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Abstract

Three-dimensional (3D) in vitro tumour spheroid experiments are an important

tool for studying cancer progression and potential drug therapies. Standard experi-

ments involve growing and imaging spheroids to explore how different experimental

conditions lead to different rates of spheroid growth. These kinds of experiments,

however, do not reveal any information about the spatial distribution of the cell

cycle within the expanding spheroid. Since 2008, a new experimental technology

called fluorescent ubiquitination-based cell cycle indicator (FUCCI), has enabled
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real time in situ visualisation of the cell cycle progression. FUCCI labelling in-

volves cells in G1 phase of the cell cycle fluorescing red, and cells in the S/G2/M

phase of the cell cycle fluorescing green. Experimental observations of 3D tumour

spheroids with FUCCI labelling reveal significant intratumoural structure, as the

cell cycle status can vary with location. Although many mathematical models of

tumour spheroid growth have been developed, none of the existing mathematical

models are designed to interpret experimental observations with FUCCI labelling.

In this work we extend the mathematical framework originally proposed by Ward

and King (1997) to develop a new mathematical model of FUCCI-labelled tumour

spheroid growth. The mathematical model treats the spheroid as being composed

of three subpopulations: (i) living cells in G1 phase that fluoresce red; (ii) living

cells in S/G2/M phase that fluoresce green; and, (iii) dead cells that do not fluo-

resce. We assume that the rates at which cells pass through different phases of the

cell cycle, and the rate of cell death, depend upon the local oxygen concentration

in the spheroid. Parameterising the new mathematical model using experimental

measurements of cell cycle transition times, we show that the model can capture

important experimental observations that cannot be addressed using previous math-

ematical models. Further, we show that the mathematical model can be used to

quantitatively mimic the action of anti-mitotic drugs applied to the spheroid. All

software required to solve the nonlinear moving boundary problem associated with

the new mathematical model are available on GitHub.

Keywords: Mathematical modelling; Tumour spheroid; Cell cycle; Cancer; Moving bound-

ary problem.
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1 Introduction

In vitro three-dimensional (3D) tumour spheroids have been widely used to study cancer

progression and putative therapies (Kunz-Schughart et al., 1998; Nath and Devi, 2016;

Santini and Rainaldi, 1999; Spoerri et al., 2017). The generation and analysis of tumour

spheroids have been documented in the literature for approximately fifty years (Suther-

land et al., 1971; Greenspan, 1972). Traditional spheroid experiments involve growing

populations of cancer cells in 3D culture, and visualising spheroid growth and invasion

by taking phase contrast images (Beaumont et al., 2014). As an illustrative example,

the image in Figure 1(a) shows a spheroid generated from C8161 melanoma cells (Nath

and Devi, 2016). This type of experiment can be used to measure the expansion of the

tumour spheroid over time. In some experiments the formation of a necrotic core within

the spheroid can be examined using markers of cell death (Chan et al., 2003; Maeda

et al. 2014), and fluorescent live/dead assays (e.g. Calcein-AM/Ethidium bromide or

DRAQ7) have been used to assess drug cytotoxicity (Smalley et al., 2008; Kienzle et

al., 2017). This standard experimental protocol provides very little insight into cell cy-

cle behaviour and spatio-temporal distribution patterns of proliferating cells, within the

growing spheroid.

(a) (c)(b) G1

G2

t = 96 h t = 96 h

M S

~ ~

Figure 1: Motivating images and cell cycle schematic. (a) Phase contrast image of a
3D melanoma spheroid with the C8161 cell line grown on agar after 96 h. The scale bar
corresponds to 600 µm. (b) Schematic of the eukaryotic cell cycle indicating the transition
between different phases together with the red and green fluorescence colours associated
with FUCCI labelling. For the purpose of this study, we neglect double-positivity (yellow)
in early S phase. (c) Confocal microscopy image of a 3D melanoma spheroid after 96 h,
using FUCCI-transduced C8161 melanoma cells. The scale bar corresponds to 400 µm.

Spheroids mimic physiological tumour features, such as cell cycle behaviour, which
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is responsible for tumour cell proliferation and thus tumour growth, but also invasion,

cell-cell and cell-matrix interactions, molecule diffusion, oxygen/nutrient gradients (with

a hypoxic zone and a central necrosis) as well as drug sensitivity (Beaumont et al., 2014;

Smalley et al., 2008; Spoerri et al., 2017). The cell cycle consists of a sequence of four

distinct phases: gap 1 (G1), synthesis (S), gap 2 (G2), and the mitotic (M) phase, as illus-

trated in Figure 1(b). The G1, S, and G2 phases are referred to collectively as interphase,

which involves cell growth and preparation for division. After interphase, the cell enters

the mitotic phase and divides into two daughter cells. Since 2008 (Sakaue-Sawano et

al., 2008), a new experimental technique called fluorescent ubiquitination-based cell cycle

indicator (FUCCI) has enabled real time in situ visualisation of the cell cycle progression

from G1 to S/G2/M in individual cells. The FUCCI system consists of two fluorescent

probes which emit red fluorescence when the cell is in the G1 phase, or green fluorescence

when the cell is in S/G2/M phase (Sakaue-Sawano et al., 2008), as shown schematically

in Figure 1(b). Before the development of FUCCI, it was difficult to examine the cell

cycle dynamics of individual cells within a growing population. The spheroids in Figure

1 are constructed with the same melanoma cell line: C8161 (Figure 1(a)) and C8161

expressing FUCCI (Figure 1(c)). The key difference is that FUCCI reveals more detailed

information about the cell cycle status at different locations within the growing spheroid.

In Figure 1(c) we see that the spheroid periphery has an even distribution of red and

green cells, indicating that they are in active cell cycle, i.e. proliferating. In contrast,

cells in the spheroid centre are predominantly red, indicating G1-arrest (Haass et al.,

2014). This information, revealed by FUCCI, allows us to visualise and measure both

the time evolution of the spheroid size and spatial patterns of cell cycle behaviour within

the spheroid (Haass et al., 2014). Understanding the biology of cell cycle behaviour is

important, as cell cycle phase-specific drug resistance has been described a an escape

mechanism of cancer cells (Beaumont et al., 2016; Haass and Gabrielli, 2017).

Several mathematical models have been developed to describe experimental tumour

spheroids since the 1970s (Greenspan, 1972; McElwain et al. 1978; McElwain et al. 1979;

Norton et al., 1976). The seminal mathematical model by Greenspan (1972) idealises a

tumour spheroid as a compound sphere: the inner-most region is a necrotic core con-

taining dead cells; the intermediate spherical shell contains living, non-proliferative, or

quiescent cells; and the outer-most spherical shell contains live, freely–proliferating cells.
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A key assumption in Greenspan’s model is that cell proliferation is limited by the avail-

ability of a nutrient, such as oxygen. Greenspan (1972) assumes that oxygen diffuses

into the spheroid from the free, growing surface. Living cells are assumed to consume

oxygen, and those cells die when there is insufficient oxygen available locally. A further

assumption is that dead cells produce a chemical inhibitor, such as metabolites, that

diffuse from the necrotic core towards the growing surface of the spheroid. Assembling

these assumptions together in terms of a spherically-symmetric conservation statement,

Greenspan’s model can be written as a system of coupled partial differential equations

(PDE). The solution of these PDEs describe the time evolution of the spheroid in terms

of: (i) the radius of the necrotic core; (ii) the thickness of the spherical shell containing

quiescent cells; and, (iii) the outer radius of the spheroid (Greenspan, 1972).

Since Greenspan’s model was first proposed, a number of partially refined models

have been introduced (e.g. Deakin, 1975; Pettet et al., 2001; Ward and King, 1997; Flegg

and Nataraj, 2019; Sarapata and de Pillis, 2014). An important contribution is the work

of Ward and King (1997) who proposed a mathematical model describing a spherically-

symmetric population of cells that is composed of a subpopulation of live cells and a

subpopulation of dead cells. This model also considers the spatial and temporal distribu-

tion of some nutrient, which is again taken to be oxygen. Ward and King (1997) assume

that living cells proliferate with a rate that depends on the local oxygen concentration,

and that the act of proliferation consumes oxygen. Further, living cells are assumed

to die, and death rate is also a function of local oxygen concentration. All cells in the

spheroid move with a local velocity field that is created by net volume gain as a result

of cell proliferation and cell death, since they make the reasonable assumption that the

volume of a dead cell is less than the volume of a living cell. Together, these assumptions

lead to a novel moving boundary PDE model. The solution of this moving boundary

problem can, for certain choices of parameters, lead to the formation of a necrotic core

in the growing spheroid (Ward and King, 1997). A key difference between the models

of Greenspan (1972) and Ward and King (1997) is that the former defines the interfaces

between the necrotic core and the quiescent zone, and between the quiescent zone and

the freely proliferating zone to be perfectly sharp well–defined interfaces, while the lat-

ter is continuous, and the internal boundaries are less well–defined. Other approaches

to modelling tumour spheroids, including multiphase models, have also been developed
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(Breward et al., 2002; Byrne and Preziosi, 2003; Chaplain et al., 2006; Collis et al., 2016;

Enderling and Chaplain, 2014; Landman and Please, 2001; Lewin et al., 2020; Spill et al.,

2016), however none of these existing models are suitable for interpreting experimental

data with FUCCI labelling.

In this study we present a mathematical model of in vitro tumour spheroids that is

an extension of Ward and King’s modelling framework. The key feature of our model is

that we explicitly incorporate the transition between different phases of the cell cycle so

that the model can be applied to tumour spheroids with FUCCI labelling. Our model

considers the spheroid to be composed of three subpopulations: (i) living cells in G1

phase that fluoresce red; (ii) living cells in S/G2/M phase that fluoresce green; and,

(iii) non–florescent dead cells. We assume that the rates at which cells progress through

the cell cycle depend upon the local oxygen concentration, and that the rate of cell

death also depends on the local oxygen concentration in the spheroid. We partially

parameterise the new mathematical model using existing experimental measurements of

cell cycle transition times, and then, using additional carefully chosen parameter values,

we show that the model captures important experimental observations that cannot be

observed in standard experiments without FUCCI labelling. We conclude by exploring

how the model can be used to simulate the application of anti-mitotic drugs.

2 Experimental motivation

Our modelling work is motivated by experimental observations of tumor spheroids with

FUCCI labelling, such as the image in Figure 1(c). In Figure 2 we present snapshots

from a time-lapse movie of FUCCI-labelled spheroid growth, again with FUCCI-C8161

melanoma cells. At early time, t̃ = 0 h, we see that the spheroid is relatively homoge-

neous, and composed of well–mixed red and green fluorescing cells with no obvious spatial

patterns. At intermediate time, t̃ = 12 h, the spheroid has expanded in radius, and the

central region of the spheroid is composed mostly of cells in G1 phase (red), whereas

the outer shell of the spheroid contains well–mixed red and green fluorescing cells. At

later time, t̃ = 24 h, we see the spheroid continues to expand in size. In this case the

outer spherical shell contains well–mixed red and green fluorescing cells, an intermediate
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spherical shell is composed of predominantly red fluorescing cells, whereas the absence of

florescence in the central region indicates the formation of a necrotic core. These images

show the importance of FUCCI labelling as this information indicates that we have a

strong correlation between the spatial position and the cell cycle status. In a spheroid

without FUCCI labelling, such as in the image in Figure 1(a), it is not possible to see

this level of detail. Further, this tight coupling between location and cell cycle status

illustrates the biological importance of working in a 3D geometry, as it is largely absent in

two-dimensional (2D) experiments where all cells in the population have access to oxygen

since these experiments involve a thin monolayer of cells (Haass et al., 2014; Vittadello

et al., 2018; Simpson et al., 2020).

(a) t = 0 h t = 12 h t = 24 h~ ~ ~(b) (c)

Figure 2: In vitro tumour spheroid generated with FUCCI-C8161 melanoma cells. (a)-(c)
Still images from a time lapse movie over 24 h, with the times as indicated. (a) shows
the red and green fluorescing cells relatively evenly distributed throughout the spheroid.
(b) shows a mixture of red and green fluorescing cells at the surface of the spheroid,
whereas in the centre of the spheroid we see predominantly red fluorescing cells. (c)
shows the inner-most region is largely free of fluorescing cells; the intermediate region
contains mostly red fluorescing cells; and the outermost region contains a mixture of
red and green fluorescing cells. Blue and yellow concentric circles are superimposed on
(b) and (c) to show the approximate boundaries between these zones. The scale bars
correspond to 500 µm.

We hypothesize that the simplest explanation of the spatial patterns in cell cycle

status in Figure 2 is caused by differences in local nutrient availability. As in the case

of Greenspan (1972) and Ward and King (1997), we make the assumption that the key

nutrient of interest is oxygen. Furthermore, if we assume that oxygen diffuses into the

spheroid from the free surface, we expect that cells near the spheroid surface will have

access to sufficient oxygen to proliferate freely. Since cells consume oxygen to survive

and proliferate, we anticipate that the oxygen concentration will decrease with depth

from the spheroid surface. Accordingly, at some depth, we expect that there could be
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sufficient oxygen to enable cell survival, but insufficient to allow cells to enter the cell

cycle. This would explain the formation of a living, quiescent, G1-arrested population of

cells at intermediate depths within the sphere. At locations deeper within the spheroid

still, where oxygen concentration would be smallest, the local oxygen concentration would

be insufficient to support living cells, giving rise to a necrotic region.

To translate these biological observations and assumptions into a mathematical model,

we first present a schematic of the cell cycle, coupled with FUCCI labelling, in Figure 3.

The schematic in Figure 3(a), for plentiful oxygen availability, indicates that the cell cycle

proceeds freely, and cells in G1 phase (red) enter the cell cycle at a particular rate and

proceed through the S/G2/M phase (green) before dividing, at another particular rate,

into two daughter cells in G1 phase (red). In this schematic we also allow all living cells

to undergo some intrinsic death process. The schematic in Figure 3(b), for intermediate

oxygen availability, indicates that the cell cycle is interrupted by the reduced oxygen

availability. Under these intermediate oxygen conditions cells in G1 phase (red) are not

able to enter the cell cycle because of the reduced oxygen availability. However, those

cells already in S/G2/M phase (green) are able to continue through the cell cycle before

dividing, to produce two daughter cells in G1 phase (red). The schematic in Figure 3(c),

for further reduced oxygen availability, indicates that both the transition from G1 phase

(red) to S/G2/M phase (green), and the transition from S/G2/M phase (green) to G1

phase (red) could be interrupted because of the reduced oxygen availability. In this case

we expect that the dominant mechanism affecting the population dynamics is localised

cell death.

8

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.06.413856doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413856
http://creativecommons.org/licenses/by-nd/4.0/


G1

M

G2

S

G1

M

G2

S

G1
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Oxygen concentration

(a) (b) (c)

Dead cellDead cell Dead cell

Large oxygen concentration Small oxygen concentration

Figure 3: Schematic of oxygen-dependent transitions in the cell cycle with FUCCI la-
belling. (a) When oxygen is abundant, cells in G1 phase (red) transition to S/G2/M
phase (green), and cells in S/G2/M phase (green) divide into two daughter cells in G1
phase (red). (b) When oxygen availability is reduced, cells in S/G2/M phase (green) con-
tinue through the cell cycle and divide into two daughter cells in G1 phase (red), however,
those cells in G1 phase (red) do not have access to sufficient oxygen to proceed through
the cell cycle. (c) When oxygen availability is sufficiently reduced both the transitions
from G1 to S/G2/M, and from S/G2/M to G1 are interrupted.

Based on the experimental observations in Figure 2 (Haass et al., 2014), and the

schematic in Figure 3, we now construct a mathematical model that can be used to

interpret experimental data describing 3D tumour spheroids with FUCCI by extending

the framework originally proposed by Ward and King (1997).

3 Model formulation

In the initial presentation of the model we consider all quantities to be dimensional,

and denoted using a tilde. Later, we will simplify the model by nondimensionalising all

dependent and independent variables. All nondimensional quantities are denoted using

regular variables, without the tilde. We take r̃ to be the volume fraction of red fluorescing

cells (G1 phase) and g̃ to be the volume green fluorescing cells (S/G2/M phase), so that

ñ = r̃ + g̃ is the volume fraction of living cells, and we suppose that m̃ is the volume

fraction of dead cells. Mass conservation of the r̃ and g̃ subpopulations is governed by

the transitions between different phases of the cell cycle, cell death, and transport by a
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local velocity field, ṽ, giving

∂r̃

∂t̃
+

advective transport︷ ︸︸ ︷
∇ · (ṽr̃) =

FUCCI-labelled cell cycle︷ ︸︸ ︷
2K̃g(c̃)g̃ − K̃r(c̃)r̃ −

cell death︷ ︸︸ ︷
K̃d(c̃)r̃ , (1)

∂g̃

∂t̃
+ ∇ · (ṽg̃)︸ ︷︷ ︸

advective transport

= K̃r(c̃)r̃ − K̃g(c̃)g̃︸ ︷︷ ︸
FUCCI-labelled cell cycle

− K̃d(c̃)g̃︸ ︷︷ ︸
cell death

, (2)

where K̃r(c̃) > 0 is the rate of transition from G1 to S/G2/M phase, K̃g(c̃) > 0 is the

rate of transition from S/G2/M to G1 phase, and K̃d(c̃) > 0 is the rate of cell death.

The key feature of our model is that each of these rates depends upon the local oxygen

concentration, c̃ > 0. The source terms in Equations (1)–(2) have a relatively simple

interpretation. The negative source terms in Equation (1) represent the local loss of cells

in G1 phase owing to cell death and the progression through the cell cycle. The positive

source term in Equation (2) represent the increase in cells in G2 phase as a result of cells

in G1 phase progressing through the cell cycle. The negative source terms in Equation

(2) represent the local decrease cells in G2 phase owing to cell death and the progression

through the cell cycle. The positive source term in Equation (1) represents the local

increase in cells in G1 phase due to the cell cycle, and the factor of two represents the

fact that each cell passing from S/G2/M phase to G1 phase produces two daughter cells in

G1 phase (Vittadello et al., 2018; Simpson et al., 2020). A useful feature of this nutrient–

dependent cell proliferation and nutrient–dependent cell death framework is that it avoids

the need for specifying a carrying capacity density as a model parameter, such as in the

ubiquitous logistic growth model (Maini et al., 2004a; Maini et al., 2004b; Jin et al., 2017;

Jin et al., 2019).

The spatial and temporal distribution of the fraction of dead cells can also be described

in terms of a PDE,

∂m̃

∂t̃
+

advective transport︷ ︸︸ ︷
∇ · (ṽm̃) =

cell death︷ ︸︸ ︷
K̃d(c̃)r̃ + K̃d(c̃)g̃ . (3)

Following Ward and King (1997) we assume the local velocity is associated with net
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volume gain associated with cell proliferation and cell death,

∇ · ṽ =

increase in volume︷ ︸︸ ︷
K̃g(c̃)g̃ṼL −

decrease in volume︷ ︸︸ ︷
K̃d(c̃) (r̃ + g̃)

(
ṼL − ṼD

)
, (4)

where ṼL > 0 and ṼD > 0 are the volumes of single living and dead cells, respectively.

The first term on the right of Equation (4) represents the increase in volume by mitosis,

whereas the second term on the right of Equation (4) is the net decrease in volume by

cell death. Here we assume that the volume of all living cells is the same, regardless of

whether they are in G1 or S/G2/M phase.

Again, following Ward and King (1997) we assume that oxygen is transported with

the local velocity as well as through molecular diffusion, with diffusivity D̃ > 0, and that

oxygen is consumed by living cells, giving rise to

∂c̃

∂t̃
+

advective tranport︷ ︸︸ ︷
∇ · (ṽc̃) =

diffusion︷ ︸︸ ︷
∇ ·
(
D̃∇c̃

)
− β̃K̃g(c̃)g̃︸ ︷︷ ︸

mitosis

− γ̃(c̃) (r̃ + g̃)︸ ︷︷ ︸
metabolism

, (5)

here γ̃(c̃) > 0 is the rate at which living cells consume oxygen through regular metabolic

activity and β̃(c̃) > 0 is the rate at which oxygen is consumed during mitosis.

In this model the kinetic rate functions K̃g(c̃) > 0, K̃r(c̃) > 0, and K̃d(c̃) > 0 encode

critical information about how the rate of transitions between subpopulation r̃, g̃, and

m̃ depend upon local oxygen concentration. Based on the experimental observations

discussed in Section 2, we suppose these rate functions can be expressed in terms of Hill

functions

K̃g(c̃) =
Ãc̃ m1

c̃ m1
g + c̃ m1

, (6)

K̃r(c̃) =
B̃c̃ m2

c̃ m2
r + c̃ m2

, (7)

K̃d(c̃) = C̃

(
1− σc̃ m3

c̃ m3
d + c̃ m3

)
, (8)

where Ã > 0 is the maximum rate at which cells transition from S/G2/M (green) phase

to G1(red) phase; B̃ > 0 is the maximum rate at which cell transition from G1 (red)

phase to S/G2/M (green) phase; C̃ > 0 is the maximum rate at which cells die; m1 > 0,
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m2 > 0, and m3 > 0 are exponents in the Hill functions that govern the steepness about

the critical oxygen concentrations c̃g > 0, c̃r > 0, and c̃d > 0, respectively. To ensure

K̃d > 0 we require 0 ≤ σ ≤ 1. Our choice of working with Hill functions in Equations

(6)–(30) is not unique, and other functional forms could be used. However, here we

choose to work with Hill functions because this is consistent with the original model of

Ward and King (1997).

Some further assumptions are required to completely specify the mathematical model.

First, assuming there is no voids in the spheroids leads to

ṼLñ+ ṼDm̃ = 1. (9)

Second, we make the usual assumption that the spheroid is spherically–symmetric so

that the two independent variables are the radial position, x̃, and time, t̃. To close the

model we specify initial conditions and boundary conditions. Initially, we assume that

the spheroid is a mixture of living cells only, leading to

r̃(x̃, 0) =
Nr

(Nr +Ng) ṼL
, g̃(x̃, 0) =

Ng

(Nr +Ng) ṼL
, (10)

where Nr > 0 and Ng > 0 are the number of red and green cells at t̃ = 0. Therefore, the

initial radius is

l̃3(0) =
3 (Nr +Ng) ṼL

4π
. (11)

For oxygen, we assume the initial spheroid is sufficiently small that we have

c̃(x̃, 0) = c̃0, (12)

where c̃0 > 0 is the external oxygen concentration.

We impose the following boundary conditions by assuming that the time rate of change

of the spheroid radius, dl̃(t̃)/dt̃, is given by the local velocity at the spheroid surface, and

that the oxygen concentration at the spheroid surface is given by the external oxygen

concentration,
dl̃

dt̃
= ṽ(l̃(t̃), t̃), c̃(l̃(t̃), t̃) = c̃0. (13)
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Lastly, we have a symmetry condition at the centre of the spheroid, x̃ = 0,

∂c̃(0, t̃)

∂x̃
= 0, ṽ(0, t̃) = 0. (14)

To solve the dimensional model we must specify values of 15 free parameters, (ṼL, ṼD, D̃, β̃, γ̃, Ã, B̃, C̃,m1,m2,m3, σ, c̃g, c̃r, c̃d),

and four quantities relating to initial data, (Nr, Ng, l̃(0), c̃0). Given the large parameter

space for this model we simplify the model through nondimensionalisation.

3.1 Nondimensionalisation

Introducing x = x̃/l̃(0), t = t̃Ã, l(t) = l̃(t)/l̃(0), r = r̃ṼL, g = g̃ṼL, and c = c̃/c̃0 to arrive

at a simplified nondimensional model,

∂r

∂t
+ v

∂r

∂x
= 2Kg(c)g − [b(c)g − d(c)r +Kr(c) +Kd(c)] r, (15)

∂g

∂t
+ v

∂g

∂x
= Kr(c)r − [b(c)g − d(c)r +Kg(c) +Kd(c)] g, (16)

1

x2

∂

∂x

(
x2v
)

= b(c)g − d(c)r, (17)

1

x2

∂

∂x

(
x2 ∂c

∂x

)
= k(c)g + γ(c)r, (18)

on 0 < x < l(t) and t > 0, where b(c) = Kr(c) − d(c), d(c) = (1 − δ)Kd(c),

k(c) = β Kg(c) + γ(c), δ = VD/VL, β = l̃2(0)Ãβ̃/ (D c0 VL), and γ(c) = l̃2(0)γ̃(c̃)/ (D c0 VL).

To arrive at Equation (28) from Equation (5), we make the usual quasi-steady-state as-

sumption for oxygen (Greenspan, 1972; Ward and King, 1997).

The nondimensional kinetic rate functions simplify to

Kg(c) =
c m1

c m1
g + c m1

, (19)

Kr(c) =
Bc m2

c m2
r + c m2

, (20)

Kd(c) = C

(
1− σc m3

c m3
d + c m3

)
, (21)

where cg = c̃g/c0, cr = c̃r/c0, cd = c̃d/c0, B = B̃/Ã, and C = C̃/Ã. The initial and
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boundary conditions are given by

l(0) = 1, c(x, 0) = 1, r(x, 0) =
Nr

Nr +Ng

, g(x, 0) =
Ng

Nr +Ng

, (22)

dl

dt
= v(l(t), t), c(l(t), t) = 1,

∂c(0, t)

∂x
= 0, v(0, t) = 0. (23)

Together, Equations (15)–(28) form a nonlinear moving boundary problem on 0 <

x < l(t). We solve the model numerically by first transforming to a fixed domain. The

terms associated with the advective transport are approximated using an upstream differ-

ence approximation, whereas terms associated with diffusive transport are approximated

using a central difference approximation (Simpson et al., 2005). The resulting system

of nonlinear evolution equations are integrated through time using an implicit Euler ap-

proximation, leading to a system of nonlinear algebraic equations are solved using the

Newton-Raphson method. Full details of the numerical method are outlined in the Sup-

plementary Material document, software written in MATLAB are available on GitHub.

In our experiments, such those illustrated in Figure 1(c) and Figure 3(a), the initial

spheroid radius l̃(0) ≈ 250 µm. The characteristic timescale is related to the rate pa-

rameter Ã, which we can estimate by considering experimental data reported by Haass

et al. (2014) who make careful measurements of the duration that C8161 melanoma

cells fluoresce red and green in 2D culture where oxygen is plentiful. Data in Figure

4(a) show estimates of the duration of time C8161 cells spend in G1 (red) and S/G2/M

(green) phase for 20 individual cells. Taking the reciprocal of each recorded duration,

we obtain estimates of Ã and B̃. Data in Figure 4(b) suggest that 0.08 < Ã < 0.25 /h

and 0.08 < B̃ < 0.12 /h. For simplicity we take a representative estimate of Ã ≈ 0.1 /h,

which means that each unit duration of time in the nondimensional model corresponds

to 10 h in the experiment. Given our estimates of Ã and B̃, we also estimate B = B̃/Ã,

as shown in Figure 4(c), for which we can take a representative estimate of B = 1.5. Cell

cycle duration estimates differ from cell line to cell line (Haass et al., 2014). Therefore,

given this kind of duration data, we could follow a similar procedure to arrive at different

estimates of Ã and B̃ for different cell lines as appropriate.
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Figure 4: Experimental measurements of cell cycle transition times for FUCCI-C8161
cells without oxygen limitation. (a) Durations of time spent in G1 (red) and S/G2/M
(green) phases for twenty FUCCI-C8161 melanoma cells. (b) Estimates of Ã, the rate
at which cells in S/G2/M (green) go through mitosis and transit into G1 (red), and
estimates of B̃, the rate at which cells in G1 (red) enter the cell cycle and transit into
S/G2/M (green) phase. (c) Estimates of B = B̃/Ã.

4 Results and discussion

In this section we explore the capability of the mathematical model to describe impor-

tant features of tumour spheroids with FUCCI labelling. We conduct this exploration

by investigating appropriate numerical solutions of Equations (15)–(28). Our aim in this

exploration is not to undertake a detailed parameter estimation exercise, but rather to

explore whether the new mathematical model, Equations (15)–(28), can replicate key

biological features of FUCCI-labelled spheroids. At first we explore a series of control

experiments by using the mathematical model to replicate various experimental observa-

tions, across two different cell lines, in the absence of cell cycle inhibitors (Haass et al.,

2014; Spoerri et al., 2020). We then explore how we can model intervention experiments

by using the mathematical model to replicate spheroid growth in the presence of a cell

cycle inhibiting drug (Beaumont et al., 2016; Haass et al., 2014; Haass and Gabrielli,

2017; Vittadello et al., 2020).

4.1 Capturing intratumoral heterogeneity in a single cell line

Experimental images in Figures 2(a)-(c) illustrate the spheroid radius increases by a factor

of approximately 1.3 over a period of 24 h. Over this timescale the intratumoural structure

evolves from a relatively homogeneous mixture of G1 (red) and S/G2/M (green) cells at
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the beginning of the experiment to eventually form a complex structure comprising: (i) a

necrotic core at the centre of the spheroid; (ii) an intermediate spherical shell containing

live quiescent cells arrested in the G1 (red) phase; and (iii) an outer-most region composed

of a mixture of freely proliferating G1 (red) and S/G2/M (green) cells. In our numerical

explorations we seek to replicate these spatial and temporal patterns. For simplicity

we always set m1 = m2 = m3 and γ(c) = 0, and assume that the initial spheroid

is composed of an equal proportion of G2 (red) and S/G2/M (green) cells by setting

r(x, 0) = g(x, 0) = 0.5. A MATLAB implementation of the numerical code is available

on GitHub so that readers can explore the impact of choosing different parameter values.

First, we explore solutions of Equations (15)–(28) with the following carefully chosen

parameter values: C = 1.8, σ = 1, δ = 0.9, β = 15, cr = cg = 0.1, cd = 0.5, and

m1 = m2 = m3 = 10. These choices give rise to the three kinetic rate functions shown

in Figure 5(a). In this case Kg(c) and Kr(c) rapidly increase to their maximum rates,

unity and B respectively, as c increases beyond the critical oxygen thresholds, cr and

cg, respectively. Similarly, Kd(c) rapidly decreases to C(1 − σ) as c increases beyond

the critical oxygen level cd. The visual depiction of the kinetic rate functions show that

Kr(c) > Kg(c) for all c, so that the rate of G1 to S/G2/M transition is greater than

the rate of S/G2/M to G1 transition. When oxygen is sufficiently reduced we have

Kd(c) > Kr(c) > Kg(c), which means that cell death is the dominant kinetic mechanism

under these conditions. With these parameter choices we plot the evolution of r(x, t),

g(x, t), c(x, t), v(x, t) and l(t) in Figure 6(a)-(c), where density and velocity profiles are

plotted at t = 1.2, 1.8 and 2.4. These nondimensional times correspond to 12, 18, and

24 h, respectively, in the real experiment. Profiles in Figure 6(a) show that the spheroid

grows with time and that both g(x, t) and r(x, t) are increasing functions of position,

with the maximum volume fraction of living cells at the spheroid surface, x = l(t), and a

minimum at the centre of the spheroid, x = 0. Profiles of c(x, t) also show that the oxygen

concentration is an increasing function of x, which is consistent with oxygen diffusing into

the spheroid from the free boundary at x = l(t), while simultaneously consumed by living

cells. Comparing the profiles of r(x, t), g(x, t), and c(x, t), we see that by t = 2.4 we have

almost a complete absence of living cells in the central region, indicating the eventual

formation of a necrotic core, where x < 0.8.
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Figure 5: Kinetic rate functions Kr(c), Kg(c), and Kd(c). (a) cr = cg = 0.1. (b) cr = 0.7,
cg = 0.1, such that both Kr(c) and Kd(c) functions in (a) and (b) are identical. In both
sets of profiles we have B = 1.5, C = 1.8, cd = 0.5, m1 = m2 = m3 = 10.
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Figure 6: Numerical solutions of Equations (15)–(28) t = 1.2, 1.8, and 2.4. (a) and (d) Solutions r(x, t), g(x, t) and c(x, t), with the
direction of increasing t indicated by the arrow. (b) and (e) Solutions n(x, t) = r(x, t)+g(x, t) and r(x, t)/n(x, t) as indicated. (c) and (f)
Time evolution of spheroid radius, l(t), with the inset showing the velocity profile, v(x, t). Solutions in (a)-(d) correspond to the kinetic
rate parameters in Figure 5(a), with cr = cg = 0.1. Solutions in (e)-(h) correspond to the kinetic rate parameters in Figure 5(b), with
cr = 0.7 and cg = 0.1. In both simulations B = 1.5, C = 1.8, σ = 1, δ = 0.9, β = 15, cd = 0.5, m1 = m2 = m3 = 10, γ(c) = 0.
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An interesting feature of the solution in Figure 6(a) is that the spatial distribution

of living cells involves two subpopulations where r(x, t) ≈ g(x, t) at all locations, at all

times considered. Therefore, for this choice of parameters, while we do see the eventual

formation of a necrotic core, we do not see the formation of an intermediate zone of G1-

arrested cells like in Figure 2(c). This observation is clear when we plot the proportion

of G1 cells, r(x, t)/n(x, t) in Figure 6(b), where we have r(x, t)/n(x, t) = 0.5 for all x, at

all times considered. We visualise the cell velocity, v(x, t), in Figure 6(c) showing that

we have v(x, t) > 0 for all x during the experiment, indicating that the total volume gain

through proliferation exceeds the volume loss through cell death. This gain in volume

leads to l(2.4) ≈ 1.3, which is consistent with the rate of expansion of the experimental

spheroid in Figure 2(a)-(c) over the same time interval.

To emphasise the key features of this solution of Equations (15)–(28) we now sum-

marise the solution from Figure 6(a) in a different format in Figure 7(a), by plotting

r(x, t), g(x, t), n(x, t) and c(x, t) at the end of the experiment, t = 2.4, on−l(t) < x < l(t).

Plotting the solution in this format helps to emphasise that the mathematical model can

predict the formation of different intratumoral heterogeneity within the spheroid, as re-

vealed by FUCCI labelling. We note that similar to Ward and King’s model, solutions of

our model are continuous so that the internal boundaries between the three regions are

not well-defined.

In Figure 7(a) we see that the distribution of n(x, t) and g(x, t) is such that an

extensive central necrotic core develops, where |x| < 0.8, with very low density of living

cells in the central region of the spheroid. In contrast, the outer region of the spheroid,

where |x| > 0.8, is composed of freely proliferating cells with g(x, t) ≈ r(x, t). Within

this outer-most regions there are no obvious spatial patterns of cell cycle status.
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Figure 7: Visualisation of the predicted intratumoural structure. (a) and (b) show profiles
of r(x, t), g(x, t), n(x, t), and c(x, t) at t = 2.4, on −l(t) < x < l(t), with different
intratumoural substructures highlighted by different colours. In particular we highlight
the regions corresponding to the necrotic core, the intermediate G1-arrested quiescent
zone and the freely-proliferating outer-rim. Results in (a) and (b) correspond to the
parameter choice in Figure 6(a)-(c) and (d)-(f), respectively.

Our initial numerical results in Figure 6(a)-(c) are qualitatively consistent with the

evolution of the spheroid size, l(t), measured in Figure 2. However, the intratumoural

structure is very different since the numerical solution in Figure 6(a)-(c) does not in-

volve any intermediate G1-arrested region as is clear in Figure 2(b)-(c). To incorpo-

rate this phenomenon, we resolve the model with cr = 0.7 and cg = 0.1, and all

other parameters unchanged. The kinetic rate functions are shown in Figure 5(b) in

which we see that: (i) Kd(c) > Kg(c) > Kr(c) for sufficiently small oxygen concen-

trations; (ii) Kg(c) > Kd(c) > Kr(c) at intermediate oxygen concentrations; and, (iii)

Kr(c) > Kg(c) > Kd(c) at sufficiently large oxygen concentrations. The associated nu-

merical solutions of Equations (15)–(28) are shown in Figure 6(d)-(f). Comparing profiles

in Figure 6(a) and Figure 6(d) indicates that we now have a very different intratumoural

structure. Similar to before, we see that g(x, t) and c(x, t) are increasing functions of

x, whereas r(x, t) is more complicated since there is a local maximum in r(x, t) within

the spheroid. Interestingly, comparing the profiles of n(x, t) in Figure 6(b) and Figure

6(e) we see that the spatial distribution of the total live cell density is very similar for

these two choices of parameters, yet the internal structure of the spheroids, as revealed

by FUCCI-labelling in our theoretical model, is very different. The velocity profiles and

the time evolution of the outer radius of the spheroid is shown in Figure 6(f), where again
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we see that the velocity field and the evolution of the outer spheroid radius is very similar

for these two choices of model parameters.

The profile in Figure 7(b) highlights the intratumoural structure by plotting r(x, t),

g(x, t), n(x, t) and c(x, t) at the end of the experiment, t = 2.4, on −l(t) < x < l(t).

In this case we see that the internal structure defined by the distribution of various

cell populations includes: (i) the necrotic core for |x| < 0.6; (ii) an intermediate region

composed of G1-arrested (red) living cells for 0.6 < |x| < 1.1; and, (iii) an outer-most rim

of freely proliferating cells for 1.1 < |x| < 1.3. This exercise of comparing results in Figure

6(a)–(c) and Figure 6(d)–(f) shows that the mathematical model we have developed can

replicate key features of 3D tumour spheroid models with intratumoral heterogeneity

revealed by FUCCI labelling. These differences are visually pronounced when we plot

those results in Figure 7 where we deliberately highlight regions within the spheroid

according to the proliferation status.

4.2 Capturing intratumoral heterogeneity in a multiple cell lines

Numerical results in Figure 6 and 7 show that our model is able to capture both the

time evolution of the spheroid size, as well as the fundamental intratumoural structure

regarding the status of the cell cycle at different positions within the spheroid for a single

cell line, in this case the C8161 melanoma cell line. We now further explore the capacity

of the model to represent different forms of intratumoural structure as revealed by FUCCI

labelling in different cell lines. Very recent experimental data reported by Spoerri et al.

(2020) describe a range of melanoma spheroids constructed using different cell lines, and

characterise the proliferative heterogeneity calculating the percentage of G1-labelled (red)

cells as a function of distance from spheroid’s surface. In our model we use the standard

spherical coordinate system, 0 < x < l(t), so that x is the radial position measured

relative to the centre of the spheroid. In Spoerri et al. (2020), we measure distance

from the surface of the spheroid, X = l(t) − x, so that X = 0 is at the surface of the

spheroid and X = l(t) is at the centre of the spheroid. Data reported by Spoerri et al.

(2020) show the proportion of G1-labelled cells as a function of X gives rise to a range

of different profiles that depend on the cell. Images in Figure 8(a)–(b) show melanoma
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spheroids with FUCCI labelling, using two different melanoma cell lines: WM164 cells in

Figure 8(a) and C8161 cells in Figure 8(b). We show, schematically, the observed trends

in terms of the proportion of G1-labelled cells as a function of X in Figure 8(c). For the

WM164 cell line we see that the G1-labelled cells make up approximately 75 % of the total

living population at the spheroid surface, and the proportion of G1-labelled cells increases

gradually with X. In contrast, for the C8161 cell line, the proportion of G1-labelled cells

is approximately 45 % of the total living population at the spheroid surface, and we see

a far more rapid increase in the proportion of G1-labelled cells with X. These results are

consistent with our visual interpretation of the spheroids in Figure 8(a)-(b) where we see

that the WM164 spheroid does not contain a visually distinct necrotic core whereas the

C8161 spheroid develops a very clear necrotic core. These differences are consistent with

our previous measurements (Spoerri et al., 2020) showing that spatial differences in cell

cycle status are more obvious in the C8161 spheroid relative to the WM164 spheroid.

Results in 8(d) show numerical solutions of Equations (15)–(28) with carefully chosen

parameter values. In particular we choose B = 1, cr = 0.9, and m1 = m2 = m3 = 3

for the WM164 spheroid, and B = 3, cr = 0.7, and m1 = m2 = m3 = 6 for the C8161

spheroid. With these parameter values we obtain the solution of Equations (15)–(28)

at t = 9.6, and we plot 100× r(X, t)/n(X, t) %, revealing that the mathematical model

is sufficiently flexible to capture these kinds of intratumoral heterogeneity reported by

Spoerri et al. (2020).

4.3 Simulating the action of anti-mitotic drugs

In Sections 4.1–4.2 we focus on using the mathematical model to replicate and visualise

spatial patterns of cell cycle status within a growing spheroid under control conditions.

One of the key reasons that 3D spheroid cultures are of high interest in the experimental

cancer cell research community is the ability to test different potential anti-cancer drug

treatments in a realistic 3D geometry (Friedrich et al., 2009; Loessner et al., 2013).

Various anti-mitotic drugs have been developed and applied to 3D spheroid cultures (e.g.

Crivelli et al., 2012; Loessner et al., 2013; Smalley et al. 2006), and with the development

of FUCCI-labelling we have vastly improved opportunities to visualise how such drug
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Figure 8: Comparison of experimental data and model predictions. (a) and (b) Con-
focal microscopy images of tumour spheroids after 96 h derived from two different cell
types. The scale bar corresponds to 400 µm. (c) Schematics showing different profiles
of the percentage of red cells within the spheroids. (d) Numerical results qualitatively
reproducing experimental data shown in (c). For the simulation of cell type 1 (WM164),
B = 1, cr = 0.9, m1 = m2 = m3 = 3. For the simulation of cell type 2 (C8161), B = 3,
cr = 0.7, m1 = m2 = m3 = 6. For both simulations, C = 1.8, σ = 1, δ = 0.9, β = 10,
cg = 0.1, cd = 0.5, γ(c) = 0.
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treatments impact the spatial distribution of cell cycle status within the treated spheroid

(Haass et al., 2014; Beaumont et al., 2016; Kienzle et al., 2017). The experimental

images in Figure 9(a) and Figure 9(d) show a control C8161 melanoma spheroid, and

a U0126-treated C8161 melanoma spheroid, after six days, respectively. In this case,

both the control and treatment spheroids are grown for three days initially, and U0126

is applied at day three to the treatment group. U0126 is a MEK-inhibitor that leads to

G1 arrest (Haass et al., 2014; Smalley et al. 2006). Comparing the images in Figure

9(a) and Figure 9(d) leads to two obvious conclusions: (i) the treated spheroid is almost

completely composed of G1-arrested (red) cells; and, (ii) the size of the treated spheroid

is smaller than the untreated spheroid.
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Figure 9: Numerical results showing the effects of drug on the heterogeneity of cell phases within a tumour spheroid. (a)-(c) Profiles of
tumour spheroid growth without treatment (control). The scale bar corresponds to 110 µm. (d)-(f) Profiles of tumour spheroid growth
with the drug applied at t = 7.2. (a) and (d) Time evolution of the radius with and without treatment, respectively. The insets show the
related experimental images of melanoma spheroids at day six, with the scale car corresponding to 110 µm. (b) and (e) Density profiles
of r, g, and c at t = 3.6, 7.2, 10.8 and 14.4. (c) and (f) Profiles of cell kinetics. In both simulations, C = 1.8, σ = 1, δ = 0.9, β = 10,
cr = 0.7, cg = 0.1, cd = 0.5, m1 = m2 = m3 = 10, γ(c) = 0.
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To incorporate the effect U0126 in our model we make the straightforward assumption

that the drug affects the maximum rate at which cells transition from G1 phase (red) to

S/G2/M phase (green) by modifying the appropriate kinetic function,

Kr(c) =
B(t)c m2

c m2
r + c m2

, (24)

with

B(t) =

B if t < td

Be−λ(t−td) if t ≥ td.

(25)

Here, td is the time that the drug is applied, λ > 0 is an intrinsic drug-sensitivity

parameter (Enderling and Chaplain, 2014; Lewin et al., 2018). We note that the choice

of the form of drugs is not unique, and can vary depending on the type of cell and

treatment (Collis et al., 2017; Crivelli et al., 2012; de Pillis et al., 2006).

We simulate these experiments by setting td = 7.2 and λ = 10, and summarise our

numerical results in Figure 9. Comparing profiles in Figure 9(a) and Figure 9(d) we see

that the control and treatment experiments are indistinguishable for t < td, as expected.

For t > td we see a clear reduction in the time rate of change of radius, l(t), in the treated

spheroid. The treated tumour has almost stopped growing at the end of the simulation

whereas the untreated spheroid is continues to grow at an almost constant rate of radial

expansion. The density profiles in Figure 9(b) show that the control spheroid rapidly

develops a necrotic core, and that the populations of live cells continues to expand over

time. In comparison, the density profiles in Figure 9(e) show that after the application of

the drug we observe a rapid decline in the g(x, t) subpopulation and the total population

becomes almost entirely composed of the r(x, t) subpopulation. Note that the density

profiles in Figure 9(b) and Figure 9(e) are plotted on different spatial scales so that the

intraturmoral structure is visually clear. The associated kinetic rate functions for these

simulations are summarised in Figure 9(c) and Figure 9(f), with the drug treatment

summarised by the function B(t), shown as an inset in both subfigures.
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5 Conclusion and Outlook

In this work we develop a new mathematical model of 3D tumour spheroid growth that is

compatible with FUCCI-labelling, which highlights the spatial location of cells in terms of

their cell cycle status. In these experiments cells in G1 phase fluoresce red, while cells in

S/G2/M phase fluoresce green. Traditional tumour spheroid experiments do not provide

spatio-temporal information on cell cycle status, and it is not obvious whether all living

cells are freely cycling or not. Our experiments show that FUCCI provides detailed insight

into the development of intratumoral heterogeneity as the spheroid grows. In particular,

at late time points we see: (i) a necrotic region in the centre of the spheroid that does

not contain living fluorescent cells; (ii) an intermediate spherical shell composed of living

G1-arrested (red) cells; and, (iii) an outer spherical shell composed of a mixture of freely

cycling G1 (red) and S/G2/M (green) cells. We demonstrate how to incorporate this

information into a model of 3D tumour spheroids by adapting the well–known model of

Ward and King (1997) to include three subpopulations of cells: (i) cells in G1 phase,

r(x, t); (ii) cells in G2/S/M phase, g(x, t), and (iii), dead cells m(x, t). In this framework

we assume cells are transported by the local velocity field, and the transitions between

the G1 and G2/S/M phases are consistent with FUCCI-labelling. Rates of cell death

and time points of transition through the cell cycle are taken as functions of the local

oxygen concentration. Further, we consider oxygen to diffuse into the spheroid from the

free surface, while being simultaneously consumed by the living cells. We show how to

partially parameterise the mathematical model using experimental observations, and we

explore numerical solutions of the nonlinear moving boundary problem and show that

this model can capture key features of intratumoral heterogeneity in a single cell line,

differences in intratumoral heterogeneity across multiple cell lines, as well as being able

to mimic spheroid growth in the presence of anti-mitotic drugs.

There are many opportunities for further generalisation of this work, both experi-

mentally and theoretically. From a modelling perspective, one of the key assumptions

we make in modelling FUCCI is that we consider two live subpopulations of cells: G1

phase (red), and S/G2/M phase (green). In reality, it is also possible to identify an ad-

ditional subpopulation where both the red and green fluorescence are active, giving rise

to a yellow subpopulation that is often considered to be in early S phase (Haass et al.,
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2014). Under these conditions we would consider the living population to be composed

of three subpopulations: G1 phase (red), eS phase (yellow) and S/G2/M phase (green).

Extending our model to deal with this additional phase would involve reformulating the

mathematical model to describe three subpopulations of living cells and one subpopula-

tion of dead cells. This extended model would be able to capture additional biological

features, but this benefit comes with the cost of incorporating a greater number of model

parameters need to be estimated. While the mathematical extension to deal with eS

(yellow) is relatively straightforward, the parameterisation and interpretation of this ex-

tended model is less obvious, and so we leave this extension for future consideration.

Another opportunity for further investigation is the analysis of travelling wave solutions

of Equations (15)–(28). In their original work, Ward and King (1997) were able to make

progress in interpreting their model in terms of travelling wave analysis in the limit that

the exponents in the Hill function become infinitely large and the kinetic rate functions

simplify to Heaviside functions. We anticipate that a similar analysis could be consid-

ered for our more complicated model, and we leave this analysis for future consideration.

From an experimental perspective we note that all experimental images and data dis-

cussed in this work relate to tumour spheroids composed of melanoma cells. However,

we anticipate that our model and modelling framework will also be relevant to spheroids

made from other types of cancer cell lines transduced with FUCCI system. As already

noted, our experimental motivation involves the traditional FUCCI system with two flu-

orescent colours, which motivates us to consider the living cells as being composed of

two subpopulations. More recent experimental technology, FUCCI4 (Bajar et al., 2016)

uses four florescent colours to label the cell cycle. We expect that our approach here

could be developed further by considering the live cell population to be composed of four

subpopulations to model tumour spheroids with FUCCI4 labelling.
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Appendix A: Ward and King (1997)

Since the new mathematical model developed in this work is an extension of Ward and

King’s model (1997), we begin by presenting a robust numerical method to solve the

original partial differential equation (PDE) model. In this preliminary Section we consider

the tumour spheroid to be composed of two subpopulations: (i) living cells with volume

fraction n(x, t), and (ii) dead cells with volume fraction m(x, t). The nondimensional

PDE system is given by

∂n

∂t
+ v

∂n

∂x
= [a(c)− b(c)]n, (26)

1

x2

∂

∂x

(
x2v
)

= b(c)n, (27)

1

x2

∂

∂x

(
x2 ∂c

∂x

)
= k(c)n, (28)

on 0 < x < l(t) and t > 0. Here, v(x, t) is the velocity field, c(x, t) is the oxygen

concentration, a(c) = km(c)−kd(c), b(c) = km(c)−(1−δ)kd(c), and k(c) = βkm(c)+γ(c).

The original dimensional model, together with the rescaling arguments are outlined in

Ward and King (1997).

The nondimensional kinetic rate functions, km(c) and kd(c), are given by

km(c) =
c m1

c m1
c + c m1

, (29)

kd(c) =
B

A

(
1− σc m2

c m2
d + c m2

)
. (30)

The initial and boundary conditions are

l(0) = 1, n(x, 0) = 1, (31)

dl

dt
= v(l(t), t), c(l(t), t) = 1,

∂c(0, t)

∂x
= 0, v(0, t) = 0. (32)
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Appendix B: Numerical method for Ward and King

(1997)

We solve Equations (26)–(28) by introducing a boundary fixing transformation x = l(t)ξ

(Fadai and Simpson, 2020), so that the model becomes

∂n

∂t
+

(
v

l(t)
− ξ

l(t)

dl

dt

)
∂n

∂ξ
= [a(c)− b(c)]n, (33)

1

ξ2

∂

∂ξ

(
ξ2v
)

= l(t)b(c)n, (34)

1

ξ2

∂

∂ξ

(
ξ2 ∂c

∂ξ

)
= l2(t)k(c)n, (35)

on 0 < ξ < 1. The transformed boundary conditions are

dl

dt
= v(1, t), c(1, t) = 1,

∂c(0, t)

∂ξ
= 0, v(0, t) = 0. (36)

We discretise Equations (33)–(35) on a uniform mesh with spacing δξ. Central differ-

ences are used to approximate the terms associated with diffusive transport (Simpson et

al., 2005), and terms associated with advection are approximated using upwinding,

∂n

∂ξ
=


ni − ni−1

δξ
for

(
vi
l
− ξi

l

dl

dt

)
> 0,

ni+1 − ni
δξ

for

(
vi
l
− ξi

l

dl

dt

)
< 0,

(37)

where 1 ≤ i ≤ N is the index for spatial nodes. Note that for the moving boundary we

have dl/dt = v(l(t), t). Temporal derivatives in Equations (33)–(35) are approximated

using a backward Euler approximation with time step δt (Morton and Mayers, 2005). The

resulting system of nonlinear algebraic equations are solved using the Newton-Raphson

method with convergence tolerance ε. After the Newton-Raphson iterations converge, we

update l(t). Software written in MATLAB are available on GitHub. Results in Figure

10 show profiles that reproduce results from Figures 1–4 in Ward and King (1997).
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Figure 10: Numerical results for Ward and King’s model at t = 25, 50, 75, 100. (a)
Time evolution of spheroid radius. (b) Profiles of living cell density. (c) Profiles of
oxygen concentration. (d) Profiles of cell velocity. The arrow indicates increasing time.
B/A = 1, σ = 0.9, δ = 0.5, β = 0.005, cc = 0.1, cd = 0.05, m1 = m2 = 1.
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Appendix C: Numerical method for model describing

tumour spheroids with FUCCI labelling

To solve Equations (15)–(18) in the main document we introduce a boundary fixing

transformation x = l(t)ξ to give

∂r

∂t
+

(
v

l(t)
− ξ

l(t)

dl

dt

)
∂r

∂ξ
= 2Kg(c)g − [b(c)g − d(c)r +Kr(c) +Kd(c)] r, (38)

∂g

∂t
+

(
v

l(t)
− ξ

l(t)

dl

dt

)
∂g

∂ξ
= Kr(c)r − [b(c)g − d(c)r +Kg(c) +Kd(c)] g, (39)

1

ξ2

∂

∂ξ

(
ξ2v
)

= l(t) [b(c)g − d(c)r] , (40)

1

ξ2

∂

∂ξ

(
ξ2 ∂c

∂ξ

)
= l2(t) [k(c)g + γ(c)r] , (41)

on 0 < ξ < 1. The transformed boundary conditions are

∂c(0, t)

∂ξ
= 0, v(0, t) = 0, c(1, t) = 1,

dl

dt
= v(1, t). (42)

Similar to the numerical method outlined in Section 5, we discretize Equations (38)–(40)

on a uniform mesh with spacing δξ. Central differences are used to approximate the

terms arising from the diffusive transport terms, and upwinding is used to approximate

the terms associated with advective transport. Temporal derivatives are approximated

using a backward Euler approximation with a uniform time step δt. Newton-Raphson

iterations are used to solve the resulting system of nonlinear algebraic equations with

convergence tolerance ε. After the Newton-Raphson iterates converge, we update l(t)

using the boundary condition dl/dt = v(1, t). For all numerical simulations in this work

we choose δt = δξ = 1× 10−3 and ε = 1× 10−6, which leads to grid-independent results

for the parameter values that we consider. Software written in MATLAB are available

on GitHub.
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Appendix D: Sensitivity analysis

Here we study the sensitivity of the spheroid size, l(t), in terms of the model parameters.

In the nondimensional system we have 11 free parameters, and were we focus on the pa-

rameter values associated with the results for cell type 2 in Figure 8(b) and Figure 8(d). In

this case we have (δ, β, σ, B,C, cg, cr, cd,m1,m2,m3) = (0.9, 10, 1, 3, 1.8, 0.1, 0.7, 0.5, 6, 6, 6).

To examine the sensitivity of the model solution to these choices we compute l(2.4) for

the base set of parameters, and then systematically re–compute l(2.4) by varying each

parameter, one at a time, by ±10%, keeping the other parameters constant.

Results in Figure 11 show l(2.4) = 1.365 as a horizontal dashed line. Predictions of

l(2.4) when each parameter is varied in each column of Figure 11. For example, in the

first column we examine the sensitivity of l(2.4) to the choice of δ, with the red and blue

crosses indicating l(2.4) when δ is increased and decreased by 10%, respectively. Note

that this combination of parameters has σ = 1, which is the maximum value possible.

Therefore, for the sensitivity of σ, we only show l(2.4) when the parameter is reduced by

10%. In summary, the sensitivity results in Figure 11 indicate that certain parameters,

such as cr, and cd, play a key role since l(2.4) is most sensitive to these parameters. Note

that this simple parameter sensitivity analysis provides important initial insight, however

we leave a more thorough sensitivity analysis for future consideration.
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Figure 11: Numerical results of sensitivity analysis. The dashed line indicates the bench-
mark value l(2.4) = 1.365. The red and blue markers vertically aligned with each param-
eter indicate the value of l(2.4) when each parameter is varied by ±10%, respectively.
Note that there is no red marker for σ due to that σ = 1 is the largest value this parameter
can take.
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