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Abstract  32 

 33 

Existing studies do not sufficiently describe the molecular changes of pancreatic islet beta 34 

cells leading to their deficient insulin secretion in type 2 diabetes (T2D). Here we address 35 

this deficiency with a comprehensive multi-omics analysis of metabolically profiled 36 

pancreatectomized living human donors stratified along the glycemic continuum from 37 

normoglycemia to T2D. Islet pools isolated from surgical samples by laser-capture 38 

microdissection had remarkably heterogeneous transcriptomic and proteomic profiles in 39 

diabetics, but not in non-diabetic controls. Transcriptomics analysis of this unique cohort 40 

revealed islet genes already dysregulated in prediabetic individuals with impaired glucose 41 

tolerance. Our findings demonstrate a progressive but disharmonic remodeling of mature 42 

beta cells, challenging current hypotheses of linear trajectories toward precursor or trans-43 

differentiation stages in T2D. Further, integration of islet transcriptomics and pre-operative 44 

blood plasma lipidomics data enabled us to define the relative importance of gene co-45 

expression modules and lipids positively or negatively associated with HbA1c levels, 46 

pointing to potential prognostic markers. 47 

  48 
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Introduction 49 

 50 

Type 2 diabetes (T2D) mellitus collectively defines a cluster of genetically complex 51 

pathological states characterized by persistent hyperglycemia, often leading to 52 

cardiovascular complications, kidney failure, retinopathy and neuropathies. Affecting more 53 

than 450 million people, with rising incidence rates over the past decades, this syndrome is 54 

a major threat for public health and society globally1. Common determinant and ultimate 55 

cause of T2D is the inability of pancreatic islet beta cells to secrete insulin in adequate 56 

amounts relative to insulin sensitivity, in the absence of evidence for their autoimmune 57 

destruction or a monogenetic deficit. Beta cell failure typically results from a lengthy process 58 

spanning many years. Remarkably, however, it can be rapidly reverted upon bariatric 59 

surgery or severe caloric restriction2,3. These observations argue against the occurrence of 60 

major beta cell apoptosis in T2D, especially since adult beta cells hardly replicate, while 61 

robust evidence of beta cell neogenesis after puberty is also lacking. Hence, the prevailing 62 

opinion is that persistent metabolic stress drives mature beta cells to phenotypically de-63 

differentiate into progenitor cells or trans-differentiate into other islet endocrine cell types 64 

over time4–6. As the pathogenesis of beta cell dysfunction in T2D remains largely unclear, 65 

the diagnosis of this disease relies on accepted, but still surrogate parameters and cutoffs 66 

that have been primarily developed for clinical practice to optimize therapeutic interventions7. 67 

 68 

Insight into molecular alterations associated with impaired insulin secretion in T2D has been 69 

largely obtained from pancreatic islets isolated enzymatically from brain-dead or cadaveric 70 

subjects classified according to a categorical division into non-diabetic and diabetic, rather 71 

than on a continuum from euglycemia to steady hyperglycemia. This approach has multiple 72 

shortcomings8. Briefly, islet researchers do not generally have access to extensive clinical 73 

and laboratory information about the donors prior to their admission to an intensive therapy 74 

unit9. Moreover, the islet state is perturbed by the metabolic stress associated with a 75 

terminal condition and the related pharmacological treatments10,11. Enzymatic isolation of 76 
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islets and their in vitro culture can further change their molecular profile12,13. In the attempt to 77 

overcome, at least in part, these limitations, we established a complementary platform for 78 

the procurement of islets which relies on the collection and analysis of pancreatic specimens 79 

from metabolically profiled living donors undergoing pancreatectomy for a variety of 80 

disorders8,14. We showed that this approach is very reproducible and scalable and provides 81 

a novel view on transcriptomic and functional alterations in pancreatic islets of subjects with 82 

T2D15–17 . 83 

 84 

The aim of the present study has been to profile in greater detail gene expression changes 85 

occurring along the progression from euglycemia to long-standing T2D in human islets in 86 

situ and to integrate this knowledge with clinical traits, circulating lipid levels and the islet 87 

proteome, hence enabling inferences about the mechanisms driving islet dysfunction and 88 

the identification of potential biomarkers for it. 89 

Results 90 

Recruitment of a large cohort of living donors for islet and plasma omics 91 

data 92 

 93 

To gain insight into the history of islet cell deterioration along the progression from normal 94 

glycemic regulation to T2D, we collected surgical pancreatic tissue samples from 133 95 

metabolically phenotyped pancreatectomized patients (PPP). Eighteen were non-diabetic 96 

(ND), 41 had impaired glucose tolerance (IGT), 35 Type 3c Diabetes (T3cD) and 39 T2D 97 

(Fig. 1A and Fig. 1B). These group assignments were based on glycemic values at fasting 98 

and at the 2 h time point of an oral glucose tolerance test (OGTT) using the thresholds 99 

defined in the guidelines of the American Diabetes Association7, or, when applicable, on a 100 

previously established diagnosis of T2D. In this cohort, 51.9% were males and the mean 101 

age was 65.36±11.54 years, with ND PPP being on average younger than the other three 102 

groups (Fig. 1C and Supplementary Table S1). The body mass index (BMI) was significantly 103 
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lower in ND compared to IGT, T3cD and T2D PPP. The HbA1c value, as a parameter of 104 

longer-term glycemia, was 5.25±0.3 in ND, 5.75±0.42 in IGT, 6.29±0.95 in T3cD and 105 

7.41±1.29 in T2D PPP (Fig. 1C and Supplementary Table S1). Moreover, based on 106 

histopathology, malignant tumors occurred in 50%, 60.97%, 74.29% and 69.23% of ND, 107 

IGT, T3cD, and T2D PPP, respectively (Supplementary Table S1). 108 

Pancreatic islet gene expression and pathways drift progressively with 109 

glycemia deterioration  110 

 111 

Gene expression profiles of islets isolated by laser capture microdissection (LCM) from 112 

resected and snap-frozen pancreas samples of ND, IGT, T3cD and T2D PPP were 113 

assessed by RNA sequencing. After removal of genes with low expression levels, the overall 114 

islet transcriptome encompassed 19,119 genes, of which 14,699±693 were present (raw 115 

read counts >0) in ND PPP, 14,967±455 in IGT PPP, 14,939±493 in T3cD PPP and 116 

14,997±428 in T2D PPP. Genes with a fold change (FC)>1.5 and a false discovery rate 117 

(FDR)≤0.05 were considered to be differentially expressed (DE) between the groups. 118 

Pairwise group comparisons of IGT vs. ND, T3cD vs. ND and T2D vs. ND revealed an 119 

exacerbation of gene dysregulation with deterioration of glycemic control (Fig. 2A). Notably, 120 

no DE islet genes were identified between IGT vs. ND, while 161 and 650 DE genes were 121 

found between T3cD vs. ND and T2D vs. ND, respectively (Fig. 2A and Supplementary 122 

Table S2). 123 

 124 

Restricting the transcriptomic analysis to libraries in which insulin (INS) was the most 125 

expressed gene resulted in the retention of islet datasets from 15 ND, 35 IGT, 21 T3cD and 126 

24 T2D subjects, without dramatically affecting the overall composition of the cohort in 127 

regards to diabetes status and major descriptive parameters (Supplementary Table S3). 128 

Deconvolution analysis indicated that in 97.8% of retained samples the proportion of beta 129 

cells was >50% (Supplementary Fig. S1), supporting the choice of this strategy to 130 
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discriminate samples especially enriched in beta cell transcripts. Despite the expected 131 

reduction in statistical power due to ~ 30% smaller size of this “restricted” cohort (92 132 

samples retained from 133), the number of DE genes between islets of T2D vs. ND PPP 133 

increased by 51% to 984 (782 up, 202 down), and by 59% to 256 (209 up, 47 down) 134 

between islets of T3cD vs. ND PPP (Fig. 2A, Supplementary Table S4). Seven of the 984 135 

DE genes are known risk genes for T2D, two upregulated (SGSM2 and BCL2) and five 136 

downregulated (RASGRP1, G6PC2, SLC2A2, ZMAT4 and PLUT)18, while most of the 137 

remaining genes have not been previously reported to be altered in islets of subjects with 138 

T2D14,19. 139 

 140 

Among the DE genes in islets of T2D PPP, INF2 and AKR7L were negatively correlated in a 141 

moderate fashion with duration of the disease measured in years (Spearman correlation 142 

coefficient -0.32 and -0.41 respectively), albeit they were both upregulated relative to islets 143 

of ND PPP. Most notably, this filtering step enabled, for the first time, the identification of 185 144 

DE genes between islets of IGT vs. ND PPP. Most of these DE genes were upregulated 145 

(181/185), and 98 also dysregulated with the same directionality (97 up, 1 down) between 146 

islets of T2D vs. ND PPP. Intriguingly, and apparently at variance with previous eQTL 147 

findings20, the T2D risk gene ARAP1 and its neighboring gene STARD10 were both 148 

upregulated and among the 77 genes dysregulated in islets of IGT PPP only. No islet cell 149 

type specific genes21 were enriched in any of the differential expression analyses. 150 

Furthermore, no shift of islet cell type proportions with the progression of the disease was 151 

observed in the deconvolution analysis (Supplementary Fig. S1A). 152 

 153 

For both the “restricted” and the full data set, heatmaps of gene expression levels in the four 154 

patient groups were prepared as a visual complement to the statistical analysis (Fig. 2B and 155 

Supplementary Fig. S2A). Despite the marked differences between the findings in the 156 

“restricted” and complete cohort, upregulation prevailed as the direction of gene 157 

dysregulation in both of them (Fig. 2A and Supplementary Fig. S2A). Based on these 158 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 6, 2020. ; https://doi.org/10.1101/2020.12.05.412338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.05.412338


8 

observations, pancreatic tissue sections of 5 ND and 5 T2D PPP with the “restricted” cohort 159 

were immunostained with antibodies specific for histone H3 and H4 lysine acetylation – an 160 

epigenetic modification associated with greater access of transcription factors to promoter 161 

sites resulting in increased gene expression. Notably, the immunoreactivity for both 162 

acetylated histones was remarkably increased in the islets, and also in the surrounding 163 

exocrine cells of T2D PPP, and to a lesser extent IGT PPP (not shown), compared to ND 164 

PPP (Fig. 2D). 165 

Extracellular matrix and mitochondrial pathways are perturbed in T2D 166 

and IGT subjects  167 

 168 

We further analyzed differentially expressed gene functions by gene set enrichment analysis 169 

using Gene Ontology terms and KEGG pathways (Fig. 2C, Supplementary Fig. S2B and 170 

Supplementary Tables S5 and S6). Results obtained from the different gene set collections 171 

cross-validated each other, since similar biological themes emerged. Islets of pre-diabetic 172 

and diabetic subjects displayed upregulation of islet genes that were functionally related to 173 

cell-extracellular matrix interaction, immune response and signaling pathways, while 174 

expression of genes related to RNA processing, protein translation and mitochondrial 175 

oxidative phosphorylation were downregulated. Importantly, the analysis performed on the 176 

“restricted” cohort, differently from the full dataset, also revealed that the strength of the 177 

enrichment increased with progression of the disease (Fig. 2C and Supplementary Fig. 178 

S2B). These data suggest that early dysregulation of gene pathways exacerbates with the 179 

decline of beta cell function. 180 

Weighted gene co-expression network analysis identifies islet gene 181 

modules correlated with the elevation of HbA1c 182 

 183 

To globally interpret transcriptomic data and identify sets of genes likely to be functionally 184 

related and co-regulated, we grouped genes based on similarities in their expression profiles 185 
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into modules using a network-based approach22. In the cohort of 133 PPP, we identified 36 186 

co-expressed gene modules, which were arbitrarily labeled M1 through M36. The expression 187 

profiles of the genes in each module were summarized by a module eigengene, or first 188 

principal component of the expression matrix. Module eigengenes were used to 189 

computationally relate modules to one another and to genes or clinical variables. Correlation 190 

between module eigengenes and diabetes-related clinical traits revealed modules M9 and 191 

M14 as those with the highest positive and negative correlation with HbA1c, respectively 192 

(Fig. 3A and Supplementary Table S7). The former consisted of a set of genes that showed 193 

similar patterns of increased expression in most PPP with T2D (Fig. 3B), while the latter was 194 

mostly composed of genes with coordinated down-regulation in diseased subject samples 195 

(Fig. 3C). 196 

We next evaluated how close a gene was to a given module, denoted as module 197 

membership, by correlating its expression profile with the module eigengene. This analysis 198 

allowed us to identify highly connected genes or “hub” genes for HbA1c-related modules 199 

(Fig. 3D-E). These included genes that we had previously identified as differentially 200 

expressed in subjects with T2D14,15, and which were correlated with HbA1c either positively, 201 

such as module M9 genes ALDOB (FC=8.45 with adj. p<0.001 in T2D vs. ND in “restricted” 202 

cohort) and FAIM2 (FC=7.11 with adj. p<0.001 in T2D vs. ND in “restricted” cohort) or 203 

negatively, such as module M14 genes SLC2A2 (FC=-2.77 with adj. p<0.001 in T2D vs. ND 204 

in “restricted” cohort) and TMEM37 (FC=-1.73 with adj. p<0.001 in T2D vs. ND in “restricted” 205 

cohort). Interestingly, we (Supplementary Fig. S3A) and others23 found ALDOB to be 206 

upregulated in islets from 13-week-old diabetic db/db mice compared to the heterozygous 207 

db/+ littermate (Supplementary Fig. S3A) as well as in a mouse beta, but not alpha, cell line 208 

upon exposure to high glucose (Supplementary Fig. S3B). However, the overexpression of 209 

ALDOB in beta cells of T2D PPP could neither be verified by in situ hybridization using the 210 

RNAScope platform (data not shown), nor by immunofluorescence on tissue sections due to 211 
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the cross-reactivity of the available anti-ALDOB antibody with other aldolase isoforms 212 

(Supplementary Fig. S3C). 213 

Proteomics of LCM-isolated pancreatic islets reveals heterogenous 214 

profiles of T2D subjects and extends target identification 215 

 216 

To verify and extend the transcriptomic data at the functional level of proteins, we analyzed 217 

the mass spectrometry (MS)-based proteomic profiles of LCM pancreatic islets from five ND 218 

and five T2D PPP (Supplementary Table S8). Using a very high sensitivity workflow on a 219 

novel trapped-ion mobility Time of Flight mass spectrometer24, we identified 2,237±499 islet 220 

proteins for ND PPP and 1,819±412 islet proteins for T2D PPP (Figure 4A). Quantitative 221 

reproducibility between biological replicates was high with Pearson correlations ranging from 222 

0.83 to 0.95 (Supplementary Fig. S4A). Principal component analysis (PCA) clustered the 223 

data into two distinct groups matching the clinical stratification (Fig. 4B). Interestingly, islets 224 

of ND PPP clustered closely, indicating a very similar proteome signature, while those of 225 

T2D PPP revealed substantial proteome heterogeneity among each other. Differential 226 

expression analysis confirmed that islets of T2D and ND PPP have very different proteomic 227 

profiles. The main differential drivers are well-characterized markers of pancreatic islet cells, 228 

including SLC2A225, and many proteins implicated in mitochondrial structure, translation, 229 

energy supply and amino acid or fatty metabolism such as YMEL1, MRPL12, 230 

BA3(C14orf159), ACADS and its paralogue ACADSB, which were highly depleted in islets of 231 

T2D PPP (Fig. 4C). Besides AKR7L, ACADS was the only other upregulated and 232 

differentially expressed gene in islets of both IGT and T2D PPP, while being also 233 

downregulated at the protein level. All differentially expressed mitochondrial proteins are 234 

encoded by the nuclear genome (Fig. S4B). Intriguingly, the level of the sulfonylurea 235 

receptor ABCC8 subunit26 was also strongly reduced in islets of T2D PPP. This 236 

downregulation might be an effect secondary to pharmacological treatment, as three among 237 

these patients had been treated with anti-diabetic SUR1 antagonists glibenclamide (DP197), 238 

glimepiride (DP118) or mitiglinide (DP087) (Supplementary Fig. S4C). We found the 239 
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glycolytic enzyme ALDOB to be on average four-fold upregulated in islets of T2D vs. ND 240 

PPP. This is consistent with our transcriptomic data (ALDOB FPKM: 76.16±50.82 in T2D 241 

PPP vs. 4.63±0.95 in ND PPP; p=0.03) and with previous14,15 and our current WGCNA 242 

analyses. Other proteins robustly overexpressed in islets of T2D PPP included the alpha-L-243 

fucosidase FUCA1 and the surface marker for hematopoietic stem cells THY1. 244 

Next, we employed the proteomic ruler algorithm and annotations of subcellular localization 245 

to compare the protein mass distribution of major cellular compartments27 (Fig. 4D). Islets of 246 

T2D PPP lost an estimated protein mass of 6% in the Golgi apparatus, 24% in the 247 

endoplasmic reticulum, and 27% in the mitochondria compared to those of ND PPP, while 248 

cytoskeleton protein mass was unchanged. Unsupervised hierarchical clustering of all 2,622 249 

detected proteins, clustered the data according to clinical categories (Fig. 4E). One-250 

dimensional gene ontology enrichment28 revealed two distinct clusters whose protein 251 

intensity levels associated with the terms ‘membrane attack complex’ (p<2.18E-04) and 252 

‘Immunoglobulin C-domain’ (p<2.68E-06) were enriched by 2.27-fold and 2.36-fold in islets 253 

of T2D vs. ND PPP, respectively. Proteins with the gene ontology-term ‘differentiation’ 254 

(p<3.09E-04) and ‘mitochondrion’ (p<2.19E-08) were 1.65 and 1.78-fold in islets of ND PPP. 255 

T2D patients show decreased levels of plasma phospholipids and 256 

elevated levels of plasma (dihydro-)ceramides.  257 

 258 

Our study encompassed two independently generated lipidomics data sets. First, shotgun 259 

lipidomics was performed on peripheral blood plasma samples of the aforementioned cohort 260 

(4 ND, 21 IGT and IFG, 13 T3cD and 17 T2D) (Supplementary Tables S9 and S10). Second, 261 

sphingolipid profiling was performed on peripheral blood samples of subjects within the 262 

cohort subjected to transcriptomic analysis (11 ND, 32 IGT and IFG, 26 T3cD and 32 T2D) 263 

(Supplementary Tables S11 and S12). Prior to data analysis, lipidomics samples from PPP 264 

with very high bilirubin values (>100 μmol/l) were removed to avoid bias in lipidomics 265 

profiles. All available samples from non-diabetic PPP (ND, as previously defined) and the 266 
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subset of IGT PPP with HbA1c<6.0 were combined into one group, which is referred to here 267 

as ND for readability. 268 

 269 

In shotgun lipidomics, 113 lipid species from 11 classes were included in the data analysis. 270 

When comparing T2D and T3cD to ND PPP, the majority of lipid classes displayed a 271 

remarkably homogeneous downward-trend of the individual lipid species they comprised 272 

(Fig 5A-B). Most prominently, plasma concentrations of lipids within the phosphatidylcholine 273 

(PC O-) class, a large class with 30 measured species, were lower in T2D versus ND PPP. 274 

Sixteen lipids of this class were significantly decreased (adjusted p<0.05) after adjusting for 275 

age and sex differences, with all of them showing at least a 1.4-fold change. Two lipid 276 

species from two smaller phospholipid classes (lysophosphatidylcholines (LPC) and 277 

phosphatidylinositols (PI)), and one from the sphingomyelin class (SM), were also 278 

significantly less abundant in T2D than in ND PPP (LPC 18:0;0: FC=-1.54, adj. p=0.03; PI 279 

18:0;0/18:2;0: FC=-1.36, adj. p=0.04; SM 34:1;2:, FC=-1.24, adj. p=0.04).   (Fig. 5A-B and 280 

Supplementary Table S13). 281 

 282 

Next, we performed targeted sphingolipidomics on 14 distinct lipid species for very accurate 283 

plasma level estimation (ceramides, dihydroceramides and sphingoid bases). Plasma levels 284 

of ceramides d18:1/18:0 and d18:1/20:0 were increased in T2D compared to ND PPP (Cer 285 

d18:1/18:0: FC=1.34, p=0.02; Cer d18:1/20:0: FC=1.22, p=0.01). Of note, a similar trend 286 

towards elevation in T2D vs ND was also observed in the two dihydroceramide species 287 

having the same chain lengths as these ceramides (DH Cer d18:0/18:0: FC=1.44, p=0.05; 288 

DH Cer d18:0/20:0: FC=1.35, p=0.01). Thus, in our data set, plasma concentrations of 289 

ceramides and their precursor dihydroceramides appear to increase simultaneously in T2D. 290 

 291 
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Integrative data modelling identifies cell-matrix interaction, cell signaling 292 

and immune response as key pathways linked to pancreatic islet 293 

dysfunction 294 

 295 

To identify a multivariate molecular profile that explains diabetes progression in the PPP 296 

cohort, we performed a large-scale integrative multi-omics analysis combining clinical data 297 

with islet transcriptomics and plasma lipidomics. Integration of transcriptomics and lipidomics 298 

data in the same model enables to weigh the relative importance of lipid and gene 299 

expression features in relationship to a chosen clinical trait. Hence, we explored the 300 

relationship between gene co-expression modules and plasma lipids by computing a 301 

consensus orthogonal partial least square (consensus OPLS)29,30 model with HbA1c as the 302 

outcome. All three types of biological data, namely gene co-expression modules, lipids from 303 

shotgun analysis and sphingolipids from targeted analysis, contributed to the model (35%, 304 

46.5% and 18.5%, respectively), suggesting that they help to explain HbA1c levels in a 305 

complementary way. Among them, different lipids and gene modules appear as the most 306 

relevant variables in the statistical modelling of HbA1c levels (Fig. 6A, 6B and 307 

Supplementary Table S14). Importantly, the model explained a large portion of data 308 

variance, highlighting a good fit with the experimental data (see Methods for more details). 309 

Among all considered biological data, the co-expression modules M1, M4, M8, M9, M30, 310 

M35 and M36 were the top predictive variables for high HbA1c levels, along with the two 311 

ceramide species C20 and C18. TAGs were also contributing, although to a lesser extent 312 

(Fig 6A, right hand side). Conversely, low levels of HbA1c were strongly related to the co-313 

expression modules M12 and M14 (Fig 6A, left hand side). However, the majority of the 314 

predominant predictors for low HbA1c were lipid species, most importantly the PC O-class. 315 

This class was also found to be lower in T2D compared to ND patient groups in differential 316 

abundance analysis, as shown in Fig 5A. A number of SM, PI and PC lipid species were 317 

next in the importance ranking related to low HbA1c, followed by the gene co-expression 318 

module M29. These results suggest that the profile of patients with increased HbA1c is 319 
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characterized by multiple molecular components, some of which represent signals that were 320 

not captured by differential abundance analyses comparing diabetes status groups nor by 321 

correlating gene co-expression modules individually to HbA1c. Most importantly, consensus 322 

OPLS multi-omics analysis pointed towards additional gene co-expression modules that may 323 

play a role in glucose dysregulation.  324 

 325 

Next, we used the results from the integrative data modelling to infer a network of key 326 

altered biological pathways in dysfunctional beta cells. To this end, we pooled gene modules 327 

positively associated with HbA1c levels (M1, M4, M8, M9, M30, M35 and M36) (Fig. 6A) and 328 

assessed their overlap to KEGG pathways by over-representation analysis. We found that 329 

the biological themes underlying these genes were very similar to the pathways upregulated 330 

in T2D and IGT PPP and include cell-matrix interaction, cell signaling and immune response 331 

(Fig. 6C and Supplementary Table S15). The same strategy was used to identify pathways 332 

associated with genes from modules with a negative prediction score for HbA1c (M12, M14 333 

and M29) (Fig. 6A), revealing an enrichment for metabolic pathways (Fig. 6C and 334 

Supplementary Table S15). 335 

Of note, several islet genes dysregulated in T2D PPP were driving the enrichment of these 336 

pathways. These include, for example, ALDOB, which stood out for its strong correlation to 337 

HbA1c levels (Fig. 3D and Fig. 6C). These genes, or the proteins encoded by them, should 338 

be regarded as putative candidate biomarkers for monitoring disease progression and 339 

therapeutic intervention. 340 

Discussion 341 

This study provides the most extensive dataset on islets in situ and plasma samples from 342 

the largest cohort of in-depth metabolically profiled living donors. Multi-omics data were 343 

generated using state-of-the-art approaches and integrated in a fashion not previously used 344 

in studies on islet dysregulation in relation to hyperglycemia in humans. Our transcriptomic 345 

and proteomic data from islets in situ of ND subjects represent a valuable reference for 346 
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future investigations. Furthermore, we could identify for the first time a set of islet genes 347 

altered in their expression already in subjects with impaired glucose tolerance. This, in turn, 348 

enabled us to acquire an unprecedented cross-sectional overview of the progression of islet 349 

gene dysregulation in parallel with the continuous elevation of HbA1c values, beyond 350 

conventional thresholds for clinical classification of patients.  351 

 352 

Pathways involved in RNA biology and especially in mitochondrial function emerged to be 353 

most negatively perturbed - a conclusion which in the case of the latter was strongly 354 

corroborated by the proteomic analysis, which enabled the identification of known and 355 

unknown differentially expressed proteins in islets of T2D PPP. In this context, we 356 

emphasize the downregulation of mitochondrial ACADS and its paralogue ACADSB, which 357 

catalyze the beta oxidation of short-chain fatty acids, including sodium butyrate. This finding 358 

is intriguing in view of the ability of this metabolite to broadly upregulate gene expression 359 

through inhibition of histone deacetylases. Unlike in previous studies on isolated islets from 360 

brain-dead organ donors14,18, the vast majority of differentially expressed genes in islets of 361 

T2D, but also IGT and T3cD PPP were upregulated. Among those genes, ALDOB stands 362 

out being the one with the strongest correlation with the islet gene module M9, which in turn 363 

has the strongest correlation with elevated HbA1c. Since ALDOB is a marker of beta cell 364 

precursors, its overexpression could be interpreted as a sign that in T2D, mature beta cells 365 

revert back to an immature stage of differentiation, or that a compartment equivalent to the 366 

lifelong niche of virgin beta cells identified in adult mice31 expands as a potential 367 

compensatory source of new beta cells. However, no additional disallowed gene of 368 

immature beta cells, markers of beta cell precursors or other islet cell types were 369 

dysregulated, while key determinants of mature beta cells, such as PDX1, MAFA, NKX6.1 or 370 

UCN3 were unchanged, at least at the transcriptomic level. Retention of fractions of major 371 

islet cell types (alpha, beta and delta) within the islet in T2D, consistent with recent imaging 372 

studies in samples from pancreatectomized subjects17, was confirmed by deconvolution 373 

analysis. Our global unbiased proteomic analysis, which corroborated the upregulation of 374 
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ALDOB, further showed that the expression profile of islet cells in T2D PPP is very 375 

divergent, opposite to its remarkable homogeneity in islet cells of ND subjects. Hence, the 376 

regression of beta cells toward a de-differentiated state following a linear trajectory 377 

recapitulating their developmental path to maturation or their transdifferentiation into other 378 

islet cell types seems less likely than a disharmonic relaxation of constraints on gene 379 

expression. Such processes, although possibly reversible, could perturb the coordinated 380 

operation of islet cells, including beta cells. In line with this, Lawlor et al. reported no 381 

evidence of beta cell dedifferentiation/transdifferentiation and alterations in fractions of islet 382 

cells in the context of T2D upon sequencing of single islet cells from a small cohort of ND 383 

and T2D organ donors32. For the future it would be important to assess whether 384 

overexpression of ALDOB occurs indeed in beta cells and if it affects their glycolysis and 385 

metabolism, taking into account that its paralogue ALDOA, whose RNA and protein levels 386 

were unchanged, remains by far the predominant islet aldolase species. Attention may also 387 

be directed toward understanding whether impaired oxidative phosphorylation, as a likely 388 

outcome of the massively decreased expression of mitochondrial proteins, and thus energy 389 

balance homeostasis, accounts, at least in part, for the observed less restrained gene 390 

expression.  391 

 392 

Similar to findings in other population-based studies on T2D33,34, PC O- and LPC lipids were 393 

altered in our cohort of T2D PPP, thus supporting the general implications of our 394 

observations. In particular, we found that more than half of the PC O- class lipids (16 out of 395 

30) and two of six LPC lipids were lower in T2D compared to ND PPP. In the present study 396 

we also found that several ceramides and dihydroceramides are elevated in T2D vs. ND, 397 

and whilst these increases were modest, these findings are consistent with those observed 398 

in several other recent studies35–37, highlighting the importance of these lipids as potential 399 

biomarkers of beta cell function in T2D.  400 

 401 
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Finally, we use a data fusion method29,30 to generate a model of how different molecular 402 

features (islet gene co-expression, plasma shotgun lipidomics and targeted 403 

sphingolipidomics) contribute to HbA1c levels in a continuum from healthy individuals to 404 

those with overt T2D. This model allowed us to measure the relative importance of different 405 

molecular components in explaining HbA1c variability, providing unique insights into the 406 

molecular profiles of individuals as they lose glycemic control towards development of T2D. 407 

To our knowledge this is the first time such an approach has been used in this field and we 408 

suggest that, by modelling multiple levels of information at the same time in deeply 409 

phenotyped populations such as the one presented here, we can gain a holistic view of the 410 

system and draw conclusions regarding key pathways, targets and biomarkers in metabolic 411 

and other diseases. 412 

Data availability 413 

RNA Sequencing data was deposited in the GEO database with GEO accession number (to 414 

be provided once the deposition process is completed) 415 

The proteomics raw datasets and the MaxQuant output files generated and analyzed 416 

throughout this study were deposited at the ProteomeXchange Consortium via the PRIDE 417 

partner repository with the dataset identifier PXD022561 418 

(https://www.ebi.ac.uk/pride/archive/). 419 

Lipidomics data will be made publicly available shortly. 420 
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Material and methods 541 

Cohort 542 

Our cohort comprised 133 adult surgical patients from the University Hospital Carl Gustav 543 

Carus Dresden who after informed consent participated in this study over a period of 5 544 

years. Based on the thresholds set by the American Diabetes Association7 (ADA) for fasting 545 

glucose, HbA1c and 2-hour glycemia of an oral glucose tolerance test (OGTT) in the days 546 

immediately before surgery 18 of these patients were classified as non-diabetic (ND), 41 547 

with impaired glucose tolerance (IGT), including 3 with impaired fasting glucose (IFG) only, 548 

35 with Type 3c Diabetes (T3cD) and 39 with Type 2 Diabetes (T2D). A diagnosis of T3cD 549 

was made whenever the occurrence of diabetes was not recognized for longer than 1 year 550 

prior to the onset of the symptoms leading to surgery and the subject was negative for the 551 

presence of circulating autoantibodies against pancreatic islets, which were assessed as 552 

previously described14. In all analyses IFG and IGT subjects were merged in one group 553 

hereinafter labeled as IGT PPP. Medical and family history and relevant clinical biochemistry 554 

data available from the routine medical processing of the patients were retrieved from the 555 

hospital database and referring physicians. Patients who underwent neoadjuvant 556 

chemotherapy as well as those with endocrine neoplasms of the pancreas were excluded 557 

from this study. 558 

Human pancreatic tissue and peripheral blood processing 559 

Surgical tissue specimens were examined by a certified pathologist immediately after 560 

resection as per regular clinical procedures. Fragments of healthy pancreatic tissue from the 561 

resection margins were excised, snap frozen in liquid nitrogen and stored at -80oC either 562 

natively or embedded in TissueTek OCT compound. Estimated warm and cold ischaemia 563 

time was on average 2 hours. Peripheral blood samples were stored at -80oC in aliquots of 564 

full blood, plasma and serum. 565 
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Transcriptomics 566 

Islet procurement and RNA isolation 567 

Pancreatic tissue was sectioned in a cryostat and mounted on UV pre-treated Zeiss 568 

MembraneSlide 1.0 PEN slides. Laser capture microdissection (LCM) was done with a Zeiss 569 

Palm MicroBeam system using autofluorescence to identify islets, as previously described38. 570 

RNA was isolated from approximately 20x6µm3 of islet tissue using the Arcturus PicoPure 571 

RNA Isolation Kit. Only preparations with RNA Integrity Number ≥5 were used for RNA 572 

sequencing. The entire handling of the tissue samples was done in a strictly RNAse free 573 

environment. 574 

Library preparation, RNA Sequencing and alignment 575 

Sequencing libraries were prepared from bulk RNA using the Illumina SmartSeq protocol. 576 

Single ended 76bp sequencing was done with an Illumina HiSeq 2500 or Illumina HiSeq 500 577 

at the Next Generation Sequencing Core Facility of the CMCB Dresden, with the target 578 

depth of 35 million fragments per library. From FASTQ files, purity-filtered reads were 579 

trimmed with Cutadapt to remove adapters and low-quality sequences (v. 1.8)39. Reads 580 

matching to ribosomal RNA sequences were removed with fastq_screen (v. 0.11.1)40. 581 

Remaining reads were further filtered for low complexity with reaper (v. 15-065)41. Reads 582 

were aligned against Homo sapiens GRCh38.92 genome using STAR (v. 2.5.3a)42. The 583 

number of read counts per gene locus was summarized with htseq-count (v. 0.9.1)43 using 584 

Homo sapiens GRCh38.92 gene annotation. Quality of the RNA-seq data alignment was 585 

assessed using RSeQC (v. 2.3.7)44. 586 

RNA Sequencing quality control, processing and differential expression analysis 587 

RNA Sequencing datasets were screened for exocrine contamination in an initial quality 588 

control (QC) step. Analysis of the absolute number of detected expressed genes, gene body 589 

coverage and cumulative gene diversity assessment flagged a number of libraries to be of 590 

insufficient quality for downstream analysis. Libraries were filtered for minimal expression by 591 

removal of genes with less than 5 mean raw reads. Reads were normalized for library size 592 
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and transformed for variance stabilizing using tools from the DESeq2 Bioconductor 593 

package45. Further analysis revealed 41 libraries in which transcripts other than insulin (INS) 594 

displayed the highest normalized number of reads. Differential expression analysis across 595 

the clinical categories (ND, IGT, T3cD, T2D) was performed using limma function with voom 596 

approach from limma Bioconductor package46,47 on both the full dataset of 133 libraries 597 

which passed the QC analysis as well as on the “restricted” dataset of 92 libraries featuring 598 

INS as the highest expressed gene based on the linear model with age, gender and BMI as 599 

covariates. 600 

Gene set enrichment analysis of differentially expressed genes 601 

Functional enrichment analyses of differentially expressed genes in IGT, T2D or T3cD 602 

compared to ND patients were performed by weighted gene set enrichment analysis (GSEA) 603 

on unfiltered gene lists ranked by decreasing differential expression test statistics. Gene 604 

Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 605 

collections were restricted to gene sets with a minimum and maximum sizes of 100 and 500, 606 

respectively. The enrichment scores were normalized by gene set size and their statistical 607 

significance was assessed by permutation test (n=1,000). GO enrichment analyses were 608 

carried out using the gseGO function from the R package clusterProfiler (version 3.10.1)48. 609 

GO terms enriched in at least one comparison were identified using p value and normalized 610 

enrichment score thresholds < 0.01 and > 2.5, respectively. Redundancy of enriched GO 611 

terms was removed using the clusterProfiler simplify function (selecting the most 612 

representative term by p value) and enrichment maps generated using the emapplot function 613 

from the R package enrichplot (version 1.2.0). KEGG pathway enrichment analyses were 614 

performed using the clusterProfiler gseKEGG function. Results were filtered based on a p 615 

value threshold < 0.01 and a normalized enrichment score threshold > 2. To simplify results 616 

visualization and interpretation, redundant KEGG pathways were also collapsed into fewer 617 

biological themes using the enrichment map visualizations. 618 
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Weighted Gene Correlation Network Analysis 619 

Gene Co-expression Network Construction 620 

The gene co-expression network was created following the weighted gene correlation 621 

network analysis (WGCNA) protocol as implemented in the WGCNA package in R (version 622 

1.68)22, as previously described14. WGCNA was performed on batch-corrected, normalized 623 

and variance stabilizing transformed expression data from the full cohort of 133 subjects. 624 

The co-expression network was constructed by calculating an adjacency matrix using 625 

Pearson correlation, pairwise complete observations and unsigned method. The soft-626 

threshold parameter was optimized with the function pickSoftThreshold and the best 627 

threshold (α = 7) selected by visual inspection. The adjacency matrix was then computed 628 

into a topological overlap matrix (TOM), converted to distances, and clustered by 629 

hierarchical clustering using average linkage clustering. Modules were identified by dynamic 630 

tree cut using the hybrid method and parameters minClusterSize=20 and deepSplit=2. 631 

Similar modules were merged using a module eigengene distance of 0.15 as the threshold. 632 

Identification of co-expressed gene modules related to diabetes trait 633 

We correlated the module eigengenes to clinical traits using Spearman correlation (pairwise 634 

complete observations) and calculated the corresponding p values using the cor and 635 

corPvalueStudent functions from the WGCNA package, respectively. Module-trait 636 

correlations were represented as heatmap using the labeledHeatmap function from the 637 

WGCNA package. The modules displaying the most positive or negative correlation to 638 

HbA1c were further analysed. Normalized and variance stabilizing transformed gene counts 639 

for selected modules were plotted as heatmap using the heatmap.2 function from the R 640 

gplots package (version 3.0.1.2). Rows (representing genes) were scaled and hierarchically 641 

clustered by Euclidean distances. Columns, representing patients, were custom ordered as 642 

described in the legend of figure 3. Module hub genes, such as highly connected genes 643 

within a module that could have a strong influence on a phenotypic trait, were identified as 644 
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those with the highest correlation with the particular trait and the highest correlation with the 645 

module eigengene. 646 

Significance of gene co-expression modules 647 

We tested the significance of the co-expression modules by comparing their intramodular 648 

connectivity (connectivity between nodes within the same module, as computed by the 649 

WGCNA  intramodularConnectivity function) to the background as follows. For each selected 650 

module of size N, we calculated a Z-score as: 651 

Z=(k-μ)/σ 652 

where k is the intramodular connectivity and μ and σ are the mean and standard deviation of 653 

the intramodular connectivity from 1,000 randomly sampled modules of size N respectively. 654 

Empirical p values were then calculated as the fraction of random intramodular connectivity 655 

values ≥ to the observed intramodular connectivity. For the modules with the highest 656 

variable importance in projection score in the HbA1c multiblock model, all of the random 657 

intramodular connectivity values were below the observed intramodular connectivity, 658 

suggesting that these modules were more compact than modules assembled by randomly 659 

sampling the same number of genes from the expression data (Supplementary Table S7). 660 

Functional profiles of gene modules with best prediction score for HbA1c 661 

The clusterProfiler enrichKEGG function was used to test for the over representation of 662 

selected co-expressed gene modules in KEGG pathways using hypergeometric distribution. 663 

A p value threshold < 0.01 was used to identify enriched terms. Enrichment map 664 

visualizations were used to overcome gene set redundancy. Results were displayed as 665 

networks of enriched pathways and overlapping genes using cytoscape (version 3.5.1). 666 

Deconvolution analysis 667 

In all samples a cell proportions matrix was produced using the R package DeconRNASeq 668 

(v.1.26.0) on RPKM-transformed data. The signature file provided to DeconRNASeq comes 669 
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from Xin et al. (2016)21, Supplementary Table S2 (A), obtained using single-cell data. It was 670 

adapted to the human genome version 38 by excluding 15 obsolete genes. 671 

Lipidomics 672 

Sample availability and sample overlap with transcriptomics data 673 

Pre-operative plasma lipidomics samples were obtained from a subset of the PPP cohort. 674 

Shotgun lipidomics analysis was performed on plasma from 55 PPP. These included 53 675 

subjects who also had their islet transcriptomics profile included in this study plus two PPP 676 

who were not part of the transcriptomics analysis because the RNA-Seq data failed to pass 677 

the quality control. Moreover, targeted sphingolipid analysis was performed on plasma from 678 

101 PPP. These included 98 PPP whose transcriptomics data was also included in this 679 

study plus three PPP whose RNA-Seq data was excluded for quality reasons. The number 680 

of samples in the two types of lipidomics analysis was smaller than in islet transcriptomic 681 

analysis because of the limited availability of plasma samples. 682 

 683 

Shotgun lipidomics measurements 684 

A streamlined mass-spectrometry (MS) -based platform for shotgun lipidomics developed by 685 

Lipotype GmbH (Dresden, Germany) was used for lipidomic profiling of patient plasma 686 

samples. Lipid extraction, internal standard addition and infusion into the mass spectrometer 687 

were performed as previously described49. The internal standard mixture contained: 688 

cholesterol D6 (chol), cholesterol ester 20:0 (CE), ceramide 18:1;2/17:0 (Cer), diacylglycerol 689 

17:0/17:0 (DAG), phosphatidylcholine 17:0/17:0 (PC), phosphatidylethanolamine 17:0/17:0 690 

(PE), lysophosphatidylcholine 12:0, (LPC) lysophosphatidylethanolamine 17:1 (LPE), 691 

triacylglycerol 17:0/17:0/17:0 (TAG) and sphingomyelin 18:1;2/12:0 (SM). 692 

Samples were analyzed by direct infusion in a QExactive mass spectrometer (Thermo 693 

Scientific) in a single acquisition. Tandem mass-spectrometry (MS/MS) was triggered by an 694 

inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments. 695 

MS and MS/MS data were combined to monitor CE, DAG and TAG ions as ammonium 696 
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adducts; PC, PC O-, as acetate adducts; and PE, PE O- and PI as deprotonated anions. MS 697 

only was used to monitor LPE as deprotonated anion; Cer, SM and LPC as acetate adducts 698 

and cholesterol as ammonium adduct. 699 

Data post-processing and normalization were performed using an in-house developed data 700 

management system. Only lipid identifications with a signal-to-noise ratio >5 and a signal 701 

intensity 5-fold higher than in corresponding blank samples were considered for further 702 

analysis.  703 

Targeted sphingolipid measurements 704 

Ceramides (C16:0 cer, C18:0 cer, C18:1 cer, C20:0 cer, C22:0 cer, C24:0 cer and C24:1 705 

cer), Dihydroceramides (C16:0 DHcer, C18:0 DHcer, C18:1 DHcer, C20:0 DHcer, C22:0 706 

DHcer, C24:0 DHcer,C24:1 DHcer) and precursors (Sphingosine, Sphinganine, 1-707 

Deoxysphinganine,1-Methyldeoxysphinganine, SB) were quantified in plasma by liquid 708 

chromatography tandem mass spectrometry (LC-MC/MC). In addition to samples, seven-709 

point calibration curves and 3 levels of quality controls were made from pure standards in 710 

BSA 5%. Finally, reference plasma spiked with analytes at two different levels were 711 

prepared as additional QC samples. 712 

After lipid chromatographic separation on a UPLC I-Class system (Waters), mass analysis 713 

was performed on an API 6500 system (Sciex) operating with an electrospray source in 714 

positive mode. General parameters were set as follows: curtain gas: N2 (35 PSI), Ion source 715 

gas 1: Air (50 PSI), Ion source gas 2: Air (50 PSI), ion source voltage: 5500 V, temperature: 716 

300°C, collision gas: N2 (7). Scheduled multiple reaction monitoring (MRM) mode was used 717 

with a target scan time of 0.5s and an MRM detection window of 60s. 718 

Data was acquired using Analyst 1.6.2 (Sciex) and data processing was performed with 719 

MultiQuant 3.0 (Sciex). Peak area of analyte and internal standard were determined by the 720 

MultiQuant 3.0 (Sciex) integration system. Analyte concentrations were determined using 721 

the internal standard method. The standard curves were generated from the peak area 722 

ratios of analyte/internal standard using linear regression analysis with 1/x2 weighting 723 
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(except for C24 cer: quadratic regression analysis). Quantifications of analytes were 724 

accepted based on quality control samples. A tolerance of 25% and 30% was applied for 725 

accuracy and precision of QC samples and spiked plasma samples, respectively. All 726 

concentrations were reported in ng/mL. 727 

Statistical analysis of shotgun lipidomics and targeted sphingolipid data 728 

The statistical analyses of the shotgun lipidomics and targeted sphingolipid data sets were 729 

kept separate. Identical analysis steps were applied to the two data sets. Both sets had 730 

missing data values. Lipid species with ≥25% missing values across all available plasma 731 

samples were removed from the data set. This filtering resulted in 113 lipid species that 732 

were kept in the shotgun data set (523 were removed) and 14 in the targeted data set (4 733 

were removed). For the lipids that remained in the data sets, missing values were imputed 734 

using a random forest approach, applying the function missForest from the R package 735 

missForest, with default parameters. In a next step, samples were filtered based on subject 736 

characteristics: individuals with bilirubin levels ≥100 µmol/l were removed before all analysis; 737 

moreover, individuals categorized as IGT with an HbA1c≥6% were excluded from the group 738 

comparisons in differential analysis, but they were retained in other analyses involving 739 

lipidomics data. In differential analysis, due to the limited number of available ND samples, 740 

the ND and the included IGT samples were combined into a single group for comparison 741 

with other sample groups, as described in the result section. 742 

For differential analysis, linear models were applied, using the function lm from the R stats 743 

package. For each comparison between two sample groups, a linear model that included 744 

diabetes status as the main explanatory variable and age and sex as covariates was fitted to 745 

the data from the two groups. P values for diabetes status were adjusted across all included 746 

lipid species with the Benjamini-Hochberg method, separately for each comparison. 747 
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Integrative analysis of transcriptomics and lipidomics 748 

Multiblock modeling 749 

Consensus Orthogonal Partial Least Squares (OPLS) model was computed with the 750 

MATLAB 9 environment with combinations of toolboxes and in-house functions that are 751 

available at https://gitlab.unige.ch/Julien.Boccard/consensusopls. Modified RV-coefficients 752 

were computed with the publicly available MATLAB m-file50. KOPLS-DA was assessed with 753 

routines implemented in the KOPLS open source package51. Consensus OPLS modeling 754 

was performed on shotgun lipidomics, targeted sphingolipids and transcriptomics data 755 

tables, which were all autoscaled prior to the analysis. The Consensus OPLS model 756 

distinguishes variation of data that is correlated to Y response and those which is orthogonal 757 

to Y response. This eases the biological interpretation of results and enables the link 758 

between variation of variables and variation of the outcome while removing information 759 

coming from other sources of variation. 760 

The model resulted in 3 components, of which 1 predictive latent variable and 2 orthogonal 761 

latent variables. The quality of the model was assessed by R2 and Q2 values, which define 762 

the portion of data variance explained by the model and the predictive ability of the model, 763 

respectively. The predictive component carried 11% of the total explained variance of global 764 

data (R2X) and explained 51.7% of variation of HbA1c (R2Y). This indicates that the model 765 

was able to explain a large part of variation of the response variable based on the different 766 

data matrices. The Q2 value was computed by a K-fold cross validation (K=7), which led to a 767 

goodness of prediction of Q2 = 0.26. 768 

To ensure the validity of the model, a series of 1,000 permutation tests were carried out by 769 

mixing randomly the original Y response (HbA1c patient values). The true model Q2 value 770 

was clearly distinguished and statistically different from the random models distribution 771 

(p<0.001, mean=−0.1778, standard deviation (SD)=0.150, n=1,000). The variable relevance 772 

to explain the HbA1c variation was evaluated using the variable importance in projection 773 

(VIP) parameter, which reflects the importance of variables both with respect to the 774 
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response and to the projection quality. The most relevant features were selected using a VIP 775 

threshold > 1.2. 776 

Proteomics 777 

Sample Preparation 778 

Pooled pancreatic islet cells with an approximate surface area of 80,000 μm2 were collected 779 

via Laser Capture Microdissection (LCM) onto adhesive cap tubes. Isolates were 780 

reconstituted in a 20 µl lysis buffer (PreOmics, Germany) and transferred into PCR tubes52. 781 

Samples were boiled at 95°C for 1min to denature proteins and reduce and alkylate 782 

cysteines without shaking in a thermocycler (Eppendorf GmbH) followed by sonication at 783 

maximum power (Bioruptor, Diagenode, Belgium) for 10 cycles of 30sec sonication and 784 

30sec cooldown each. Sample liquid was briefly spun down and boiled again for 10min 785 

without shaking. 20µl of 100mM TrisHCl pH 8.5 (1:1 v/v) and 20ng Trypsin/LysC were added 786 

to each sample, followed by overnight digestion at 30°C without shaking. Next day, 40µl 787 

99% Isopropanol 5% Trifluoroacetic acid (TFA) (1:1 v/v) was added to the solution and 788 

mixed by sonication. Samples were then subjected to stage-tip cleanup via 789 

styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS). Sample liquid was loaded on 790 

one 14-gauge stage-tip plug. Peptides were cleaned up with 2x200µl 99% Isopropanol 5% 791 

TFA and 2x200µl 99% ddH2O 5% TFA in an in-house made Stage-tip centrifuge at 2,000xg, 792 

followed by elution in 40µl 80% Acetonitrile, 5% Ammonia and dried at 45°C in a SpeedVac 793 

centrifuge (Eppendorf, Concentrator plus) according to the ‘in-StageTip’ protocol (PreOmics, 794 

Germany). Peptides were resuspended in 0.1% TFA, 2% ACN, 97.9% ddH2O.  795 

Liquid chromatography and mass spectrometry (LC-MS)  796 

LC-MS was performed with an EASY nanoLC 1200 (Thermo Fisher Scientific) coupled 797 

online to a trapped ion mobility spectrometry quadrupole time-of-flight mass spectrometer 798 

(timsTOF Pro, Bruker Daltonik GmbH, Germany) via nano-electrospray ion source (Captive 799 

spray, Bruker Daltonik GmbH). Peptides were loaded on a 50cm in-house packed HPLC-800 
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column (75µm inner diameter packed with 1.9µm ReproSil-Pur C18-AQ silica beads, Dr. 801 

Maisch GmbH, Germany). Sample analytes were separated using a linear 120min gradient 802 

from 5-30% buffer B in 95min followed by an increase to 60% for 5min, and by a 5min wash 803 

at 95% buffer B at 300nl/min (Buffer A: 0.1% Formic Acid, 99.9% ddH2O; Buffer B: 0.1% 804 

Formic Acid, 80% CAN, 19.9% ddH2O). The column temperature was kept at 60°C by an in-805 

house manufactured oven. 806 

Mass spectrometry analysis was performed in a data-dependent PASEF mode with 1 MS1 807 

survey TIMS-MS and 10 PASEF MS/MS scans per acquisition cycle. Ion accumulation and 808 

ramp time in the dual TIMS analyzer was set to 100ms each and we analyzed the ion 809 

mobility range from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-2. Precursor ions for MS/MS analysis 810 

were isolated with 2Th windows for m/z<700 and 3Th for m/z>700 in a total m/z range of 811 

100-1,700 by synchronizing quadrupole switching events with the precursor elution profile 812 

from the TIMS device. The collision energy was lowered linearly as a function of increasing 813 

mobility starting from 59 eV at 1/K0=1.6 VS cm-2 to 20 eV at 1/K0=0.6 Vs cm-2. Singly 814 

charged precursor ions were excluded with a polygon filter (otof control, Bruker Daltonik 815 

GmbH). Precursors for MS/MS were picked at an intensity threshold of 2.500 a.u. and 816 

resequenced until reaching a ‘target value’ of 20,000 a.u taking into account a dynamic 817 

exclusion of 40sec elution24. 818 

Proteomics raw file processing 819 

Raw files were searched against the human Uniprot databases (UP000005640_9606.fa, 820 

UP000005640_9606_additional.fa) MaxQuant (Version 1.6.7), which extracts features from 821 

four-dimensional isotope patterns and associated MS/MS spectra53. False-discovery rates 822 

were controlled at 1% both on peptide spectral match (PSM) and protein level. Peptides with 823 

a minimum length of seven amino acids were considered for the search including N-terminal 824 

acetylation and methionine oxidation as variable modifications and cysteine 825 

carbamidomethylation as fixed modification, while limiting the maximum peptide mass to 826 
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4,600 Da. Enzyme specificity was set to trypsin cleaving c-terminal to arginine and lysine. A 827 

maximum of two missed cleavages were allowed. Maximum precursor and fragment ion 828 

mass tolerance were searched as default for TIMS-DDA data, while the main search peptide 829 

tolerance was set to 20ppm. The median absolute mass deviation for the data was 0.68ppm. 830 

Peptide identifications by MS/MS were transferred by matching four-dimensional isotope 831 

patterns between the runs with a 0.7-min retention-time match window and a 0.05 1/K0 ion 832 

mobility window54. Label-free quantification was performed with the MaxLFQ algorithm and a 833 

minimum ratio count of 155. 834 

Bioinformatic analysis 835 

Bioinformatics analysis was performed in Perseus (version 1.6.7.0 and 1.5.5.0) and 836 

GraphPad Prism (version 8.2.1)56. Reverse database, contaminant, and only by site 837 

modification identifications were removed from the dataset. Data were grouped by analytical 838 

replicates and filtered to at least 70% data completeness in one group. Missing values were 839 

imputed from a normal distribution with a downshift of 1.8 and a width of 0.3 and data were 840 

log2-transformed. To represent the data reproducibility and variability, a principal component 841 

analysis was performed on the median data of analytical replicate measurements of each 842 

individual. Clinically classified T2D and ND individuals were tested for differences in their 843 

mean by a two-sided Student’s t-test with S0=0.1 and a Benjamini-Hochberg correction for 844 

multiple hypothesis testing at an FDR of 0.05 preserving grouping of each individuals 845 

analytical replicate measurements, and presented as volcano plot. We then normalized the 846 

data by row-wise z-scoring followed by hierarchical clustering using Euclidean as the 847 

distance parameter for column- and row-wise clustering. 1D gene ontology enrichments of 848 

clustered and systematically changed proteins were performed with regards to their cellular 849 

compartment and keywords assignment28. Log2 transformed LFQ data were used for the 850 

calculation of intensity shifts of the enriched keyword or cellular compartment term for each 851 

of the displayed clusters. Total protein copy number estimation of the median LFQ 852 

intensities for patients clinically classified as non-diabetic and diabetic were calculated using 853 
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the Perseus plugin ‘Proteomic ruler’27. Median LFQ intensity values for all T2D and ND were 854 

calculated. We annotated protein groups for the leading protein ID with the human Uniprot 855 

fasta file (UP000005640_9606.fa) and estimated the protein copy number with the following 856 

settings: Averaging mode. ‘All columns separately’, Molecular masses: ‘Average molecular 857 

mass’, Detectability correction: ‘Number of theoretical peptides’, Scaling mode: ‘Histone 858 

proteomic ruler’, Ploidy: ‘2’, Total cellular protein concentration: ‘200g/l’. Proteins were 859 

annotated with regards to their cellular compartment by gene ontology. We calculated the 860 

median protein copy number for the samples from T2D and ND PPP separately and 861 

multiplied it by its protein mass. To calculate the subcellular protein mass contribution, we 862 

calculated the protein mass proportion for the GOCC terms ‘Nucleus’, ‘Mitochondrion’, 863 

‘Cytoskeleton’, ‘Golgi apparatus’, and ‘Endoplasmic reticulum’. For calculating the organellar 864 

change between T2D and ND PPP, protein mass contributions of each organelle were 865 

normalized by its respective ‘Nuclear part’ contribution. Chromosomal annotation of 866 

significantly changed proteins between T2D and ND PPP was identified via Ensembl ID. 867 

Antibody validation 868 

Rabbit polyclonal anti-ALDOB antibody (Proteintech, Cat.No. 18065-1-AP) was tested for 869 

specificity by western blotting of protein extracts of ALDOB-/- MIN6 cells generated with a 870 

CRISPR/Cas9 system, as described52. The knock-out of ALDOB was verified by Sanger 871 

sequencing of the target locus. 872 

Isolated mouse islet and cell line experiments 873 

Mouse (C57Bl6, db/db and db/+ mice, 3 animals/strain, age 13 weeks) islets were cultured 874 

for 1 day post isolation. Islet beta MIN6s4 and alpha αTC1­ clone 6 cell lines were harvested 875 

for RNA extraction using Qiagen RNeasy Mini Kit according to the manufacturer’s 876 

instructions. After quality control, RNA samples were sequenced using the Illumina HiSeq 877 

2000 platform and processed as previously described45,57,58. 878 
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Immunofluorescence microscopy 879 

Immunofluorescence staining was done on formalin-fixed paraffin embedded 5μm thick 880 

sections of human pancreatic tissue. Acetylated histone H3 and H4 were detected in 881 

separate sections using rabbit polyclonal antibodies (Merck Millipore Cat.No. 06-598 and 06-882 

599, respectively). A mouse monoclonal anti-insulin antibody (Thermo Fisher Scientific 883 

Cat.No. 53-9769-82) was used for co-staining, to identify the beta cell areas. Images were 884 

acquired using a Nikon C2+ confocal microscope with a 60x oil immersion objective, with 885 

acquisition parameters normalized to a negative control sample. 886 
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 940 
Figure 1: Overview of the experimental procedures and cohort characteristics. A) 941 

Experimental procedures overview. Clinical data and peripheral blood were collected 942 

preoperatively, and the snap-frozen surgical pancreatic tissue used for LCM of the islets of 943 

Langerhans. Blood samples were analyzed for lipidomics, while LCM islets for transcriptomics 944 

and proteomics. Omics datasets were individually evaluated in relationship to glycemic 945 

status   and further integrated with each other using Consensus Orthogonal Partial Least 946 

Squares (OPLS) analysis. B) Waffle plot showing the structure of the cohort in terms of 947 

glycemic/diabetes categories based on American Diabetes Association criteria. Absolute 948 

numbers for each category are given in the legend boxes. C) Boxplots of four major clinical 949 

parameters relevant for diabetes diagnosis and management. Statistically significant differences 950 

from ND PPP were determined using the Student’s t-test (*p<0.05; **p<0.01). LCM Laser 951 

Capture Microdissection, ND Non-diabetic, IGT Impaired Glucose Tolerance, T3cD Type 3c 952 

Diabetes, T2D Type 2 Diabetes. 953 
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 955 

 956 
Figure 2: Transcriptional changes between non-diabetic, pre-diabetic and diabetic 957 

patients. A) Number of DE genes identified by comparing glycemic groups of PPP in the entire 958 

(all samples) or “restricted” cohort (INS filtered). B) Gene expression profile of DE genes in the 959 

“restricted” cohort. Columns represent patients grouped according to their glycemic status and 960 

ordered based on increasing HbA1c levels. Rows, representing DE genes (variance stabilizing 961 

transformation normalized counts), were clustered based on Euclidean distance. The colored 962 

side bar indicates in which comparisons a gene was identified as differentially expressed. C) 963 

Gene Set Enrichment Analysis of DE genes between IGT, T3cD or T2D and ND PPP in the 964 

“restricted” cohort. GO terms and KEGG pathways are colored according to the normalized 965 

enrichment score. Corresponding p-values are also indicated (*p<0.05, **p<0.01). D) 966 

Immunofluorescence for insulin (green), acetylated histones H3 (left) and H4 (right) (magenta) in 967 

representative samples of formalin fixed paraffin embedded pancreatic tissues from ND and T2D 968 

PPP. Scale bars correspond to 20μm. DE differentially expressed, ND Non-diabetic, IGT 969 

Impaired Glucose Tolerance, T3cD Type 3c Diabetes, T2D Type 2 Diabetes. 970 
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 972 
Figure 3: Identification of co-expressed gene modules related to diabetes traits. A) 973 

Correlation between module eigengenes and clinical traits including age, BMI, HbA1c, fasting 974 

glucose, OGTT at 2 hours, HOMA2-B and HOMA2-IR. Each cell contains the corresponding 975 

Spearman correlation coefficient and Student p value (in parenthesis). Cells are colored 976 

according to their correlation to clinical traits. Modules are ordered based on their correlation to 977 

HbA1c. B-C) Gene expression profiles of gene modules M9 (B) and M14 (C). Columns, 978 

representing PPP, were grouped according to their glycemic status and ordered based on 979 

increasing HbA1c levels. Rows, representing genes (variance stabilizing transformation 980 

normalized counts), were clustered based on Euclidean distance. D-E) Scatter plot of module 981 

membership vs. gene significance for HbA1c in modules M9 and M14. Genes with the highest 982 

module membership and gene significance (“hub genes”) are labeled. ND Non-diabetic, IGT 983 

Impaired Glucose Tolerance, T3cD Type 3c Diabetes, T2D Type 2 Diabetes. 984 
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 986 
Figure 4: Proteomics Analysis. A) Number of identified proteins from pooled human pancreatic 987 

islet cells isolated by LCM from PPP classified as non-diabetic (ND, N=5) or with T2D (N=5). B) 988 

Principal Component Analysis (PCA) of all grouped pancreatic islet measurements (ND=blue, 989 

T2D=orange). C) Volcano plot comparing p values and log2-fold changes between islets of ND 990 

and T2D PPP. D) Percentage distribution of total protein islet mass and its contribution per 991 

organelle between ND and T2D PPP. The ND/T2D islet protein mass ratio in different organelles 992 

was normalized by the nucleus protein mass. E) Hierarchical clustering of all islet proteins 993 

identified in the T2D and ND PPP clusters. Log2-transformed intensity values were normalized by 994 

z-scoring before the clustering followed by one-dimensional gene ontology enrichment for 995 

cellular compartment and keywords for each of the clusters. ND Non-diabetic, T2D Type 2 996 

Diabetes. 997 
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 998 
 999 

Figure 5: Results from lipidomics differential analysis. A-B) Shotgun lipidomics covering a 1000 

variety of lipid classes: Ceramides (Cer), Diacylglycerols (DAG), Lysophosphatidylcholines 1001 

(LPC), Lysophosphatidylethanolamines (LPE), Phosphatidylcholines (PC), Ether-linked 1002 

Phosphatidylcholines (PC O-), Phosphatidylethanolamines (PE), Ether-linked 1003 

Phosphatidylethanolamines (PE O-), Phosphatidylinositols (PI), Sphingomyelins (SM), 1004 

Triacylglyerols (TAG). Volcano plots represent comparisons of plasma lipid levels between ND 1005 

and T2D PPP. The X-axis shows direction and magnitude of the change; the Y-axis represents 1006 

the statistical significance of the change. Each point is a lipid species, colored by lipid class to 1007 

highlight class-specific trends. C) Targeted lipidomics on dihydroceramides (DH Cer), ceramides 1008 

(Cer) and Sphingoid bases (SB). Each heatmap column represents the comparisons of plasma 1009 

levels between ND and T2D PPP. Heatmap colors represent direction and magnitude of the 1010 

change. Log2 Fold Change: ratio of mean lipid concentration in the two groups, log2 transformed. 1011 

Statistical model used for all panels: linear regression with age and sex as covariates (p: p 1012 

value); adjustment of p values across all lipid species by the Benjamini-Hochberg method (adj. p: 1013 

adjusted p value). T2D Type 2 Diabetes, T3cD Type 3 Diabetes, ND & PD non-diabetic and pre-1014 

diabetic (with impaired fasting glucose and/or impaired glucose tolerance) with HbA1c<6.0. 1015 
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 1017 
Figure 6: Multiblock data modeling of HbA1c. A) Barplot showing the variable importance in 1018 

the multiblock consensus OPLS model. The Y-axis represents the importance scores for the 1019 

predictors multiplied by the sign of the loadings on the predictive latent variable. Variables with 1020 

importance in projection > 1.2 were selected. B) Statistical significance of the model through 1021 

permutation test. C) Network representation of functional pathways enriched in modules with 1022 

best prediction scores for HbA1c. Pathways are represented as gray nodes. Genes are 1023 

represented as nodes sized based on their correlation to HbA1c and colored based on their 1024 

differential expression in T2D vs. ND PPP. Only genes with significant differential expression 1025 

(adj. p<0.05) in the “restricted” cohort are shown. VIP Variable Importance in Projection, DE 1026 

Differentially expressed, ND Non-diabetic, T2D Type 2 Diabetes. 1027 
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 1029 
Figure S1: Deconvolution of cell types based on RNA-Seq data. A) Cell-type proportions by 1030 

sample, as estimated with DeconRNASeq, panels faceted according to diabetes status. B) 1031 

Sample distribution across each cell type proportion. Highlighted are samples presenting a cell 1032 

type specific gene being the most expressed. Marker genes were GCG and TTR for alpha cells, 1033 

INS for beta cells, SST for delta cells, and PPY for gamma cells. 1034 
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 1036 
Figure S2: Differential gene expression analysis between glycemic groups in the entire 1037 

cohort. A-B) Gene expression profile (A) and GSEA analysis (B) of DE genes between IGT, 1038 

T3cD or T2D and ND PPP. Results are similar to those shown in Fig. 2BC, but obtained from the 1039 

entire cohort of 133 PPP.  1040 
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 1042 
 1043 

Figure S3: A-B) ALDOB expression (RNAseq, Illumina) in (A) islets from 13-week-old db/db, 1044 

db/+ mice and C57Bl6 mice (3 animals/strain) or (B) mouse αTC1 clone 6 alpha and Min6s4 beta 1045 

cell lines (n=4/cell line). C) Western blot of MIN6 single cell-derived clones with antibodies 1046 

against ALDOB and ALDOA. Framed lanes mark ALDOB knockout clones as verified by site-1047 

specific sequencing. 1048 
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 1050 
Figure S4: Hierarchical clustering of protein expression correlations in all biological replicates 1051 

highlighting the technical and biological reproducibility of our proteome data set (A). Distribution 1052 

of differentially expressed proteins between T2D and ND across chromosomes (B). Ranked 1053 

ABCC8 protein expression levels across T2D and ND subjects. T2D are highlighted in orange, 1054 

ND are highlighted in blue. Patient 118 was treated with Glimepiride; Patient 87 was treated with 1055 

Mitiglinide; Patient 197 was treated with Glibenclamide (C). 1056 
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Supplementary Table Legends 1059 

Table S1: Clinical characteristics of the complete cohort of PPP for LCM islet RNA 1060 

sequencing. Except for absolute frequencies, all values are mean ± standard deviation. The 1061 

statistical testing was performed with two-sided t-Test comparisons with ND (*p<0.05, 1062 

**p<0.01, ***p<0.001). 1063 

Table S2: Differentially expressed (DE) islet genes between T3cD and T2D PPP compared 1064 

with ND PPP in the entire cohort. No DE islet genes were identified when comparing IGT and 1065 

ND PPP. Genes were considered differentially expressed when the adjusted p value was ≤ 1066 

0.05 and the fold change > 1.5. 1067 

Table S3: Clinical characteristics of the LCM islet RNA sequencing cohort with INS as the 1068 

highest expressed gene. Except for absolute frequencies, all values are mean ± standard 1069 

deviation. Statistical testing was performed with two-sided t-Test comparisons with ND 1070 

(*p<0.05, **p<0.01, ***p<0.001). 1071 

Table S4: Differentially expressed (DE) islet genes between IGT, T3cD or T2D PPP compared 1072 

with ND PPP in the “restricted” cohort. Genes were considered differentially expressed when 1073 

the adjusted p value was ≤ 0.05 and the fold change > 1.5. 1074 

Table S5: Complete results of KEGG pathways and GO term gene set enrichment analyses 1075 

of differentially expressed genes between glycemic groups in the “restricted” PPP cohort. 1076 

Table S6: Complete results of KEGG pathways and GO term gene set enrichment analyses 1077 

of differentially expressed genes between glycemic groups in the entire PPP cohort. 1078 

Table S7: Significance of co-expressed gene modules. 1079 

Table S8: Clinical characteristics of the PPP cohort for proteomic analyses. 1080 

Table S9: Clinical characteristics of the PPP cohort for shotgun lipidomic analyses. 1081 

Table S10: Shotgun lipidomics. Lipid classes and number of species per class included in the 1082 

data analysis. 1083 

Table S11: Clinical characteristics of the PPP cohort for sphingolipid analyses. 1084 
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Table S12: Targeted lipidomics. Names of ceramide and sphingolipid classes included in the 1085 

data analysis. 1086 

Table S13: Result lists of differential analysis, sorted by p value, in plasma shotgun lipidomic 1087 

data (first two Excel sheets) and in targeted sphingolipid data (last two Excel sheets), from 1088 

comparisons of T2D vs. ND and T3cD vs. ND PPP, with ND as defined in lipidomics result 1089 

section. All lipid species that were included in the analysis are shown. Mean lipid 1090 

concentrations were considered significantly different between groups when the adjusted p 1091 

value was ≤ 0.05. 1092 

Table S14: Consensus OPLS predictive scores and loadings. 1093 

Table S15: Complete results of KEGG pathways over representation analyses of selected co-1094 

expressed gene modules. 1095 
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