


Figure 7: Visualisation of the predicted intratumoural structure. (a) and (b) show profiles
of r(x, t), g(x, t), n(x, t), and c(x, t) at t = 2.4, on −l(t) < x < l(t), with different
intratumoural substructures highlighted by different colours. In particular we highlight
the regions corresponding to the necrotic core, the intermediate G1-arrested quiescent
zone and the freely-proliferating outer-rim. Results in (a) and (b) correspond to the
parameter choice in Figure 6(a)-(c) and (d)-(f), respectively.

Our initial numerical results in Figure 6(a)-(c) are qualitatively consistent with the

evolution of the spheroid size, l(t), measured in Figure 2. However, the intratumoural

structure is very different since the numerical solution in Figure 6(a)-(c) does not in-

volve any intermediate G1-arrested region as is clear in Figure 2(b)-(c). To incorpo-

rate this phenomenon, we resolve the model with cr = 0.7 and cg = 0.1, and all

other parameters unchanged. The kinetic rate functions are shown in Figure 5(b) in

which we see that: (i) Kd(c) > Kg(c) > Kr(c) for sufficiently small oxygen concen-

trations; (ii) Kg(c) > Kd(c) > Kr(c) at intermediate oxygen concentrations; and, (iii)

Kr(c) > Kg(c) > Kd(c) at sufficiently large oxygen concentrations. The associated nu-

merical solutions of Equations (15)–(28) are shown in Figure 6(d)-(f). Comparing profiles

in Figure 6(a) and Figure 6(d) indicates that we now have a very different intratumoural

structure. Similar to before, we see that g(x, t) and c(x, t) are increasing functions of

x, whereas r(x, t) is more complicated since there is a local maximum in r(x, t) within

the spheroid. Interestingly, comparing the profiles of n(x, t) in Figure 6(b) and Figure

6(e) we see that the spatial distribution of the total live cell density is very similar for

these two choices of parameters, yet the internal structure of the spheroids, as revealed

by FUCCI-labelling in our theoretical model, is very different. The velocity profiles and

the time evolution of the outer radius of the spheroid is shown in Figure 6(f), where again
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we see that the velocity field and the evolution of the outer spheroid radius is very similar

for these two choices of model parameters.

The profile in Figure 7(b) highlights the intratumoural structure by plotting r(x, t),

g(x, t), n(x, t) and c(x, t) at the end of the experiment, t = 2.4, on −l(t) < x < l(t).

In this case we see that the internal structure defined by the distribution of various

cell populations includes: (i) the necrotic core for |x| < 0.6; (ii) an intermediate region

composed of G1-arrested (red) living cells for 0.6 < |x| < 1.1; and, (iii) an outer-most rim

of freely proliferating cells for 1.1 < |x| < 1.3. This exercise of comparing results in Figure

6(a)–(c) and Figure 6(d)–(f) shows that the mathematical model we have developed can

replicate key features of 3D tumour spheroid models with intratumoral heterogeneity

revealed by FUCCI labelling. These differences are visually pronounced when we plot

those results in Figure 7 where we deliberately highlight regions within the spheroid

according to the proliferation status.

4.2 Capturing intratumoral heterogeneity in a multiple cell lines

Numerical results in Figure 6 and 7 show that our model is able to capture both the

time evolution of the spheroid size, as well as the fundamental intratumoural structure

regarding the status of the cell cycle at different positions within the spheroid for a single

cell line, in this case the C8161 melanoma cell line. We now further explore the capacity

of the model to represent different forms of intratumoural structure as revealed by FUCCI

labelling in different cell lines. Very recent experimental data reported by Spoerri et al.

(2020) describe a range of melanoma spheroids constructed using different cell lines, and

characterise the proliferative heterogeneity calculating the percentage of G1-labelled (red)

cells as a function of distance from spheroid’s surface. In our model we use the standard

spherical coordinate system, 0 < x < l(t), so that x is the radial position measured

relative to the centre of the spheroid. In Spoerri et al. (2020), we measure distance

from the surface of the spheroid, X = l(t) − x, so that X = 0 is at the surface of the

spheroid and X = l(t) is at the centre of the spheroid. Data reported by Spoerri et al.

(2020) show the proportion of G1-labelled cells as a function of X gives rise to a range

of different profiles that depend on the cell. Images in Figure 8(a)–(b) show melanoma
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spheroids with FUCCI labelling, using two different melanoma cell lines: WM164 cells in

Figure 8(a) and C8161 cells in Figure 8(b). We show, schematically, the observed trends

in terms of the proportion of G1-labelled cells as a function of X in Figure 8(c). For the

WM164 cell line we see that the G1-labelled cells make up approximately 75 % of the total

living population at the spheroid surface, and the proportion of G1-labelled cells increases

gradually with X. In contrast, for the C8161 cell line, the proportion of G1-labelled cells

is approximately 45 % of the total living population at the spheroid surface, and we see

a far more rapid increase in the proportion of G1-labelled cells with X. These results are

consistent with our visual interpretation of the spheroids in Figure 8(a)-(b) where we see

that the WM164 spheroid does not contain a visually distinct necrotic core whereas the

C8161 spheroid develops a very clear necrotic core. These differences are consistent with

our previous measurements (Spoerri et al., 2020) showing that spatial differences in cell

cycle status are more obvious in the C8161 spheroid relative to the WM164 spheroid.

Results in 8(d) show numerical solutions of Equations (15)–(28) with carefully chosen

parameter values. In particular we choose B = 1, cr = 0.9, and m1 = m2 = m3 = 3

for the WM164 spheroid, and B = 3, cr = 0.7, and m1 = m2 = m3 = 6 for the C8161

spheroid. With these parameter values we obtain the solution of Equations (15)–(28)

at t = 9.6, and we plot 100× r(X, t)/n(X, t) %, revealing that the mathematical model

is sufficiently flexible to capture these kinds of intratumoral heterogeneity reported by

Spoerri et al. (2020).

4.3 Simulating the action of anti-mitotic drugs

In Sections 4.1–4.2 we focus on using the mathematical model to replicate and visualise

spatial patterns of cell cycle status within a growing spheroid under control conditions.

One of the key reasons that 3D spheroid cultures are of high interest in the experimental

cancer cell research community is the ability to test different potential anti-cancer drug

treatments in a realistic 3D geometry (Friedrich et al., 2009; Loessner et al., 2013).

Various anti-mitotic drugs have been developed and applied to 3D spheroid cultures (e.g.

Crivelli et al., 2012; Loessner et al., 2013; Smalley et al. 2006), and with the development

of FUCCI-labelling we have vastly improved opportunities to visualise how such drug
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Figure 8: Comparison of experimental data and model predictions. (a) and (b) Con-
focal microscopy images of tumour spheroids after 96 h derived from two different cell
types. The scale bar corresponds to 400 µm. (c) Schematics showing different profiles
of the percentage of red cells within the spheroids. (d) Numerical results qualitatively
reproducing experimental data shown in (c). For the simulation of cell type 1 (WM164),
B = 1, cr = 0.9, m1 = m2 = m3 = 3. For the simulation of cell type 2 (C8161), B = 3,
cr = 0.7, m1 = m2 = m3 = 6. For both simulations, C = 1.8, σ = 1, δ = 0.9, β = 10,
cg = 0.1, cd = 0.5, γ(c) = 0.
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treatments impact the spatial distribution of cell cycle status within the treated spheroid

(Haass et al., 2014; Beaumont et al., 2016; Kienzle et al., 2017). The experimental

images in Figure 9(a) and Figure 9(d) show a control C8161 melanoma spheroid, and

a U0126-treated C8161 melanoma spheroid, after six days, respectively. In this case,

both the control and treatment spheroids are grown for three days initially, and U0126

is applied at day three to the treatment group. U0126 is a MEK-inhibitor that leads to

G1 arrest (Haass et al., 2014; Smalley et al. 2006). Comparing the images in Figure

9(a) and Figure 9(d) leads to two obvious conclusions: (i) the treated spheroid is almost

completely composed of G1-arrested (red) cells; and, (ii) the size of the treated spheroid

is smaller than the untreated spheroid.
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Figure 9: Numerical results showing the effects of drug on the heterogeneity of cell phases within a tumour spheroid. (a)-(c) Profiles of
tumour spheroid growth without treatment (control). The scale bar corresponds to 110 µm. (d)-(f) Profiles of tumour spheroid growth
with the drug applied at t = 7.2. (a) and (d) Time evolution of the radius with and without treatment, respectively. The insets show the
related experimental images of melanoma spheroids at day six, with the scale car corresponding to 110 µm. (b) and (e) Density profiles
of r, g, and c at t = 3.6, 7.2, 10.8 and 14.4. (c) and (f) Profiles of cell kinetics. In both simulations, C = 1.8, σ = 1, δ = 0.9, β = 10,
cr = 0.7, cg = 0.1, cd = 0.5, m1 = m2 = m3 = 10, γ(c) = 0.
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To incorporate the effect U0126 in our model we make the straightforward assumption

that the drug affects the maximum rate at which cells transition from G1 phase (red) to

S/G2/M phase (green) by modifying the appropriate kinetic function,

Kr(c) =
B(t)c m2

c m2
r + c m2

, (24)

with

B(t) =

B if t < td

Be−λ(t−td) if t ≥ td.

(25)

Here, td is the time that the drug is applied, λ > 0 is an intrinsic drug-sensitivity

parameter (Enderling and Chaplain, 2014; Lewin et al., 2018). We note that the choice

of the form of drugs is not unique, and can vary depending on the type of cell and

treatment (Collis et al., 2017; Crivelli et al., 2012; de Pillis et al., 2006).

We simulate these experiments by setting td = 7.2 and λ = 10, and summarise our

numerical results in Figure 9. Comparing profiles in Figure 9(a) and Figure 9(d) we see

that the control and treatment experiments are indistinguishable for t < td, as expected.

For t > td we see a clear reduction in the time rate of change of radius, l(t), in the treated

spheroid. The treated tumour has almost stopped growing at the end of the simulation

whereas the untreated spheroid is continues to grow at an almost constant rate of radial

expansion. The density profiles in Figure 9(b) show that the control spheroid rapidly

develops a necrotic core, and that the populations of live cells continues to expand over

time. In comparison, the density profiles in Figure 9(e) show that after the application of

the drug we observe a rapid decline in the g(x, t) subpopulation and the total population

becomes almost entirely composed of the r(x, t) subpopulation. Note that the density

profiles in Figure 9(b) and Figure 9(e) are plotted on different spatial scales so that the

intraturmoral structure is visually clear. The associated kinetic rate functions for these

simulations are summarised in Figure 9(c) and Figure 9(f), with the drug treatment

summarised by the function B(t), shown as an inset in both subfigures.
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5 Conclusion and Outlook

In this work we develop a new mathematical model of 3D tumour spheroid growth that is

compatible with FUCCI-labelling, which highlights the spatial location of cells in terms of

their cell cycle status. In these experiments cells in G1 phase fluoresce red, while cells in

S/G2/M phase fluoresce green. Traditional tumour spheroid experiments do not provide

spatio-temporal information on cell cycle status, and it is not obvious whether all living

cells are freely cycling or not. Our experiments show that FUCCI provides detailed insight

into the development of intratumoral heterogeneity as the spheroid grows. In particular,

at late time points we see: (i) a necrotic region in the centre of the spheroid that does

not contain living fluorescent cells; (ii) an intermediate spherical shell composed of living

G1-arrested (red) cells; and, (iii) an outer spherical shell composed of a mixture of freely

cycling G1 (red) and S/G2/M (green) cells. We demonstrate how to incorporate this

information into a model of 3D tumour spheroids by adapting the well–known model of

Ward and King (1997) to include three subpopulations of cells: (i) cells in G1 phase,

r(x, t); (ii) cells in G2/S/M phase, g(x, t), and (iii), dead cells m(x, t). In this framework

we assume cells are transported by the local velocity field, and the transitions between

the G1 and G2/S/M phases are consistent with FUCCI-labelling. Rates of cell death

and time points of transition through the cell cycle are taken as functions of the local

oxygen concentration. Further, we consider oxygen to diffuse into the spheroid from the

free surface, while being simultaneously consumed by the living cells. We show how to

partially parameterise the mathematical model using experimental observations, and we

explore numerical solutions of the nonlinear moving boundary problem and show that

this model can capture key features of intratumoral heterogeneity in a single cell line,

differences in intratumoral heterogeneity across multiple cell lines, as well as being able

to mimic spheroid growth in the presence of anti-mitotic drugs.

There are many opportunities for further generalisation of this work, both experi-

mentally and theoretically. From a modelling perspective, one of the key assumptions

we make in modelling FUCCI is that we consider two live subpopulations of cells: G1

phase (red), and S/G2/M phase (green). In reality, it is also possible to identify an ad-

ditional subpopulation where both the red and green fluorescence are active, giving rise

to a yellow subpopulation that is often considered to be in early S phase (Haass et al.,
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2014). Under these conditions we would consider the living population to be composed

of three subpopulations: G1 phase (red), eS phase (yellow) and S/G2/M phase (green).

Extending our model to deal with this additional phase would involve reformulating the

mathematical model to describe three subpopulations of living cells and one subpopula-

tion of dead cells. This extended model would be able to capture additional biological

features, but this benefit comes with the cost of incorporating a greater number of model

parameters need to be estimated. While the mathematical extension to deal with eS

(yellow) is relatively straightforward, the parameterisation and interpretation of this ex-

tended model is less obvious, and so we leave this extension for future consideration.

Another opportunity for further investigation is the analysis of travelling wave solutions

of Equations (15)–(28). In their original work, Ward and King (1997) were able to make

progress in interpreting their model in terms of travelling wave analysis in the limit that

the exponents in the Hill function become infinitely large and the kinetic rate functions

simplify to Heaviside functions. We anticipate that a similar analysis could be consid-

ered for our more complicated model, and we leave this analysis for future consideration.

From an experimental perspective we note that all experimental images and data dis-

cussed in this work relate to tumour spheroids composed of melanoma cells. However,

we anticipate that our model and modelling framework will also be relevant to spheroids

made from other types of cancer cell lines transduced with FUCCI system. As already

noted, our experimental motivation involves the traditional FUCCI system with two flu-

orescent colours, which motivates us to consider the living cells as being composed of

two subpopulations. More recent experimental technology, FUCCI4 (Bajar et al., 2016)

uses four florescent colours to label the cell cycle. We expect that our approach here

could be developed further by considering the live cell population to be composed of four

subpopulations to model tumour spheroids with FUCCI4 labelling.
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Appendix A: Ward and King (1997)

Since the new mathematical model developed in this work is an extension of Ward and

King’s model (1997), we begin by presenting a robust numerical method to solve the

original partial differential equation (PDE) model. In this preliminary Section we consider

the tumour spheroid to be composed of two subpopulations: (i) living cells with volume

fraction n(x, t), and (ii) dead cells with volume fraction m(x, t). The nondimensional

PDE system is given by

∂n

∂t
+ v

∂n

∂x
= [a(c)− b(c)]n, (26)

1

x2

∂

∂x

(
x2v
)

= b(c)n, (27)

1

x2

∂

∂x

(
x2 ∂c

∂x

)
= k(c)n, (28)

on 0 < x < l(t) and t > 0. Here, v(x, t) is the velocity field, c(x, t) is the oxygen

concentration, a(c) = km(c)−kd(c), b(c) = km(c)−(1−δ)kd(c), and k(c) = βkm(c)+γ(c).

The original dimensional model, together with the rescaling arguments are outlined in

Ward and King (1997).

The nondimensional kinetic rate functions, km(c) and kd(c), are given by

km(c) =
c m1

c m1
c + c m1

, (29)

kd(c) =
B

A

(
1− σc m2

c m2
d + c m2

)
. (30)

The initial and boundary conditions are

l(0) = 1, n(x, 0) = 1, (31)

dl

dt
= v(l(t), t), c(l(t), t) = 1,

∂c(0, t)

∂x
= 0, v(0, t) = 0. (32)
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Appendix B: Numerical method for Ward and King

(1997)

We solve Equations (26)–(28) by introducing a boundary fixing transformation x = l(t)ξ

(Fadai and Simpson, 2020), so that the model becomes

∂n

∂t
+

(
v

l(t)
− ξ

l(t)

dl

dt

)
∂n

∂ξ
= [a(c)− b(c)]n, (33)

1

ξ2

∂

∂ξ

(
ξ2v
)

= l(t)b(c)n, (34)

1

ξ2

∂

∂ξ

(
ξ2 ∂c

∂ξ

)
= l2(t)k(c)n, (35)

on 0 < ξ < 1. The transformed boundary conditions are

dl

dt
= v(1, t), c(1, t) = 1,

∂c(0, t)

∂ξ
= 0, v(0, t) = 0. (36)

We discretise Equations (33)–(35) on a uniform mesh with spacing δξ. Central differ-

ences are used to approximate the terms associated with diffusive transport (Simpson et

al., 2005), and terms associated with advection are approximated using upwinding,

∂n

∂ξ
=


ni − ni−1

δξ
for

(
vi
l
− ξi

l

dl

dt

)
> 0,

ni+1 − ni
δξ

for

(
vi
l
− ξi

l

dl

dt

)
< 0,

(37)

where 1 ≤ i ≤ N is the index for spatial nodes. Note that for the moving boundary we

have dl/dt = v(l(t), t). Temporal derivatives in Equations (33)–(35) are approximated

using a backward Euler approximation with time step δt (Morton and Mayers, 2005). The

resulting system of nonlinear algebraic equations are solved using the Newton-Raphson

method with convergence tolerance ε. After the Newton-Raphson iterations converge, we

update l(t). Software written in MATLAB are available on GitHub. Results in Figure

10 show profiles that reproduce results from Figures 1–4 in Ward and King (1997).
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Figure 10: Numerical results for Ward and King’s model at t = 25, 50, 75, 100. (a)
Time evolution of spheroid radius. (b) Profiles of living cell density. (c) Profiles of
oxygen concentration. (d) Profiles of cell velocity. The arrow indicates increasing time.
B/A = 1, σ = 0.9, δ = 0.5, β = 0.005, cc = 0.1, cd = 0.05, m1 = m2 = 1.
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Appendix C: Numerical method for model describing

tumour spheroids with FUCCI labelling

To solve Equations (15)–(18) in the main document we introduce a boundary fixing

transformation x = l(t)ξ to give

∂r

∂t
+

(
v

l(t)
− ξ

l(t)

dl

dt

)
∂r

∂ξ
= 2Kg(c)g − [b(c)g − d(c)r +Kr(c) +Kd(c)] r, (38)

∂g

∂t
+

(
v

l(t)
− ξ

l(t)

dl

dt

)
∂g

∂ξ
= Kr(c)r − [b(c)g − d(c)r +Kg(c) +Kd(c)] g, (39)

1

ξ2

∂

∂ξ

(
ξ2v
)

= l(t) [b(c)g − d(c)r] , (40)

1

ξ2

∂

∂ξ

(
ξ2 ∂c

∂ξ

)
= l2(t) [k(c)g + γ(c)r] , (41)

on 0 < ξ < 1. The transformed boundary conditions are

∂c(0, t)

∂ξ
= 0, v(0, t) = 0, c(1, t) = 1,

dl

dt
= v(1, t). (42)

Similar to the numerical method outlined in Section 5, we discretize Equations (38)–(40)

on a uniform mesh with spacing δξ. Central differences are used to approximate the

terms arising from the diffusive transport terms, and upwinding is used to approximate

the terms associated with advective transport. Temporal derivatives are approximated

using a backward Euler approximation with a uniform time step δt. Newton-Raphson

iterations are used to solve the resulting system of nonlinear algebraic equations with

convergence tolerance ε. After the Newton-Raphson iterates converge, we update l(t)

using the boundary condition dl/dt = v(1, t). For all numerical simulations in this work

we choose δt = δξ = 1× 10−3 and ε = 1× 10−6, which leads to grid-independent results

for the parameter values that we consider. Software written in MATLAB are available

on GitHub.
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Appendix D: Sensitivity analysis

Here we study the sensitivity of the spheroid size, l(t), in terms of the model parameters.

In the nondimensional system we have 11 free parameters, and were we focus on the pa-

rameter values associated with the results for cell type 2 in Figure 8(b) and Figure 8(d). In

this case we have (δ, β, σ, B,C, cg, cr, cd,m1,m2,m3) = (0.9, 10, 1, 3, 1.8, 0.1, 0.7, 0.5, 6, 6, 6).

To examine the sensitivity of the model solution to these choices we compute l(2.4) for

the base set of parameters, and then systematically re–compute l(2.4) by varying each

parameter, one at a time, by ±10%, keeping the other parameters constant.

Results in Figure 11 show l(2.4) = 1.365 as a horizontal dashed line. Predictions of

l(2.4) when each parameter is varied in each column of Figure 11. For example, in the

first column we examine the sensitivity of l(2.4) to the choice of δ, with the red and blue

crosses indicating l(2.4) when δ is increased and decreased by 10%, respectively. Note

that this combination of parameters has σ = 1, which is the maximum value possible.

Therefore, for the sensitivity of σ, we only show l(2.4) when the parameter is reduced by

10%. In summary, the sensitivity results in Figure 11 indicate that certain parameters,

such as cr, and cd, play a key role since l(2.4) is most sensitive to these parameters. Note

that this simple parameter sensitivity analysis provides important initial insight, however

we leave a more thorough sensitivity analysis for future consideration.
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σβ B Cδ cg cr cd m1 m2 m3

l(2
.4

)

1.3

1.32

1.34

1.36

1.38

1.4

parameter increased by 10%
parameter decreased by 10%

Figure 11: Numerical results of sensitivity analysis. The dashed line indicates the bench-
mark value l(2.4) = 1.365. The red and blue markers vertically aligned with each param-
eter indicate the value of l(2.4) when each parameter is varied by ±10%, respectively.
Note that there is no red marker for σ due to that σ = 1 is the largest value this parameter
can take.
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