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Abstract (175/250 words) 51 

Despite a five-order magnitude range in size, the mammalian brain exhibits many shared 52 
anatomical and functional characteristics that should translate into cortical network commonalities. 53 
Here we develop a framework employing machine learning to quantify the degree of predictability 54 
of the weighted interareal cortical matrix. Data were obtained with retrograde tract-tracing 55 
experiments supplemented by projection length measurements. Using this framework with 56 
consistent and edge-complete empirical datasets in the macaque and mouse cortex, we show that 57 
there is significant amount of predictability embedded in the interareal cortical networks of both 58 
species. At the binary level, links are predictable with an Area Under the ROC curve of at least 0.8 59 
for the macaque. At the weighted level, strengths of the medium and strong links are predictable 60 
with at least 85-90% accuracy in mouse and 70-80% in macaque, whereas weak links are not 61 
predictable in either species. These observations suggest that the formation and evolution of the 62 
cortical network at the mesoscale is to a large extent, rule-based, motivating further research on 63 
the architectural invariants of the cortical connectome.  64 
  65 
  66 
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Introduction 67 
 68 
Information in the brain is encoded via the temporal patterns of signals generated by a  69 
network of distributed neuronal assemblies (Hebb, 1949; McCulloch and Pitts, 1943), 70 
whose organization has been shown to be strongly determined by its weighted 71 
connectivity and spatial embedding (Knoblauch et al., 2016; Markov et al., 2013a). This 72 
contrasts with technological information networks, where information including the 73 
destination address is encoded into packets and routed via switches, with the network 74 
structure serving merely as propagation backbone.  In comparison, the structure of brain 75 
networks is considerably more complex and forms an integral part of its processing 76 
algorithm, the deciphering of which crucially hinges on the details of its connectome 77 
(Sporns et al., 2005). This is supported, for example, by the observation that many 78 
neurodegenerative diseases stem from neuronal pathway disruptions (Delbeuck et al., 79 
2007; Friston and Frith, 1995; Peters et al., 2013; Silva et al., 2015).   80 
 81 
Despite being fundamental for understanding the brain in health and disease, there is 82 
limited knowledge of cortical circuitry, which at the microscale is presently intractable, due 83 
to the staggering size of its numbers of nodes (neurons) and connections (Frégnac and 84 
Bathellier, 2015). What is tractable with current technology, however, is the investigation 85 
of the meso-scale, interareal network corresponding to the pathways between functionally 86 
defined areas, addressed in ongoing electrophysiology and whole brain imaging efforts to 87 
understand cognitive functions (Mesulam, 2012). While the full interareal network (FIN) is 88 
currently unavailable for any mammal, it is obtainable in the foreseeable future, although, 89 
nevertheless, requiring highly specialized laboratories.   90 
  91 
Among the empirical approaches, retrograde tract-tracing has emerged as a reliable, high-92 
resolution method to trace neuronal pathways (Köbbert et al., 2000; Lanciego and 93 
Wouterlood, 2011). Compared to anterograde techniques, the major advantage of 94 
retrograde tract-tracing is that counts of labeled cells provide a reliable metric of 95 
connection strength, yielding a weighted, directed and spatially embedded, physical 96 
network of connections between brain areas (Gămănuţ et al., 2018; Majka et al., 2020; 97 
Markov et al., 2014; Zingg et al., 2014). In these experiments a single area (referred to as 98 
the target area) is injected with a tracer, which then back-labels the cell-bodies of neurons 99 
with terminals ending in the target area. Areas external to the target area housing labeled 100 
neurons are referred to as source areas. The weight of an interareal connection from area 101 
𝑗 to area 𝑖, defined via the counts of labeled neurons, is recorded as the Fraction of 102 
Labeled Neurons 𝐹𝐿𝑁!" found in area 𝑗 (𝑗 ≠ 𝑖), when injecting into area 𝑖.  103 
 104 
Existing retrograde tracing datasets do not have full network connectivity information; they 105 
do provide edge-complete subgraphs, i.e., networks formed by a subset of vertices whose 106 
connectivity within this subset is fully known. These studies show that interareal cortical 107 
networks (Majka et al., 2020) are not random graphs, but complex networks with 108 
characteristic structural features (Ercsey-Ravasz et al., 2013; Gămănuţ et al., 2018; 109 
Horvát et al., 2016; Theodoni et al., 2020). Moreover, interareal networks appear to be in 110 
a class of their own when compared to other real-world complex networks, including 111 
technological information networks (Milo et al., 2004). One of the most distinguishing 112 
feature of interareal networks is their high density of binary connectivity (connections 113 
existing or not), i.e., containing a large fraction of the maximum number of possible 114 
connections: 0.66 for the macaque (Markov et al., 2011) and 0.97 for the mouse (Gămănuţ 115 
et al., 2018). At such high values, and especially for the mouse, network specificity is 116 
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achieved by the profiles of connection weights (Gămănuţ et al., 2018). The connectivity 117 
profile of a cortical area is the set of connections and their weights, which has been 118 
hypothesized to constrain its functional properties thereby reflecting its specialization 119 
(Bressler, 2004; Bressler and Menon, 2010; Markov et al., 2011). 120 
  121 
Studies of existing, self-consistent tract-tracing datasets (Kennedy et al., 2013) reveal the 122 
action of a simple rule in both mouse and monkey, the so-called Exponential Distance 123 
Rule (EDR), which significantly constrains the structure of the interareal networks (Ercsey-124 
Ravasz et al., 2013; Theodoni et al., 2020; Horvát et al., 2016; Markov et al., 2013a). The 125 
EDR expresses the empirical observation that axonal connection probability decays 126 
exponentially with projection length, 𝑝(𝑙)	~	𝑒#$%, where 〈𝑙〉 = 1/𝜆 is the average axonal 127 
projection length (𝜆&'()*+ = 0.19	mm#,, 𝜆&'()-. = 0.78	mm#,). With the EDR, a one-parameter 128 
(𝜆), Maximum Entropy Principle based, generative model for interareal networks captures 129 
many binary, and some weighted features of the cortical network, including the frequency 130 
distribution of 3-motifs, global and local efficiencies, core-periphery structures, eigenvalue 131 
distributions and connection similarity profiles (Ercsey-Ravasz et al., 2013; Horvát et al., 132 
2016; Theodoni et al., 2020; Song et al., 2014). 133 
 134 
Interareal connections and the network structure are the evolutionary consequences of 135 
genetic pre-specification and interactions with the environment (Buckner and Krienen, 136 
2013). Although there is network variability between individuals (Gămănuţ et al., 2018; 137 
Markov et al., 2014), one can speculate that there are universal features common to all 138 
individuals within species and across species (Goulas et al., 2019; Margulies et al., 2016; 139 
Mota et al., 2019). This is supported, for example, by the cross-species consistency of the 140 
aforementioned EDR (Horvát et al., 2016; Theodoni et al., 2020) and the similarity of 141 
topographical ordering of the functional areas on the cortical mantle (Krubitzer, 2009). 142 
 143 
Here we refer to the above-mentioned universal features, as architectural network 144 
invariants, which we argue, imply predictability of networks. To study this issue in a more 145 
general and systematic fashion, we turn to data prediction and machine learning methods. 146 
We show that these techniques can be used to assess the degree of predictability of brain 147 
networks and are therefore also usable for network imputation, i.e., to predict missing 148 
network data. Naturally, the accuracy of imputation is determined by the degree of 149 
predictability inherent in the data. Moreover, we argue that predictability methods can also 150 
be used as tools to study structure-function relationships in these networks. Overall, these 151 
methods address the following questions: “Are certain parts of the network more 152 
predictable than others?”, “How much information do individual parts of the network carry 153 
about the network as a whole?”, “How well can missing connections be predicted?”, “How 154 
does heterogeneity in predictability relate to cortical function and behavioral features of 155 
the species?”, “How does predictability in an order (e.g., primate) compare to predictability 156 
in another (e.g., rodent)?” and “Can we use predictability as a guide for further 157 
experiments?”  158 
  159 
Two key methodological aspects of our approach are to be emphasized. First, 160 
predictability is primarily an inherent property of the data itself and not of the algorithm 161 
used. Although the quality of prediction algorithms varies wildly, even the best algorithm 162 
cannot and should not “predict” information that is not there (for example, in the case of 163 
two pieces of mutually independent data A and B). Secondly, great care has to be taken 164 
in order to avoid overfitting, that is, fitting to noise in the data, as this leads to loss of 165 
generalization power and erroneous conclusions.  166 
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Results 167 
 168 
First, we introduce the datasets in our study then give a brief summary of the prediction 169 
methods used and how they are adapted to work with retrograde tract-tracing datasets. 170 
We then present our main results on network predictability using cross-validation both at 171 
the binary and weighted levels, along with a comparison of predictability between rodent 172 
and primate cortical networks. 173 
 174 
Data description. We rely on two retrograde tract-tracing datasets, one for the macaque 175 
(mac) and the other for the mouse (mus). Both are cortico-cortical connectivity databases 176 
created with consistent methodology, having most of the data published in (Gămănuț et 177 
al., 2018) in the mouse and a more limited dataset based on 29 injection areas in a 91-178 
area atlas in (Markov et al., 2014) on the macaque. The mouse dataset 𝐺,/×12)-.  is a matrix 179 
of FLN values 𝐹𝐿𝑁!" for 19 injected target areas (𝑗 is a source, projecting into target 𝑖), in 180 
a 47-area parcellation. The current macaque dataset 𝐺13×/,)*+  contains the original data for 181 
the 29 areas published in (Markov et al., 2014) and the weighted connections for an 182 
additional 11 areas, bringing the total of injected areas to 40 in a 91-area parcellation. 183 
Both datasets are provided in the Supplementary Information (SI). The full interareal 184 
networks (FIN), which are not available for either species, would be the matrices 𝐺12×12)-.  185 
and 𝐺/,×/,)*+ , respectively. Additionally, our datasets contain all pairwise distances along 186 
estimated shortest paths avoiding anatomical obstacles, between the area barycenters, 187 
recorded in the matrices 𝐷12×12)-.  and 𝐷/,×/,)*+ , respectively, also provided in the SI. 188 
 189 
Repeat injections across individuals allow an assessment of the consistency of the set of 190 
areas and their FLN values (Gămănuţ et al., 2018; Markov et al., 2011). Due to the high 191 
sensitivity of the tracers, every injection reveals all the areas that project into the injected 192 
target area and thus, the FLN matrix 𝐺4×5 is a row submatrix of the FIN 𝐺5×5. That is, we 193 
either know the full row (corresponding to a target area) or not at all. This is illustrated in 194 
Figure 1A where, for simplicity, we order the rows such that the first 𝑇 rows represent the 195 
targets, in the full 𝐺5×5 matrix.  196 
 197 
Data preprocessing. In order to use the available input data, it needs to be organized in a 198 
format appropriate for the prediction algorithms (described below). We preprocess the 199 
FLN matrix by computing the base-10 logarithm of all its non-zero entries (Markov et al., 200 
2013a) (values range in order of magnitude from 10#2 to 1) then shifting the values by 201 
adding 7 to them: 𝑤!" = 7 + log,3B𝐹𝐿𝑁!"C. The zero entries are left as zeroes. The resulting 202 
matrix has values between 0 and 7 (in both species). The 0 entries correspond to non-203 
links (i.e., non-connected node pairs) and elements on the main diagonal, non-zero entries 204 
to actual links. The macaque distance matrix range (0, 58.2	mm), and the mouse 205 
(0, 12	mm). For both species the distance feature matrix 𝐷6 = 31	(𝐷/max𝐷) with values 206 
ranging from 0 to 311. 207 
  208 
The link prediction framework. Link prediction refers to inferring links from observed 209 
network data (Liben-Nowell and Kleinberg, 2007; Clauset et al., 2008; Lü and Zhou, 2011). 210 
This can be done at the binary (predicting only if a link exists/1 or not/0) or weighted levels 211 
(predicting the associated weight). Binary level predictors also are known as classifiers, 212 
whereas weighted link predictors are essentially regressors.  There are two main families 213 
of prediction methods for static networks, Classical Link (CL) predictors and Machine 214 

 
1 This value gives a good resolution on the distance range, but other similar values can also be used. 
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Learning (ML) predictors. CL predictors, used extensively in social networks, are 215 
classifiers that forecast links at the binary level based on either node neighborhood 216 
information (local) or path information (global). This information is formulated into a 217 
predefined model that generates a score 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑣) for every ordered node pair (𝑢, 𝑣), 218 
which is then used to make the prediction. ML predictors can be used as classifiers (for 219 
binary prediction) or as regressors (for weighted prediction). They predict based on 220 
learning from samples with a given set of features. A feature is a vector of values (feature 221 
vector) quantifying what we know about the relationship of a node pair. We train an ML 222 
predictor in a supervised fashion, by providing the feature vectors computed for the node 223 
pairs in the training set and using the “ground truth” data about the pairs’ connectivity. The 224 
classifier then creates a model autonomously that best fits the given training set with the 225 
given feature vectors, which is then tested against the ground truth in the test data and 226 
the classifier’s performance is evaluated. Thus, the main difference between CL and ML 227 
is that we impose the model in CL, whereas it is learnt in ML. However, for both CL and 228 
ML, the information on which the prediction is based (scores and feature vectors) has to 229 
be computable for all pairs in an identical fashion, which limits the types of predictors that 230 
can be used for retrograde tracing datasets. In particular, for CL, path-based predictor 231 
models such as PageRank, Katz score, and Shortest Path score are effective when 232 
random links exist adjacent to the link (or non-link) to be predicted. However, in retrograde 233 
tracing datasets we are forced to select injected areas as the basis for predictions, but 234 
there are no paths into some of the vertices of the links to be predicted (i.e., the remaining 235 
areas that were not injected), thus excluding path-based predictors. For both CL and ML, 236 
we can only use information on out-going links, being the only type of information 237 
commonly available to all node pairs, see Figure 1B. 238 
 239 
The performance of both classifiers (CL, ML) and regressors (ML) is evaluated using 240 
cross-validation techniques. This separates the available data with ground truth value into 241 
two sets: a training set and a test set. The former is used as input information for the 242 
predictor, which based on that, makes predictions for links in the test set, which is then 243 
compared to the ground truth. One of the two main approaches is the 𝑘-fold cross-244 
validation, used here, which splits the data into 𝑘 equal parts, using in one iteration one of 245 
the parts for the test set and the other 𝑘 − 1 parts for training, then this is repeated for 246 
every combination of test/training split. Performance metrics are then averaged.  To avoid 247 
correlations with any predetermined ordering of the input data we randomize the ordering 248 
of the target areas in the FLN matrices2 before splitting it into 𝑘 parts. We then compute 249 
the corresponding averages over all these randomized realizations and all folds within. An 250 
alternative approach is Monte Carlo cross-validation, which we found gave very similar 251 
results to 𝑘-fold cross-validation.  252 
 253 
For classifiers we use the standard receiver operating characteristic (ROC) curve and the 254 
corresponding single scalar metric, the area under the ROC curve (AUC) as performance 255 
metrics. The ROC shows the true positive rate (TPR) plotted against the false positive rate 256 
(FPR), obtained by moving the threshold value that distinguishes positive and negative 257 
predictions. A perfect classifier has 100% TPR and 0% FPR and the ROC curve fills the 258 
top left corner of the unit square; a random predictor has 50% TPR and 50% FPR with the 259 
ROC following the main diagonal of the unit square, whereas anything below the main 260 
diagonal implies an invalid predictor. The ROC curve also has a specific point that 261 
corresponds to the maximum prediction accuracy. Accuracy is defined as the number of 262 
correctly predicted links and non-links divided by the number of all predictions (ACC = (TP + 263 

 
2 The training of ML predictors can be sensitive to the order in which the training data is supplied. 
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TN) / (TP + TN + FP + FN)), where TP, TN, FP, and FN are the number of true positive, true 264 
negative, false positive, and false negative predictions, respectively. This point is determined 265 
numerically for each ROC curve, and this threshold is used to make the binary predictions 266 
during cross-validation. For weighted predictors there are no ROC curves. Instead, we use 267 
the mean absolute error (MAE) or the relative MAE (RMAE) between predicted and actual 268 
links weights (using RMSE, i.e., root-mean-square error gives very similar results).  269 
 270 
Cross-validation helps to quantify not only how well a particular algorithm predicts the 271 
presence or absence of links but also to quantify the degree of predictability in the data, 272 
especially when comparing across ML algorithms, for both binary and weighted 273 
predictions. Note, predicting the connectivity status of node pairs for which there is no 274 
ground truth (imputation task), is only meaningful if the cross-validation results indicate 275 
significant predictability in the data. Here we present predictability results (cross-276 
validation) in both species using both CL and ML algorithms at binary and weighted levels. 277 
Link imputation will be presented in a subsequent publication. 278 
 279 
Network predictability in the macaque and mouse 280 
 281 
Binary link prediction. CL algorithms generate a score 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑣) for every node pair 282 
(𝑢, 𝑣) based on link predictor formulas that express various types of network information. 283 
These formulas, used typically in social networks, provide summations over nodes with 284 
incoming links from both 𝑢 and 𝑣. Since retrograde tracing data such as the ones used 285 
here only reveal the incoming links to the target areas, the predictor formulas must be 286 
modified accordingly (shown in Materials and Methods).  287 
 288 
In the case of ML classifiers, we need to specify the feature vectors. Figure 2 shows the 289 
macaque ROC curves for ML classifiers (solid lines) based on full information feature 290 
vectors, namely, feature vectors composed of both FLN values and distances. We have 291 
tested several other combinations of data for feature vectors and found the results to be 292 
invariably inferior to that based on full information (SI Figures S1-S4).  ML classifiers other 293 
than those shown in Figure 2 have also been tested, such as DecisionTree, AdaBoost 294 
and NaïveBayes but overall had a performance inferior to those shown here. It is clear 295 
that with the exception of JA (modified Jaccard), the CL predictors do not perform as well 296 
as the four ML classifiers. The ML classifiers were tested against overfitting (SI Figures 297 
S6, S7 show the case of the MLP). They were also tested using different 𝑘 values for the 298 
number of folds (SI Figure S8).  299 
 300 
The approximately 80% AUC obtained consistently by the top performing classifiers, 301 
indicates high predictability embedded in the macaque interareal network, suggesting the 302 
existence of architectural invariants and corresponding mechanisms (Figure 2). This 303 
analysis cannot be applied to the mouse dataset, (see the ROC curves in the SI Figure 304 
S9), due to its ultra-high density of 97%. This density causes a strong bias and prevents 305 
the calculation of a meaningful ROC curve, because the classifiers have only 3% true 306 
negatives to learn from, meaning that only weighted predictions can be made in the mouse 307 
brain, presented in the next section.  308 
 309 
Figure 3 shows individual link prediction errors in the macaque data for all the links with 310 
a corresponding ground truth value (lighter colors correspond to smaller errors). A 311 
prediction (link existing/1 or not/0) was obtained for every 𝑘-fold run in all area-pairs 𝑖, 312 
averaged over 100 randomized 𝑘-fold run predictions, generating a prediction 〈𝑦(7&8(𝑖)〉. 313 
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The error is calculated via 𝑒𝑟𝑟𝑜𝑟(𝑖) = S𝑦97-&(𝑖) − 〈𝑦(7&8(𝑖)〉S, where 𝑦97-&(𝑖) ∈ {0,1} is the 314 
true binary link value. The inset in Figure 3A is a matrix of link prediction error 315 
heterogeneity by cortical brain regions. This shows that links from the frontal to temporal 316 
regions are less predictable (bottom row, second column), while links from frontal to 317 
cingulate (and prefrontal) are more predictable, etc. In addition, links within functional 318 
regions are more predictable than between regions (main diagonal of the small matrix), 319 
suggesting that predictability is possibly distance and thus weight dependent, since from 320 
EDR, we know that short/long connections are preponderantly strong/weak. Figure 3B,C 321 
show how prediction errors behave as a function of the link weights and distance 322 
demonstrating the action of a distance rule on predictability.  323 
 324 
In order to disentangle the effect of distance/weight, we examined predictions based only 325 
on links of certain strengths: Strong only, 𝑤!" ≥ 5; Medium-&-Strong, 𝑤!" ≥ 3; Medium-&-326 
Weak, 𝑤!" ≤ 5 and Weak only, 𝑤!" ≤ 3. The sizes of these weight groups are: 494 links 327 
for Strong, 1600 links for Strong-&-Medium, 3146 links for Medium-&-Weak and 2040 links 328 
for Weak. Figure 4 clearly shows that weak links are not predictable at the binary level 329 
(panel D) implying that the weak (thus long-range) links carry no information about each 330 
other. This is a significant observation that we revisit below, in our weighted prediction 331 
analysis as well. The maximum binary predictability is within the Strong-&-Medium group. 332 
The Strong group has a somewhat weaker predictability, possibly because that is the 333 
smallest set to learn from and the presence of some strong links with high unpredictability 334 
(red circles in Figure 3A). One of them, V4 → 8l is part of a strong loop, discussed in the 335 
literature (Markov et al., 2013b, 2013a; Vezoli et al., 2021).  Note that these are the links 336 
with the highest prediction errors within the Strong group, only. 337 
 338 
Weighted link prediction and comparisons between mouse and macaque. In order 339 
to predict the link weights, we need to turn to supervised regression methods. This 340 
excludes CL algorithms as they are designed uniquely for binary link predictions. Since all 341 
our ML classifiers are available as regression algorithms as well, they can be readily used  342 
for weighted link prediction. The same feature vectors as for binary classifiers are used 343 
but the ground truth now is the actual link weight, 𝑤97-&. In terms of evaluating the 344 
performance and the amount of predictability inherent in the network we employ the 𝑘-fold 345 
cross-validation scheme as previously, but the performance metric has to be modified 346 
(there are no ROC curves in weighted link prediction). Here we could use the mean 347 
absolute error (MAE) obtained as the absolute value of the difference between the 348 
predicted and the actual weight |∆𝑤| = %𝑤!"#$ −𝑤%"&#%, averaged over the 100 𝑘-fold 349 
predictions. Since FLN values vary over orders of magnitude, the MAE of a weak link is 350 
not easily comparable to that of a strong link. In order to take this into account, we employ 351 
the relative MAE (RMAE), which is the MAE divided by the ground truth strength of the 352 
predicted link, 	|∆𝑤|/𝑤%"&#. Thus, the RMAE value is the fraction of the link weight that is 353 
not predicted. For example, an RMAE of 0.2 means that 80% of the link weight 𝑤 was 354 
predicted and 20% was not. An RMAE of 2 reflects an error of 200% compared to the true 355 
link strength.  As for the binary prediction, comparing the performance of several 356 
classifiers, GB, KNN, MLP, RF come out as the four top predictors.  357 
 358 
These regressors work by minimizing a cost function (such as the root-mean-square error 359 
RMSE) over the training set, when finding the best-fitting model, which in turn, is used to 360 
predict the test set. Analysis of prediction residuals provides both an efficient test of the 361 
capacity of the predictor to capture the signal part of the data as well as a means of ranking 362 
performance. This analysis shows that GB performs somewhat better compared to RF, 363 
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MLP or KNN. SI Figure S10 shows the results from the analysis of the prediction residuals 364 
for the GB algorithm. A featureless scatter plot of the residuals vs. predicted values as 365 
shown in SI Figure S10C indicates that the signal portion of the data has been well learned 366 
by the predictor. 367 
 368 
For simplicity, in the following we show predictions based only on GB. Figure 5A,B shows 369 
the prediction error (RMAE) matrices for both the macaque and mouse. Note the strong 370 
similarity of the patterns between Figure 5A and Figure 4A for the macaque. At the 371 
weighted level as well, some of the links are more predictable than others. The matrices 372 
at the regional level, presented in Figure 5C,D also show heterogeneity: for example, 373 
across species, temporal to occipital are highly predictable, whereas occipital to frontal 374 
are less so. Globally, the mouse network appears more predictable than the macaque 375 
(overall lighter matrices for the mouse). This is further demonstrated in Figure 6 where 376 
we plot RMAE values as function of link weight as well as a function of link projection 377 
lengths (distance). While in both species, weaker links are harder to predict, comparing 378 
(A) to (C) we see that the medium-to-strong links are much more predictable in the mouse 379 
than in the macaque, but the situation is reversed for the weakest links. Similarly, long-380 
range links are harder to predict in both species than shorter ones. Overall, weighted links 381 
are more predictable in the mouse than in macaque. 382 
 383 
We quantify global link predictability, and by link weight classes in Table 1, for both 384 
species. Predictions (3-fold cross-validation) were made on the full dataset (including links 385 
with non-zero weight and also non-links) using the GB algorithm and errors computed and 386 
averaged within the corresponding groups. The RMAE values in Table 1 show that weak 387 
links are not predicted in either species, whereas the stronger links are better predicted in 388 
both species. The stronger links are in general two-fold more predictable in the mouse 389 
than in the macaque. The non-links, however, are better predicted in the macaque, likely 390 
due to the fact that there are only 3% non-links in the mouse dataset. Since the larger 391 
errors are associated with the non-links, we performed the predictability analysis also on 392 
a reduced dataset, with only actual links included (non-links excluded). That is, we trained 393 
the ML algorithms only on the portion of the matrix with non-zero link-weights. The 394 
predictability results are shown in SI Table S3. Except for the weak links, predictability 395 
improved in general, with mouse links being overall 1.5 times more predictable than the 396 
macaque ones. 397 
  398 
Scaling of predictability with input data, leave-one-out analysis. Another important 399 
issue is the scaling of predictability with the amount of input, i.e., the amount of data used 400 
for training. To investigate this question, we consider a random subset of 𝑚 areas from all 401 
the targets, leave one target area out (of this set of 𝑚), then make a prediction based on 402 
the rest for all the out-links of this one area. We then repeat this with every member of this 403 
subset, obtaining predictions for all of them. These are then compared with the ground 404 
truth and the relative error is calculated. We call this the internal relative error (internal to 405 
the selected subset). We then repeat this random selection of 𝑚 subsets 500 times and 406 
average the obtained relative errors for all the targets, shown in Figure 7. An interesting 407 
conclusion from Figure 7 is that the ML predictors are able to learn the structure in the 408 
data fairly quickly for the medium to strong links, and the improvement after that is 409 
relatively small, although more significant for the weak links (note the log-scale on the y-410 
axis). Another way of studying the scaling of errors with input data size is described in the 411 
caption of SI Figure S12, which shows prediction errors for areas external to the 𝑚 412 
selected. The two plots are not significantly different, leading to the same conclusion.  413 
 414 
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Discussion  415 

Using machine learning methods, we demonstrated that the network of the mammalian 416 
cortex contains significant structural predictability, suggesting that the formation and 417 
evolution of the cortex is to a good extent rule based, at the mesoscale level. This further 418 
motivates the search for universal mechanisms of brain network formation and evolution, 419 
within the mammalian order.  420 
 421 
The literature on link prediction in the brain is fairly limited. To the best of our knowledge, 422 
the earliest link prediction effort in the context of brain neuronal networks goes back to a 423 
1998 paper by Jouve et al. (Jouve et al., 1998), which uses the frequency of directed 424 
transitive triples to predict missing links at the binary level (existing or not), in an early 425 
dataset on the macaque visual system (Felleman and Van Essen, 1991). The next brain 426 
link prediction papers appear almost a decade later, which incorporate additional 427 
topological and spatial features (Costa et al., 2007; Nepusz et al., 2008), both based on 428 
the CoCoMac database (Kötter, 2004), with the latter using a stochastic graph fitting 429 
method to handle the uncertainties in the data. Several other publications followed these 430 
papers (Hoff, 2009; Cannistraci et al., 2013; Hinne et al., 2017; Røge et al., 2017; Chen 431 
et al., 2020; Shen et al., 2019), but all (including the earliest three) are based on pre-432 
conceived network models whose parameters are fitted to the data, and then used to make 433 
predictions (usually at a binary level) on missing links. These network models quantify the 434 
belief that the existence or absence of a link is largely determined by some summary 435 
network statistics on the existing data. One problem with this approach is that it imposes 436 
specific relationships that the modeler believes to be relevant. Another is that the summary 437 
statistics are obtained on an incomplete dataset, which inherently biases these statistics, 438 
a bias which is then built into the prediction. A further bias present in almost all the previous 439 
link prediction papers is that they are based on network models from the field of social 440 
networks. However, brain neuronal networks are quite different from social networks in 441 
many aspects and thus social networks-based models would have limited practical 442 
applicability in the brain. Here we compared the performance of the social science 443 
inspired, model-imposed link predictors (CL) with machine learning based methods (ML) 444 
that learn the structure from the data, without imposing specific models or assumptions. 445 
Our results show that the latter approach achieves significantly better predictions than the 446 
model-based predictors. Another reason for the poor performance of most CL predictors 447 
is the fact that the CL formulas use only a single weight value and not multivariate 448 
information about a link (such as weights plus distance) efficiently, unlike ML algorithms 449 
(using only distances for CL, gives worse performance, see the SI Figure S5). The Jaccard 450 
coefficient is the only successful CL predictor because its formula happens to agree with 451 
a property of the link weight distributions in the brain. More precisely, it is due to the fact 452 
that the formula for the Jaccard index correlates with the triangle inequality, which holds 453 
for spatial networks and that also happens to be respected by the link weights of the brain, 454 
due to the action of the EDR: if areas A and B are close to each other (strong link) and 455 
area C is far from A (weak link), then C will also be far from B (weak link), mimicked by 456 
the Jaccard index as well.  457 
 458 
Another significant issue affecting the reliability of predictions is the quality of the dataset. 459 
While the CoCoMac database is one of the largest connectomics databases, it is also a 460 
collation of results from independent studies using different approaches under different 461 
conditions, with significant inconsistencies (Bezgin et al., 2012). Moreover, the  CoCoMac 462 
database does not distinguish absent links from links of unknown status, which is a major 463 
source of errors in network modeling (Kennedy et al., 2013). The results generated from 464 
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the two retrograde tract-tracing datasets in non-human primates (macaque) and rodent 465 
(mouse), both obtained with consistent empirical methodology, allow for interspecies 466 
comparisons (Horvát et al., 2016) of the statistical network properties, using the edge-467 
complete portions of the datasets. The ML predictions show that weak/long-range links in 468 
general are not predictable in either species, and that these links have little to no 469 
information about each other, at least in terms of link weights and projection distance. 470 
Moreover, they also show that overall, the mouse brain has a more predictable structure 471 
than the macaque (roughly by a factor of two in terms of errors). However, it is somewhat 472 
more difficult to predict the weakest connections in the mouse, than in the macaque 473 
(compare panels A and C in Figure 6). Accordingly, one could speculate that the long-474 
range connections have less specificity in the mouse brain than in the macaque. It is, 475 
however, important to note that these predictability measures are all based on the features 476 
of link weights and projection distances. Including additional, biologically relevant features 477 
such as cell types could lead to a refinement of the predictability analysis presented here.  478 
 479 
Finally, we recall that the EDR model (Ercsey-Ravasz et al., 2013; Markov et al., 2013a; 480 
Horvát et al., 2016), mentioned in the introduction, captures many features of the cortical 481 
networks in both species. One may ask, what is the amount of predictability in the EDR 482 
model networks themselves, using the same distance matrices as in the data, and the 483 
corresponding, empirically obtained 𝜆 decay rates? We find that the top predictors achieve 484 
a slightly better performance on the EDR model networks (an AUC of 0.86, see SI Figure 485 
S11) than on the experimental connectivity data (an AUC of 0.82, see Figure 2). The 486 
improved performance in the EDR network is expected, given that these networks are, by 487 
definition, rule-based, with some level of randomness included (Ercsey-Ravasz et al., 488 
2013).  489 
 490 
Machine learning methods may also be used as a guide to future neuroanatomical 491 
experiments. For example, if all predictors consistently suggest the existence or absence 492 
of a link where the data indicates the opposite, it may prompt the revision of the empirical 493 
data. Prediction results could also propose optimal injection sites based on the expected 494 
surprise that the data could reveal from such injections. Targets that generate in-links that 495 
are highly similar to the existing data do not add much novelty to the dataset, but areas 496 
with large deviations from the average link predictions may contain significant information 497 
about the specificity of the incoming links into that target. These could correspond, for 498 
example, to the appearance of a novel information processing modality in the brain, 499 
reflecting a significant evolutionary branching event in the history of the species.   500 
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Materials and Methods 501 
 502 
Software packages. For this work we used Python 3.7 and SciKit-Learn version 0.20.2. The 503 
computation of the ML and CL predictors, cross-validation, and analysis of the results were 504 
implemented in a Python. General calculations and plotting functions are utilizing the standard 505 
packages of NumPy and Matplotlib.  506 
 507 
Classical Link predictor formulas. Since we do not have incoming links except for injected 508 
areas, we need to modify slightly the predictor formulas as shown in Table 2. 509 
 510 
Machine learning classifiers and predictors. All the classifiers used are implemented in the 511 
Python package scikit-learn; “defaults” refer to those parameters provided in version 0.20.2 of the 512 
library. We list the other parameters used for each classifier below. 513 
 514 

• K-Nearest Neighbors (KNN): n_neighbors = 5, leaf = 30 515 
• Decision Tree (DT): defaults 516 
• Random Forest (RF): n_estimators = 200, criterion = 'gini' 517 
• Multi-Layer Perceptron (MLP): hidden layer size: 100, convergence error tolerance: 10'(, 518 

max iterations: 20 519 
• Gradient Boosting (GB): n_estimators = 100 (default), which is the number of boosting 520 

stages to perform. GB is robust to over-fitting and larger values typically yield better 521 
performance. max_depth = 7 (not default). This is the maximum depth of the individual 522 
regression estimators. It limits the number of vertices in the tree.  523 

• AdaBoost (ADA): defaults 524 
• Naïve Bayes (NBA): defaults 525 

 526 

Feature vectors. Here we summarize the feature vectors that we used to train and test the 527 
classifiers. In each feature function in Table 3, the link in question is (𝑢, 𝑣); 𝐴 denotes the weight 528 
matrix; 𝐷 denotes the distance matrix; 𝑑(𝑥) denotes the outdegree of node 𝑥 in 𝐼; and 𝐼 denotes 529 
the set of injected areas (nodes). Notice that the feature vectors have various lengths, as some 530 
provide more information than others. 531 
 532 
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Figures and Tables 677 
 678 
 679 

 
 
Figure 1. Schematics for link prediction with retrograde tract-tracing data. (A) 𝑘-fold cross-
validation setup for predictability (𝑘 = 3). (B) Links are predicted based on information (weights, 
distances) from the out-neighborhoods of its incident vertices. 
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 680 
Figure 2. ROC curves for binary link prediction in the macaque. Dashed lines are from CL 681 
predictors: CN-common neighbors, PA-preferential attachment, AA-Adamic-Adar, RA-resource 682 
allocation, JA-Jaccard index. The continuous lines are from the four best ML classifiers, based on 683 
the full FLN-plus-distance feature vectors: KNN - K-nearest neighbors, MLP – multilayer perceptron 684 
and RF – random forest, GB – gradient boosting, using 𝑘-fold cross-validation, with 𝑘 = 3. The 685 
markers indicate the location of the maximum accuracy thresholds.  686 
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 687 
Figure 3. Binary prediction heterogeneity in the macaque brain. (A) Prediction error matrix for 688 
all known links (3-fold cross-validation) generated by GB. Vertical lines within the main diagonal 689 
boxes, separate targets (to the left of the line) from non-injected areas (to the right of the line). Red 690 
circles indicate strong links (with weights > 5) with high prediction errors. Along with their weights 691 
𝑤 and their errors 𝜖, these are: V6 → DP (𝑤 = 5.3, 𝜖 = 0.75), V6A → 9/46d (𝑤 = 5.28, 𝜖 = 0.69), 692 
V6 → LIP (𝑤 = 5.47, 𝜖 = 0.79), 𝑉4 → 8l (𝑤 = 5.11, 𝜖 = 0.87), MT → 8l (𝑤 = 5.33, 𝜖 = 0.62) and 693 
TEa/mp → 9/46v (𝑤 = 5.3, 𝜖 = 0.53)). Inset matrix shows inter-regional errors obtained by 694 
averaging errors within sub-matrices corresponding to cortical lobes. (B) Prediction errors as 695 
function of link weights and (C) as function of link projection distance. The vertical line in (B) at 0 696 
are all the node pairs for which the prediction was non-link, while (C) contains all links and all non-697 
links. The orange shaded areas in (B) and (C) represent one standard deviation from the average 698 
(orange line). The definition of error measure is given in the main text. Area abbreviations with 699 
corresponding area names and region assignments are provided in the SI Table S1.  700 
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 701 
Figure 4. Binary predictability as function of link weights. Predictability from only (A) Strong 702 
links 𝑤)* ≥ 5 (494 links), (B) Strong-&-Medium 𝑤)* ≥ 3 (1600 links), (C) Medium-&-Weak 𝑤)* ≤ 5 703 
(3146 links) and (D) Weak links 𝑤)* ≤ 3 (2040 links). The AUC values and errors in (A) KNN (0.67 ±704 
0.02), MLP (0.77 ± 0.03), RF (0.77 ± 0.02), GB (0.75 ± 0.02), JA (0.70 ± 0.02); in (B) KNN (0.79 ±705 
0.02), MLP (0.83 ± 0.02), RF (0.83 ± 0.02), GB (0.83 ± 0.02), JA (0.82 ± 0.02); in (C) KNN (0.67 ±706 
0.02), MLP (0.62 ± 0.04), RF (0.67 ± 0.03), GB (0.64 ± 0.03), JA (0.62 ± 0.04); in (D) KNN (0.47 ±707 
0.03), MLP (0.49 ± 0.05), RF (0.49 ± 0.03), GB (0.48 ± 0.03), JA (0.55 ± 0.02).  708 
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 709 
 710 

Figure 5. Prediction error heterogeneity for link weights. (A) Weight prediction error (defined 711 
as relative mean absolute error, RMAE) matrix for all known links with 3-fold cross-validation, in 712 
the macaque, generated by GB and (B) in the mouse. The vertical lines within the main diagonal 713 
boxes, separate targets (to the left of the line) from non-injected areas (to the right of the line). (C) 714 
inter-regional error matrix for the macaque (averaged from the matrix in (A)) and (D) for the mouse 715 
(averaged from the matrix in (B)). For non-links, the RMAE was calculated using the lowest 716 
statistically acceptable FLN value of 8 × 10'+ for the ground truth value (corresponding to a weight 717 
of 𝑤 = 0.9). Area abbreviations with corresponding area names and region assignments are 718 
provided in the SI Table S2.  719 
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  720 

 
Figure 6. Weighted prediction errors as function of link strength and distance, using the 
prediction data from  

Figure 5. (A) Relative mean absolute error RMAE vs link weight and (B) vs projection distance, 
in the macaque for every predicted link. (C) same as (A) and (D) same as (B), for the mouse. 
The continuous line is the mean value, the orange shaded area corresponds to one standard 
deviation. Panels do not contain data for no connections. 
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  721 

 

Figure 7. Scaling of prediction errors as function of input data size in a leave-one-out 
analysis. The relative mean prediction errors RMAE (of weights) are computed for areas 
internal to a set of  𝑚  targets for both macaque (A) and mouse (B), then plotted as function of 
𝑚, see main text for description. The errors are separated by link weight class. Note the 
logarithmic scale on the y-axis.  
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Table 1. Prediction errors by link weight. MAE: Mean Absolute Error |∆𝑤| = %𝑤!"#$ −𝑤%"&#%, 722 
RMAE: Relative Mean Absolute Error |∆𝑤|/𝑤%"&#. For “non-links” only, for the relative error, we 723 
used the estimated experimental lower cutoff value of 𝑤%"&# = 𝑤,&% = 0.9, corresponding to an 724 
𝐹𝐿𝑁 = 8 × 10'+.  725 
 726 

Non-links included 
Macaque Mouse Mac/Mus 

MAE RMAE MAE RMAE RMAE ratio 
Weak (𝒘𝐜𝐮𝐭 < 𝒘 < 𝟑) 1.016 0.441 1.032 0.446 0.989 
Weak-&-Medium (𝒘𝐜𝐮𝐭 < 𝒘 < 𝟓) 1.134 0.358 0.647 0.196 1.827 
Medium-&-Strong (𝒘 > 𝟑) 1.227 0.282 0.565 0.127 2.220 
Strong (𝒘 > 𝟓) 1.272 0.228 0.569 0.102 2.235 
All links (𝒘 > 𝒘𝐜𝐮𝐭) 1.164 0.330 0.622 0.166 1.988 
Non-links (𝒘 ≤ 𝒘𝐜𝐮𝐭) 1.382 1.039 2.911 2.288 0.454 
Both links and non-links 1.246 0.591 0.683 0.222 2.662 

 727 
 728 
 729 
 730 
 731 
 732 
 733 
Table 2. Classical, neighborhood-based link predictors for directed and weighted networks. 734 
The formulas have been adapted to be based on the out-link neighborhood information of the 735 
endpoints (𝑢, 𝑣) of the directed link to be predicted. Each formula provides a prediction score 𝑠(𝑢, 𝑣) 736 
for that directed link. Here 𝐼 denotes the set of all target (injected) areas and Γ-(𝑢) denotes the 737 
neighbors of 𝑢, including itself. 738 
  739 

Method (abbreviation) Formula 
Common Neighbors v2 (CN2) 𝐶𝑁2(𝑢, 𝑣) =

1
2/

[𝑤(𝑧, 𝑢) + 𝑤(𝑧, 𝑣)]
$∈&

 

Preferential Attachment (PA2) 
𝑃𝐴2(𝑢, 𝑣) = 7

∑ 𝑤(𝑧, 𝑢)$∈'!())

|𝛤+(𝑢)|
;7
∑ 𝑤(𝑧, 𝑣)$∈'!(,)

|𝛤+(𝑣)|
; 

Adamic Adar v2 (AA2) 
𝐴𝐴2(𝑢, 𝑣) =

1
2</

𝑤(𝑧, 𝑢) + 𝑤(𝑧, 𝑣)
log∑ 𝑤(𝑥, 𝑧)-∈'!($)$∈&

A 

Resource Allocation v2 (RA2) 
𝑅𝐴2(𝑢, 𝑣) =/

𝑤(𝑧, 𝑢) + 𝑤(𝑧, 𝑣)
∑ 𝑤(𝑥, 𝑧)-∈'!($)$∈&

 

Jaccard v2 (JA2) 
𝐽𝐴2(𝑢, 𝑣) =

∑ min(𝑤(𝑧, 𝑢), 𝑤(𝑧, 𝑣))$∈&
∑ max(𝑤(𝑧, 𝑢), 𝑤(𝑧, 𝑣))$∈&

 

 740 
  741 
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Table 3. Machine learning feature functions used to train our classifiers.  742 
 743 

Feature Formula 
weighted_common_neighbors / [𝐴(𝑖, 𝑢) + 𝐴(𝑖, 𝑣)]

.∈&
 

degree_plus_distance {𝑑(𝑢), 	𝑑(𝑣), 	𝐷(𝑢, 𝑣)} 
adjacency {𝐴(𝑖, 𝑢) > 0, 	𝐴(𝑖, 𝑣) > 0|∀𝑖 ∈ 𝐼}	 
outdistance_source {𝐷(𝑖, 𝑢)|∀𝑖 ∈ 𝐼}  
outdistance_target {𝐷(𝑖, 𝑣)|∀𝑖 ∈ 𝐼}  
outdistance {𝐷(𝑖, 𝑢), 	𝐷(𝑖, 𝑣)|∀𝑖 ∈ 𝐼}  
fln {𝐴(𝑖, 𝑢), 	𝐴(𝑖, 𝑣)|∀𝑖 ∈ 𝐼}  
fln_plus_distance {𝐴(𝑖, 𝑢), 	𝐴(𝑖, 𝑣)|∀𝑖 ∈ 𝐼} ∪ {𝐷(𝑢, 𝑣)}  

 744 
 745 
 746 


