Precision Methylome and in vivo Methylation Kinetics

Characterization of Klebsiella Pneumoniae

Jing Fu1,2,3#, Ju Zhang1,#, Li Yang1,3,#, Nan Ding1,#, Liya Yue1,#, Xiangli Zhang1,3, Dandan Lu1,3, Xinmiao Jia1,4, Cuidan Li1, Chongye Guo1, Zhe Yin5, Xiaoyuan Jiang5, Yongliang Zhao6,3, Fei Chen1,3,#, Dongsheng Zhou5,*

1 CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
2 Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450001, China
3 University of Chinese Academy of Sciences, Beijing 100101, China
4 Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100101, China
5 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
6 CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China

* Corresponding author.
E-mail: chenfei@big.ac.cn (Chen F), dongshengzhou1977@gmail.com (Zhou D).
Equal contribution.

Running title: Fu J et al / Dynamic Methylome of Klebsiella Pneumoniae

Counts: 8605 words in main text; 53 references; six figures; six tables; 20 supplementary figures; 19 supplementary tables; 94 letters in article title; 42 letters in running title; five keywords; 199 words in Abstract.
Abstract

Klebsiella pneumoniae (*K. pneumonia*) is an important pathogen that can cause severe hospital-/community-acquired infections. To panoramically analyze *K. pneumoniae*’s methylation features, we completed the whole genome sequences of 14 *K. pneumoniae* strains covering various serotypes, multilocus-sequence typings (MLSTs), clonal groups (CG), viscosity/virulence and drug-resistances, and further characterized their methylomes using PacBio-SMRT and bisulfite technologies. We identified 15 methylation motifs (13 6mA and two 5mC motifs), among which eight were novel ones. Their corresponding MTases were further validated. Additionally, we analyzed the genomic distribution of GATC and CCWGG methylation motifs shared by all strains, and identified differential distributive patterns of some hemi/un-methylated GATC motifs tending to locate in the intergenic regions (IGRs). Specifically, we characterized the *in vivo* methylation kinetics at single-base resolution on a genome-wide scale by simulating the dynamic processes of replication-mediated passive demethylation and MTase-catalyzed re-methylation. The slower methylation-rates of the GATC motifs in the replication origins (*oriC*) and IGRs suggest an epigenetic mechanism implicated in the regulation of replication-initiation and transcription. Our findings illustrate the first comprehensive dynamic methylome map of *K. pneumonia* at single base resolution, and provide an efficient means and important reference for a better understanding of epigenetic regulation in bacteria.

KEYWORDS: DNA methylation; Epigenomics; 6mA; 5mC; Epigenetic regulation
Introduction

Klebsiella pneumonia (*K. pneumoniae*), the important member of the *Enterobacteriaceae*, can cause severe hospital- and community-acquired infections (*e.g.*, pneumonia, genitourinary tract infection, and septicemia). There are some typing methods for *K. pneumoniae* strains, such as serotype, multilocus-sequence typings (MLSTs), and clonal group (CG) [1,2]. The related studies indicated that the hypervirulence phenotype usually corresponded to K1/K2/K57 serotypes and CG23-ST23 [1-3], while multidrug-resistance (MDR) phenotype often corresponded to CG258-ST11/ST258 [4].

Several studies on DNA methylation of *K. pneumoniae* strains using molecular biological techniques have identified three DNA methylases (MTases) and corresponding motifs, including two restriction-modification (R-M) systems (M.KpnI: GGT_A_CC; M.KpnBI: CAA_A_N6RT_CA) and one orphan MTase (Dam: G_A_T_C) [5–7]. Further research on Dam indicated the epigenetic mechanism in regulating mismatch repair, virulence and pathogenicity of *K. pneumoniae* strains [8].

Recent rapid progress on high-throughput sequencing techniques, such as Pacific single-molecule real-time (SMRT) sequencing for accurate detection of modified bases (mainly 6mA) on a genome-wide scale and bisulfite sequencing for efficient analysis of genome-wide 5mC [9,10], has greatly facilitated investigations of DNA methylome in bacteria. It is well known that 6mA and 5mC are the two most important types of DNA methylation in prokaryote [9]. To date, many bacterial methylomes have been precisely determined using the above two techniques, including *E. coli*, *Mycoplasma genitalium*, *Bifidobacterium breve*, *Clostridium difficile*, *Campylobacter jejuni*, *Helicobacter pylori* [9–13] and *Mycobacterium tuberculosis* complexes (MTBC) reported by our group [14].

Through precisely and comprehensively analyzing the bacterial methylome, a lot of valuable information has been revealed, including methylation motifs and their corresponding methyltransferases, motif distributions on genomes, and the related epigenetic regulation mechanisms in bacteria [9,15,16]. Most identified MTases and the corresponding motifs belong to R-M system, which primary function is to prevent (cleave) the invading DNA and protect genomic DNAs through methylation-mediated mechanism [9–14]. Distinctively, some orphan MTases (no cognate restriction enzymes) and the corresponding motifs exert multiple epigenetic regulation functions.
in bacteria [15–18]. Among them, Dam/GATC motif is the most well-known because of its prevalent existence in almost all the Enterobacteriaceae bacteria and involvement in the epigenetic regulation of replication, transcription and mismatch repair [15–17,19–21]. In particular, its regulatory role in replication initiation has been studied in E. coli. Its oriC region contains five DnaA boxes and 11 GATC motif sites. The replication-mediated passive demethylation causes the hemi-methylated GATC motifs adjacent to the DnaA boxes that are specifically recognized and bound by SeqA, further leading to the competitive occupation of the motif sites between Dam and SeqA [17]. As a result, the re-methylation of the motifs is delayed, which in turn prevents the initiation cascade for chromosome replication induced by DnaA protein [17,19]. The re-methylation of the upstream GATC motifs of the third and fifth DnaA boxes are the rate-limiting steps for DNA replication initiation in E. coli strains [17]. In addition, Dam also participates in the transcriptional regulation of the downstream genes (e.g., opvAB in Salmonella enterica) [15].

Although several MTases and corresponding motifs have been revealed in K. pneumoniae strains, the whole methylome has not been reported so far. Here, we obtained whole-genome sequences of K. pneumoniae strains of 14 various types, and then characterized their methylomes using SMRT combined bisulfite sequencing techniques. Fifteen methylation motifs were identified (13 6mA and two 5mC methylation motifs), including eight novel ones corresponding to eight novel MTases termed as kamA ~ G (K. pneumoniae adenine methyltransferase A ~ G) and kcmA (K. pneumoniae cytosine methyltransferase A). We further analyzed the distribution pattern of the GATC and CCWG motif methylation motifs shared by all K. pneumoniae strains. Importantly, by establishing a mathematical model to simulate the dynamic process of passive demethylation and re-methylation of each motif in the exponential phase, we characterized the genome-wide in vivo methylation kinetics at single-base resolution. The motifs at different genomic locations showed different re-methylation rates, and the GATC motifs in oriC region and intergenic regions (IGRs) had slower re-methylation rates. Our findings indicate potential roles of epigenetic regulation in the replication initiation and transcription of K. pneumonia genome, and provide important reference and insights into our better understanding of K. pneumonia epigenomics.
Results

General bioinformatic analysis of 14 K. pneumoniae strains

We first obtained the whole genome sequences of 14 K. pneumoniae strains with various serotypes, MLSTs, CGs, viscosity/virulence and drug-resistances (Table S1-3) by SMRT sequencing followed by correction using Illumina sequencing (Figure 1). The genome data have been deposited in National Genomics Data Center (CRA003482) and NCBI (PRJNA477755) for strains of NTUH-K2044, 11492, 11420, 11454, 12208, 11311, 23, 11305, N201205880, 309074, 13190, 283747, 721005, 11021, and 11305. We then constructed a phylogenetic tree using 76 complete genomes of K. pneumoniae strains (14 from ours and 62 from online) (Figure S1, Table S4). Our 14 K. pneumoniae strains covered many common CGs and MLSTs of K. pneumoniae strains in China (e.g., CG23-ST23 and CG258-ST11) [22], indicating the well representativeness yet diversity of K. pneumoniae strains selected in our study.

The bioinformatic analyses provided the general genome information (Table 1, Figure 1), including genome size (5.20-5.54 Mb), GC content (57.4-57.9%), predicted protein-coding gene number (4990-5485), gene length (886-922 bp), and the percentage of coding region (88.26-90.23%) [23]. In addition, each K. pneumoniae strain contained 1-8 plasmids, with lower GC content (47.27-54.85%), lower percentage of coding region (75.98-88.63%), and shorter average gene length (596-831 bp) (Table 1).

Additionally, the relatively conserved genomic sequences and structures among the 14 K. pneumoniae strains were also indicated: ANI analysis revealed more than 99% identity among the 14 K. pneumoniae strains; no extensive translocations, duplications or inversions were found in the K. pneumoniae genomes except for strains of 11492 and 11454 each containing a large inverted fragment on the genomes (Figure S2).

Seven known and eight novel methylation motifs and corresponding methyltransferases in K. pneumoniae strains

A total of 13 6mA and two 5mC methylation motifs were identified in all K. pneumoniae strains (Table 2-4) by SMRT and bisulfite sequencing techniques (Table S2, S5), including seven known and eight novel methylation motifs (Table 5, Table
S6-7). It is worth noting that GA\textit{T}C and CCWG\textit{G} motifs were shared by all strains. The other motifs were shared by at most two \textit{K. pneumoniae} strains (Table 2-4). Further analyses indicated the relationship between the motifs and strain types (serotype, MLST and CG). The MTCGAK motif existed in NTUH-K2044 and 11492 belonging to K1 serotype and ST23-CG23, the common types of hypervirulent \textit{K. pneumoniae} strains. The CCAYN\textit{T}TYG motif was shared by two strains (11311 and 23) of hypervirulent serotype K57 and ST412. The CC\textit{A}GN\textit{R}TTC motif was present in strains 11305 and 13190 belonging to MDR CG147.

Modification analysis indicated that not all motif sites were fully-methylated (methylated on both strands, Table 2-4). A minority of motif sites (< 30%) were detected as being hemi-methylated (methylated on one strand only) or un-methylated within the \textit{K. pneumoniae} genomes. The only exception was the MTCGAK motif in the NTUH-K2044 and 11492 genomes showing over half of hemi/un-methylated sites (56.03-56.77%). Further analysis indicated that the un-methylated MTCGAK motif preferred to have a guanine (G) in front of the motif (Figure S3, Table S8).

To search for the responsible MTases, we first predicted 22 MTases that might be responsible for the 15 methylation motifs from \textit{K. pneumoniae} genomes in the REBASE database [24]. Among them, seven MTases and their corresponding motifs had been verified in previous studies (Table 5). To determine the MTases responsible for the eight newly detected methylation motifs, we performed the restriction digestion and SMRT/bisulfite sequencing using the plasmids containing the predicted MTase genes in methyltransferase-free \textit{E. coli} ER2796. Crossover validations identified the corresponding eight MTases that could specifically recognize and methylate the respective eight novel motifs (Table 5, Table S6-7, Figure S4-6).

We further analyzed the distribution of 15 MTase genes on the genomes of the \textit{K. pneumoniae} strains. Thirteen genes were located on the chromosomes and two others were located on the plasmids (Figure 2). In addition, within the 15 identified MTases, there were 10 Type I MTases, three Type II MTases and two classical orphan MTases (Dam and Dcm). Here \textit{dam} and \textit{dcm} genes were carried by all \textit{K. pneumoniae} strains, and responsible for the methylation of GA\textit{T}C and CCWG\textit{G} motif, respectively. Among the three newly identified Type II MTases, Kam\textit{C} and Kam\textit{D} were predicted to be Type IIG enzymes, which function of endonuclease and methyltransferase were executed by a single gene (Table 5, Table S7).
Nonrandom distributions of GATC and CCWG motifs on K. pneumoniae genomes

Among the 15 methylation motifs, the GATC and CCWG had the most extensive distributions in all of the 14 K. pneumoniae strains, each containing ~30,000 GATC and ~20,000 CCWG modified sites (Table 2, 4). The distribution features of the above two motifs on the genomes of K. pneumoniae strains were further analyzed, and differential/uneven distribution on the genomes were observed (Figure 1). Both motifs exhibited some high-density and low-density regions on the genomes, where the genes were clustered into different COG functional categories (Figure S7). Importantly, the GATC motif showed the highest distribution density (~34 sites/kb) in the oriC region (average density: 5-6 sites/kb) of the 14 K. pneumoniae genomes (Figure S8). In contrast, the CCWG motifs didn’t display such enrichment in the oriC region.

We then compared the density distributions of GATC and CCWG motifs on the 14 K. pneumoniae genomes and the simulated genome with the same base composition (Figure 3, Figure S9-10). The result revealed that their distribution densities on the K. pneumoniae genomes (1kb consecutive window) were higher than those on the simulated genome, indicating the high-density/nonrandom distribution of these two motifs on the K. pneumoniae genome. To explore the underlying causes for their high-density distributions, we investigated the impact of selection pressure on these two motifs by calculating the Ka/Ks ratios (the ratio of nonsynonymous substitutions (Ka) to synonymous substitutions (Ks)) [25] of the corresponding fragments in gene regions (GRs) (more than 90% of the two motifs were located in GRs) (Figure S11). We observed that the amino acid (AA) codons with two motifs (two AA codons for GATC motif, two or three AA codons for CCWG motif) were under strong negative/purifying selection with Ka/Ks ≈ 0.09/0.09 in relative to the ratio of 0.39/0.54 for the scramble sequences in GRs.

Differential distribution patterns of the methylated, hemi-methylated and unmethylated GATC and CCWG motifs on K. pneumoniae genomes

We identified three methylation patterns (methylated, hemi-methylated and unmethylated) for the GATC and CCWG motifs. Most GATC (84.26-98.13%) and
CCWGG (77.58-98.84%) sites were detected as methylated state (Table 2, 4), whereas a small percentage of motif sites were hemi-methylated (< 15%) or unmethylated (< 10%) on the K. pneumoniae genomes. Further analysis demonstrated that the ratio of hemi-methylated GATC motifs were (~6.48%) much higher than that of unmethylated GATC motifs (~0.38%), while the hemi-methylated CCWGG motifs (~3.60%) showed a similar proportion as the unmethylated ones (~2.94%).

We then investigated the distribution ratio of methylated, hemi-methylated and unmethylated GATC and CCWGG motifs in GRs and IGRs. The hemi/un-methylated GATC motifs preferred to locate in IGRs, since its ratio (7.14%/34.11%) in IGRs was significantly higher than that of methylated GATC motifs (5.23%) (P < 0.01, Figure 4A, Table S9). The analysis of the “fraction of methylated reads” (FRAC value) for the motifs in GRs/IGRs also supported the above findings that the hemi/un-methylated GATC motifs were inclined to locate in the IGRs (Figure 4B). In contrast, the hemi/un-methylated CCWGG motifs (~7.49%) showed a little lower distribution ratio in IGRs compared with the methylated CCWGG motifs (~7.68%, Table S10).

The analysis of the GATC motifs’ density in 5’ upstream region (USR), coding sequence (CDS) and 3’ downstream region (DSR) also supported the above conclusion: the methylated motifs displayed a higher density in GRs, while the hemi-/un-methylated motifs presented a higher density in IGRs (both 5’ USR and 3’ DSR) (Figure 4C). We further explored the hemi/un-methylated GATC sites shared in the 5’ USR regions of 14 K. pneumoniae strains: 13 hemi/un-methylated GATC sites corresponding to 11 genes were observed (Table S11). We also detected 12 high-density hemi/un-methylated clusters (no less than three consecutive hemi/un-methylated motifs in at least two strains) in the 5’ USR regions (Table S12).

We then analyzed the sequence conservation of the DNA fragments (20 nt on both sides) containing hemi/un-methylated or methylated motifs to determine the causes leading to their differential distributions in IGRs. The results showed that the fragments with hemi/un-methylated GATC motifs (44 nt) exhibit higher conservation than those with methylated GATC motifs in IGRs (Figure S12).

Methylation kinetic analysis revealing different re-methylated rates of GATC and CCWGG motifs during growth cycle

Since there is no demethylase in bacteria, the in vivo methylation kinetics
characterization is based on the dynamic equilibrium between the replication-mediated passive demethylation and MTases-catalyzed re-methylation [18]. To explore the features of methylation kinetics of GATC and CCWGG motifs during the growth cycle, we first characterized the methylomes of the NTUH-K2044 and 11492 strains at the exponential phase (1 h), transition-to-stationary phase (4 h) and stationary phase (24 h) (Figure 5A, Table S13-14). By comprehensively analyzing genome-wide sequencing coverages and the fractions of methylated reads (methylated-read ratio/FRAC value), GATC and CCWGG motifs were found to exhibit distinct kinetic features during the growth cycle (Figure 5B, Figure S13). As for GATC motifs, the methylated-read ratios were more than 90% throughout the genomes in the three phases (Figure 5B), although the sequencing coverages varied on the genomes during the growth cycles (Figure S13), indicating that the GATC motifs could be re-methylated in a very short time after the passive demethylation caused by replication: i.e., the re-methylated rate was almost identical to the passive demethylation rate.

In contrast, the CCWGG motif showed a much slower re-methylation rate. First, in the exponential phase (1 h), the methylated-read ratio of CCWGG motifs in the oriC regions (55.66 ± 18.54%) was much lower than that in the replication termination (Ter) regions (82.63 ± 12.71%) (Figure S13B). Secondly, the average methylated-read ratio in the transition-to-stationary phase (54.50 ± 27.14%, 4 h) was close to that of the exponential phase (60.50 ± 17.71%, 1 h), but not the stationary phase (80.28 ± 19.05%, 24 h) (Figure S13B). This finding suggested a much slower re-methylation rate compared to the replication-mediated passive demethylation rate for CCWGG motifs, which resulted in the above differences in the methylated-read ratios.

To quantify the re-methylation time per motif in the exponential phase, we first investigated the replication kinetics of the aforementioned two K. pneumoniae strains. Figure S13 showed that the genome sequencing coverage in the oriC regions was more than twice as much as that of the Ter regions (2.93 and 3.02 folds for the 11492 and NTUH-K2044 strains, respectively), indicating that the next round of replication was re-initiated before the replication termination in the exponential phase. We then constructed a replication model (Figure 5C) by fitting genome coverage data, and obtained the ratio (tD/tR) of doubling time (tD) to replication termination time (tR) (see
“Materials and methods” for detail). The doubling time (t_D) in the exponential phase also reflects the re-initiation time. Interestingly, we obtained the same t_D/t_R values (0.59) for the two $K. pneumoniae$ strains (Figure 5D), suggesting a similar regulatory mechanism for replication cycle, which should be intrinsically carried by $K. pneumoniae$ strains. Two t_D values were then calculated through fitting the growth curves (~34.64 min for strain 11492; ~27.95 min for NTUH-K2044, Figure 5A), therefore we could infer the t_R from the t_D/t_R values (~58.71 and ~47.36 min for strain 11492 and NTUH-K2044, respectively).

We further obtained the re-methylation time per motif (Table 6) through simulating the dynamic processes of passive demethylation and re-methylation in the exponential phase based on the five parameters, such as methylation-read fraction of each motif ($M_{(x)}$), initial methylation-read fraction of each motif ($M_{(0)}^{0}$), t_D, t_R and distribution density of the first replication forks ($P_{(x)}$, see “Materials and methods” for detail).

In general, the mean re-methylation time of 6mA was shorter (3.52 and 3.46 min for GATC and GRACRAC motifs, respectively) than that of 5mC (9.23 and 4.55 min for CCWGG and MTGCAK motifs, respectively) in the exponential phase (Table 6). As for a certain motif, the re-methylation time in the NTUH-K2044 strain was shorter than that in the 11492 strain (Figure S14). In addition, the flanking bases could influence the re-methylation rates of the GATC and CCWGG motifs. When the flanking bases were C/G rather than T/A, GATC motif showed a faster re-methylation rate, which was totally reversed for the CCWGG motif (Table 6, Figure S15).

Slower re-methylation rate of GATC motifs in intergenic and oriC regions at the exponential phase

To investigate the role of GATC motifs in transcriptional regulation of $K. pneumoniae$ strains, we analyzed the re-methylation rates of the motifs in IGRs (including 5’ USRs and 3’ DSR) at the exponential phase (Figure 6A). The results indicated the slower re-methylation motifs in IGRs (3.94 ± 5.82 min) than that in GRs (3.50 ± 5.10 min). Since most 5’ USRs in bacteria are overlapped with the promoter regions and involved in the transcriptional regulation [26], we further explored the COG functional category of genes with top 5% slow re-methylation sites (> 7.04 min/motif) in 5’ USRs (Table S15). Four enriched functional categories (“Cell cycle control, cell
division, chromosome partitioning”, “Carbohydrate transport and metabolism”,
“Intracellular trafficking, secretion, and vesicular transport” and “Translation,
ribosomal structure and biogenesis”) were observed (Table S15), of which at least 5%
of genes contained a slow re-methylation sites (> 7.04 min/motif) in 5’ USRs. Among
them, the “carbohydrate transport and metabolism” functional category owned the
most genes (22 genes) with slow re-methylation rates in 5’ USRs, including three
hemi/un-methylated motifs shared in 14 K. pneumoniae strains and even one hemi/un-
methylated motif-clusters.

To further explore the role of GATC motifs in replication regulation of K.
pneumoniae strains, we analyzed the re-methylation rates of the motifs in oriC
regions (Figure 6B). The GATC motifs in oriC region had the highest distribution
density (~34 sites/kb) (Figure S8) and slower re-methylation rates (10.35 ± 8.69 min).
Among the 14 GATC motifs in oriC region, eight and seven motifs with slow re-
methylation rates (> 7.04 min/motif) were enriched in the upstream sequence of the
fourth DnaA binding site (DnaA box) and the adjacent AT-rich region in strain 11492
and NTUH-K2044, respectively (Figure S16).

Discussion
In this study, we characterized the precision methylome of 14 K. pneumoniae strains
with different serotypes, MLSTs, CGs, viscosity/virulence, and drug-resistances,
using SMRT and the bisulfite sequencing techniques, and identified 15 DNA
methylation motifs (eight novel ones) corresponding to 13 R-M system MTases and
two orphan MTases, respectively. Two motifs (GATC and CCWGG) and their
respective orphan MTases (Dam and Dcm) appeared to be the most important since
they were present in all K. pneumoniae strains with the most extensive distributions
on genomes in relative to other modified motifs (Table 2, 4). This feature was also
reported in almost all members of the Enterobacteriaceae family [21,24]. Functional
analysis in previous reports indicated that these two motifs, especially GATC, could
exert multiple functions including transcriptional regulation, cell-cycle controlling,
and mismatch repair in E.coli and Salmonella enterica [15–17,19–21]. We also
demonstrated their high-density distributions on K. pneumoniae genome comparing
with that on simulated genome (Figure 3, Figure S9-10), which was probably caused
by purifying selection (Figure S11) leading to their evolutionary conservation (Figure
S12) as reported in other bacterial genome [27]. This well-conserved feature also implies an essential role of these two motifs in *K. pneumoniae*.

The hemi/un-methylated GATC motifs were found to possess the tendency of IGRs (including 5’ USR and 3’ DSR) localization (Figure 4A, C). Since promoters in *K. pneumoniae* were also predicted to be located across the 5’ USR regions (Figure S17), thus, these hemi/un-methylated GATC motifs in 5’ USR might be protected from the methylation by competitively binding of some regulators to the promoter regions [17,19]. In *E.coli* strains, this feature facilitates the epigenetic regulation of the downstream gene expression [28]. The status of these motifs suggested similar epigenetic mechanisms in *K. pneumoniae* strains, and might be the consequence of selection during long-term evolution (Figure S11), which was supported by our findings that the genomic fragments with hemi/un-methylated GATC motifs in IGRs had higher sequence conservation (Figure S12).

Importantly, by establishing a mathematical model to simulate the dynamic process of passive demethylation and re-methylation of each motif in the exponential phase, we obtained the re-methylation time of each motif throughout the whole genome (Table 6, Figure S14). Our studies revealed that the motifs at different genomic locations showed different re-methylation rates. We could reasonably infer that the slower re-methylation rates in some sites/regions might also be due to the competitive binding of certain proteins in order to prevent methylation [17,19]. Thus, the slow re-methylation rates could precisely reflect the methylation-mediated epigenetic regulations at these sites/regions *in vivo*.

There are two methylation-mediated epigenetic regulations: transcription and replication, which were examined by methylation kinetic analysis in our study. Firstly, transcriptional regulation analysis indicated that the GATC motifs in IGRs presented the slower re-methylation rates than those in GRs (Figure 6). This is in agreement with the distribution characteristics of the GATC motifs in IGRs: lower methylated-read ratios and more hemi/un-methylated motifs (Figure 4A, 4B). As described above, most IGRs in bacteria overlap with the promoter regions and participate in the transcriptional regulation [26]. Thus, the promoter regions with slow re-methylation motifs should be the locations where the GATC motifs with hemi/un-methylated status function as transcription regulators in *K. pneumoniae* strains. Similarly, this should also be the consequence of the competitive binding between Dam and some
transcription regulatory proteins (such as OxyR) to these sites/regions [15,28,29],
which is analogous to the epigenetic transcriptional regulation mediated by the
competition between DNA methyltransferases and CTCF in CpG islands of
eukaryotic cells [30]. Secondly, replication regulation analysis identified 7 - 8 slow
GATC motifs enriched in the upstream sequence of the fourth DnaA binding site
(DnaA box) and the adjacent AT-rich region (Figure S16). SeqA has been shown to
prefer to bind to these motifs for the purpose of lowering re-methylation rates [31]
and preventing the initiation cascade for chromosome replication [17,31]. Therefore,
re-methylation of these motifs in the fourth DnaA box and AT-rich regions should
represent the main rate-limiting steps for triggering initiation of DNA replication in K.
pneumoniae strains. Our findings also uncovered many promoter regions with slower
re-methylation motifs in K. pneumoniae strains (Figure 6), therefore, it is reasonably
speculated that epigenetic regulation in bacteria is very complex rather than simple as
we believed.

Compared with GATC motif, CCWGG motif has different distribution
characteristics in GRs and IGRs (Figure 4A, B). We then performed the COG
functional analysis for the genes with hemi/un-methylated CCWGG sites in IGRs,
since previous studies have shown the epigenetic regulation of hemi/un-methylated
sites in IGRs in bacteria [32]. Our findings showed that the top three enriched
functional categories for the genes with hemi/un-methylated sites in IGRs were
“Replication, recombination and repair [L]”, “Cell motility [N]”, and “Coenzyme
transport and metabolism [H]” (Figure S18A), suggesting the possible epigenetic
regulation of CCWGG sites in K. pneumoniae. On the other hand, they showed totally
different COG categories for the genes with hemi/un-methylated GATC sites in IGRs
(Figure S18B), suggesting different epigenetic regulations between the two main
methylated sites in K. pneumoniae.

We also explored the of methylation kinetic feature of CCWGG motifs during
growth cycle. There were 1961 CCWGG sites changed in methylation during growth
phase: 1954 hemi/un-methylated sites in exponential phase became methylated in
stationary phase; seven unmethylated sites in exponential phase became hemi-
methylated in stationary phase. No methylated sites in exponential phase became
hemi/un-methylated in stationary phase. The dynamic changes in methylation status
might be due to the active and inactive replications in exponential and stationary
phases [13]: active replication at exponential phase could result in more hemi/un-methylated sites on the genome because of the replication-mediated passive demethylation; inactive replication at stationary phases could lead to more methylated sites on the genome due to nearly total MTase-catalyzed methylation. Incidentally, the seven hemi-methylated CCWGG sites in stationary phase are located on the genes encoding for four small subunit ribosomal RNAs, two mobile element proteins and one possible transcription regulator (Table S16), which may be necessary for the survival of bacteria [33].

Importantly, eight novel MTases and related motifs were detected, including five Type I and three Type II MTases (Table 5, Table S6-7). These novel MTases and cognate REases on the genomes form restriction-modification (R-M) systems. It is known that R-M system could protect the bacterial cells by cleaving the foreign phage DNAs [9–14]. We then investigated the hemi/un-methylated sites in IGRs, since previous studies have shown the epigenetic regulation of hemi/un-methylated sites in IGRs of some bacteria [32]. Among the eight novel methylated sites, the MTCGAK motifs are shared by the NTUH-K2044 and 11492 strains, which owned the most hemi/un-methylated sites (56.03 and 56.77% for NTUH-K2044 and 11492 strains, Table 4). More than 60% of un-methylated MTCGAK motifs are shared by the two strains (Table S17), which are mainly enriched in “Transcription [K]”, “Inorganic ion transport and metabolism [P]”, and “Replication, recombination and repair [L]” COG categories (Figure S19). The CCAYN_TTYG motif is also owned by two strains (23 and 11311) (Table 3). Three hemi-methylated CCAYN_TTYG motifs were detected to be shared by the two strains, which were associated with ascB, deoC, and fecA genes, respectively (Table S18). These hemi/un-methylated MTCGAK and CCAYN_TTYG motifs in IGRs are shared by two strains, which might exert the epigenetic regulation of related gene expression. In addition, we also performed COG analysis for the other six newly reported methylated sites, which only existed in one K. pneumoniae strain (Figure S19). There is a limitation for these hemi/un-methylated sites in only one K. pneumoniae strain, since they may be derived from replication-mediated passive demethylation [34].

Previous studies on MTase kinetics mainly focused on in vitro analysis [35–37]. Several reported analyses about the in vivo methylation kinetics, including one publication about bacteria, only studied the overall, but not single-motif methylation
kinetics [38–40]. Our study is the first to characterize the in vivo methylation kinetics at single motif resolution in whole genome, thus, offer an efficient means and valuable resources for a better understanding of epigenetic regulation in bacteria.

Materials and methods

Strain information, growth curve, and phenotypic characterization

The information of 14 K. pneumoniae strains used in this study was shown in Table S1. The strains were cultured overnight in Luria-Bertani (LB) medium at 37 °C. 1 ml of overnight culture suspensions was then transferred to a flask containing 200 ml of LB medium and cultured in a shaker at 200 rpm. The growth curve of bacteria was determined by recording OD₆₀₀ values at different time-points. This experiment was performed in triplicate.

Drug susceptibility test was performed by VITEK 2 (bioMérieux, Durham, NC, USA), and the drug-resistance phenotypes were determined by Clinical and Laboratory Standards Institute (CLSI) standards (https://clsi.org/standards/products/microbiology/documents/m100/). The string test of K. pneumoniae strains was conducted, and hypermucoviscosity was defined by viscous strings with a length of more than 5 mm [41].

Genomic DNA Extraction, sequencing, assembly, correction and annotation

The genomic DNA was extracted using TIANamp Bacteria Genomic DNA Kit (catalog No. DP302, TIANGEN, Beijing, China). The whole-genome sequencing was implemented by PacBio RSII platform using P6/C4 chemistry (Pacific Biosciences, CA, USA). Each strain was sequenced with 1-2 SMART cells with genome coverage of more than 50x (Table S2).

De novo assembly of the genome was performed using Hierarchical Genome Assembly Process 3 (HGAP3) in SMRT Portal (version 2.2.0). Gap closing was completed by PBJelly [42]. On the basis of Blast results, genome circularization was finished by manually removing the contigs overlapped regions.

To correct the polymer-errors, we re-sequenced the strains using Illumina sequencing (Table S3). Paired-end libraries were prepared as previous description, and clean reads were obtained after eliminating redundant and low-quality raw reads. Paired reads were extracted and then mapped onto the assembled genome sequences.
to obtain unique mapped reads using BWA. Pilon v.1.13 was subsequently used to polish genome sequences using unique map reads.

Genome sequences were annotated in the Subsystem Technology (RAST) pipeline with Rapid Annotation [43]. Unannotated genes were then predicted by alignment in the NCBI non-redundant (NR) database using BLAST. The protein functions were annotated by Clusters of Orthologous Groups (COG). tRNAs and rRNAs were predicted by tRNAscan-SE and “search_for_rnas” tools, respectively.

Genome structure and phylogenetic analysis

The average nucleotide identity (ANI) and coverage were calculated by ANI on EzGenome (http://www.ezbiocloud.net/tools/ani) and online BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple alignments of genomic sequences were performed using the Mauve multiple alignment software [23].

Single nucleotide polymorphisms (SNPs) were detected by MUMmer based on the 14 genomes in this study and 62 published genomes (Table S4) using HS11286 as reference. Prank [44] was used to annotate the protein coding genes of the 76 K. pneumonia genomes, and then used Roary to predict 3173 core genes [45]. The SNPs (117,142 SNPs) in core genes were used to construct a phylogenetic tree on the basis of maximum likelihood using FastTree [46], followed by decoration using software evolview v2 (http://www.evolgenius.info/evolview/) [47].

Genome-wide detection of 6mA and the related motifs using the SMRT sequencing data

The SMRT Portal (version 2.2.0) was applied to detect genome-wide 6mA modification and related motifs using the standard settings in the RS_Modification_and_Motif_Analysis.1 protocol as previously described (https://smrt-analysis.readthedocs.io/en/latest/SMRT-Pipe-Reference-Guide-v2.2.0/).

We then identified the motifs through selecting the top 1000 kinetic hits and subjected a window of ± 20 base around the detected modified base to MEME-ChIP [48], followed by comparing them with the predicted MTase targeting motif sequences in REBASE [24].

There are three methylated patterns of motifs: methylated, hemi-methylated and un-methylated motifs. The methylated/hemi-methylated/un-methylated motifs
indicate the sites with methylated nucleotides on both/one/no strands.

Genome-wide detection of 5mC and the related motifs using the bisulfite sequencing data

The 5mC methylation was detected by bisulfite sequencing (Table S5). Trimmomatic (v0.32) [49] was used to trim adapters and low-quality bases using default parameters. Clean reads were mapped on the reference genomes by Bismark (version 0.12.2) [50]. We then identified the motifs through subjecting a window of ± 20 base around the detected modified base to MEME-ChIP [48], followed by comparing with the predicted MTase targeting motif sequences in REBASE [24].

MTases cloning and verification

The predicted MTase genes were amplified from bacterial genomic DNAs using the gene-specific primers (Table S16), and cloned into plasmid pRRS as previously described [14]. The corresponding methylation sensitive restriction-site sequences (used to detect the activity of MTases) were included in the 3’-end oligonucleotides. The recombinant plasmids were then transformed into bacterial host ER2796 (not containing known MTase genes), followed by bacterial culture overnight. The plasmid DNAs were prepared using QIAPrep Spin Miniprep Kit (catalog No. 27104, QIAGEN, Beijing, China). The appropriate restriction enzymes were then used to determine the presence or absence of methylated motifs in recombinant plasmid. The digestion reaction were conducted for 4 h at 37 ºC and run on 1% agarose gels. The methylation motifs were also double detected by sequencing the recombinant plasmid by SMRT/bisulfite sequencing.

Density distributions of GATC and CCWGG motifs on the K. pneumoniae and simulated genomes

The simulated genome was generated based on the same length and GC content as those in the *K. pneumoniae* genomes. We then calculated the number of motifs in 1kb consecutive segments, so as to determine the density of GATC and CCWGG motifs across the *K. pneumoniae* and simulated genomes.

We defined high/low-density regions by calculating the motif number in each 2kb-size non-overlap sliding window on the genome. Through normal distribution analysis
using the pnorm function in R, the top and tail 5% of regions were defined as high-
density and low-density regions, respectively.

**Ka/Ks analysis of the GATC and CCWGG “motif sequences” and corresponding
“scramble sequences”**

We firstly extracted the minimum DNA sequences (2~3 codons) containing the motifs from the open reading frames of genes, in order to obtain “motif sequences”. The corresponding “scramble sequences” were obtained by random shuffling (eliminating the “motif sequences”). The top-10 frequent “scramble sequences” were used in subsequent analysis. We then identified the reference sequences of “motif sequences”/“scramble sequences” on reference genome (HS11286) by multiple sequence alignment (mafft) [51]. The “motif sequences”, “scramble sequences” and corresponding reference sequences of each strain were respectively concatenated, and their Ka/ks ratios were calculated by paraAT [52].

Sequence conservation analysis of the GATC and CCWGG motifs

We extracted the methylated motifs and their flanking sequences (20 nt) in IGRs from one genome, and then obtained the corresponding sequences of 13 other genomes by multiple sequence alignment. Using the above 14 sequences, the conservation scores were calculated by phylop [53]. The conservation scores of the hemi-/un-methylated motif with 20-nt flanking sequences in IGRs were calculated by the same method.

Calculation of the genomic replication time (tR) through simulating genomic coverage plots

The genomic coverage plots reflect the accumulated copy numbers across genomes. Since the replication forks always proceed from origin of replication (oriC) to doubling point (sDP), only a few ones can get close to the doubling point in the exponential phase. As a result, the sequencing coverage in oriC region is much higher than that in doubling point. In each cell, the copy number of each site (s) depends on its relative position to the first replication fork (s1) and the minimal time of successive initiations (re-initiation). The re-initiation time is consistent with the doubling time (tD) in the exponential phase, reflecting the growth rate of *K. pneumoniae* strains.

After initiation, the replication forks should go forward bi-directly at similar
speeds in the exponential phase. Therefore, the genome coverage plots are symmetrical near the doubling point (s_{DP}). We divided the coverage plots into the left ($s \leq s_{DP}$) and right ($s \geq s_{DP}$) parts $s \leq s_{DP}$ or $s \geq s_{DP}$ by doubling point, and simulated the curves independently. We then obtained the relative position ($x \in (0,1]$) of each genomic site shown as equation (1). S_G represents the half length of genome.

$$\begin{cases} x = s/S_G & (s \leq s_{DP}) \\ x = 2 - s/S_G & (s \geq s_{DP}) \end{cases} \quad (1)$$

We subsequently calculated the relative distance of the first replication fork when another one at oriC is re-initiated (Δx_R) as equation (2). t_R represents the genomic replication time.

$$\Delta x_R = t_D/t_R \quad (0 \leq t_D \leq t_R) \quad (2)$$

By constructing the replication frequency matrix of genomic sites (x) with different distances from the first replication fork (x_1), the copy number of the genomic site ($f_{(x,x_1)}$) can be determined as equation (3). When the genomic site is in front of the first replication fork ($x \geq x_1$), its copy number is one; when the site is between the first and second replication forks ($x_1 - \Delta x_R \leq x \leq x_1$), its copy number is two. The rest was deduced by analogy.

$$f_{(x,x_1)} = 2^{(x_1-x)/\Delta x_R} \quad (3)$$

Next, we used the B distribution to assess cell population density with different genomic positions of the first replication forks ($x_1 \in [0,1]$). Since x is not continuous data (with the step size of $1/S_G$), the cell population density of the first replication forks ($P_{(x_1)}$) at each genomic site was determined by the difference of accumulated densities ($I_x(\alpha, \beta)$) of the adjacent sites.

$$P_{(x_1)} = I_{(x_1)}(\alpha, \beta) - I_{(x_1-1/S_G)}(\alpha, \beta) \quad (4)$$

The genome coverage plots could be determined as the integral of the copy numbers of each genomic site in the cellular populations ($H(x)$) as shown in the equation (5). The integral was achieved based on $P_{(x_1)}$ and the relative distance between x and x_1 ($x_1 - x$). By substituting equation (2)-(4) into equation (5), we established the mathematical model to fit the genome coverage plots as equation (6).

$$H(x) = \int_0^1 f_{(x,x_1)} \cdot P_{(x_1)} \, dx_1 \quad (5)$$
We then substituted equation (1) into equation (6), and repeatedly fit the genome coverage plots by selecting continuous parameters with step sizes of 0.1. We finally obtained the optimal solutions of Δx_R and B distribution parameters (α, β) through Goodness of Fit Test. Since t_D could be calculated from growth curve of each $K. Pneumoniae$ strain, we could obtain the replication time (t_R) by the equation (2).

Calculation of the re-modification time of motifs

In the exponential phase, methylation-read fraction ($M_{(x)}$) of each motif was determined by its initial methylation-read fraction ($M_0^{(x)}$), replication-induced passive de-methylation and methyltransferase-catalyzed re-methylation. Based on $M_{(x)}$ in the exponential phase and B distribution parameters (α, β), we calculated the proceeding distance of the corresponding replication fork when the hemi-methylated motif was re-methylated (Δx_M). As shown in the equation (7), Δx_M corresponds to the ratio of mean re-methylation time (t_M) to the genomic replication time (t_R).

\[
\Delta x_M = \frac{t_M}{t_R}
\]

When the motif x is located at downstream of replication fork ($x_j \leq x$), its methylation-read fraction ($M_{(x)}$) remain unchanged because of no replication-induced passive de-methylation. When the motif x is located at upstream of replication fork with a longer distance ($x_j \geq x + \Delta x_M$), the methylation-read fraction is also unchanged because of the completion of re-methylation of motif x. Thus, we only considered the de-methylation effect of the replication forks in a certain range ($x \leq x_j \leq (x + \Delta x_M)$) on $M_{(x)}$ in the mathematical derivation. j represents the serial number of the replication fork affecting $M_{(x)}$.

If the hemi-methylated motifs can be fast re-modified before next replication fork ($t_M \leq t_D$), we only need to evaluate the de-methylation effect of one replication for all replication forks in the range of $x \leq x_j \leq x + \Delta x_M$. Here we include the first replication forks (x_1) and other effective replication forks (x_j) in the range. We then substituted the accumulated B distribution density of first replication forks ($x + (j-1)\Delta x_R \leq x_1 \leq x + \Delta x_M + (j-1)\Delta x_R$) for that of the corresponding effective replication forks ($x \leq x_j \leq x + \Delta x_M$). Due to semi-conservative replication, we
further obtain Δx_M from equation (8). N represents the upper limit of j, which is determined by Δx_R and the relative genomic position (x) of methylated motifs.

$$\begin{align*}
M(x) &= M^0_{(x)} \left(1 - 0.5 \sum_{i=1}^{N} \left(\frac{I(x+\Delta x_M + (j-1) \cdot \Delta x_R)(\alpha, \beta)}{I(x+(j-1) \cdot \Delta x_R)(\alpha, \beta)} - 1 \right) \right) \\
N &= \left[\frac{(1-x)/\Delta x_R} {\Delta x_M \Delta x_R} \right]
\end{align*}$$

(8)

If the methylation rate is slow, the hemi-methylated motifs may not be re-modified when the next replication fork crosses them ($t_M > t_D$). In this case, the effect of multiple passive de-methylation on $M_{(x)}$ should be considered. n represents upper limit of multiple passive de-methylation times (i) as equation (9), which is determined by the ratio of mean re-methylation time (t_M) to re-initiation time (t_D).

$$n = \left[\frac{t_M}{t_D} \right] = \left[\frac{\Delta x_M}{\Delta x_R} \right]$$

(9)

We then converted genomic position of effective replication forks (x_j) into that of the corresponding first replication forks (x_1), and substituted accumulated B distribution density of x_1 ($x + (j-1) \cdot \Delta x_R \leq x_1 \leq x + j \cdot \Delta x_R$) for the x_j population density ($x \leq x_j \leq x + \Delta x_M$). Considering the differential influences on $M_{(x)}$ with the case of $j < n$ and $n \leq j \leq N$, we calculated Δx_M as the equation (10) by comprehensive calculations.

$$\begin{align*}
M(x) &= M^0_{(x)} \left(1 - \sum_{j=n}^{N} \sum_{i=1}^{j} 0.5i \left(\frac{I(x+j \cdot \Delta x_R)(\alpha, \beta)}{I(x+(j-1) \cdot \Delta x_R)(\alpha, \beta)} - 1 \right) \right) \\
N &= \left[\frac{(1-x)/\Delta x_R} {\Delta x_M \Delta x_R} \right]
\end{align*}$$

(10)

Based on the growth curve and genome coverage plots of the sequencing data, we deduce some parameters in different $K. pneumoniae$ strains, such as t_D, t_R and $I_x(\alpha, \beta)$. The mean re-methylation time (t_M) of each motif could be further calculated by substituting the above parameters, the equation (2) and (7), as well as the methylation-read fraction in exponential phase ($M_{(x)}$) and stationary phase ($M^0_{(x)}$) into the equation (10).
Data availability
The genome data have been deposited in National Genomics Data Center
(CRA003482) and NCBI (PRJNA477755) for strains of NTUH-K2044, 11492, 11420,
11454, 12208, 11311, 23, 11305, N201205880, 309074, 13190, 283747, 721005,
11021, and 11305.

CRediT author statement
Jing Fu: Validation, Writing - Original Draft, Resources. Ju Zhang: Methodology,
Writing - Original Draft, Resources. Li Yang: Software, Formal analysis, Writing -
Liya Yue: Validation, Writing - Original Draft, Visualization. Xiangli Zhang: Formal
analysis, Visualization. Dandan Lu: Formal analysis, Visualization. Xinxiao Jia:
Visualization. Cuidan Li: Visualization, Data Curation. Chongye Guo: Visualization.
Zhe Yin: Resources. Xiaoyuan Jiang: Resources. Yongliang Zhao: Writing - Review
& Editing. Fei Chen: Conceptualization, Writing - Review & Editing, Funding
acquisition, Project administration, Supervision. Dongsheng Zhou: Conceptualization,
Writing - Review & Editing, Project administration, Supervision.

Competing interests
The authors have declared no competing interests.

Acknowledgements
This work was supported by the National Key Program for Infectious Disease of
China [2018ZX10302301-004-003] and the National Natural Science Foundation of
China [31770870, 31801093].

Authors’ ORCID IDs
ORCID: 0000-0001-7961-0888 (Fu, J)
ORCID: 0000-0003-3274-9844 (Zhang, J)
ORCID: 0000-0001-7353-4415 (Yang, L)
ORCID: 0000-0002-1045-1695 (Ding, N)
ORCID: 0000-0002-5752-6914 (Yue, L)
ORCID: 0000-0003-4816-6598 (Zhang, X)
References

[22] Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of

[44] Loytynoja A, Goldman N. webPRANK: a phylogeny-aware multiple sequence

Figure legends

Figure 1 Circos plots displaying general genomic information of 14 *K. pneumoniae* strains

The circles are as follows (from outside to inside): (1) A physical map scaled in megabases (Mb) from the base 1, which is the start of putative replication origin; (2) Coding sequences transcribed in a clockwise direction; (3) Coding sequences transcribed in a counterclockwise direction; (4) G+C content in a window of 2 kb sliding (red and green indicates G+C content that is higher and lower than average, respectively); (5) GC (G-C/G+C) skew in a window of 2 kb sliding (orange and green indicates GC skew above and below zero, respectively); (6) GATC motifs; (7) CCWGG motifs. The other circles inside indicate the other 13 methylation motifs.

Figure 2 The 15 MTase genes and corresponding methylated sequence motifs for the 14 *K. pneumoniae* strains

Hyper-virulence and low-virulence strains are labeled in red and green letters, respectively. The large and small circles represent chromosome and plasmid genomes, respectively.

Figure 3 Density distribution of the GATC/CCWGG motifs on the NTUH-K2044 and random generated genomes

The green histograms show the density distribution of **G**^A^T^C^/C^C^C^W^G^G on the NTUH-K2044 genome, which also follow Poisson distributions with $\lambda = 5.64/3.62$. The orange histograms show the density distribution of **G**^A^T^C^/C^C^C^W^G^G motifs on the random generated genome, which follow Poisson distribution with $\lambda = 3.73/2.89$ (total number of GATC/CCWGG motifs × 1000 per genome size).

Figure 4 Distribution of GATC/CCWGG motifs with different methylation patterns in GRs and IGRs

A. Bar plots showing the ratio of **G**^A^T^C^/C^C^C^W^G^G motifs with different methylation patterns in GRs and IGRs of 14 *K. pneumonia* strains. The blue, yellow and green bars indicate the ratios of methylated, hemi-methylated and un-methylated motifs in GRs and IGRs. B. Box plots showing the methylated levels of **G**^A^T^C^/C^C^C^W^G^G motifs in GRs and IGRs (red and blue boxes). C. Frequency distribution of the methylated (top) and hemi/un-methylated (bottom) **G**^A^T^C^/C^C^C^W^G^G motifs in GRs and IGRs of 14 *K. pneumonia* strains. The dotted grey lines represent the position of the start and stop codons. GRs, gene regions; IGRs, intergenic regions.
Figure 5 Dynamic methylation analysis of GATC and CCWGG motifs of NTUH-K2044 and 11492

A. Growth curves of K. pneumonia NTUH-K2044 (red) and 11492 (blue). X-axis represents the growth time, including lag phase, exponential phase, transition-to-stationary phase and stationary phase. Y-axis represents the logarithms of normalized O.D. value. At 1, 4 and 24 h, aliquots of bacterial cultures were collected and sequenced using PacBio and Illumina platforms. The doubling time (t_D) of the two strains are also labelled in the plot. B. Genome-wide methylation level versus genome position for the two motifs (GATC and CCWGG) at exponential phase. The bold fitting lines approximate the average methylation levels across the genomes (5 kb window size). C. Schematic diagram showing the process of DNA replication in exponential phase. (1) The origin replication complex binds to oriC region. (2) The first round of replication will be initiated when original replication complex binds to oriC region. (3) The second round of replication begins before completion of the first round replication. (4) Six replication forks are generated in one bacterium. (5-6) The first round of replication completes, followed by a new cell replication cycle. D. Fitting of the genomic coverages with the mathematical model of replication. The genomic coverage plots of 11492 (upper) and NTUH-K2044 (lower) strains are shown in grey; the mathematically fitting curves are shown in red.

Figure 6 Comparison of re-methylation times of GATC/CCWGG motifs in different genome regions

A. Box plot shows the methylation time of GATC motifs in oriC and other regions. B. Box plot shows the methylation time of GATC and CCWGG motifs in GRs and IGRs. ** P < 0.01, *** P < 0.001. GRs, gene regions; IGRs, intergenic regions.
Tables

Table 1 General genomic information of the 14 *K. pneumoniae* strains

Table 2 Three types of modification patterns of GATC motif from the 14 *K. pneumoniae* strains

Table 3 Modification patterns of the 12 motifs with 6mA among the 14 *K. pneumoniae* strains

Table 4 Modification patterns of the two motifs with 5mC among the 14 *K. pneumoniae* strains

Table 5 15 methylation motifs and corresponding DNA MTases from the 14 *K. pneumoniae* strains

Table 6 Average methylation time per motif in NTUH-K2044 and 11492
Supplementary material

Figure S1 Phylogenetic analysis of 76 *K. pneumoniae* strains
The strains shown in red letters represent the 14 *K. pneumoniae* strains we sequenced; the strains shown in black letters indicate the 62 *K. pneumoniae* strains downloaded from NCBI. The colored strips and stars represent various types of MLSTs and serotypes of *K. pneumoniae* strains.

Figure S2 Genomic structural comparison of the 14 *K. pneumoniae* strains
Genomes are arranged from the top to bottom in the order of: NTUH-K2044; 11492; 11420; 11454; 11311; 12208; 11311; 23; 11021; N201205880; 309074; 11305; 13190; 283747 and 721005. The same colors represent the homologous fragments as identified by the Mauve program.

Figure S3 Preferred flanking sequences of the unmethylated, hemimethylated, and methylated MTCGAK motifs in NTUH-K2044 and 11492
The sequence logos show the preferences of 10 nucleotides flanking the MTCGAK motifs in the two strains of NTUH-K2044 and 11492. The size of colored letters represents the probability of occurrence.

Figure S4 Characterization of seven novel 6mA MTases specificities by using restriction digestion and SMRT sequencing

A. Schematic diagram shows the whole MTase gene and its methylation motif sequence in the recombinant plasmids. We respectively cloned the MTases genes into pRRS plasmids. Type I MTases contain modification (M) and specificity (S) subunits, which are shown as blue and green bars. Type II MTases only include MTase subunits (M). The predicted methylation motif sequences are located at the downstream of the stop codon of the MTases. To identify the activity of MTases, we introduced some methylation-sensitive restriction enzymes, which recognition motifs share six bases (red dotted boxes) with the MTase motifs. If the A bases (red bold letter) are methylated by the MTases in the methyltransferase deficient *E. coli* strain ER2796, the restriction enzymes will fail to cut the corresponding motif sequences. **B.** Electrophoretogram identifying methylation activity of the MTases. As for KamB, the circular plasmid pRRS-KamB could not be cleave into linear plasmid by the methylation sensitive restriction enzymes, MfeI and BstBI (lane 4: circular plasmid control, lane 5: linear plasmid control, lane 6: plasmid pRRS-KamB cut by MfeI, lane 7: plasmid pRRS-KamB cut by BstBI), demonstrating that MTase KamB could
successfully methylate TTCAN7TTC motif. As for KamC/D/E/F, since there were two restriction sites on the recombinant plasmids, the circular plasmid pRRS-KamC/D/E/F could be cleaved into a linear fragment if the motifs were methylated (lane 8/11/14/17: circular plasmid control, lane 9/12/15/18: linear plasmid control, lane 10: plasmid pRRS-KamC cut by PciI, lane 13: plasmid pRRS-KamD cut by ScaI, lane 16: plasmid pRRS-KamE cut by BstBI, lane 19: plasmid pRRS-KamF cut by ScaI). Similarly, as for KamA/G, there were three restriction sites on the recombinant plasmids, the circular plasmid pRRS-KamA/G could be cleaved into two linear fragments if the motifs were methylated (lane 1/20: circular plasmid control, lane 2/21: linear plasmid control, lane 3: plasmid pRRS-KamA cut by BfuAI, lane 22: plasmid pRRS-KamG cut by ScaI). For KamG, we also observed cleaved bands on the gel due to the incomplete methylation (indicated as black arrows). C. IPD ratio plot shows the seven methylation motifs in the plasmids. SMRT sequencing was adopted to confirm the specificities of MTases. The purple and orange bars show the IPD ratios on plus and minus strands, respectively. The red rectangle indicates the motif sequence for each MTase. The average IPD values of the methylated bases on plus and minus strands are between four and eight.

Figure S5 Characterization of 5mC MTases specificity using restriction digestion

A. Schematic diagram shows the MTase gene and its methylation motif sequence in the recombinant plasmid. We cloned KcmA gene and predicted motif sequence (MTCGAK: at the downstream of the stop codon of the KcmA gene) into pRRS plasmid. The modification bases are marked as red bold letters. **B.** Electrophoretogram identifying the methylation activity of KcmA (a 5mC Mtase). The KcmA gene was cloned into the pRRS plasmid and expressed in E. coli ER2796. Recombinant plasmid DNA (pRRS-KcmA) was prepared and digested by the restriction enzyme BspDI. The products were resolved on an agarose gel for analysis. Lane M: Takara trans2K plusII ladder; Lane 1: recombinant plasmid pRRS-KcmA as positive control; Lane 2: linear recombinant plasmid pRRS-KcmA as negative control (digested by sbf I); Lane 3: pRRS-KcmA digested by BspD I to verify the methylation activity of KcmA; Lane 4: Takara trans2K plusII ladder.

Figure S6 Seven predicted MTases without methylation activity

A. Schematic diagram shows the seven predicted MTase genes and corresponding

Figure S7 COG categories of coding genes with GATC and CCWGG motifs in high-density and low-density regions
X-axis shows the functional classes. Y-axis shows the number of genes in each functional class.

Figure S8 Distribution of GATC (upper panel) and CCWGG (low panel) motifs flanking the oriC region among the 14 K. pneumonia strains.
The color intensity indicates the number of motif in 1kb window size.

Figure S9 Density distribution of the GATC/CCWGG motifs on the NTUH-K2044 genome and simulated genomes
The orange histograms show the density distribution of GATC/CCWGG motifs on the simulated genomes of strain NTUH-K2044. The green histograms show the density distribution of GATC/CCWGG on the NTUH-K2044 genome.

Figure S10 Density distribution of the GATC/CCWGG motifs on the 13 K. pneumoniae genomes and random generated genomes
The orange histograms show the density distribution of GATC/CCWGG motifs on the random generated genomes. The green histograms show the density distribution of GATC/CCWGG on the 13 K. pneumoniae genomes.

Figure S11 Ka/Ks ratios for GATC/CCWGG “motif sequences” and “scramble sequences” of the 14 K. pneumoniae genomes
Box plot showing the Ka/Ks ratios of GATC/CCWGG “motif sequences” of the K. pneumoniae genomes. Red boxes indicate the Ka/Ks ratios of GATC/CCWGG “motif sequences”; blue boxes indicate the corresponding “scramble sequences” as the
controls.

Figure S12 Boxplot of conservations scores for methylated and hemi/un-methylated GATC/CCWGG motifs

Box plot shows the conservation values of GATC/CCWGG motifs of the *K. pneumoniae* genomes. Red boxes indicate the conservation values of methylated GATC/CCWGG motifs and their flanking regions (20 nt); blue boxes indicate the hemi/un-methylated motifs and their flanking regions (20 nt) as the controls.

Figure S13 Genome-wide sequencing coverage and methylation level of GATC and CCWGG motifs during cell cycles of NTUH-K2044 and 11492

A. Genome-wide sequencing coverage versus genome position at three stages (1, 4 and 24 h) in the cell cycle of two *K. pneumonia* strains. The replication bidirectionally begins from the origin (O) and completes at terminus (T) (i.e., doubling point: in the middle of genome). The bold lines approximate the average coverage across the genomes. Ratios of the average coverage at *oriC* to that at doubling point are labeled in the figure. B. Genome-wide methylation level versus genome position for the two motifs (GATC, CCWGG, MTCGAK and GRACRAC) at the three growth stages in the cell cycle of two *K. pneumonia* strains. The bold lines approximate the average methylation levels across the genomes (5kb window size).

Figure S14 Box plot showing the re-methylation time of motifs in strain 11492 and NTUH-K2044

Box plots separately represent re-methylation time of motifs in strain 11492 (red) and NTUH-K2044 (blue). The black diamond mark represents the mean, and the transverse line represents the median.

Figure S15 Preferred sequences flanking the GATC and CCWGG motifs with fast and slow methylation rates in NTUH-K2044 and 11492.

A. Preferred sequences flanking GATC motifs with fast and slow methylation rates. The fast methylation rate means that the FRAC values for the motif are more than 0.95; the slow methylation rate means that the FRAC values for the motif are less than 0.9. Left panel: x-axis shows the GATC motif flanked by five nucleotides; y-axis indicates the ratios of A/T/C/G. Right panel: the sequence logos show preferences of five nucleotides flanking the GATC motifs at stationary phase in strain NTUH-K2044 and 11492. B. Preference of flanking nucleotides of CCWGG motif. Quick methylation mode was defined as the FRAC values for 1h, 4h, and 24h samples were
all above 0.85, and the slow methylation mode was defined as the FRAC values for
1h, 4h, and 24h samples were all below 0.55. X-axis indicated the positions of
nucleotides, and Y-axis indicated the ratios of A/T/C/G.

Figure S16 Re-methylation time of GATC motifs in the oriC region (381 nt) of
NTUH-K2044 and 11492

The DnaA boxes (blue), AT-rich region (yellow) and GATC motifs (red) are labeled
on the sequence. The re-methylation times of GATC motifs in 11492 and NTUH-
K2044 stains are marked in purple and green.

Figure S17 Distribution of the promoters in the upstream regions of 14 K.
pneumoniae genomes

X-axis shows the distance from the start codon; Y-axis shows the number of
promoters locating corresponding positions of the region.

Figure S18 COG distributions of genes with hemi/un-methylated
GATC/CCWGG motifs in intergenic regions

Box plots indicated the COG categories of coding genes with methylated and
hemi/un-methylated GATC/CCWGG motifs in intergenic regions. X-axis shows the
functional classes. Y-axis shows the ratio of genes in each functional class.

Figure S19 COG distributions of genes with upstream hemi/un-methylated
sites of novel motifs in intergenic regions

X-axis shows the functional classes. Y-axis shows the ratio of genes in each functional
class. [C] Energy production and conversion, [D] Cell cycle control, cell division,
chromosome partitioning, [E] Amino acid transport and metabolism, [F] Nucleotide
transport and metabolism, [G] Carbohydrate transport and metabolism, [H] Coenzyme
transport and metabolism, [I] Lipid transport and metabolism, [J] Translation,
ribosomal structure and biogenesis, [K] Transcription, [L] Replication, recombination
translational modification, protein turnover, and chaperones, [P] Inorganic ion
transport and metabolism, [Q] Secondary metabolites biosynthesis, transport, and
catabolism, [R] General function prediction only, [S] Function unknown, [T] Signal
transduction mechanisms, [U] Intracellular trafficking, secretion, and vesicular
transport, [V] Defense mechanisms.

Figure S20 Accuracy evaluation of the mathematical model
A. Comparison between the fitting and real methylated-read ratios (FRAC$_{\text{model}}$ and FRAC$_{\text{PacBio}}$) of GATC motif (5kb window). B. Comparison between the fitting and real methylated-read ratios (FRAC$_{\text{model}}$ and FRAC$_{\text{PacBio}}$) of CCWGG motif (5kb window). C. Boxplot showing the percentage errors of GATC and CCWGG motifs.

Table S1 Clinical information of 14 K. pneumoniae isolates
Table S2 Sequencing data of the 14 K. pneumoniae strains using SMRT technology
Table S3 Sequencing data of the 14 K. pneumoniae strains using Illumina Hiseq platform
Table S4 Genomic information of the online 62 K. pneumoniae strains used in the phylogenetic tree
Table S5 Bisulfite sequencing data of the 14 K. pneumoniae strains
Table S6 22 predicted MTase genes and the corresponding 15 methylation motifs
Table S7 Detailed information of the motifs and corresponding DNA MTases among the 14 K. pneumoniae strains
Table S8 Fishers’ exact test of the unmethylated and methylated MTCGAK sites
Table S9 Distribution of GATC motifs in GRs and IGRs among 14 K. pneumoniae strains
Table S10 Distribution of CCWGG motifs in GRs and IGRs among 14 K. pneumoniae strains
Table S11 Summary of genes with upstream hemi/un-methylated GATC sites shared in the 14 K. pneumoniae strains
Table S12 Summary of genes with upstream hemi/un-methylated GATC motif clusters in the 14 K. pneumoniae strains
Table S13 SMRT sequencing data of the samples at three growth time points (1, 4 and 24 h) of 11492 and NTUH-K2044
Table S14 Bisulfite sequencing data of the samples at three growth time points (1, 4 and 24 h) of 11492 and NTUH-K2044
Table S15 Slow re-methylated GATC motifs in the 5’ USR of genes enriched in four COG categories
Table S16 The seven CCWGG sites changed in methylation state during the growth phase of NTUH-K2044

Table S17 Summary of the genes with upstream hemi/un-methylated MTCGAK sites shared in the NUTH-K2044 and 11492 strains

Table S18 Summary of the genes with upstream hemi/un-methylated CCAYN[TTTYG sites shared in the 23 and 11311 strains

Table S19 Oligonucleotide primers used in this study
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
A Gene region Intergenic gene region

![Gene region](image)

B GATC CCWGG

![Methylation level](image)

C Methylated GATC motifs in 14 strains Methylated CCWGG motifs in 14 strains

![Methylated GATC motifs in 14 strains](image) ![Methylated CCWGG motifs in 14 strains](image)

C Hemi/unmethylated GATC motifs in 14 strains Hemi/unmethylated CCWGG motifs in 14 strains

![Hemi/unmethylated GATC motifs in 14 strains](image) ![Hemi/unmethylated CCWGG motifs in 14 strains](image)