilution of P. 

salmonis. This dose was expected to cause a population-level mortality of close to 50%, 

based on a pre-challenge of 300 fish from the same families challenged with different 

doses of the bacteria. The main challenge was terminated after 47 days, after mortality 

levels had dropped to close to baseline levels. Caudal fin clips were taken from all 

mortality and survivor fish for future DNA extraction and genotyping.  
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For RNA sequencing, 48 fish were sampled pre-challenge, 3 days post-challenge and 9 

days post-challenge from the same tank, for a total of 144 fish. Head kidney and liver 

samples were obtained from each animal and stored in RNAlater at 4 ºC for 24 h, and 

then at -20ºC until RNA extraction.  

 

Genotyping and imputation 

DNA was extracted from the fin clips of the challenged fish using a commercial kit 

(Wizard Genomic DNA Purification Kit, Promega), following the manufacturer’s 

instructions. All samples where genotyped with a panel of 968 SNPs (Supplementary 

file 1) chosen as a subset of the SNPs from a medium density SNP array [70] using 

Kompetitive Allele Specific PCR (KASP) assays (LGC Ltd, UK). A population 

containing full-siblings of the challenged animals had previously been genotyped with a 

SNP panel of 45,818 SNPs (n = 1,056, [70]; Supplementary file 1), and the 

experimental population was imputed to ~46K SNPs using FImpute v.2.2 [71]. 

Imputation accuracy was estimated by 10-fold cross validation, masking all SNPs 

except the 968 SNP panel for 10% of the 1,056 genotyped full-sibs, and then assessing 

the correlation between the true genotypes and the imputed genotypes for the remainder 

of the SNPs. All imputed SNPs showing imputation accuracy below 80% were 

discarded. The average imputation accuracy for the 39,416 SNPs retained 

(Supplementary file 1) was of 95%. Further details about the low-density SNP panel 

and imputation methods can be found in Robledo et al. (2019)[72]. The imputed 

genotypes were then filtered and removed according to the following criteria: SNP call-

rate < 0.9, individual call-rate < 0.9, FDR rate for high individual heterozygosity < 0.05, 

identity-by-state > 0.95 (both individuals removed), Hardy-Weinberg equilibrium p-
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value < 10-6, minor allele frequency < 0.01. After filtering 38,028 markers and 2,345 

fish remained for the downstream analyses. 

 

Estimation of genetic parameters 

The phenotype of resistance to SRS was measured as binary survival, recording 

mortalities as 0 and survivors as 1. Genetic parameters for SRS resistance were 

estimated using the genomic relationship matrix (G-matrix) to model the additive 

genetic relationship between animals in ASReml 4.1 [73] using he following linear 

mixed model: 

 

y = μ + Xb + Za + e, 

 

where y is a vector of observed phenotypes, μ is the overall mean of phenotype records, 

b is the vector of fixed effects which includes tank as factor and weight at the start of 

the challenge as covariate, a is a vector of additive genetic effects distributed as 

~N(0,Gσ
2a) where σ2a is the additive (genetic) variance, G is the genomic relationship 

matrix. X and Z are the corresponding incidence matrices for fixed and additive effects, 

respectively, and e is a vector of residuals. The identity-by-state genomic relationship 

matrix (G) was calculated using the GenABEL R package (“gkins” function; [74]) 

kinship matrix [75], multiplied by two and inverted. 

 

Single-SNP genome-wide association study 

The single-SNP GWAS was performed using the GenABEL R package [74] by 

applying the mmscore function [76], which accounts for the relatedness between 

individuals applied through the GenABEL [74] genomic kinship matrix [75]. 
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Significance thresholds were calculated using a Bonferroni correction where genome-

wide significance was defined as 0.05 divided by number of SNPs [77] and suggestive 

as one false positive per genome scan (1 / number SNPs). 

 

RNA extraction and sequencing 

For all the 288 head kidney and liver samples, a standard TRI Reagent RNA extraction 

protocol was followed. Briefly, approximately 50 mg of tissue was homogenized in 1 

ml of TRI Reagent (Sigma, St. Louis, MO) by shaking using 1.4 mm silica beads, then 

100 µl of 1-bromo-3-chloropropane (BCP) was added for phase separation. This was 

followed by precipitation with 500 µl of isopropanol and posterior washes with 65-75 % 

ethanol. The RNA was then resuspended in RNAse-free water and treated with Turbo 

DNAse (Ambion). Samples were then cleaned up using Qiagen RNeasy Mini kit 

columns and their integrity was checked on Agilent 2200 Bioanalyzer (Agilent 

Technologies, USA). A total of 133 samples were selected for RNA sequencing (74 

liver and 59 head kidney samples; Supplementary file 2) based on their EBVs for 

resistance to SRS and RNA quality. Thereafter, the Illumina Truseq mRNA stranded 

RNA-Seq Library Prep Kit protocol was followed directly. Libraries were checked for 

quality and quantified using the Bioanalyzer 2100 (Agilent), before being sequenced on 

16 lanes of the Illumina Hiseq 4000 instrument using 75 base paired-end sequencing at 

Edinburgh Genomics, UK. Raw reads have been deposited in NCBI’s Sequence Read 

Archive (SRA) under BioProject accession number PRJNA669807. 

 

Read mapping 

The quality of the sequencing output was assessed using FastQC v.0.11.5 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality filtering and 
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removal of residual adaptor sequences was conducted on read pairs using Trimmomatic 

v.0.38 [78]. Specifically, Illumina specific adaptors were clipped from the reads, leading 

and trailing bases with a Phred score less than 20 were removed and the read trimmed if 

the sliding window average Phred score over four bases was less than 20. Only reads 

where both pairs were longer than 36 bp post-filtering were retained. Trimmed reads 

were then pseudoaligned against the Atlantic salmon reference transcriptome 

(ICSASG_v2 Annotation Release 100; [79]) using kallisto v0.44.0 [80]. 

 

Differential expression 

Transcript level expression was imported into R v3.6 [81] and summarised to the gene 

level using the R/tximport v1.10.1 [82]. Gene count data were used to estimate 

differential gene expression using the Bioconductor package DESeq2 v.3.4 [83]. 

Briefly, size factors were calculated for each sample using the ‘median of ratios’ 

method and count data was normalized to account for differences in library depth. Next, 

gene-wise dispersion estimates were fitted to the mean intensity using a parametric 

model and reduced towards the expected dispersion values. Finally a negative binomial 

model was fitted for each gene and the significance of the coefficients was assessed 

using the Wald test. The Benjamini-Hochberg false discovery rate (FDR) multiple test 

correction was applied, and transcripts with FDR < 0.01, normalized mean read counts 

> 10 and absolute log2 fold change values (FC) > 0.5 were considered differentially 

expressed genes. Hierarchical clustering and principal component analyses were 

performed to visually identify outlier samples, which were then removed from the 

analyses. The R packages “pheatmap”, “PCAtools” and “EnhancedVolcano” were used 

to plot heatmaps, PCAs and volcano plots, respectively. Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment analyses were carried out using KOBAS v3.0.3 [84]. 
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Briefly, salmon genes were annotated against KEGG protein database [85] to determine 

KEGG Orthology (KO). KEGG enrichment for differentially expressed gene lists was 

tested by comparison to the whole set of expressed genes in the corresponding tissue 

using Fisher’s Exact Test (genes with mean normalized count values > 10). KEGG 

pathways with ≥ 5 DE genes assigned and showing a Benjamini-Hochberg FDR 

corrected p-value < 0.05 were considered enriched for differential expression. 

 

Network correlation analysis 

Network correlation analyses were performed in R v3.6 [81] using the WGCNA 

package v1.69 [86]. Read counts after variance stabilizing transformation in DESeq2 

[83] were used as measure of gene expression. Co-expression networks were then built 

using a power of 10, and clusters of genes were grouped into different color modules, 

allowing a minimum of 25 genes per module. Correlation between network summary 

profiles and external traits was quantified, and network trait associations showing |r| > 

0.45 and p < 0.001 were considered significant. Thereafter, Kegg enrichment analyses 

were performed for the significantly associated networks using KOBAS 3.0.3 [84] as 

described above. 
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