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Figure 4: Manhattan plot of FDR values before and after applying flexible cFDR
to leverage H3K27ac data with asthma GWAS p-values. Manhattan plots of
−log10(FDR) values before (A) and after (B) applying flexible cFDR leveraging H3K27ac
counts in asthma relevant cell types. Points are coloured by chromosome and red points
indicate the 4 index SNPs that are newly identified as FDR significant by flexible cFDR
(rs9501077 (chr6:31167512), rs4148869 (chr6:32806576), rs9467715 (chr6:26341301) and
rs167769 (chr12:57503775)). Zoomed in Manhattan plots show the genomic region containing
the MHC (chr6:25477797-33448354) to show the 3 independent signals. Black dashed line at
FDR significance threshold (−log10(0.000148249)).

found TAP2 to be associated with various immune-related disorders, including autoimmune509

thyroiditis and type 1 diabetes62,63. It has also been linked to pulmonary tuberculosis in510

Iranian populations64. Recently, Ma and colleagues65 identified three cis-regulatory eSNPS511

for TAP2 as candidates for childhood-onset asthma risk (rs9267798, rs4148882 and rs241456).512

One of these (rs4148882) is present in the asthma GWAS data set used for our analysis513

(FDR = 0.12) and is in weak LD with rs4148869 (r2 = 0.4).514

SNP rs9467715 is a regulatory region variant with a raw p-value that is very nearly significant515

in the original GWAS (p = 8.96e− 08; FDR = 2.49e− 04 compared with FDR threshold of516

1.48e−04 used to call significant SNPs). This SNP has moderate H3K27ac fold change values517

in asthma relevant cell types (mean percentile is 67.9th) so that when these are leveraged518

using flexible cFDR, the SNP is just pushed past the FDR significance threshold (FDR after519

flexible cFDR = 1.37e− 04; Table 2).520

SNP rs167769 has a borderline FDR value in the original GWAS discovery data set (FDR =521

4.04e − 04) but was found to be significant in the multi-ancestry analysis in the same522

manuscript (FDR = 1.61e− 05)32. This SNP has very high H3K27ac fold change values in523

asthma relevant cell types (mean percentile is 98.4th) and flexible cFDR decreases the FDR524

value for this SNP to 4.34e − 05 when leveraging this auxiliary data (Table 2). rs167769525

is an intron variant in STAT6, a gene that is activated by cytokines IL-4 and IL-1366,67
526

to initiate a Th2 response and ultimately inhibit transcribing of innate immune response527
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genes68,69. Transgenic mice over-expressing constitutively active STAT6 in T cells are528

predisposed towards Th2 responses and allergic inflammation70,71 whilst STAT6 -knockout529

mice are protected from allergic pulmonary manifestations72. Accordingly, rs167769 is530

strongly associated with STAT6 expression in the blood73–75 and lungs76 and is associated531

with increased risk of childhood atopic dermatitis77,78, which often progresses to allergic532

airways diseases such as asthma in adulthood. No genetic variants in the STAT6 gene region533

(chr12:57489187-57525922) were identified as significant in the original GWAS, and only534

rs167769 was identified as significant after leveraging H3K27ac data using flexible cFDR535

(Figure S11).536

One significant index SNP was no longer significant after applying flexible cFDR. rs12543811537

is located between genes TPD52 and ZBTB10 and has moderate H3K27ac fold change538

values in asthma relevant cell types (mean percentile is 52th). This SNP only just exceeds539

the FDR significance threshold in the original GWAS (FDR = 1.08e− 04 compared with540

FDR threshold of 1.48e− 04 used to call significant SNPs) but by leveraging its H3K27ac541

fold change values using flexible cFDR, the resultant v-value is just below the significance542

threshold (FDR after flexible cFDR = 3.03e− 04; Figure S12). This SNP is in strong LD543

with rs7009110 (r2 = 0.79) which has previous been associated with asthma plus hay fever544

but not with asthma alone79. Conditional analyses show that these two SNPs represent the545

same signal which is likely to be associated with allergic asthma32. rs12543811 was found to546

be significant in the UK Biobank data (UK Biobank p = 1.42e− 19).547

4.4. Comparison with FINDOR, which leverages annotations from the baseline-LD model548

We compared results from flexible cFDR when leveraging data for a single histone modification549

in several relevant cell types with results from FINDOR, which leverages a wider range of550

non-cell-type-specific functional annotations (Table S3). FINDOR identified 118 newly FDR551

significant SNPs which had a median p-value of 4.44e− 15 in the UK Biobank validation552
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data, but the maximum UK Biobank p-value for these 55 newly significant SNPs was 0.98553

(Figure 5A; Figure 5B). The proportion of FDR significant SNPs in the UK Biobank data554

set that were also FDR significant in the discovery GWAS data set increased from 0.127 to555

0.146 and the FDR remained controlled (Figure 5C; Figure 5D).556

At the locus level, FINDOR identified two newly FDR significant index SNPs: rs13018263557

(chr2:103092270; original FDR = 6.79e − 04, new FDR = 1.00e − 04) and rs9501077558

(chr6:31167512; original FDR = 3.99e − 04, new FDR = 4.86e − 05) (Figure 5E; Figure559

5F). SNP rs13018263 is an intronic variant in SLC9A4 and is strongly significant in the560

UK Biobank validation data set (p = 4.78e − 31). Ferreira and colleagues80 highlighted561

rs13018263 as a potential eQTL for IL18RAP, a gene which is involved in IL-18 signalling562

which in turn mediates Th1 responses81, and is situated just upstream of SLC9A4. Genetic563

variants in IL18RAP are associated with many immune-mediated diseases, including atopic564

dermatitis82 and type 1 diabetes83. Interestingly, although different auxiliary data was565

leveraged using flexible cFDR and FINDOR in our analyses, both methods found index SNP566

rs9501077 to be newly significant, but this is not validated in the UK Biobank data (UK567

Biobank p = 0.020).568

Two additional index SNPs were found to be no longer significant after re-weighting by569

FINDOR, rs2589561 (chr10:9046645; original FDR = 5.25e− 05, new FDR = 3.06e− 03)570

and rs17637472 (chr17:47461433; original FDR = 1.42e − 05, new FDR = 9.42e − 04),571

however both of these SNPs were strongly significant in the UK Biobank validation data set572

(p = 2.09e− 29 and p = 1.75e− 14 respectively).573

SNP rs2589561 is a gene desert that is 929kb from GATA3, a transcription factor of the Th2574

pathway which mediates the immune response to allergens32,84. Hi-C data in hematopoietic575

cells showed that two proxies of rs2589561 (r2 > 0.9) are located in a region that interacts576

with the GATA3 promoter in CD4+ T cells85, suggesting that rs2589561 could function as a577
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Figure 5: (Caption on the following page)
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Figure 5: Results from FINDOR re-weighting of asthma GWAS p-values lever-
aging 96 baseline-LD model annotations. (A) (-log10) Re-weighted p-values from
FINDOR against (-log10) raw asthma GWAS p-values before re-weighting coloured by
FINDOR weights. (B) Box plots of (-log10) p-values in the discovery GWAS data set and
the UK Biobank data set for the 656 SNPs that were FDR significant in the original GWAS
(“before”) and 118 newly significant SNPs after re-weighting using FINDOR (“after”). Black
dashed line at genome-wide significance threshold (5× 10−8). (C) Sensitivity and (D) speci-
ficity proxies for the FINDOR results. Sensitivity proxy is calculated as the proportion of
SNPs that are FDR significant in the UK Biobank data set that are also FDR significant in
the original GWAS or after p-value re-weighting using FINDOR. Specificity is calculated as
the proportion of SNPs that are not FDR significant in the UK Biobank data set that are also
not FDR significant in the original GWAS or after p-value re-weighting using FINDOR. Black
dashed line at 1− 0.000148249 to show FDR control. Manhattan plots of FDR values before
(E) and after (F) re-weighting by FINDOR. Red points indicate the two index SNPs that are
newly identified as FDR significant by FINDOR (rs13018263 (chr2:103092270) and rs9501077
(chr6:31167512)). Black dashed line at FDR significance threshold (−log10(0.000148249)).

distal regulator of GATA3 in this asthma relevant cell type. rs2589561 has relatively high578

H3K27ac fold change values in the asthma relevant cell types leveraged by flexible cFDR579

(mean percentile is 85th) and flexible cFDR decreased the FDR value from 5.25e − 05 to580

2.78e− 05.581

SNP rs17637472 is a strong cis-eQTL for GNGT2 in blood73–75,86, a gene whose protein582

product is involved in NF-κB activation87. This SNP has moderate H3K27ac fold change583

values in relevant cell types (mean percentile is 62th) and the FDR values for this SNP were584

similar both before and after using flexible cFDR to leverage the H3K27ac data (original585

FDR = 1.42e− 05, new FDR = 1.35e− 05).586

5. Discussion587

Developments in experimental protocols have enabled researchers to decipher the functional588

effects of various genomic signatures. We are now in a position to prioritise sequence variants589

associated with various phenotypes not just by their genetic association statistics but also590

based on our biological understanding of their functional role. Originally developed to591
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leverage test statistics from genetically related traits, we have extended the existing cFDR592

framework to support auxiliary data from arbitrary continuous distributions. Our extension,593

flexible cFDR, provides a statistically robust framework to leverage functional genomic data594

with genetic association statistics to boost power for GWAS discovery.595

Whilst larger case and control cohort sizes will also boost statistical power for GWAS596

discovery, incorporating functional data provides an additional layer of biological evidence597

that an increase in statistical power alone cannot provide. Moreover, there are instances in598

the rare disease domain where case sample sizes are restricted by the recruitment of cases.599

Our method has potential utility in instances where limited sample sizes are restrictive, as it600

provides an alternative approach to increase statistical power.601

Our approach differs from competing GWAS signal prioritisation methods as it outputs602

quantities analogous to p-values that are readily interpretable, enable control of type-1 error603

rate and permit multiple iterations leveraging multiple auxiliary data sets. Based on a method604

with firm theoretical grounding for FDR control24, our method intrinsically evaluates the605

relevance of the auxiliary data by comparing the joint probability density of the test statistics606

and the auxiliary data to the joint density assuming independence, and can therefore be used607

to inform researchers of relevant functional signatures and cell types. Choice of functional608

data to use may be guided by prior knowledge, or in a data driven manner using a method609

such as GARFIELD88 to quantify the enrichment of GWAS signals in different functional610

marks.611

Our method has several limitations. Firstly, care must be taken to ensure that the auxiliary612

data to be leveraged iteratively is capturing distinct disease-relevant features to prevent613

multiple adjustment using the same auxiliary data. The definition of “distinct disease-relevant614

features" to leverage is at the user’s discretion and sparks an interesting philosophical615

discussion. For example, leveraging data iteratively from various genomic assays measuring616
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the same genomic feature at different resolutions may be deemed invalid for some researchers617

but valid for others, since if the mark is repeatedly identified by different assays then it618

is more likely to be reliably present. Whilst we show that our method is robust to minor619

departures from qi ⊥⊥j |Hp
0 , this does not extend to strongly related q. We would argue that620

the conservative approach would be to average over correlated auxiliary data, to ensure that621

the q vectors are not strongly correlated.622

Secondly, the cFDR framework assumes a monotonic relationship between the test statistics623

and the auxiliary data: specifically, low p-values are enriched for low values in the auxiliary624

data. Our method automatically calculates the correlation between p and q and if this is625

negative then the auxiliary data is transformed to q := −q. However, if the relationship626

is non-monotonic (for example low p-values are enriched for both very low and very high627

values in the auxiliary data) then the cFDR framework cannot simultaneously shrink v-values628

for these two extremes. This non-monotonic relationship is unlikely when leveraging single629

functional genomic marks, but may occur if, for example, multiple marks were decomposed630

via PCA. We therefore recommend that users use the ‘corr_plot’ function in the ‘fcfdr’ R631

package to visualise the relationship between the relationship between the two data types.632

Note that this restriction could be removed if we used density instead of distribution functions,633

and worked at the level of ‘local FDR’37, but this would in turn reduce the robustness our634

method has to data sparsity in the (p, q) plane.635

Finally, in our asthma application we only leveraged data for a single histone modifica-636

tion across various cell types. Additional data measuring other histone modifications (e.g.637

repressive marks) could also be leveraged to further increase power.638

We compared our method to other GWAS prioritisation methods that leverage functional data,639

GenoWAP and FINDOR. GenoWAP is GWAS signal prioritsation method that integrates640

genomic functional annotation and GWAS test statistics to generate posterior scores of641
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disease-specific functionality17. For each SNP, the mean GenoCanyon score (or tissue-specific642

GenoSkyline89/ GenoSkyline-Plus90 score) of the surrounding 10,000 base pairs is used as643

the prior probability in the model, restricting its utility to leveraging these scores as the644

auxiliary data. The results were similar for flexible cFDR and GenoWAP when leveraging645

GenoCanyon scores, but rather unexciting, as no newly FDR significant index SNPs were646

identified. We suggest that this is due to the one-dimensional non-trait-specific auxiliary647

data that is being leveraged, which is unlikely to capture enough disease relevant information648

to substantially alter conclusions from a study.649

FINDOR is a p-value reweighting method that bins data to derive bin-specific weights.650

FINDOR bins data according to the values of the expected χ2 statistics and recommends651

course binning (so that in the asthma analysis, the average number of SNPs in each bin652

was 19763). The method uses the BaselineLD model55 for prediction, requiring users to (i)653

download pre-computed LDscores and (ii) run LD-score regression on their GWAS data to654

obtain annotation effect size estimates prior to running FINDOR. Although 96 annotations655

were leveraged with asthma p-values using FINDOR, compared to 2 annotations (comprised656

of averaged H2K27ac counts in 13 cell types) leveraged using flexible cFDR, flexible cFDR657

identified more associations that could be validated in the UK Biobank data. The difference658

emphasises the importance of being able to iterate over different auxiliary measures, and659

suggests that a fruitful area of extension for cFDR will be to increase the robustness of FDR660

control for dependent q.661

Overall, we anticipate that flexible cFDR will be a valuable tool to leverage functional662

genomic data with GWAS test statistic to boost power for GWAS discovery.663

6. Tables664
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7. Description of Supplemental Data665

Supplemental data includes 12 figures and 3 tables.666
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NIH Roadmap data resource https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/685

?search=pbmc&display=200686

NIH Roadmap H3K27ac data resource https://egg2.wustl.edu/roadmap/data/byFileType/687

signal/consolidated/macs2signal/foldChange/688

FINDOR software https://github.com/gkichaev689

GenoCanyon annotations http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html690

GenoWAP software https://github.com/rlpowles/GenoWAP-V1.2691

11. Data and Code Availability692

The code generated during this study are available at https://github.com/annahutch/fcfdr.693

The source data for figures/ analysis in the paper is available https://github.com/annahutch/694

fcfdr_manuscript.695
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