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Abstract (150 words): 73 

Airway macrophages (AMs) are key regulators of the lung environment and are 74 

implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal 75 

respiratory disease with no cure. However, the epigenetics of AMs development and 76 

function in IPF are limited. Here, we characterised the DNA-methylation (DNAm) 77 

profile of AMs from IPF (n=30) and healthy (n=14) donors. Our analysis revealed 78 

epigenetic heterogeneity was a key characteristic of IPF AMs. DNAm ‘clock’ analysis 79 

indicated epigenetic alterations in IPF-AMs was not associated with accelerated 80 

ageing. In differential DNAm analysis, we identified numerous differentially 81 

methylated positions (DMPs, n=11) and regions (DMRs, n=49) between healthy and 82 

IPF AMs respectively. DMPs and DMRs encompassed genes involved in lipid 83 

(LPCAT1) and glucose (PFKB3) metabolism and importantly, DNAm status was 84 

associated with disease severity in IPF. Collectively, our data identify that profound 85 

changes in the epigenome underpin the development and function of AMs in the IPF 86 

lung.   87 
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Background: 88 

Airway macrophages (AMs) are sentinel innate cells of the lungs contributing to 89 

homeostasis and immune response1. Ontogeny of AMs is complex encompassing 90 

both self-renewing-fetal-derived ‘resident’ and monocyte-derived ‘recruited’ cells2. 91 

Understanding of AM ontogeny in disease states and aging is contentious and has 92 

relied heavily on murine models. However, we recently helped clarify AM ontogeny in 93 

humans by identifying that one year post lung transplant, AMs in adults are derived 94 

exclusively from recruited peripheral monocytes3.  95 

The influence of the local microenvironment in shaping macrophage development 96 

and function is increasingly being appreciated4. Responses to growth factors or 97 

inflammatory mediators can skew macrophage development as exemplified by the 98 

pro-inflammatory ‘M1’ and pro-wound healing ‘M2’ paradigm. However, in vivo 99 

macrophages exhibit tremendous heterogeneity in both health and diseased states5-
100 

7, indicating a remarkable plasticity.  101 

Key processes in macrophage development are reflected in changes to the 102 

epigenome including DNA methylation (DNAm)8. Occurring in the context of 103 

cytosine-guanine dinucleotides (CpGs), DNAm influences chromatin accessibility, 104 

transcription factor (TF) binding and gene expression9,10. DNAm represents one of 105 

the most stable epigenetic marks and can be measured as a means of assessing the 106 

influence of development and diseases on the epigenome. In AMs, DNAm is altered 107 

in genetic and environmentally-induced chronic airway diseases11-13. Regional 108 

differences in lung anatomy also influence DNAm in AMs14, suggesting that shaping 109 

of AM development in the lung microenvironment comprises an epigenetic 110 

component. However, despite recent advances in our understanding of AM 111 
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ontogeny, the epigenetics of monocyte to macrophage development in the lung and 112 

influence of disease on these processes remain limited.  113 

Idiopathic pulmonary fibrosis (IPF) is a deadly respiratory disease of unknown 114 

aetiology with heterogeneous cellular and molecular mechanisms15. The 115 

pathobiology of IPF is characterised by a pro-fibrotic wound-healing cascade that 116 

does not resolve, leading to progressive scarring, loss of lung function and ultimately 117 

death16. Although containing a strong genetic component17, the greatest risk factor 118 

for IPF is age (median 65 years18) and prognosis in IPF is worse than some cancers 119 

with a mean survival of 3-5 years19. In the IPF lung, AMs exhibit transcriptional7, 120 

immuno-phenotypic1 and metabolic differences20,21. Recent studies employing 121 

single-cell RNA sequencing (scRNA-Seq) have indicated a transcriptional spectrum 122 

of AMs in the IPF lung that reflects facets of both M1 and M2 macrophage 123 

paradigm5-7. However, despite their emerging role in IPF pathogenesis, the 124 

molecular mechanisms underlying transcriptional and other phenotypic 125 

characteristics of AMs in IPF are poorly understood.  126 

In the current study we investigated the epigenetics of AMs by undertaking genome-127 

wide DNAm profiling using the Illumina EPIC (850k) arrays. By comparing AMs and 128 

other myeloid cell DNA methylomes, we sought to clarify the epigenetics of AM 129 

development in the lung. By profiling AMs from healthy and IPF donors, we also 130 

sought to determine if changes in the epigenome characterize features of AMs 131 

observed in the IPF lung.   132 
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Results: 133 

The DNA methylation profile of AMs is distinct from that of peripheral 134 

monocytes or cultured macrophages: 135 

Given recent work identifying AMs as monocyte-derived and having characteristics 136 

spanning the M1-M2 spectrum of activation, we sought to determine if these 137 

changes are also reflected at the epigenetic level by comparing the DNA methylome 138 

in AMs and other myeloid cells. 139 

Firstly, we enriched CD206+ AMs, obtained through bronchoalveolar lavage, from 140 

healthy (n=14) and IPF (n=30) donors and assayed DNAm using Illumina 141 

Methylation EPIC (850k) arrays, which interrogate >850,000 CpGs across the 142 

genome with an enrichment for functional loci (promoters and enhancers, Table 143 

S1)22. These data were then merged with whole genome bisulphite sequencing 144 

(WGBS) Blueprint datasets from representative myeloid cell-types including 145 

CD14+CD16- ‘Classical’ and CD14+CD16+ ‘Other’ monocytes and in vitro-derived 146 

M0, M1, and M2 macrophages23 (Figure 1A). We then identified the top 500 CpGs 147 

with a DNAm profile which best discriminated each monocyte and macrophage 148 

subtype (see methods) and characterized these as ‘myeloid marker CpGs’ (myld-149 

CpGs, Table S2).   150 

We found that myld-CpGs reside predominately in intronic and intergenic regions 151 

(Figure 1B) that are enriched for other epigenetic features in myeloid cells including 152 

histone modifications indicative of poised enhancers (H3K4me1 without H3K27ac) 153 

and open chromatin (DNase-I hypersensitivity sites: DHS, Figure 1C-D). Functional 154 

enrichment analysis additionally indicated that myld-CpGs encompass a diverse 155 

range of receptor signalling, immune cell activation, chemokine and metabolic-156 

related processes and pathways (Figure 1E). Although annotated to n=449 genes, 157 
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we found AT-Rich Interaction Domain 5B (ARID5B), a transcriptional co factor which 158 

has been shown to regulate glucose metabolism24, contained the most myld-CpGs 159 

(Figure 1F, Table S2) 160 

We focused further on ARID5B and mining scRNA-Seq datasets from healthy and 161 

diseased lung (IPF/COPD) established that ARID5B is expressed across immune 162 

cells including monocytes and macrophages (Figure S1B). At the ARID5B locus we 163 

found that the myld-CpGs are clustered at the promoter region of a shorter transcript 164 

variant 2 and overlap with DHS and H3K4me1 enrichment (Figure 1G). We then 165 

confirmed the expression of the shorter ARID5B transcript in AMs (Figure S1C). 166 

Finally, closer inspection revealed dramatic changes in DNAm towards the shorter 167 

ARID5B variant promoter region with AMs exhibiting an intermediate DNAm profile 168 

(avg. 50.8%) compared to other myeloid cells (monocytes - avg. 85.4% and 169 

macrophages - avg. 0.6%, Table S2). Taken together, these results indicate that the 170 

DNAm profile of human AMs is distinct from that of peripheral monocytes/cultured 171 

macrophages and we identify ARID5B DNAm status as a marker of AM 172 

development. 173 

 174 

Changes in the AM-methylome define IPF-AMs: 175 

Next, to determine whether the methylome was distinct in each cell-type or disease 176 

state, we clustered DNAm profiles for genes with >2 myld-CpGs. Interestingly, our 177 

analysis indicated that epigenetic heterogeneity is a feature of IPF, as DNAm profiles 178 

across myld-CpGs were distinct when comparing healthy and IPF AMs (Figure S1A).  179 

Furthermore, the DNAm of AMs overlapped significantly with other myeloid cells, 180 

potentially indicating monocytic origin (Figure S1A).  181 
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To clarify this further we performed deconvolution analysis of AM DNAm datasets 182 

with mlyd-CpGs (see methods). Deconvolution revealed that while at the epigenetic 183 

level healthy and IPF AMs were predicted to be largely a composite of ‘other’ 184 

monocytes and M0/M2 macrophages, clustering identified the separation of healthy 185 

and IPF AMs (Figure 2A), driven largely by differences in the minor classical 186 

monocyte and M1 macrophage fractions (Figure 2B). However, further investigation 187 

revealed that the specific differences in subsets was related to donor age (Figures 188 

2C).  189 

Because IPF and ageing are linked and many age-related diseases exhibit 190 

‘accelerated’ changes to the epigenome, we next used DNAm ‘clock’ analyses to 191 

clarify the contribution of ageing towards the predicted myeloid cell composition of 192 

AMs. Epigenetic ‘clocks’ use changes in DNAm to estimate sample donor age and 193 

determine if accelerated epigenetic ageing are present (i.e. older age prediction than 194 

chronological age) and if disease status is associated with accelerated epigenetic 195 

signatures (see Methods). We found that while a strong correlation between 196 

chronological and epigenetic age was present, no differences in age-adjusted 197 

epigenetic age acceleration was observed between healthy and IPF AMs across 198 

either the blood or tissue-derived Hannum and Horvath ‘clocks’ respectively (Figure 199 

2D and S1D). Furthermore, there was no relationship between predicted myeloid cell 200 

composition and epigenetic age acceleration (Figure 2E), inferring that myeloid cell 201 

composition was a feature of IPF AMs and not the more generalised age-related 202 

changes detected by these ‘clocks’. Taken together, these data indicate that 203 

epigenetic heterogeneity is present in AMs and is a characteristic of IPF. 204 

 205 

Identification of differentially methylated positions (DMPs) in IPF: 206 
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We next sought to determine whether AMs DNAm profiles are impacted during IPF 207 

and to identify the impact of myeloid cell composition in these analyses. Initial 208 

principal component analysis indicated a separation of donors by disease group 209 

(Figure S2A) with myeloid cell composition and donor age being comparable drivers 210 

of variance within the dataset (Figure S2D). We then undertook analysis to identify 211 

DMPs in IPF and observed a dramatic impact when adjusting for myeloid cell 212 

composition in addition to other study covariates (Figure 3A and methods). This was 213 

equally evident when investigating direction of DNAm change in IPF with all myeloid-214 

adjusted DMPs identified (n= 11) losing DNAm compared to healthy controls 215 

(Figures 3B, S2C-D and Table S3). 216 

IPF DMPs were either intronic (n=9) or intergenic (n=2) and occurred in regions 217 

enriched for open chromatin in myeloid cells (DHS, Figure S2E). We found n=3 IPF 218 

DMPs clustered at Lysophosphatidylcholine Acyltransferase-1 (LPACT1), an enzyme 219 

which mediates the conversion of lysophosphatidylcholine to phosphatidylcholine25 220 

(Figure 3B). Mining of scRNA-Seq data indicates that LPCAT1 is expressed across 221 

monocytes and macrophages in the lung and we confirmed these findings in our 222 

study AMs (Figure S1B-C).  223 

Although LPCAT1 DMPs are intronic, distal regions can influence gene expression 224 

through 3D interactions. To investigate this further, we used promoter capture HiC 225 

(pcHiC) data to investigate the relationship between IPF DMPs and 3D interactions 226 

in myeloid cells26. Remarkably, while the LPCAT1 promoter interacted with other 227 

genes/regions specifically in monocytes (Figure S2F), the strongest interaction 228 

occurred with the region containing the IPF DMPs (Figure 3C). We identified a 229 

correlation between IPF DMPs methylation and gene expression occurred only for 230 

LPCAT1 (Figure 3D) and not any other interacting genes (Figure S2G).  231 
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Finally, we investigated the relationship between LPCAT1 and clinical features of IPF 232 

(Table S1) and found that while no relationship was present for gene expression 233 

(Figure 3E), there was a strong correlation between methylation and forced vital 234 

capacity (FVC), a measure of disease severity and progression in IPF27 was evident 235 

(Figure 3F). Taken together these data suggest AMs similarity to monocytes on the 236 

epigenetic and higher order 3D-interaction level and a function of DNAm of AMs in 237 

IPF pathogenesis.  238 

 239 

Identification of differentially methylated regions (DMRs) in IPF: 240 

Given the clustering of IPF DMPs, we next conducted analysis to identify DMRs in 241 

IPF. Similar to DMP analysis, we saw a reduction in total DMRs identified after 242 

adjusting for myeloid cell composition (Figure 4A). However, we found n=49 myeloid-243 

adjusted DMRs which included regions both gaining and losing DNAm compared to 244 

healthy controls (Table S4). We also found n=2 DMRs which encompassed the 245 

previously identified DMPs of LPCAT1 and DNA Polymerase Epsilon, Catalytic 246 

Subunit (POLE, Figure 3B).  247 

IPF DMRs were distributed across various genomic features including promoters, 248 

introns and exons (Figure 4B), occurred in regions enriched for open chromatin in 249 

myeloid cells (Figures 4C-D) and were more likely linked in 3D to distal genes and 250 

regions (Figure S3A-C). We additionally found motifs matching TF’s previously 251 

implicated in macrophage polarisation to be enriched in IPF DMRs (e.g. KLF4, 252 

FOXO1, Figure 4E) and the subsequent cell-type expression profiles of TF encoding 253 

genes across lung immune cells (Figure S3D). 254 

We then undertook functional enrichment analysis and found enrichment across 255 

various processes and pathways pertinent to macrophage biology (e.g. 256 
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extravasations) and IPF pathogenesis (e.g. platelet activation, response to wound 257 

healing; Figure S4A).  258 

To gain a better insight into the biological implications of changes in DNAm, we 259 

undertook additional protein-protein interaction analysis and found that DMR-260 

associated genes form central hubs in a large interconnect network (Figure 5A and 261 

Figure S4B). We refined our analysis further and undertook functional enrichment of 262 

networks by DNAm status and found hub genes gaining DNAm in IPF predominately 263 

encompass metabolic processes whilst those losing DNAm play a role in processes 264 

and pathways pertinent to macrophage biology and fibrogenesis (e.g. phagocytosis, 265 

cell proliferation and TGF-β  signalling, Figure 5B).  266 

Given that work from our lab has identified an altered state of AM metabolism in 267 

IPF20,21, we focused on 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 268 

(PFKB3) , a potent driver of glycolysis28 and found the IPF related DMR overlapped 269 

H3K4me1 and DHS enrichment and was located in an intergenic region, upstream of 270 

the PFKB3 promoter. Remarkably, all AMs exhibited a complete loss of methylation 271 

for CpGs at the PFKB3 TSS (Figure 5C). We found PFKB3 exhibited differential 272 

expression between healthy and IPF AMs (Figure S1C) and subsequently confirmed 273 

a correlation between DNAm and gene expression for two of the 3 CpGs 274 

encompassing the PFKB3 DMR (Figure 5D). We additionally identified relationships 275 

between PFKB3 gene expression and methylation with severity of IPF as determined 276 

by FVC (Figure 5E-F). Taken together these data strongly suggest that changes in 277 

the epigenome underpin the distinct metabolic phenotype observed in AMs isolated 278 

from IPF lung and their contribution towards disease pathogenesis.  279 
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Discussion: 280 

AMs are key regulators of the lung environment and are implicated in the 281 

pathogenesis of lung fibrosis. By comparison to reference myeloid cells, we 282 

determined that epigenetic heterogeneity is present in AMs and, furthermore, is a 283 

characteristic of IPF (Figure 2). While identified computationally, our findings mirror 284 

scRNA-Seq studies of the IPF lung where AMs exhibit transcriptional heterogeneity5-
285 

7. Differences in myeloid cell composition also suggests that the IPF lung influences 286 

monocyte to macrophage developmental trajectories. Interestingly, transcriptomic 287 

signatures reflective of blood monocytes are already altered in association with IPF 288 

severity29-31, potentially indicating that the effects of IPF extends across tissue 289 

compartments rather than being isolated to the lung. As such, blood monocytes from 290 

individuals with IPF may already be ‘primed’ towards a particular macrophage 291 

lineage (e.g. M1-like). With advancements in single-cell epigenomics, future studies 292 

of IPF should seek to generate matched transcriptome and epigenomic datasets 293 

across blood and lung to comprehensively address the molecular events and 294 

influence of IPF on AM developmental trajectories.  295 

In the absence of single-cell data, computational deconvolution of epigenetic data is 296 

essential to decipher disease effects within samples consisting of mixed cell 297 

populations32. Even though we had enriched AMs based on cell surface expression 298 

of CD206, we identified epigenetic heterogeneity (Figure 2A) and found a 299 

tremendous impact of myeloid cell composition in identification of DMPs and DMRs 300 

in IPF (Figure 3B and Figure 4A). Our work has implications for previous studies of 301 

DNAm in IPF that have largely assayed whole lung tissue in ‘bulk’ without accounting 302 

for cell-type heterogeneity33,34. Furthermore, our study employed a genome-wide 303 
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approach, providing better insights into the influence of IPF on the wider epigenome 304 

than previously conducted gene-specific studies in this disease area 35.  305 

While the identification of epigenetic heterogeneity in AMs was important for 306 

deciphering DNAm changes in IPF, we additionally found that donor age correlated 307 

with this predicted heterogeneity (Figure 2C). To address the potential interaction of 308 

heterogeneity and age, we conducted epigenetic ‘clock’ analysis as these signatures 309 

are actively being explored for possible novel age-related disease insights36. 310 

However, we found no differences in age acceleration between healthy and IPF AMs 311 

or relationship to predicted myeloid cell composition (Figure 2D-E). These findings 312 

are in contrast to many other age-related diseases37 and indicate that whilst IPF 313 

predominately occurs in later decades, the DNAm changes detected are likely to be 314 

specific to IPF rather than representing epigenome changes occurring as a 315 

consequence of otherwise ‘healthy ageing’38. Although these analyses and other 316 

adjustments for donor age in differential analysis revealed influence of IPF on AMs 317 

DNAm, IPF and age remain inexplicably linked. Future studies of epigenetics in IPF 318 

should therefore strive to include age and sex matched healthy controls.  319 

 320 

By attempting to clarify the epigenetic events related to macrophage development in 321 

the lung, we found that DNAm patterns which discriminate myeloid cell-type occur 322 

largely in intronic and intergenic regions (Figure 1B). This supports previous work 323 

indicating epigenomic changes during immune cell lineage commitment occurs 324 

within non-coding regions39. However, we identified DNAm intragenically within 325 

ARID5B at the promoter locus for a shorter transcript variant 2 as a mark of 326 

monocyte to macrophage development (Figure 2G). ARID5B is a chromatin modifier 327 

that acts as a transcriptional coactivator by removing repressive histone 328 
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modifications40. Additionally, ARID5B has been linked to adipogenesis41 and 329 

metabolism in hepatocytes42 and natural killers cells, where altered DNAm 330 

particularly of the short transcript variant 2 characterized a HMCV+ adaptive NK cell 331 

substype43. More relevant to this study was work using a multi-omics approach that 332 

identified ARID5B’s association with atherosclerosis in CD14+ blood monocytes and 333 

implicated 3D interactions in linking intronic ARID5B DNAm (and other regulatory 334 

regions) with the ARID5B promoter44.  335 

We identified n=11 EWAS DMPs in IPF and found most changes were clustered 336 

within an intronic region of LPCAT1 (Figure 3C). LPCAT1 is an evolutionarily 337 

conserved enzyme that is involved in phospholipid metabolism and performs a key 338 

role in surfactant production in alveolar type 2 cells45 and inflation of lungs upon 339 

birth46. Recent work has implicated LPCAT1 with aberrant metabolism and plasma 340 

membrane remodelling in cancer, helping to establish functional links between 341 

genetic alterations and tumour growth47. In IPF, reduction of LPCAT1 gene 342 

expression was shown to characterise subsets of IPF-specific airway epithelial 343 

cells48.  344 

Similar to work in blood monocytes44, we investigated whether integrating 3D 345 

interactions could help elucidate the potential impact of changes in DNAm on gene 346 

expression26. Remarkably, we found the LPCAT1 promoter ‘self-interacted’ with 347 

regions containing IPF DMPs (Figure 3C) and over half of all DMRs were linked in 348 

3D to other genomic regions in myeloid cells (Figure S3C). While these data suggest 349 

that similar to DNAm, AMs share a higher order chromatin structure similar to 350 

monocytes and macrophages, bias from the EPIC array design needs to be taken 351 

into consideration. Future studies should therefore aim to determine 3D interactions 352 

in AMs from healthy and IPF donors empirically. 353 
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Work from our lab has indicated the crucial role of immunometabolism of AMs in 354 

IPF20,21. We identified IPF DMRs encompassed genes and networks of lipid, iron and 355 

glycolytic metabolic processes (Figure 5B and S4A-B). Indicative of the impact of 356 

changes in DNAm was the DMR located at PFKFB3 (Figure 3C), an enzyme 357 

responsible for the synthesis and degradation of fructose 2,6-bisphosphate, a key 358 

regulator of glycolysis. In macrophages, work has identified an important role of 359 

PFKFB3 with plasticity and the M1-phenotype in liver fibrosis49 and with HIF-1α in 360 

driving glycolytic flux and maintaining cell viability under hypoxic and inflammatory 361 

conditions50. Given the composition of AMs in IPF was more ‘M1-like’ (Figure 2B) 362 

and the progressive remodelling of the IPF lung results in an inflammatory hypoxic 363 

environment, these results raise the question of whether development and 364 

epigenetic changes identified in IPF AMs are a cause or consequence of the fibrotic 365 

milieu of the IPF lung.  366 

 367 

In conclusion, our study has identified a role of aberrant epigenetic regulation of 368 

AMs, independent of ageing alone, which appears to be involved in IPF 369 

pathogenesis. Our study provides a foundation for further investigations to clarify the 370 

role of epigenetics during monocyte to macrophage development in the healthy and 371 

diseased airways.  Furthermore, our data highlight the possibility that therapeutic 372 

agents targeting epigenetic modification may have a role in the treatment of IPF. 373 

  374 
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Methods: 375 

Patient recruitment and sample collection: 376 

Study donors underwent bronchoscopy and collection of BAL as outlined 377 

previously20,21. All study donors provided written informed consent to participate in 378 

the study, which was approved by the research ethics committee (10/HO720/12, 379 

15/LO1399 and 15/SC/0101). Clinical characteristics of donors are outlined in Table 380 

S1. Differences in donor data were determined by Mann-Whitey or Chi-square Test 381 

for quantitative and categorical data respectively using GraphPad Prism v.8.4.2. 382 

 383 

AMs enrichment: 384 

CD206+ AMs were enriched from donor BAL using the magnetic-based MACS® 385 

system (Miltenyi Biotech, Germany) and fluorescent activated cells sorting (FACS) 386 

as outlined previously3,20,21. Briefly, for MACS-based enrichment, BAL cells (1 × 107) 387 

were incubated with human Fc-block (BD Biosciences, USA) and human CD206 388 

APC-Cy7 (clone 15-2, BioLegend, USA). CD206+ cells were enriched in MACS LS 389 

magnetic separation column and MidiMACSTM magnet. Cell counts were determined 390 

using a haemocytometer and trypan blue live/dead exclusion.  391 

 392 

For FACS-based enrichment BAL cells were washed and incubated with near-393 

infrared fixable live/dead stain (Life Technologies Inc.) as per the manufacturer’s 394 

instructions. After incubation with human Fc block (BD Pharmingen, Inc.), surface 395 

staining was performed with the following antibodies (fluorophore followed by clone 396 

in parentheses); CD45 (PE-Texas Red, H130), CD3 (FITC, OKT), TCR- β (BV421, 397 

IP26), CD206 (PercpCy5.5, 15.2). Cell sorting was carried out on Aria III (BD 398 

Biosciences) and AMs defined as live, CD45+CD3-TCR-CD206+ cells. 399 
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DNA/RNA extraction and EPIC methylation arrays: 400 

Nucleic acids were extracted from cells using the AllPrep Mini Kit (QIAGEN, 401 

Germany). DNA quality and quantity were assessed using Genomic DNA 402 

ScreenTape and TapeStation System (Agilent, USA). DNA was submitted to the 403 

UCL Genomics Core facility where bisulphite conversion, hybridization and scanning 404 

of Infinium MethylationEPIC BeadChip Arrays (Illumina, USA) were performed 405 

according to Illumina recommendations.  406 

 407 

Array QC and pre-processing: 408 

We employed RnBeads 2.0 pipeline51 for methylation array preprocessing. Briefly, 409 

quality control (QC) metrics were generated and samples passing QC (e.g. bisulphite 410 

conversion efficiency) were pre-processed to remove probes with a detection P 411 

value <0.01, directly overlapping SNPs, those with SNPs within 3nt of the 3’end, 412 

cross-reactive with multiple locations and those located on sex chromosomes52. 413 

Processed data was then normalized using the Dasen function implemented from 414 

the wateRmelon package53. Following QC and pre-processing, 784,669 probes for 415 

each n=44 samples remained for downstream analysis.   416 

 417 

Myeloid marker CpGs and deconvolution analysis:  418 

Whole genome bisulphite sequencing (WGBS) data for Blueprint methylomes (2016 419 

release)23 were accessed through the RnBeads methylome resource 420 

(https://rnbeads.org/methylomes.html). Samples representing the myeloid cell 421 

compartment (venous blood monocytes and macrophages) and derived from donors 422 

of age comparable to our study population (i.e. >50 years) were selected (Table S5) 423 

and WGBS data pre-processed through the RnBeads pipeline as outlined above. 424 
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EPIC array and WGBS data were then merged (custom scripts available upon 425 

request) resulting in 298,945 CpGs across each n=44 CD206+ and n=13 reference 426 

methylomes. The top 500 most variable CpGs were then used to identify ‘myeloid-427 

marker CpGs’ and subsequently deconvolute and predict myeloid cell composition of 428 

AMs using the Houseman method54 implemented in RnBeads. Heatmaps were 429 

produced using Morpheus (https://software.broadinstitute.org/morpheus). 430 

 431 

Differential methylation: 432 

DMP analysis was performed using the meffil R pipeline55 which implements 433 

standard and rigorous Illumina DNA methylation array QC, normalisation and 434 

subsequently Epigenome-wide Association Study (EWAS) analysis. In addition to 435 

preprocessing outline above, standard meffil QC parameters were employed to 436 

detect poor probes and/or samples for removal. Zero outliers were detected based 437 

on deviations from mean values for control probes and 6 Principal Components 438 

(PCs) were assessed to be needed to adjust for technical effects. 439 

 440 

In total four IPF Vs Healthy EWAS were run: (i) No adjustment for covariates (ii) 441 

adjustments for ‘All’ covariates:  age, sex, smoking history, FACS/MACS enrichment; 442 

(iii) adjustments for ‘All + myeloid composition’: age, sex, smoking history, 443 

FACS/MACS enrichment with addition of predicted monocyte and M0, M1, M2 444 

macrophage composition and (iii) - as outlined for (ii) but Phenotype randomised 445 

retaining all other covariate information consistent (data not shown). Quantile-446 

quantile (QQ) plots were generated and inspected for EWAS QC and p-value 447 

inflation. A robust genome-wide significance threshold of  P value < 9x10-8 as 448 

detailed by Mansell et al.56 was employed to identify significant DMPs.  449 
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DMRs were identified using DMRcate57 after covariate adjustments outlined above. 450 

DMRs contained >3 CpGs and were ranked based on min-smoothed false discovery 451 

rate (FDR P<0.05).  452 

 453 

Genomic and epigenomic feature enrichment: 454 

Genomic feature distribution and annotation of myeloid marker CpGs, DMPs, DMRs 455 

and all EPIC probes were identified using HOMER58 (annotatePeaks.pl). Enrichment 456 

across epigenomic features from monocytes and macrophages derived from 457 

Blueprint consortia were conducted with eForge 2.059 and EpiAnnotator60. For 458 

Epiannotator analysis, genomic coordinates were firstly converted from hg19 to hg38 459 

using the CrossMap BED tool implemented in Galaxy Europe sever61.  460 

 461 

H3K4me1 ChIP-Seq data was accessed through the International Human 462 

Epigenomics Consortium portal (https://epigenomesportal.ca/ihec/grid.html). All 463 

Blueprint H3K4me1 datatracks for ‘monocytes’, ‘CD14-positive, CD16-negative 464 

classical monocyte’, ‘macrophage’, ‘inflammatory macrophages’ and ‘alternatively 465 

activated macrophage’ were exported and merged in the UCSC genome browser. 466 

Additional DNase-seq data was obtained for ‘monocytes’ and ‘macrophages’ using 467 

ChIP-Atlas62. 468 

 469 

3D interactions: 470 

Promoter capture Hi-C (pcHiC)26 was used to investigate relationships between 471 

differential DNAm and 3D architecture. pcHi-C data was accessed 472 

(https://osf.io/u8tzp/files/) and overlapped with DMPs and DMRs using bedtools. To 473 

address the potential biasing of promoter-based capture and prominence of 474 
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CpGs/EPIC probes at gene promoters, we selected only ‘other-end’ (OE’s) 475 

interactions overlapping DMPs/DMRs. Unique ‘baits’ of overlapping OE’s with 476 

interactions >5 in monocytes and macrophages where subsequently used to identify 477 

genes linked in 3D to differential DNAm. Enrichment of overlap was determined 478 

using Chi-square test with Yates correction using GraphPad Prism v.8.4.2.. 479 

 480 

Functional enrichment:  481 

Gene ontology processes and KEGG pathway enrichment of DMR-associated genes 482 

was conducted using goregion function implemented in DMRcate. Additional protein-483 

protein interaction networks and functional enrichment were identified using 484 

NetworkAnalyst 3.063 and the IMEx Interactome database.  485 

 486 

Epigenetic clock analysis: 487 

The minfi R package64 was used to extract array data and the recommended probe-488 

type normalization for clock analysis was performed (preprocess = Noob). A subset 489 

of the 30,084 CpGs were extracted from the total array probe set using the 490 

datMiniAnnotation3.csv file for Advanced Analysis utilising the  DNAm age calculator 491 

(https://dnamage.genetics.ucla.edu)65. Due to differences in the 850k array, 2,552 492 

CpGs are not included in this list. A sample annotation file including donor 493 

chronological age, sex, and tissue type was also included. Age-adjusted epigenetic 494 

age acceleration across the major blood cell-type-derived Hannum66 and pan tissue-495 

Horvath65 clocks was calculated for each donor (n=44 total) and subsequently 496 

compared between IPF and healthy donors and myeloid cell composition. P values 497 

were determined via Mann-Whitney Test using GraphPad Prism v.8.4.2. 498 

 499 
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Motif Enrichment: 500 

HOMER was used to conduct motif enrichment in DMRs (findMotifsGenome.pl -size 501 

given). For known motifs the HOCOMOCO v11 database was used67 502 

 503 

Diseased lung scRNA-Seq data mining: 504 

We accessed lung immune cell scRNA-Seq data via the IPF Cell Atlas 505 

(www.ipfcellatlas.com) and utilized the Kaminski/Rosas dataset which includes 506 

samples from healthy controls and donors with IPF and COPD5. 507 

 508 

Quantitative real-time PCR (qPCR): 509 

Gene expression was performed as outlined previously20,21. Taqman probes used in 510 

this study were purchased from Thermo scientific: LPCAT1 (Hs00227357_m1), 511 

SLC12A7 (Hs00986431_m1), SLC6A3 (Hs00997374_m1), ARID5B 512 

(Hs01382781_m1), PFKFB3 (Hs00998698_m1). Spearman rank correlations 513 

between differential DNAm, clinical variables and expression were identified using 514 

GraphPad Prism v.8.4.2.  515 

 516 

Data availability: 517 

All EPIC methylation array data has been deposited on Gene Expression Omnibus 518 

(GSE159655).  519 

  520 
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Figures 1:  521 

(A) Outline of approach to investigate relationship between airway macrophages 522 

(AMs) and other myeloid cell-types (i.e. monocytes and macrophages) DNA 523 

methylation (DNAm) as determined by EPIC and whole genome bisulphite 524 

sequencing (WGBS) respectively. Cell-type depictions were generated using 525 

www.biorender.com. 526 

(B) Genomic feature distribution for merged AMs and myeloid cell DNAm datasets 527 

and the n=500 myeloid marker CpGs to be used in deconvolution analysis.  528 

(C-D) Enrichment of myeloid marker CpGs across histone modifications and DNAse 529 

hypersensitivity sites (DHS) identified in myeloid cells.  530 

 (E) Gene ontology processes and KEGG pathway enrichment analysis for myeloid 531 

marker CpGs. 532 

(F) Distribution of myeloid marker CpGs per gene. 533 

(G) Genome track depicting epigenomic features (H3K4me1 ChIP-Seq, DHS - 534 

Blueprint) of myeloid cells across the ARID5B loci. The location of n=6 myeloid 535 

marker CpGs that cluster at the ARID5B variant 2 transcription start site (TSS) is 536 

highlighted in red and magnified further below to show DNAm profiles (beta values) 537 

across each myeloid cell type and AMs. Lines indicate average DNAm across all of 538 

the CpGs assayed in the magnified region. 539 

 540 

Figure 2: 541 

(A) Heatmap depicting predicted myeloid cell composition of airway macrophages 542 

(AMs - columns) after deconvolution of DNA methylation (DNAm) profiles with 543 

myeloid maker-CpGs generated from reference monocyte and macrophage 544 

methylomes (rows). 545 
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(B) Difference in myeloid cell composition were evident for AMs derived from healthy 546 

and IPF donors for ‘classical’ and ‘M1 macrophages’ respectively. P-values 547 

determined by one-way ANOVA with Tukey’s correction for multiple testing.  548 

(C) Spearman-rank correlation between donor age and composition of AMs DNAm 549 

attributed to classical monocytes and M1 macrophages. 550 

(D) Epigenetic clock analysis indicating a correlation between chronological and 551 

epigenetic age as determined by the Hannum et. al ‘clock’ (top). By comparing 552 

residuals from two age-adjusted epigenetic ‘clocks’ (Hannum and Horvath) it was 553 

determined IPF AMs exhibited no epigenetic age acceleration compared to AMs 554 

from healthy controls.  555 

(E) Spearman-rank correlation between epigenetic age acceleration and composition 556 

of AMs DNAm attributed to classical monocytes and M1 macrophages. 557 

 558 

Figure 3: 559 

(A) Quantile-quantile plots depicting the impact of adjustment for myeloid cell 560 

composition in addition to other study covariates on identification of differentially 561 

methylated positions (DMPs) in IPF. Those DMPs reaching the epigenome-wide 562 

significance (EWAS) threshold of P<9x10-8 are highlighted in red. 563 

(B) Volcano plot depicting impact of myeloid cell-adjustment and direction of DNA 564 

methylation (DNAm) changes of DMPs in IPF. Dashed line represents EWAS P-565 

value threshold.  566 

(C) Genome track depicting epigenomic features (H3K4me1 ChIP-Seq, DNase-I 567 

hypersensitivity - DHS - Blueprint) of myeloid cells across the LPCAT1 loci. Regions 568 

interacting with the LPCAT1 promoter in 3D as determined by promoter-capture HiC 569 

(pcHiC) are indicated in grey. Interactions with frequency threshold >5 in myeloid 570 
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cells are highlighted in purple. The location of n=3 intronic IPF DMPs are highlighted 571 

in red and magnified further below to show methylation profiles (beta values) of 572 

healthy and IPF AMs across the respective CpGs (*). Lines indicate average 573 

methylation across all of the CpGs assayed in the magnified region. 574 

(D) Relationship between DNAm of IPF DMPs and gene expression for LPCAT1 575 

across Healthy (blue) and IPF (red) donor AMs. 576 

(E-F) Relationship between gene expression (E), methylation of an IPF-associated 577 

DMP (F) for LPCAT1 and forced vital capacity (FVC).  578 

 579 

Figure 4: 580 

(A) Volcano plot depicting impact of myeloid cell-adjustment and direction of DNA 581 

methylation (DNAm) changes of differentially methylated regions (DMRs) in IPF. 582 

(B) Genomic feature distribution for all EPIC array CpGs and those encompassed by 583 

IPF DMRs.  584 

(C-D) Enrichment of IPF DMRs across histone modifications and DNAse-I 585 

hypersensitivity sites (DHS) in monocytes and macrophages. 586 

(E) DNA motif enrichment in IPF DMRs.  587 

 588 

Figure 5: 589 

(A) Network depicting protein-protein interactions of DMRs-associated genes.  590 

(B) Gene ontology processes and KEGG pathway enrichment analysis for DMR-591 

associated genes gaining or losing DNA methylation (DNAm) in IPF.  592 

(C) Genome track depicting epigenomic features (H3K4me1 ChIP-Seq, DNase 593 

hypersensitivity - DHS - Blueprint) of myeloid cells across the PFKFB3 loci. The 594 

location of the IPF DMR is highlighted in red and magnified further below to show 595 
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methylation profiles (beta values) at the associated n=3 CpGs (*) across healthy and 596 

IPF AMs.  Lines indicate average methylation across all of the CpGs assayed in the 597 

magnified region.  598 

(D) Relationship between DNAm of IPF DMPs and gene expression for PFKFB3 599 

across Healthy (blue) and IPF (red) donor AMs. 600 

(E-F) Relationship between gene expression (E), methylation of DMR-associated 601 

CpG (F) for PFKFB3 and forced vital capacity (FVC).  602 

 603 

Figure S1 604 

(A) Heatmap depicting DNA methylation (DNAm) profiles across myeloid cells (i.e. 605 

monocytes and M0, M1, M2 macrophages) and AMs from healthy and IPF donors for 606 

genes containing >2 myeloid marker CpGs (Table S2).  607 

(B) Disease origin and cell-type expression of genes highlighted in this study in 608 

single cell RNA-Seq data from the IPF lung. Gene expression is projected over 609 

UMAP representation of all disease/cell-types with brighter colours indicating more 610 

expression. Full data available at www.ipfcellatlas.com. 611 

(C) Gene expression of genes highlight in this study in AMs from healthy and IPF 612 

donors as determined by qPCR. * P<0.05, ** P<0.05 Mann-Whitey Test.  613 

(D) Spearman-rank correlations for chronological and epigenetic age (right) and for 614 

epigenetic age acceleration and composition of AMs DNAm attributed to classical 615 

monocytes and M1 macrophages (left) as determined by the Horvath et. al ‘clock’.  616 

 617 

Figure S2 618 

(A) PCA plot of normalized DNA methylation (DNAm) data for all CpGs prior to 619 

differential analysis indicating separation of healthy and IPF AMs. 620 
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(B) Sources of variation in DNAm dataset across the first 5 principal components for 621 

all CpGs. Associated P values were generated through RnBeads pipline.  622 

(C-D) Plots depicting changes in DNAm (beta value) for healthy and IPF donors 623 

across Intronic (C) and intergenic (D) DMPs (Table S3). 624 

(E) Enrichment of IPF differentially methylated positions (DMPs) across DNAse 625 

hypersensitivity sites (DHS) in monocytes and macrophages. 626 

(F) All regions interacting with the LPCAT1 promoter in 3D as determined by 627 

promoter-capture HiC (pcHiC). In addition to self-interacting with the region 628 

containing IPF DMPs (purple, Figure 2E), LPCAT1 additionally interacts with the 629 

promoters of SLC6A3 and SLC12A7. Dashed line indicates interactions with 630 

frequency threshold >5.  631 

(G) Relationship between DNAm of IPF DMPs and gene expression for SLC6A3 632 

across Healthy (blue) and IPF (red) donor AMs. No SLC12A7 gene expression was 633 

detected in AMs.  634 

 635 

Figure S3: 636 

(A) Proportion of unique promoter-capture HiC (pcHiC) ‘other ends’ containing any 637 

EPIC CpGs or those identified as differentially methylated positions (DMPs) or DMRs 638 

in IPF. 639 

(B) Proportion of all EPIC, DMPs and DMRs that are linked in 3D as determined by 640 

pcHiC. **** P<0.0001, Chi-square test with Yates correction versus all interactions 641 

containing EPIC CpGs.  642 

(C) Number of 3D interactions per IPF DMRs (Table S4). 643 

(D) Cell-type expression of transcription factor genes with enriched motifs in IPF 644 

DMRs in single cell RNA-Seq data from the IPF lung. Gene expression is projected 645 
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over UMAP representation of all cell-types with brighter colours indicating more 646 

expression. Full data available at www.ipfcellatlas.com. 647 

 648 

Figure S4: 649 

(A-B) Gene ontology processes and KEGG pathway enrichment analysis for all 650 

DMR-associated genes (A) and all those forming protein-protein interactions 651 

regardless of DNAm status in IPF (B).   652 
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