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Abstract 

There is evidence that the autonomic nervous system provides important constraints 

over ongoing cognitive function, however there is currently a lack of direct empirical 

evidence for how this interaction manifests in the brain. Here, we examine the role of 

ascending arousal and attentional load on large-scale network dynamics by 

combining pupillometry, functional MRI, and graph theoretical analysis to analyze 

data from a visual motion-tracking task with a parametric load manipulation. We 

found that attentional load effects were observable in measures of pupil diameter 

and in a set of brain regions that parametrically modulated their BOLD activity and 

meso-scale network-level integration. In addition, the regional patterns of network 

configuration were predicted by the distribution of the adrenergic receptor density. 

Our results provide confirmatory evidence for adaptive gain theory and strengthen 

the relationship between ascending noradrenergic tone, large-scale network 

integration, and cognitive task performance.  

 

Introduction 

Cognitive processes emerge from the dynamic interplay between diverse mesoscopic 

brain systems[1,2]. The neural activity supporting cognition does not exist in a 

vacuum, but instead is deeply embedded within the ongoing dynamics of the 

physiological networks of the body [3]. In particular, the neural processes 

underlying cognition are shaped and constrained by the ascending arousal system, 

whose activity acts to facilitate the integration between internal states and external 

contingencies [4]. Timely and selective interactions between the ascending arousal 

system and the network-level configuration of the brain are thus likely to represent 

crucial constraints on cognitive and attentional processes. Despite these links, we 

currently have a relatively poor understanding of how the ascending arousal system 

helps the brain as a whole to functionally reconfigure during cognitive processes, 

such as attention, in order to facilitate effective cognitive performance.   

 

Recent evidence has linked higher-order functions in the brain to the intersection 

between whole-brain functional network architecture and the autonomic arousal 

system [2,5–7]. Central to this relationship is the unique neuroanatomy of the 

ascending noradrenergic system. For instance, the pontine locus coeruleus, which is 

a major hub of the ascending arousal system, sends widespread projections to the 

rest of the brain [8]. Upon contact, adrenergic axons release noradrenaline, which 

acts as a ligand on three types of post- and pre-synaptic adrenergic receptors (i.e. α1, 

α2 and β). The respective systemic effects of each of these receptors depend on their 
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differential sensitivities to noradrenaline (affinities for the ligand differ across 

receptors: α2 > α1 > β) and intracellular cascades, as well as their neuronal and 

regional distributions [8–13]. By modulating the excitability (or neural gain) of 

targeted regions, the locus coeruleus is thus able to effectively coordinate neural 

dynamics across large portions of the cerebral cortex. However, it is challenging to 

non-invasively track the engagement of the locus coeruleus during whole-brain 

neuroimaging and cognitive task performance. 

 

Fortunately, it has been widely shown that the pupil diameter directly responds to 

changes in the activity of the locus coeruleus, and thus serves as an indirect, non-

invasive measure of the noradrenergic system. Specifically, pupil diameter has been 

shown to monitor the extent to which ongoing neural activity is sensitive to inputs 

from regions that are structurally connected to the locus coeruleus [14,15]. In 

addition, fast, phasic changes in pupil diameter directly relate to changes in the 

activity of the locus coeruleus [16–18]. While there is some evidence that pupil 

dilation covaries with other subcortical systems [19], there is also clear causal 

evidence linking stimulation of the locus coeruleus to dilation of the pupil [20,21]. 

This suggests that the pupil can be used as an indirect, non-invasive measure of the 

ascending noradrenergic arousal system. 

 

There are demonstrated links between cognitive processes, whole-brain network 

architecture, and the ascending arousal system. For instance, both physical and 

mental effort have previously been linked to activity within the ascending arousal 

system [22,23]. In addition, sympathetically-mediated dilations in pupil diameter 

have been shown to effectively track the allocation of attentional resources [24–26]. 

Despite these insights, several questions remain unanswered regarding how these 

processes are related to the complex architecture of the brain [27]. For instance, the 

processes by which the ascending arousal system modulates the functional dynamics 

of brain networks to facilitate attention, decision making and optimal performance, 

have only begun to be explored [21,28–30].  

 

To examine these relationships in more detail, participants performed a motion-

tracking task (top panel of Figure 1A) involving four levels of increasing attentional 

load while simultaneous BOLD fMRI and pupillometry data were collected. Subjects 

were instructed to covertly track the movement of a number of pre-identified targets 

(two to five) in a field of non-target stimuli (ten in total, including targets; see Figure 

1). The attentional load was modulated through the manipulation of the number of 
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items a participant was required to covertly attend to over the 11s tracking period. 

We hypothesized that, if increasing mental effort led to the reconfiguration of large-

scale network architecture via the ascending arousal system, then the number of 

items required to be tracked over time (i.e., the attentional load) should relate to: i) 

increased pupil diameter; ii) heightened BOLD activity within attentional networks; 

and iii) augmented topological integration. Also, we predicted that individual 

differences in pupil diameter should track with individual differences in effective 

attentional performance and decision processes [30–32]. Finally, we tested if the 

regional patterns of network configuration were predicted by the distribution of a 

predefined adrenergic receptor density atlas [21,29,33,34]. Our results confirm these 

predictions, and hence provide a mechanistic link between network topology, 

ascending noradrenergic arousal and attentional load. 

 

Methods 

Participants 

18 right-handed individuals (age 19–26 years; 5 male) were included in this study. 

Exclusion criteria included: standard contraindications for MRI; neurological 

disorders; mental disorders or drug abuse. All participants gave written informed 

consent before the experiment. 

 

Parametric Motion Tracking Task 

Each trial of the task involved the same basic pattern (Figure 1A): the task begins 

with a display presenting the objects (i.e., blue colored disks); after a 2.5 s delay, a 

subset of the disks turns red for another 2.5 seconds; all of the disks then return to 

blue (2.5 seconds) before they started moving randomly inside the tracking area. The 

participants’ job is to track the ‘target’ dots on the screen while visually fixating at 

the cross located at the center of the screen. After a tracking period of ~11 seconds, 

one of the disks is highlighted in green (a ‘probe’) and the subject is then asked to 

respond, as quickly as possible, as to whether the green probe object was one of the 

original target objects. The number of objects that subjects were required to attend to 

across the tracking period varied across trials. There were five trial types: passive 

viewing (PV), in which no target are assigned; and four load conditions, in which 

two to five targets were assigned for tracking. We operationalized attentional load as 

the linear effect of increasing task difficulty (i.e., the number of targets to be tracked). 

 

The experiment was conducted using a blocked design, in which each block 

included: instruction (1s); fixation (0.3s, present throughout the rest of trial); object 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2020. ; https://doi.org/10.1101/2020.12.04.412551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412551
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

presentation (all objects were blue; 2.5s); target assignment (i.e., the targets changed 

color from blue to red; 2.5s); object representation (objects back to the original blue 

color; 2.5s); object movement/attentional tracking (moving blue dots; 11s); object 

movement cessation (0.5s); and a final probe (color change to green and response; 2.5 

s). The total duration of each trial was 22.8s. Each condition was repeated 4 times in 

one fMRI-run, which also included 4 separate fixation periods of 11s each between 

five consecutive trials. All participants completed 4 separate runs of the experiment, 

each of which comprised 267 volumes. The order of the conditions was pseudo-

random, such that the different conditions were grouped in sub-runs of triplets: PV, 

pseudo-random blocks of Loads 2 through 5 and a fixation trial. All objects were 

identical during the tracking interval and standard object colors were isoluminant 

(to minimize incidental pupillary responses during the task). 

 

Behavior and EZ-Diffusion Model 

To analyse the effect of load on tracking and to account for the sample size (i.e., 16 

trials for each condition within subject), we performed a bootstrapping analysis [35] 

in which we randomly resampled (500 times) each attentional load condition to 

calculate the mean value for accuracy and reaction time (RT) [36,37] and the 

standard deviation of the RT (SD-RT). After this step, we performed a linear 

regression with task load as a predictor and then performed a t-test on the β 

regressors from the first level analysis (see Results). 

 

In addition, an EZ-diffusion model was used to interpret the performance measures 

from the task [38,39]. This model considers the mean RT of correct trials, SD-RT 

across correct trials, and mean accuracy across the task and computes from these a 

value for drift rate (ν), boundary separation (α), and non-decision time (Ter) – the 

three main parameters for the drift-diffusion model [38,40]. For each term, the mean 

of the resampled distribution was analysed for linear dependencies with attentional 

load. 

 

Pupillometry 

Fluctuations in pupil diameter of the left eye were collected using an MR-compatible 

coil-mounted infrared EyeTracking system (NNL EyeTracking camera, 

NordicNeuroLab, Bergen, Norway), at a sampling rate of 60 Hz and recorded using 

the iView X Software (SensoMotoric Instruments, SMI GmbH, Germany). Blinks, 

artifacts and outliers were removed and linearly interpolated [41]. High frequency 

noise was smoothed using a 2nd order 2.5 Hz low-pass Butterworth filter. To obtain 
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the pupil diameter average profile for each level of attentional load (Fig. 1B), data 

from each participant was normalized across each task block. This allowed us to 

correct for low frequency baseline changes without eliminating the load effect and 

baseline differences due to load manipulations [42,43]. 

 

Time-Resolved Functional Connectivity and Network Analysis 

Details for MRI data collection and preprocessing are present in the Supplementary 

Materials. Following pre-processing, the mean time series was extracted from 375 

predefined regions-of-interest (ROI). To estimate functional connectivity between the 

375 ROIs, we used the Jack-knife correlation approach (JC) [44]. Time-resolved 

adjacency matrices were then subjected to topological analysis following a protocol 

defined in previous work [2] – see Supplementary Materials for details. 

 

Neurotransmitter Receptor Mapping 

To investigate the potential correlates of meso-scale integration, we interrogated the 

neurotransmitter receptor signature of each region of the brain. We used the Allen 

Brain Atlas micro-array atlas (http://human.brain-map.org/) to identify the regional 

signature of genetic expression of two subtypes of adrenergic receptor (ADRA1A 

and ADRA2A) that have been a priori related to cognitive function and attention [45], 

and are the most abundant adrenergic subtypes expressed in the cerebral cortex [46]. 

To test for specificity, we also evaluated two muscarinic receptor densities (Chrm1 

and Chrm2) and two dopaminergic receptor densities (Drd1 and Drd2).  

 

Linear model 

To evaluate the effect of the density of each receptor on meso scale integration, we 

built a linear model aimed at predicting integration. Previous work has shown the 

effect of glutamatergic release and neuromodulation on integration [47], and that 

BOLD activity is closely related to glutamatergic release [48]. We therefore used the 

mean BOLD activity during tracking, and the interaction effect of BOLD to the 

receptor density (to account for the role of activation on integration) for each of the 

cortical regions, as predictors, and participation as the model’s outcome. The 

deterministic part of the model is expressed in the following equation using 

Wilkinson notation [49]:  

 

PC ~ BOLD + BOLD: α1a + BOLD: α2a   + 1 
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Where PC is meso-scale participation coefficient; BOLD is the average BOLD activity during tracking 

for each region; α1a and α2a are the regional densities of the respective adrenergic receptor; BOLD: 

α1a and BOLD: α2a measures the interaction between the terms on the PC. 

 

We fitted the model to individual subject data, and then analyzed both the mean 

effect across subjects (t-test), as well as the relationship between model parameters 

and pupillometry results. 

 

Results 

The Relationship Between Sympathetic Tone and Attentional Processing 

Consistent with previous work [5], our bootstrapping analysis (see methods) found 

that task performance (i.e., correct responses) decreased with attentional load (mean 

βAcc = -0.05; t(17) = -4.81, p = 2.0x10-4;  Figure S1B) and RT (mean βRT = 0.06, t(17) = 5.19, p 

= 7.2x10-5). We expanded on this result by translating performance into EZ-diffusion 

model parameters [39,50], wherein we observed a decrease in both the boundary 

criteria (α; βBound  = -7.8x10-3, t(17)  = -2.86, p = 0.011) and drift rate (ν; mean βDrift = -0.03, 

t(17)  = -4.22, p = 6.0x10-4; Figure 1B), and an increase in the non decision time (mean 

βnondec = 0.04, t(17)  = 2.15, p = 0.045) with increasing attentional load. 

 

By calculating the linear effect of load on pupil size across a moving average 

window of 160ms (see Methods), we observed a main effect of increased pupil 

diameter across both the tracking and probe epochs (�pupil > 0, pFDR < 0.01; light grey in 

Figure 1A depict significant epochs of time during the task; and in Figure S1A show 

the group average βpupil time series) and a positive correlation between the mean drift 

rate and accuracy across all load conditions to pupil dilation during the significant 

period (i.e., the light grey area in Figure 1A; rdrift = 0.77, p = 2.0x10-4; Figure 1C; 

Pearson racc = 0.8, p = 7.0x10-5, Figure S1C). The same relationships were not observed 

with Ter (rTer  = -0.19, p = 0.44) nor boundary (rα = 0.437, p = 0.70). These results suggest 

that attentional load manipulation and pupil dilation covaried with performance on 

this attentionally demanding task [2]. 
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Figure 1: Effect of task difficulty on pupil diameter. A) Group average (z-score) pupil diameter time 

series for each Load condition. Colors represent passive viewing (PV) in blue, and Load 2 to 5 in 

green, orange, red and black, respectively. The shaded area represents the standard error of the mean. 

We observed an average increase in pupil diameter, during tracking, with each Load condition. Light 

grey area represents the significant effect (βpupil > 0; FDR corrected at p < 0.01). Dotted lines represent 

the onset of each trial event (showed in the top part of the Figure). The red dotted line (Time = 0) is 

the tracking onset period when the dots began to move; B) Drift rate in each load condition. Each dot 

is the average drift rate for each subject and load (mean βDrift = -0.03, t(17)  = -4.22, p = 6.0x10-4); C) 

Pearson correlation between the pupil parametric effect of Load (βpupil) with the average drift rate 

across subjects (rdrift = 0.77, p = 2.0x10-4). The x-axis is the mean beta estimate of the pupillary load 

effect of the significative time window (βpupil) and the y-axis represents the mean drift rate across 

Loads. 

 

Network Integration Increases as a Function of Attentional Load 

Based on previous studies, we hypothesized that an increase in attentional load 

should recruit a distributed functional network architecture [5] and also heighten 

network integration [2,11,29]. To test this hypothesis, we implemented a hierarchical 

topological network analysis [51–53] to the time-resolved functional connectivity 

average, specifically during the tracking period of the task. Our analysis identified a 

subnetwork of tightly inter-connected regions that were part of a diverse attentional, 

somatomotor, and cerebellar networks (red in Figure 2) that increased its BOLD 

activity after the tracking onset (Figure 2F). The tightly integrated regions were 

diversely connected to a separate frontoparietal sub-module (blue in Figure 2) that 

was less active during the trial. The remaining two sub-modules (yellow and green 

in Figure 2) showed a negative BOLD response during the tracking period and were 

part of a diverse set of networks. Interestingly, 81% of the Frontoparietal network 

(FPN) and all the Default Mode Network (DMN) were found to be within this less 
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active group (see Supplementary Table S1 for the complete list of regions and sub-

module assignments).  

 

 
Figure 2: Hierarchical functional topology analysis of the brain during tracking across all loads. 

We observed two large-scale modules, and two meso-scale modules within each larger module 

(Module one [M1, red/blue] and Module two [M2, green/yellow], respectively): M1 corresponded to 

predominantly attentional and somatomotor networks, and M2 to Frontoparietal (FPN) and Default 

Mode Network (DMN) among others (B and E). A) Forced directed plot representation of the average 

cluster across subjects. Each color represents a unique sub module; B) A circle plot representing the 

resting state regions that were included within each sub module, with networks with > 30% of regions 

in each submodule shown in the plot. The diameter of the circles corresponds to the percentage of 

network regions that participated in that cluster. Connection width relates to average positive 

connection strength (functional connectivity), however only connections with r > 0.1 are shown; C) 

Connectivity matrix (Pearson’s r) between all pair of regions ordered by module assignments – note 

the strong anti-correlation between the red and green/yellow sub-modules; D) Correlation between 

parametric load effect on large scale modularity (βQ value), and drift rate (r = 0.53; p = 0.022); E) 

Hierarchical analysis representation: QL, QM1 and QM2 represent the modularity value for each level 

(QL large scale, and QM1-M2 meso-scale level) and ** represents the probability of finding this value 

when running a null model (p = 0). The brain maps correspond to the cortical regions associated with 

each sub module; F) BOLD mean effect for each sub-cluster, each line represents the group average, 

and shaded areas are the standard error of the mean, x-axis is Repetition Time (TR) centered around 

tracking onset (TR = 0). DAN, dorsal attention; VN, visual; FPN, frontoparietal; SN, salience; CO, 

cingulo-opercular; VAN, ventral attention; SMm, somatomotor mouth; SMh, somatomotor hand; 

RSpN, retrosplenial; FTP, frontotemporal; DMN, default mode; AN, auditory; CPN, cinguloparietal; 

SubC, subcortex; Cer, Cerebellar. 

 

Contrary to expectations, we did not observe significant parametric topological 

change at the macroscopic level as a function of attentional load (p > 0.05 for all TRs, 

Figure S2A). Indeed, when analysing the correlation between modularity and 
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performance measures (i.e., accuracy, drift rate and pupil diameter), we observed 

that an increase in the large scale modularity parametric effect (i.e., higher 

segregation with load, βQL) positively correlated with higher drift rate (r = 0.53; p = 

0.022; Figure 2D), accuracy (r = 0.61; p = 0.007; Supplementary Figure S3A), but was 

independent from pupil diameter (r = 0.43; p = 0.073). These results suggested that 

the system reconfigured during tracking towards increasing modularity (i.e., large 

scale segregation), which in turn affected the efficient encoding of the ongoing task 

during tracking and hence, the decision making process during the task probe. 

 

Upon closer inspection of the data (Figure 2C), we observed a substantial number of 

nodes playing an integrative role during task performance. Specifically, the red sub-

module was found to selectively increase its participation coefficient (PC) at the 

meso-scale level (i.e., by connecting to the blue submodule) as a function of 

increasing attentional load (βPC = 2.4x10-3, F(1, 70) = 5.79; p = 0.019; Figure 3A). 

Additionally, the extent of integration in the red sub-module was positively 

correlated across subjects with pupil diameter (Pearson r = 0.62, p = 0.006; Figure 3B), 

drift rate (Pearson’s r = 0.66, p = 0.002; Figure 3C) and accuracy (r = 0.57, p = 0.012, 

Figure S3B). Importantly, these relationships were found to be specific to the red 

sub-module. Thus, although the macroscale network did not demonstrate increased 

integration per se, the relative amount of meso-scale integration within the red 

community was associated with increased performance (i.e., drift rate) and 

sympathetic arousal (i.e., pupil diameter). In this way, these results provide a direct 

relationship between the effect of attention load on pupillometry, drift rate, and a 

trade-off between large-scale segregation and meso-scale network integration.  

 
Figure 3: Relationships between load effect on participation, drift rate and pupil load effect. A) 

Average participation coefficient (PC) for each load, for the red module, during tracking. Each color 

represents the corresponding tracking load (from 2 to 5). Grey lines correspond to each subject; B-C) 
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A regression parameter (βPC) was calculated for each subject and then correlated to βpupil (B; r = 0.62; p 

= 0.006) and Drift rate (C; r = 0.66; p = 2.4x10-3). Each circle corresponds to the mean value per subject. 

 

Network meso-scale integration and adrenergic receptor density 

Given the physiological determinants of pupil diameter, the results of our analyses 

strongly suggested that the adrenergic system is involved in these processes of 

meso-scale network reconfiguration. Importantly, the direct effect of the locus 

coeruleus directly depends on the presence of noradrenergic receptors. There are 

three classes of receptors (i.e., α1, α2, and � receptors), two of which (α1a, α2a) have 

previously been associated with working memory, adaptive gain and attention 

[12,54,55]. Importantly, they have differentiated effects based both on different 

intracellular cascades, different sensitivities to noradrenaline [12,54] and differential 

distribution across the cortex and neuronal circuitry [56,57]. Thus, these receptors 

seem to play distinct roles during cognition, specifically in processes in which the 

ascending attentional system is implicated [9,10]. To gain a deeper insight about 

adrenergic receptors’ role in the process, we extracted the regional expression of 

ADRA1A and ADRA2A genes from the Allen Human Brain Atlas repository [58,59], 

which encode for α1a and α2a adrenoceptors, respectively, and compared the 

regional expression of these two genes with the meso-scale communities identified 

(Figure 2E).  

 

We hypothesized that, if pupil diameter is a readout of the noradrenergic system, 

which in turn is acting to shape and constrain meso-scale functional network 

architecture, then the different modules and sub-modules that we observed should 

have different densities of neuromodulatory receptors. We indeed observed 

significant differences between modules at each hierarchical level (ADRA1A – 

between large-scale modules: T(331) = 0.33, p = 0.736, pperm = 0.736; Within red/blue: T(135) 

= 2.09, p = 0.038, pperm = 0.038; Within green/yellow: T(194) = -3.31, p = 0.001, pperm = 0.001; 

ADRA2A – between large-scale modules: T(331) = -3.00, p = 0.003, pperm = 0.003; Within 

red/blue: T(135) = -1.40, p = 0.164, pperm =0.167; Within green/yellow: T(194) = 3.82, p = 

0.0002, pperm = 0.002; Figure 4A-B).  
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Figure 4: Receptor density analysis. The density of the ADRA1A and ADRA2A receptor expression, 

for each of the sub modules is shown in A and B, respectively. In each hierarchical level (i.e. at the 

largescale and mesoscale) it is shown the permuted t-test results with significance levels: 
ns 

p > 0.05; 

* p < 0.05 ** p < 0.01; *** p < 0.001. C-D). C-D) Pearson correlation between the model β 

estimate (β1A/BOLD and β2A/BOLD, respectively) and pupil diameter (βpupil). Colors as in figure 2. 

 

The modulatory effects of noradrenaline have been argued to depend directly on 

ongoing glutamatergic activity on the target region [47]. Given the differential task-

related BOLD activity of the different sub-modules (Figure 2D), and the observed 

regional variability and specificity of integration across the network, we 

hypothesized that network-level integration would be well explained by the 

intersection between the distribution of the adrenergic receptor expression and the 

BOLD activity of individual cortical regions, which putatively represents pooled 

neural spiking activity [60]. To evaluate this hypothesis, we created a linear model 

that used average BOLD activity during tracking and its interaction with adrenergic 

receptor expression to explain meso-scale network participation (See Methods). The 

model was fit at the subject-level, and both the mean effect across subjects, as well as 

the relationship between model fits and βpupil were analyzed. Across subjects, we 
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observed a positive interaction between BOLD and α2a (β2A/BOLD = 0.08, T(17) = 7.57; p < 

1.0x10-4, pPerm = 3.0x10-4), while neither α1a (β1A/BOLD = -0.06, T(17)  = -2.22, p = 0.039; pPerm 

= 0.140), nor BOLD (βBOLD = -0.06, T(17)  = -0.23, p = 0.817, pPerm  = 0.540) survived 100,000 

non-parametric permutations that scrambled the regions mesoscale participation 

coefficient (i.e. the dependent variable in the model). In contrast, the correlation 

between the model parameters and βpupil revealed a positive correlation for both 

adrenergic receptors (rADRA1A = 0.58, p = 0.011; rADRA2A = 0.64, p = 0.004; Figure 4C-D) 

and a negative correlation for βBOLD (rBOLD = -0.60, p = 0.004). 

 

We confirmed the specificity of this result by repeating the linear regression analysis 

with the regional densities of m1 and m2 cholinergic receptors (encoded by Chrm1 

and Chrm2 genes, respectively), and D1 and D2 dopaminergic receptors (encoded by 

Drd1 and Drd2 genes, respectively), which are receptors from two separate 

neuromodulatory systems involved in attention, working memory and network 

functional dynamics. Although both neuromodulatory systems related to meso-scale 

integration (M1: βM1/BOLD = 0.08, T(17) = 5.73, p < 1.0x10-4; D1: βD1/BOLD = 0.07, T(17) = 8.04; p 

< 1.0x10-4; Supplementary Table S2 for the complete regression results), neither of the 

subjects respective regressors correlate with βpupil (p was greater than 0.500 for all 

correlations), meaning that the change of the regressor across subjects (i.e., the effect 

of the receptor on regional integration) and its relation to pupil diameter is specific 

of the adrenergic receptors studied here (Figure 4C-D). 

 

Discussion 

Here, we leveraged a unique dataset to simultaneously track pupil diameter and 

network topology during an attentional demanding task with increasing attentional 

load. Our results provide integrative evidence that links the ascending arousal 

system to the mesoscale topological signature of the functional brain network during 

the processing of an attentionally demanding cognitive task. Pupil diameter tracked 

with attentional load (Figure 1A) and was related to the speed of information 

accumulation as estimated by a drift diffusion model (Figure 1B-C). Additionally, we 

observed concurrent pupil dilations and adaptive mesoscale parametric topological 

changes as a function of task demands (Figures 2 and 3). Finally, we found evidence 

that topological reconfiguration was dependent on the intersection between BOLD 

activity and the genetic expression of the adrenergic receptors in the brain (Figure 4). 

Together, these results provide evidence for the manner in which the ascending 

arousal noradrenergic system reconfigures brain network topology so as to promote 

attentional performance according to task demands. 
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The relationship between performance and pupil diameter is consistent with the 

predictions of Adaptive Gain Theory [15]. Within this framework, the locus 

coeruleus is proposed to adaptively alter its activity according to the demands 

imposed on the system. More specifically, the theory proposes that performance 

follows an inverted U-shaped relationship with arousal, such that maximal 

operational flexibility in the noradrenergic system is associated with optimal task 

performance [12,55]. We observed that load-related increases in pupil diameter, 

presumably due to increased activity in the ascending arousal system [15,17,61], 

relates closely with the activity and topology of the broader brain network (Figure 

2), in a manner that is reflective of effective task performance (Figure 3). Similar 

effects have been described in animal models after a chemogenetic activation of the 

locus coeruleus, which strongly alters the large-scale network structure towards 

large-scale integration, specifically in regions with heightened adrenergic receptor 

expression [21]. How these changes, which are likely related to the modulation of the 

neural gain that mediates effective connections between distributed regions of the 

brain [28], are traded-off against requirements for specificity and flexibility remains 

an important open question for future research.  

 

The addition of attentional load was found to alter the integration of meso-scale sub-

modules, but not the higher-level modular organization. This topological result is 

somewhat more targeted than those described in previous work [2,29,62]. While 

these differences may be related to disparities in the way that the data were 

analyzed, the results of our study do demonstrate that alterations in the cerebral 

network topology at a relatively local (i.e., sub-modular) level are crucial for 

effective task performance[63]. Additionally, our results replicate and expand upon a 

previous study [64], in which the authors found that short term practice on an 

attentional task was related to increased coupling between attentional networks and 

segregation among task-negative (DMN) and frontoparietal network (FPN). Our 

study replicates the graph theoretical results of that study, while also directly 

relating the findings to the architecture of the ascending neuromodulatory system. 

One potential explanation for these results comes from animal studies, in which 

rapid changes in pupil diameter have been compared to changes in neural 

population activity at the microscale [17,65,66]. These studies suggest that the 

ascending arousal system may be able to alter the topology of the network in a 

hierarchical manner that is commensurate with the spatiotemporal scale of the 

arousal systems’ capacity [2]. Future work that integrates results across 
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spatiotemporal scales is required to appropriately adjudicate the implications of this 

hypothesis. 

 

In summary, we provide evidence linking mesoscale topological network 

integration, hierarchical organization and BOLD dynamics in the human brain to 

increases in attentional load, thus providing further mechanistic clarity over the 

processes that underpin the Adaptive Gain Model of noradrenergic function in the 

central nervous system. 
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