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Abstract 19	  

Phosphatidylserine (PS) is asymmetrically concentrated in the cytoplasmic leaflet of 20	  

eukaryotic cell plasma membranes. This asymmetry is regulated by a group of P4 21	  

ATPases (named PS flippases) and its β-subunit TMEM30A. The disruption of PS 22	  

flippase leads to severe human diseases. Tmem30a is essential in the mouse retina, 23	  

cerebellum and liver. However, the role of Tmem30a in the kidney, where it is highly 24	  

expressed, remains unclear. Podocytes in the glomerulus form a branched 25	  

interdigitating filtration barrier that can prevent the traversing of large cellular 26	  

elements and macromolecules from the blood into the urinary space. Damage to 27	  

podocytes can disrupt the filtration barrier and lead to proteinuria and podocytopathy, 28	  

including focal segmental glomerulosclerosis, minimal change disease, membranous 29	  

nephropathy, and diabetic nephropathy. To investigate the role of Tmem30a in the 30	  

kidney, we generated a podocyte-specific Tmem30a knockout (cKO) mouse model 31	  

using the NPHS2-Cre line. Tmem30a KO mice displayed albuminuria, podocyte 32	  

degeneration, mesangial cell proliferation with prominent extracellular matrix 33	  

accumulation and eventual progression to focal segmental glomerulosclerosis (FSGS). 34	  
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Reduced TMEM30A expression was observed in patients with minimal change disease 1	  

and membranous nephropathy, highlighting the clinical importance of TMEM30A in 2	  

podocytopathy. Our data demonstrate a critical role of Tmem30a in maintaining 3	  

podocyte survival and glomerular filtration barrier integrity. Understanding the 4	  

dynamic regulation of the PS distribution in the glomerulus provides a unique 5	  

perspective to pinpoint the mechanism of podocyte damage and potential therapeutic 6	  

targets. 7	  

	  8	  

Introduction 9	  

Phosphatidylserine (PS) is asymmetrically and dynamically distributed across the 10	  

lipid bilayer in eukaryotic cell membranes [1]. Such dynamic distribution is preserved 11	  

by flippases, one of the most important P4-ATPases, which possess flippase activity 12	  

that catalyses lipid transportation from the outer to the inner leaflet to generate and 13	  

maintain phospholipid asymmetry [2]. The PS asymmetry maintained by P4-ATPases 14	  

is essential to various cellular physiological and biochemical processes, including 15	  

vascular trafficking, cell polarity and migration, cell apoptosis and cell signalling 16	  

events [2-6]. 17	  

 18	  

As the β-subunit of P4-ATPases (except ATP9A and ATP9B), TMEM30 family 19	  

proteins play essential roles in the proper folding and subcellular localization of 20	  

P4-ATPases [7, 8]. The TMEM30 (also called CDC50) family includes TMEM30A, 21	  

TMEM30B and TMEM30C, of which TMEM30A interacts with 11 of the 14 22	  

P4-ATPases [9-13]. Our previous studies have demonstrated that TMEM30A 23	  

deficiency causes a series of disorders: retarded retinal angiogenesis, Purkinje cell, 24	  

retinal bipolar cell and photoreceptor cell degeneration, impaired foetal liver 25	  

erythropoiesis, intrahepatic cholestasis and	  chronic myeloid leukaemia [5, 14-19]. 26	  

 27	  

The glomerular filtration barrier includes three layers: fenestrated endothelial cells, 28	  

the glomerular basement membrane (GBM) and glomerular epithelial cells 29	  

(podocytes). Podocytes consist of a cell body that gives rise to major processes and 30	  
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minor foot processes (FPs). The FPs of neighbouring podocytes form a branched 1	  

interdigitating network, and the space between adjacent FPs is covered by a 2	  

multiprotein complex called the slit diaphragm (SD), the final barrier [20]. The 3	  

glomerular filtration barrier prevents the traversing of large cellular elements and 4	  

macromolecules from the blood into the urinary space, and defects in the selective 5	  

barrier result in albuminuria and nephrotic syndrome. Damage to podocytes can 6	  

disrupt the filtration barrier, which is a key step of proteinuria and podocytopathy 7	  

(including focal segmental glomerulosclerosis (FSGS), minimal change disease 8	  

(MCD), membranous nephropathy (MN), and diabetic nephropathy (DN)), as well as 9	  

other types of kidney diseases (such as immunoglobin A nephropathy (IgAN) and 10	  

lupus nephritis). FSGS is one of the most widely used disease models to study 11	  

podocytopathy and proteinuria [21]. 12	  

 13	  

Given that Tmem30a is essential for tissues with high TMEM30A expression, such as 14	  

retina, cerebellar and hepatic tissue, and that Tmem30a is highly expressed in the 15	  

kidney, we set out to elucidate the role of Tmem30a in the kidney by generating a 16	  

podocyte-specific Tmem30a knockout (KO) model. Tmem30a KO mice displayed 17	  

albuminuria, podocyte injury and loss, mesangial cell proliferation with prominent 18	  

extracellular matrix (ECM) accumulation and eventual progression to FSGS. 19	  

Furthermore, we observed markedly diminished TMEM30A expression in patients 20	  

with MCD and MN, highlighting the clinical importance of TMEM30A in 21	  

podocytopathy. Taken together, our findings demonstrate that Tmem30a plays a 22	  

critical role in maintaining podocyte survival and glomerular filtration barrier 23	  

integrity. 24	  

 25	  

Materials and Methods 26	  

Mouse model 27	  

All animal protocols were approved by the Ethics Committee of Sichuan Provincial 28	  

People’s Hospital. All animal experiments were performed according to the approved 29	  

protocols and related guidelines. Mice were raised under a 12-h light/12-h dark cycle. 30	  
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 1	  

A conditional knockout (cKO) allele carrying a floxed Tmem30a allele 2	  

(Tmem30aloxp/loxp) has previously been described [15-17]. To generate	   mice with 3	  

Tmem30a deletion specifically in podocytes, Tmem30a loxP/loxP mice were crossed with 4	  

transgenic mice expressing Cre recombinase under the control of the 5	  

podocyte-specific podocin (NPHS2) promoter (podocin-Cre, 6	  

B6.Cg-Tg(NPHS2-cre)295Lbh/J, stock no.: 008205) [22] to yield progeny with the 7	  

genotype of Tmem30aloxP/+; N PHS2-Cre. Cre-positive heterozygous offspring were 8	  

crossed with Tmem30aloxP/loxP mice to obtain Tmem30aloxP/loxP; NPHS2-Cre cKO mice. 9	  

A tdTomato reporter was introduced to monitor the efficiency of Cre-mediated 10	  

deletion of the floxed exon (strain name: B6. 11	  

Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J; Jackson Laboratory, stock no. 12	  

007914; http://jaxmice.jax.org/strain/007914.html). The reporter contains a 13	  

loxP-flanked STOP cassette that prevents transcription of the downstream CAG 14	  

promoter-driven red fluorescent protein variant tdTomato. In the presence of Cre 15	  

recombinase, the STOP cassette is removed from the Cre-expressing tissue(s) in 16	  

reporter mice, and tdTomato will be expressed. 17	  

Genotyping by PCR 18	  

Genomic DNA samples obtained from mouse tails were genotyped using PCR to 19	  

screen for the floxed Tmem30a alleles using primers for Tmem30a-loxP2-F, ATT 20	  

CCC CTC AAG ATA GCT AC, and Tmem30a-loxP2-R, AAT GAT CAA CTG TAA 21	  

TTC CCC. Podocin-Cre was genotyped using generic Cre primers: Cre-F, TGC CAC 22	  

GAC CAA GTG ACA GCA ATG, and Cre-R, ACC AGA GAC GCA AAT CCA 23	  

TCG CTC. TdTomato mice were genotyped using the following primers provided by 24	  

the JAX mouse service: oIMR9020, AAG GGA GCT GCA GTG GAG TA; 25	  

oIMR9021, CCG AAA TCT GTG GGA AGT C; oIMR9103, GGC ATT AAA GCA 26	  

GCG TAT CC; and oIMR9105, CTG TTC CTG TAC GGC ATG G. The first cycle 27	  

consisted of 95°C for 2  minutes, followed by 33 cycles of 94°C for 15  seconds, 58°C 28	  

for 20  seconds and 72°C for 30  seconds. 29	  

Urine analysis 30	  
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Twenty-four-hour urine samples were collected using metabolic cages. Collected 1	  

urine samples were centrifuged at 500 g for 5 min, and the supernatant was used for 2	  

the quantitation of albumin and creatinine.	   Quantitation of urinary albumin and 3	  

creatinine was carried out using mouse albumin-specific ELISA kits (Roche) and 4	  

creatinine determination kits (Enzymatic Method) (Roche), respectively, following 5	  

the manufacturer’s instructions. 6	  

Renal pathology 7	  

Mice were anaesthetized with a combination of ketamine (16 mg/kg body weight) and 8	  

xylazine (80 mg/kg body weight) and perfused transcardially with ice-cold PBS, 9	  

followed by 4% paraformaldehyde in 100 mM PBS (pH 7.4). The kidneys were 10	  

harvested, fixed in 4% paraformaldehyde, dehydrated and embedded in paraffin or 11	  

optimal cutting temperature (OCT) solution for cryosectioning by standard procedures. 12	  

Sections (2 µm) to be used for light microscopy analysis were subjected to periodic 13	  

acid-Schiff (PAS) staining and visualized with a light microscope (Nikon Eclipse 14	  

Ti-sr). 15	  

 16	  

Patient recruitment and ethics statement 17	  

The patient study was approved by the institutional review board of the Sichuan 18	  

Provincial People's Hospital in Chengdu, China. All experiments were carried out in 19	  

accordance with the approved study protocol. All subjects enrolled signed written 20	  

informed consent forms. Kidney tissues from IgAN, DN, MCD and MN patients were 21	  

collected during renal biopsy in the Nephrology Department of Sichuan Provincial 22	  

People's Hospital, and adjacent normal renal tissues were collected from patients with 23	  

renal tumours during nephrectomy in the Department of Urology at the same hospital. 24	  

All human kidney tissues underwent routine renal pathological examination to 25	  

confirm the diagnosis. These tissues were processed by standard procedures for 26	  

cryosectioning and immunofluorescent staining, as described below. 27	  

 28	  

Immunohistochemistry and immunofluorescence 29	  

Paraffin-embedded murine kidney slides (2 µm) were deparaffinized following a 30	  
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standard protocol.	   After washing and blocking, the tissues were incubated with 1	  

primary antibodies against Wilms tumour-1 (WT1) (1:100, Servicebio, GB11382) and 2	  

synaptopodin (1:100, ZEN BIO, 508484). The slides were then incubated with 3	  

HRP-labelled donkey anti-rabbit secondary antibodies. Nuclei were visualized using 4	  

DAPI counterstaining. Glomerular WT1 was determined by counting positively 5	  

immunostained nuclei in 30 glomerular profiles in each kidney section. Images were 6	  

taken using a Zeiss Axioplan-2 imaging microscope with the digital image-processing 7	  

program AxioVision 4.3. 8	  

 9	  

Frozen mouse tissues were sectioned at 5 µm (CryoStar NX50 OP, Thermo Scientific, 10	  

Germany). After blocking and permeabilization with 10% normal goat serum and 0.2% 11	  

Triton X-100 in PBS at room temperature for 1 h, the cryosections were labelled with 12	  

the following primary antibodies overnight at 4°C: TMEM30A (1:50; mouse 13	  

monoclonal antibody Cdc50-7F4, gift from Dr Robert Molday, University of British 14	  

Columbia, Canada) and nephrin (1:100, Abcam, Cambridge, MA, USA).	  The sections 15	  

were rinsed in PBS three times and incubated with Alexa Fluor 488- or Alexa Fluor 16	  

594-labelled goat anti-mouse (Bio-Rad Laboratories, catalogue # STAR132P, RRID: 17	  

AB_2124272) or anti-rabbit IgG secondary antibodies (diluted 1:500, Bio-Rad 18	  

Laboratories, 5213-2504 RRID: AB_619 907), and then stained with DAPI at room 19	  

temperature for 1 h. Images were captured on a laser scanning confocal microscope 20	  

(LSM800, Zeiss, Thornwood, NY, USA). 21	  

 22	  

Frozen human tissues were sectioned using a cryomicrotome (MEV, SLEE, Germany) 23	  

at 4 µm. To observe the expression of TMEM30A, cryosections were stained with 24	  

rabbit anti-human TMEM30A (1:100, Bioss, Beijing, China) overnight at 4°C 25	  

followed by FITC-conjugated goat anti-rabbit IgG (1:100, Gene Tech Company 26	  

Limited, Shanghai, China) at 37°C for 30 min. Images were captured using an 27	  

Olympus BX51 microscope (Tokyo, Japan). All exposure settings were kept the same. 28	  

The fluorescence intensity was measured by manually outlining the perimeter of 29	  

every glomerulus and semiquantifying the luminosity of the outlined regions using 30	  
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image analysis software (ImageJ, version 1.52p, National Institutes of Health, USA). 1	  

A background correction was made for each glomerulus by subtracting the average 2	  

intensity in non-stained regions (outlined manually) in the glomerulus. 3	  

 4	  

Transmission electron microscopy (TEM) 5	  

TEM was performed on kidney cortical tissue (HITACHI, HT7700). Kidneys 6	  

obtained from WT and KO mice were cut into small pieces just after harvest and fixed 7	  

in fixative solution (2.5% glutaraldehyde, 1.25% paraformaldehyde, and 0.003% 8	  

picric acid in 0.1 M sodium cacodylate buffer [pH 7.4]) for 2 h at room temperature. 9	  

The fixed kidney was washed with 0.1 M PBS, postfixed with 1% osmium tetroxide 10	  

(OsO4) in 0.1 M PBS (pH 7.4), and washed in 0.1 M phosphate buffer (pH 7.4) three 11	  

times. The fixed tissue was embedded in Epon 812 after dehydration via an ascending 12	  

series of ethanol and acetone and incubated at 60°C for 48 h. Ultrathin sections (60 13	  

nm) were cut and stained with uranyl acetate and lead citrate. 14	  

 15	  

Isolation of Glomeruli 16	  

The glomeruli were dissected using standard sieving technique [23]. Briefly, kidney 17	  

were mashed with syringe plunger and then pushed through 425 µm (top), 250 µm, 18	  

175 µm, 125µm, 100 µm and 70µm (bottom) sieve with ice cold mammalian Ringer’s 19	  

solution (Shyuanye Biotechnology, Shanghai, China L15O10G100158) with 1% BSA 20	  

(Solarbio, Beijing, China. A8010). Remove the top sieve and proceed to do the same 21	  

on the next. Collect the glomerular retained by the 100 µm and 70µm sieve into 22	  

centrifuge tube with ice cold mammalian Ringer's solution with 1% BSA. Centrifuge 23	  

the tube at 1,000g for 10 min at 4℃, remove the supernatant and then freeze the 24	  

glomeruli in liquid N2 before storing at -80℃  for further protein and RNA 25	  

extraction. 26	  

Western blotting 27	  

Isolated glomerular proteins were extracted in RIPA lysis buffer (50 mM Tris-HCl, 28	  

150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% SDS, pH 7.4) 29	  

supplemented with complete protease inhibitor cocktail (Roche). The protein 30	  
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concentration was determined with the Bicinchoninic Acid (BCA) Protein Assay 1	  

(Thermo Fisher). SDS-PAGE and Western blot analysis were performed with equal 2	  

amounts of protein (15 µg), which were then transferred to PVDF membranes (GE 3	  

Healthcare, Chicago, IL, USA). After blocking with 8% non-fat dry milk in TBST for 4	  

2 h at room temperature, the blots were probed with primary antibodies against CHOP 5	  

(1:1000, Cell Signaling Technology, Danvers, MA, USA), BiP (1:1000, Cell 6	  

Signaling Technology Danvers, MA, USA) and PDI (1:2000, Cell Signaling 7	  

Technology, Danvers, MA, USA) in blocking solution overnight at 4°C, followed by 8	  

incubation with anti-mouse or anti-rabbit HRP-conjugated secondary antibodies 9	  

(1:5000, Cell Signaling Technology, Danvers, MA, USA). The samples were 10	  

normalized with GAPDH (1:5000, Proteintech, Wuhan, China) primary antibody, and 11	  

the relative intensity of the blots was quantified using ImageJ software. 12	  

 13	  

 14	  

Statistical analysis 15	  

Data are expressed as the mean ± standard error of the mean (SEM). Statistical 16	  

evaluation was performed using Student’s t test. P values of <0.05 were considered to 17	  

be statistically significant. 18	  

 19	  

Results 20	  

Generation of podocyte-specific Tmem30a KO mice 21	  

Previous studies have demonstrated the essential role of Tmem30a in several vital 22	  

tissues. In	   the	   retina, Tmem30a is important for the survival of retinal photoreceptor 23	  

and rod bipolar cells [16, 17]. In the cerebellum, Tmem30a loss results in early-onset 24	  

ataxia and cerebellar atrophy [15]. In the liver, Tmem30a deficiency impairs mouse 25	  

foetal liver erythropoiesis and causes intrahepatic cholestasis by affecting the normal 26	  

expression and localization of bile salt transporters and causes intrahepatic cholestasis 27	  

[5, 18]. In the haematopoietic system, Tmem30a is critical for the survival of 28	  

haematopoietic cells and leukocytes [19]. Tmem30a is expressed in the retina, brain, 29	  

cerebellum, liver, heart, kidney, spine, and testis [8, 17, 23], but its role in the kidney 30	  
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remains elusive. To define the role of Tmem30a in the kidney, we first assessed the 1	  

expression of Tmem30a in the kidney by immunostaining with a proven TMEM30A 2	  

antibody [17]. Kidney cryosections were immunostained with specific antibodies 3	  

against Tmem30a (Fig. 1a). Tmem30a is highly expressed in the glomeruli, which 4	  

implies a vital role of Tmem30a in glomerular filtration. To investigate this role of 5	  

Tmem30a, we generated podocyte-specific Tmem30a KO Tmem30aloxP/loxP; 6	  

Nphs2-Cre (hereafter named Tmem30a KO) mice by crossing Tmem30aloxP/loxP with 7	  

podocin-cre Nphs2-Cre mice (Fig. 1b). Tmem30a expression was reduced by ~55% in 8	  

the glomerulus of Tmem30a KO mice compared with that in control mice (Fig. 1c). 9	  

Given the presence of Cre only in the podocytes, the deletion efficiency was fairly 10	  

good. ROSA26-tdTomato was used to verify the specific expression of podocin-cre in 11	  

podocytes. We crossed Tmem30aloxP/+; Nphs2-Cre; Rosa-tdTomato mice with 12	  

Tmem30aloxP/loxP mice to generate littermate Tmem30a+/+; NPHS2-Cre; 13	  

Rosa-tdTomato and Tmem30aloxp/loxp; NPHS2-Cre; Rosa-tdTomato mice to evaluate 14	  

the KO specificity of Tmem30a in podocytes (Fig. 1b-d). In summary, these data 15	  

demonstrate the successful elimination of Tmem30a in Tmem30aloxp/loxp; NPHS2-Cre 16	  

mice. 17	  

 18	  

Podocyte-specific deletion of Tmem30a results in albuminuria 19	  

Tmem30a KO mice were born at the ratio that is consistent with classic Mendelian 20	  

segregation. No obvious morphological abnormalities were observed in Tmem30a KO 21	  

mice upon gross examination. Although they appeared to be normal in terms of body 22	  

size, the albuminuria level in Tmem30a KO mice increased significantly compared 23	  

with control mice from 5 months after birth (Fig. 2). By the ninth months after birth, 24	  

the albuminuria level continued to rise, indicating sustained impairment of the 25	  

glomeruli and selective barrier (Fig. 2). 26	  

 27	  

Albuminuria is an unambiguous symptom of the compromised integrity of the 28	  

glomerular filtration barrier [24]. With increased protein passage from blood into 29	  

urine, the proximal tubular reuptake mechanism is stimulated to reabsorb an 30	  
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increasing amount of protein until the reabsorption capacity is saturated [25]. Once 1	  

the amount of protein excreted from blood exceeds the reabsorption capacity of the 2	  

proximal tubule, albuminuria occurs. Mounting evidence indicates that albuminuria is 3	  

one of the major features of various kidney diseases, or at least that albuminuria 4	  

accelerates kidney disease progression to end-stage renal failure [26]. This indicates 5	  

that defects in Tmem30a are a crucial cause of albuminuria. 6	  

 7	  

Tmem30a is essential for the survival and function of podocytes 8	  

Tmem30a deletion results in albuminuria, implying podocyte injury and loss in 9	  

Tmem30a KO mice. We reasoned that this mouse model should allow us to address 10	  

the question about the role of Tmem30a in the glomerular filtration barrier and 11	  

progression of nephrotic syndrome. We next examined whether Tmem30a is required 12	  

for the survival of podocytes. Paraffin sections from both Tmem30a KO mice and WT 13	  

mice at 5 months and 9 months of age were subjected to immunostaining for WT1 14	  

and synaptopodin, which are two representative markers of differentiated podocytes. 15	  

WT1 is the nuclear marker of differentiated podocytes used to assess the state of 16	  

mature podocytes. In the kidney of Tmem30a KO mice, the number of WT1-positive 17	  

cells in glomeruli was dramatically decreased by 5 months of age in a pattern 18	  

consistent with the severity of diffuse glomerulosclerosis, indicating a loss of 19	  

podocytes (Fig. 3a-b). Synaptopodin is an actin-associated protein that may play a 20	  

role in actin-based cell shape and motility [27, 28]. Synaptopodin expression was also 21	  

observed in the podocytes of WT mice but was hardly detectable in KO mice (Fig. 3c). 22	  

The results of immunostaining for WT1 and synaptopodin confirm the loss of mature 23	  

podocytes in Tmem30a KO mice, indicating that Tmem30a plays an essential role in 24	  

the survival and function of podocytes. 25	  

 26	  

To further examine the role of Tmem30a in FP formation, the ultrastructure in WT 27	  

and KO mice at five months of age was analysed by TEM (Fig. 3d). Tmem30a WT 28	  

mice showed normal podocyte, podocyte FP and GBM architecture (Fig. 3d, upper 29	  

and lower left panel). In contrast, Tmem30a KO mice showed podocyte FP 30	  
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effacement, lack of a SD and increases in the GBM (Fig. 3d lower right panel), 1	  

suggesting that Tmem30a deficiency causes impaired podocyte FP formation or 2	  

imbalanced protein-protein interactions within the SD multiprotein complex, resulting 3	  

in an impaired filtration barrier in the kidney. 4	  

 5	  

Loss of Tmem30a in podocytes causes endoplasmic reticulum (ER) stress 6	  

A previous study suggested that the loss of Tmem30a in Purkinje cells induced ER 7	  

stress and subsequent progressive degeneration of Purkinje cells, demonstrating the 8	  

vital function of Tmem30a in intracellular trafficking [15]. It is reasonable to suspect 9	  

that podocyte injury and loss in Tmem30a KO mice is likely to induce ER stress. 10	  

Western blot analysis showed that the expression of ER stress-related proteins, 11	  

including CHOP and PDI, was upregulated in Tmem30a KO mice compared with WT 12	  

mice at 5 months of age, indicating the presence of ER stress in KO podocytes (Fig. 13	  

4). 14	  

 15	  

Tmem30a KO mice develop severe glomerulosclerosis 16	  

  Kidney sections from both WT and KO mice at 2.5 months, 5 months and 9 months 17	  

of age were analysed by light microscopy to assess pathological changes. PAS 18	  

staining of kidney sections revealed normal nephrogenesis in Tmem30a KO mice, and 19	  

the predominant renal changes were confirmed to be related to glomeruli (Fig. 5). 20	  

  The size of the kidney in Tmem30a KO mice was generally the same as that of the 21	  

kidney in WT mice (data not shown). Interesting, by 5 months, Tmem30a KO mice 22	  

exhibited multiple pathologic processes, including slight and sever mesangial 23	  

hyperplasia, mesangial cell proliferation with ECM deposition, capsular synechia and 24	  

even glomerular sclerosis was visible throughout renal cortex (Fig. 5, upper panel). 25	  

And by 9 months, more normal glomeruli were affected by loss of Tmem30a and 26	  

showed prominent glomerular sclerosis (Fig. 5, lower panel). These data suggest that 27	  

the kidney is undergoing a pathological process of FSGS, which also explains the 28	  

absence of prenatal mortality. 29	  

 30	  
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TMEM30A expression is reduced in patients with podocytopathy, including 1	  

MCD and MN 2	  

TMEM30A is expressed in human glomeruli (Fig. 6 A). To evaluate the clinical 3	  

importance of TMEM30A, we analysed the expression of TMEM30A in kidney 4	  

samples from patients with podocytopathy (MCD, MN, and DN), samples from 5	  

patients with IgAN and adjacent normal tissues from patients with renal tumours as 6	  

controls (clinical information of the subjects in Table 1). Compared with the normal 7	  

controls, the MCD and MN kidney sample showed significantly reduced TMEM30A 8	  

expression levels (Fig. 6 B, C). Conversely, the expression level in tissue from IgAN 9	  

patients showed no significant reduction. Although the expression of TMEM30A in 10	  

tissue from DN patients showed no significant difference, it showed a downward 11	  

trend. These data suggest that the expression of TMEM30A is decreased in 12	  

podocytopathy, especially in MCD and MN, and that TMEM30A is essential for 13	  

podocytes. 14	  

 15	  

Discussion 16	  

The β-subunit of PS flippase Tmem30a is essential for generating and maintaining the 17	  

asymmetrical distribution of phospholipids to ensure cellular signal transduction [8, 18	  

29-31]. In this study, we found that Tmem30a plays a vital role in maintaining 19	  

glomerular filtration barrier integrity by generating a podocyte-specific Tmem30a KO 20	  

mouse model. Tmem30a loss leads to podocyte injury and loss,	   albuminuria, 21	  

mesangial cell proliferation with mesangial matrix accumulation and eventually 22	  

glomerulosclerosis as the disease progresses. 23	  

 24	  

Podocyte injury and loss are now recognized as initiating factors leading to 25	  

glomerulosclerosis in the progression of multiple variants of kidney diseases, such as 26	  

DN, IgAN and FSGS [32-36]. Podocytes are terminally differentiated cells that 27	  

cannot repopulate after loss. Although a subpopulation of parietal epithelial cells can 28	  

transform into podocytes, the capacity for regeneration appears to be limited and 29	  

cannot compensate for the loss of podocytes [37-40]. Thus, podocyte injury and loss 30	  
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result in additional podocyte stress and ultimately glomerulosclerosis. 1	  

 2	  

Given that Tmem30a plays a vital function in intercellular trafficking, we investigated 3	  

the representative expression of the ER stress markers in isolated glomeruli: CHOP, 4	  

PDI and BiP. The results showed upregulated expression of CHOP and PDI in 5	  

Tmem30a KO mice, implying induced ER stress in Tmem30a KO mice due to the loss 6	  

of Tmem30a in podocytes. We evaluated the hallmark of the impaired integrity of the 7	  

glomerular filtration barrier, albuminuria, and found that Tmem30a KO mice showed 8	  

albuminuria at 5 months after birth, indicating impaired podocytes. Albuminuria 9	  

became more severe in Tmem30a KO mice at 9 months after birth (Fig. 2). The 10	  

deletion of Tmem30a in podocytes resulted in a compromised glomerular filtration 11	  

barrier at 5 months of age. The decreased immunostaining of synaptopodin was due to 12	  

podocyte injury. In addition, TEM analysis further identified podocyte injury in 13	  

Tmem30a KO mice: the intercellular junction and cytoskeletal structure of the FPs 14	  

were altered, and the cells exhibited an effaced phenotype, indicating podocyte injury 15	  

(Fig. 3d). SD structures disappeared, and albuminuria developed. Research on human 16	  

kidney tissues showed decreased expression of TMEM30A in podocytopathy, 17	  

especially in MCD and MN (Fig. 6), and validated the importance of TMEM30A in 18	  

podocytes. 19	  

 20	  

Mounting evidence suggests that mesangial cells are activated in numerous 21	  

glomerular diseases and undergo proliferation and phenotypic alterations in response 22	  

to glomerular injury, allowing glomerular structural recovery [41, 42]. However, 23	  

compensatory activity after injury leads to the proliferation of mesangial cells along 24	  

with abnormal ECM deposition, which results in glomerular fibrosis or sclerosis [43]. 25	  

PAS staining of samples from Tmem30a KO mice at 5 months showed multiple 26	  

pathologic process, approximately 12 out of ~200 glomeruli in Tmem30a KO mice 27	  

exhibited mesangial cell proliferation, increased ECM deposition and even with 28	  

segmental glomerulosclerosis. Furthermore, these pathological phenotypes became 29	  

more severe and common at 9 months of age (Fig.4).  These results indicate that 30	  
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glomerular disease caused by the lack of Tmem30a in podocytes progressed rapidly. It 1	  

is possible that filtered macromolecules become trapped in the mesangium, causing 2	  

the overreaction of mesangial cells and triggering an inflammatory response that plays 3	  

a pivotal role in stimulating ECM synthesis, causing an imbalance between ECM 4	  

synthesis and dissolution [44]. Persistent mesangial cell proliferation and ECM 5	  

accumulation lead to glomerulosclerosis and end-stage rental failure. 6	  

 7	  

In summary, our study reveals novel roles of Tmem30a in maintaining the integrity of 8	  

the glomerular filtration barrier. The deletion of Tmem30a in podocytes resulted in 9	  

podocyte degeneration, which led to a series of pathological phenotypic changes, 10	  

including albuminuria, mesangial cell proliferation, mesangial matrix accumulation 11	  

and glomerulosclerosis. One possibility is that Tmem30a deficiency causes defects in 12	  

protein folding and transport in the ER, causing ER stress, which leads to podocyte 13	  

injury and loss. Another possibility is that Tmem30a loss impairs lipid raft formation. 14	  

The SD is actually a lipid raft with a multiprotein complex, in which dynamic 15	  

protein-protein interactions maintain the SD as the final form of selective filtration. 16	  

This provides us with another unique perspective to understand the mechanism of 17	  

podocyte damage. Further investigation is necessary to elucidate the molecular 18	  

signalling pathway in podocytes after the deletion of Tmem30a. 19	  

 20	  
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Figures and Figure legends 1	  

 2	  

 3	  

Fig. 1. Generation of podocyte-specific Tmem30a cKO mice. (A) Cryosections of 4	  

the kidney from 5-month-old WT mice were immunostained with TMEM30A 5	  

antibody (green). The upper panel provide a lower magnification TMEM30A staining 6	  

image of the glomerular cortex and the lower panel shows high resolution 7	  

immunostaining of the glomeruli and renal tubules for the TMEM30A protein, 8	  

respectively. Tmem30a is highly expressed in the glomeruli (scale bar: the upper 9	  

panel: 25µm; the lower panel: 10µm). (B) Schematic showing the targeting strategy 10	  

for generating podocyte-specific Tmem30a-KO mice. Rosa-tdTomato reporter mice 11	  

were used to monitor Cre expression. (C) Q-PCR showed the relative mRNA 12	  

expression of Tmem30a in the glomeruli of KO mice compared with those of WT 13	  

mice. Sample size, n=4. (D) The ROSA-tdTomato reporter was introduced to monitor 14	  

the expression of Cre recombinase (red). Podocytes were labelled with the 15	  
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podocyte-specific marker nephrin (green). TdTomato-expressing cells were 1	  

colocalized with nephrin-labelled podocytes, indicating the specific expression of 2	  

NPHS2-Cre. (E) Localization of TMEM30A and Rosa-tdTomato in WT and KO mice 3	  

by immunofluorescence, suggesting that TMEM30A was knocked out in podocytes 4	  

(scale bar, 25 µm). 5	  

 6	  

 7	  

 8	  

 9	  

Fig. 2. Deletion of Tmem30a in podocytes resulted in albuminuria. Urine 10	  

biochemical analysis was performed in 5-month-old and nine-month-old WT and 11	  

Tmem30a KO mice. Quantitation of urinary albumin in WT and Tmem30a KO mice 12	  

showed that Tmem30a KO mice exhibited albuminuria at 5 months of age, which 13	  

became severe by 9 months of age. Sample size, n=3 for both WT and KO mice. n= 14	  

number of independent biological replicates. ***P<0.001, ****P<0.0001, ns=no 15	  

significance. The data are represented as the mean ± SEM. 16	  
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 1	  

Fig. 3. Tmem30a deficiency impaired podocyte survival and function. (A) 2	  

Immunohistochemical staining of kidney sections revealed that the number of 3	  

WT1-positive cells in glomeruli dramatically decreased after 5 months in the KO 4	  

mice compared to the WT littermates, indicating podocyte degeneration in Tmem30a 5	  

KO mice (scale bar: 50 µm). (B) Quantification of WT1-positive cells in the 6	  

glomeruli of both WT and KO mice. n=200. Mean±SEM. ***P<0.001. (C) 7	  

Immunohistochemical staining of paraffin-embedded kidney sections from Tmem30a 8	  

WT and KO mice for synaptopodin revealed the loss of synaptopodin by 5 months of 9	  

age. Positive staining for synaptopodin was hard to detect at 5 months, indicating 10	  

podocyte loss. Scale bar: 50 µm. (D) Transmission electron microscopy images of 11	  

glomeruli in Tmem30a WT and KO mice at 5 months. The upper panel shows normal 12	  

glomerular filtration barrier and slit diaphragm (SD) formed between adjacent foot 13	  
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processes (fp) (scale bar: 2 µm). Compared with WT mice, KO mice exhibited 1	  

increasing glomeruli base membrane (GBM) (red arrows), fusion of foot processes 2	  

and lack of slit diaphragms (black arrowheads) (scale bar: 500 nm) .CL, capillary 3	  

lumen; GBM, glomerular basement membrane; Endo, endothelium; RBC, red blood 4	  

cell; Podo, podocyte; SD, slit diaphragm; fp, foot process. 5	  

 6	  

 7	  

 8	  

 9	  

 10	  

 11	  

Fig. 4 Loss of Tmem30a causes ER stress in podocytes. Western blot analysis of 12	  

isolated glomeruli proteins in WT and Tmem30a KO mice at 5 months of age. (A) 13	  

Western blotting was performed to detect the expression of CHOP, PDI and BiP, and 14	  

GAPDH was probed as a loading control. (B-D) Quantitative analysis of blots. 15	  

Sample size, n=3. ***, P<0.001. The data represent the mean±SEM. 16	  

 17	  

 18	  
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 1	  

Fig. 5 Glomerular sclerosis in Tmem30a KO mice. Representative light microscopy 2	  

images of periodic acid-Schiff (PAS)-stained kidney samples from WT and KO mice. 3	  

By the age of 5 months, glomeruli showed mesangial cell proliferation and increased 4	  

extracellular matrix deposition with segmental glomerulosclerosis and (mild) 5	  

adhesions to Bowman’s capsule in Tmem30a KO mice. At 9 months of age, more 6	  

glomeruli were damaged and exhibited varying severities of pathological phenotypes 7	  

as the disease progressed, such as mesangial cell proliferation and increased 8	  

extracellular matrix deposition with segmental glomerulosclerosis (left panel of P9M 9	  

KO) and adhesions to Bowman’s capsule (right panel of P9M KO). Sample size, n=3. 10	  

Scale bar, 50 µm. 11	  

 12	  

 13	  
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 1	  

Fig. 6 Immunofluorescence staining of human glomeruli revealed reduced 2	  

expression of TMEM30A in minimal change disease and membranous 3	  

nephropathy patients. (A) Immunofluorescence images of TMEM30A expression in 4	  

normal human glomerular tissue. (B) Immunofluorescence images of TMEM30A 5	  

expression in glomerular tissue from human patients with IgAN, DN, MCD and MN. 6	  

(C). Quantification of the intensity of fluorescent staining for human glomerular 7	  

TMEM30A. Mean±SEM. Normal group (n=5) vs IgAN group (n=9), P=0.455; 8	  

normal group vs DN group (n=8), P=0.079; normal group vs MCD group (n=9), 9	  

P=0.043; normal group vs MN group (n=10), P=0.019; * vs normal group, P<0.05. 10	  

IgAN, immunoglobulin A nephropathy; DN, diabetic nephropathy; MCD, minimal 11	  

change disease; MN, membranous nephropathy. Scale bar, 50 µm. 12	  
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Table 1. Baseline characteristics of the enrolled patients. 1	  
 2	  

Patient Age（years） Gender 
24h Urine 

Protein（g/d） 

Serum 
Creatinine
（umol/L） 

Serum 
Albumin 

(g/L) 
Normal1 75 F 0.05 61.8 40.1 
Normal2 73 F 0.12 76.6 42.8 
Normal3 58 F 0.08 60.5 39.2 
Normal4 67 F 0.10 92.2 36.2 
Normal5 55 M 0.05 131.6 34.1 
IgAN1 61 M 0.86 111.0 38.9 
IgAN2 24 F 0.69 45.8 41.6 
IgAN3 34 M 1.63 185.1 40.1 
IgAN4 35 F 0.40 63.5 45.9 
IgAN5 16 F 0.70 53.4 40.1 
IgAN6 28 F 2.28 58.1 33.5 
IgAN7 25 F 1.63 72.7 40.9 
IgAN8 14 F 8.67 43.2 16.5 
IgAN9 29 F 5.41 134.8 27.9 
DN1 52 M 2.40 125.4 35.2 
DN2 55 F 4.91 71.0 23.9 
DN3 50 M 9.60 100.3 22.5 
DN4 46 F 9.85 204.0 23.7 
DN5 56 F 2.52 123.0 35.5 
DN6 44 M 4.14 98.0 29.2 
DN7 51 M 2.78 111.5 30.8 
DN8 57 M 5.27 130.0 41.0 
MCD1 22 M 8.75 75.3 12.7 
MCD2 19 M 11.31 80.8 13.6 
MCD3 64 F 2.12 52.3 17.2 
MCD4 16 M 3.23 63.3 22.2 
MCD5 53 F 2.31 50.3 22.7 
MCD6 22 M 7.86 88.6 16.4 
MCD7 18 M 12.87 139.9 14.5 
MCD8 21 F 5.04 59.1 20.1 
MCD9 67 M 6.78 82.1 19.0 
MN1 43 M 5.81 104.0 28.6 
MN2 28 F 2.38 38.8 23.4 
MN3 44 M 5.09 57.9 22.0 
MN4 64 M 5.72 87.0 22.2 
MN5 47 M 4.32 63.8 24.3 
MN6 64 F 16.68 74.2 21.4 
MN7 47 F 3.62 48.4 24.7 
MN8 61 M 17.90 89.0 28.5 
MN9 64 M 4.70 63.7 25.9 
MN10 59 M 5.01 84.5 22.3 
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M, male; F, female; IgAN, immunoglobulin A nephropathy; DN, diabetic nephropathy; MCD, 1	  
minimal change disease; MN, membranous nephropathy. 2	  
 3	  
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