
Easyreporting simplifies the implementation of Reproducible
Research Layers in R software

Dario Righelli1,2,*, Claudia Angelini2,*

1 Department of Statistical Sciences, University of Padova, Padua, Italy
2 Istituto per le Applicazioni del Calcolo ”Mauro Picone”, National Research Council,
Naples, Italy

* d.righelli@na.iac.cnr.it
* c.angelini@iac.cnr.it

Abstract

During last years ”irreproducibility” became a general problem in omics data analysis
due to the use of sophisticated and poorly described computational procedures. For
avoiding misleading results, it is necessary to inspect and reproduce the entire data
analysis as a unified product. Reproducible Research (RR) provides general guidelines
for public access to the analytic data and related analysis code combined with natural
language documentation, allowing third-parties to reproduce the findings. We developed
easyreporting, a novel R/Bioconductor package, to facilitate the implementation of an
RR layer inside reports/tools without requiring any knowledge of the R Markdown
language. We describe the main functionalities and illustrate how to create an analysis
report using a typical case study concerning the analysis of RNA-seq data. Then, we
also show how to trace R functions automatically. Thanks to this latter feature,
easyreporting results beneficial for developers to implement procedures that
automatically keep track of the analysis steps within Graphical User Interfaces (GUIs).
Easyreporting can be useful in supporting the reproducibility of any data analysis
project and the implementation of GUIs. It turns out to be very helpful in
bioinformatics, where the complexity of the analyses makes it extremely difficult to
trace all the steps and parameters used in the study.

Introduction 1

Due to accidental mistakes or misusage of sophisticated computational methods, many 2

research findings in omics science are considered false (or partially incorrect) [1]. 3

Moreover, in several cases, published results are not entirely reproducible due to the lack 4

of information. For example, the analysis of the massive amount of omics data produced 5

by high-throughput technologies requires combining several different methodologies 6

from the preprocessing, data cleaning, and normalization to the downstream analysis. 7

Therefore, it becomes challenging to trace all the steps and the parameters used within 8

a complete analysis. Consequently, the lack of details, such as user-parameter or subtle 9

data manipulation made with small code lines not reported in the material and methods 10

sections of a manuscript, can lead to findings that are not reproducible. To prevent 11

misleading results, several authors suggested adopting some best practices [2–4] that 12

should help in publishing reproducible results. Nevertheless, the proposed approaches 13

can be time-consuming and require significant effort by researchers. Therefore, to fully 14

December 9, 2020 1/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

exploit the advantages of Reproducible Research (RR), it is still necessary to provide 15

tools that can trace all the details using automatic procedures [5, 6]. 16

Recently, the scientific community proposed several approaches to support RR by 17

developing tools that require a lower cost in terms of time and efforts to be used [5–9]. 18

Among the different approaches, one common idea is to describe the steps with an 19

analysis report built up as a mixture of natural language sentences along with 20

computational language and graphical outputs. This document should include: i) the 21

analyzed data, ii) the Code Chunks (CCs), iii) results and intermediate outputs (as 22

tables and figures), and iv) all information that can enhance the work comprehensibility 23

and reproducibility. Using human-readable reports instead of other procedures, such as 24

dockers, has the advantage that the final document can be easily understood by 25

non-expert users, whereas dockers require computationally experienced users. Moreover, 26

a human-readable report can be enriched with comments and favors knowledge transfer. 27

Nevertheless, the two approaches are complementary and can be combined to achieve 28

full reproducibility in terms of input/output of each algorithm/function and the 29

possibility to re-create a computational environment that does not depend on specific 30

user installations. 31

The R community proposed several solutions based on the literate statistical 32

programming, like sweave [10], knitr and rmarkdown [11]. Within this framework, the 33

authors can release a data analysis as a human-readable document that incorporates 34

data, computational methods (including the short lines of code that are often omitted in 35

a high-level description of the computational procedure), user-parameters, tables, and 36

figures. Moreover, this report is automatically updated each time the analyst introduces 37

some workflow changes to preserve complete reproducibility. R Studio 38

(https://rstudio.com) already contains several functionalities that can help an 39

analyst compiling detailed reports. Other R packages, such as Drake [12], go through 40

the same directions. 41

Even though rmarkdown is very popular inside the R community, its usability when 42

developing automated tools as Graphical User Interfaces (GUI) or packages is limited. 43

Despite several efforts, incorporating a RR layer in other software and automatically 44

tracing all the steps performed during a point-and-click analysis is still challenging. In 45

the past, we proposed a solution with the RNASeqGUI [13, 14] project. RNASeqGUI is 46

a GUI for analyzing RNA-seq data that automatically traces the analysis steps and 47

reports them in a unique report. Although very useful, this solution did not allow the 48

user to add personal comments, a particularly relevant requisite for knowledge transfer. 49

Moreover, its implementation was time-consuming. 50

In light of these reasons, we developed easyreporting, a R/Bioconductor package 51

allowing us to construct HTML reports that automatically incorporate comments with 52

data, code, plots, and tables. In this work, we describe the easyreporting class and its 53

methods. Then, we show i) how easyreporting can be used to generate user analysis 54

reports and ii) how easyreporting can be used to implement GUIs that automatically 55

trace their functions and produce an analysis report. 56

Materials and methods 57

Implementation 58

Easyreporting is an open-source R/Bioconductor package aimed to 1) support analysts 59

to speed up the compilation of their analysis reports (without learning the rmarkdown 60

language) and 2) help developers to integrate a RR layer inside their software products 61

(such as GUI). While the first aim can also be achieved using other similar tools, the 62

latter constitutes one of the main advantages of our solution. In such a way, thanks to 63

December 9, 2020 2/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://rstudio.com
https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

minimal efforts on the developers’ side, the end-user (that can be not necessarily aware 64

of the R or the rmarkdown language) can obtain an rmarkdown file that incorporates 65

the source code generated during the analysis with the user-friendly tools. Once 66

compiled, this document can then be published as supplementary material of a scientific 67

article, helping the interested community to reproduce the computational part of the 68

work entirely, as suggested in [15]. Moreover, the document can be easily organized into 69

sections, describing different analysis steps, and enriched with natural language 70

comments, making the report more explainable to increase the knowledge transfer. 71

General Description and Initialization 72

Easyreporting is structured as an S4 class representing a schematic view of a rmarkdown 73

file (see Fig 1). Thanks to easyreporting, an analysis report can be seen as a particular 74

instance of the package class, where the attributes represent the report characteristics. 75

Within this class, the available methods are useful for attribute manipulations and for 76

inserting comments and organizing section titles inside the report. 77

RMarkdown File

HTML File

Easyreporting

Code Chunk Options

Rmd File Attributes

Make Title Method

Make Comment Method

Make CodeChunk Method

All In One Method

Compile Method

Compiles

Builds

Fig 1. The easyreporting class package is a representation of a rmarkdown file. The
color codes indicate which attribute/method represents the same-color portion of the
rmarkdown first, and the compiled final HTML report then.

When easyreporting is used to create a report for novel analysis, the analyst needs to 78

initialize an instance of the easyreporting class with the easyreporting() constructor 79

December 9, 2020 3/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

function, passing as mandatory arguments the path and the name of the report file 80

accompanied by its title. Optionally, it is possible to specify an author. In this way, 81

each analysis/project is uniquely associated with a specific easyreporting instance, and 82

hence to the corresponding rmarkdown file. The initialization step can be transparent 83

to any GUI user since the developers handle the tool’s backend. 84

During the initialization, the class constructor automatically creates the report file 85

inside the specified folder tree, setting up its header and declaring the general options 86

for the rmarkdown file. As soon as the analyst or the user proceeds with his analysis, 87

the rmarkdown file is updated with a new CC each time the analysis software performs 88

a new analysis step. When the analysis is complete, it is possible to compile the report 89

using the compile method, which produces the final report (in HTML format) and 90

appends a final CC with the sessionInfo to trace all the packages versions used for the 91

analysis. 92

General Exploitation 93

The easyreporting class is equipped with several methods for rmarkdown CC 94

construction (see Table 1 for the full list). Once an easyreporting instance is available, it 95

is possible to organize the report by inserting up to six levels of titles by using the 96

mkdTitle method. It is also possible to add natural language comments with 97

mkdGeneralMsg. The latter feature is particularly relevant to make the analysis more 98

understandable. 99

Table 1. Attributes and Methods of the EasyReporting class.

Attributes Description
filenamePath the report file name with the absolute path
title the title of the report
author the auhor
documentType actually this is set to HTML
optionList a list of R Markdown options
Methods Description
mkdTitle Inserts an R Markdown title inside the report
mkdGeneralMsg appends a general message to the report
mkdGeneralTitledMsg appends a title and a general message to the report
mkdVariableAssignment includes a variable assignment into the report
mkdCodeChunkSt creates a CC start
mkdCodeChunkEnd creates a CC end
mkdCodeChunkComplete creates a complete CC
mkdCodeChunkCommented creates a complete CC with a previous comment
mkdCodeChunkTitledCommented creates a complete CC with a previous comment and a title
mkdSourceFiles includes a list of source files inside the CC
compile prints sessionInfo and compiles the R Markdown file
setOptionsList set an optionList to the class
getOptionsList returns the optionList from the class
getReportFilename returns the report filename with path

For the implementation of the CCs creation, we suggest two main approaches based 100

on the methods available in the class (see the examples in Listings 2 and 3 shown in the 101

Results Section): i) The first approach builds a CC as a typical step-by-step process. It 102

consists of opening a CC (mkdCodeChunkSt), adding variables assignments and/or 103

function callings (mkdVariableAssignement), and finally closing the CC 104

(mkdCodeChunkEnd). In this approach, it is possible to add comments with 105

mkdGeneralMsg before closing the CC. ii) The second approach builds the CC in a 106

December 9, 2020 4/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

single step by using the mkdCodeChunkComplete method. The method automatically 107

embraces the tracking code into a new CC, while the user has to take care of the variable 108

assignments and/or the function he/she wants to trace by passing it as an argument. In 109

this approach, the user can also add personal comments passing them as an additional 110

argument. Then, easyreporting automatically adds the comment before the new CC. 111

The first approach appears useful when we need to carry out several R commands in 112

a single CC. It is similar in the spirit to the functionalities offered by R-studio or other 113

development environments, however since it is entirely command-line, it can be easily 114

used on systems with limited development capabilities. By contrast, the second 115

approach is more appropriate for tracing a single function call automatically. In the 116

next section, we will show how this second possibility can be particularly useful to wrap 117

functions performing a specific step and trace their execution within GUIs. 118

Implementing automatically tracing functions and their usage 119

within GUIs 120

The previously described CCs creation approaches can be adapted to trace several steps 121

of an analysis pipeline and end-up with a nicely formatted and detailed analysis report. 122

However, they require the analysts to manually trace each step of the analysis (as he 123

could also do with other available tools). Consequently, the above approaches are useful 124

for generating analysis reports (that was the first aim of the easyreporting package). 125

However, they are not suited for the automatic tracing of the steps of an analysis 126

performed using point-and-click approaches thorough GUIs (the second aim of the 127

easyreporting package). 128

In the last decade, GUIs are becoming very popular in bioinformatics because they 129

simplify computational analysis allowing non-expert users to choose among several 130

computational procedures, algorithms, and parameter settings, see for 131

example [13,14,16–18]. In particular, the shiny (https://shiny.rstudio.com) 132

libraries simplified the development of GUIs that incorporate the power of the 133

statistical R language and the wide-amount of open-source packages available in 134

repositories such as Bioconductor (https://www.bioconductor.org). 135

Nevertheless, computational studies obtained from GUIs might lack reproducibility 136

since tracking all user choices is still challenging. To face this limit, the developers have 137

to implement a RR layer when designing the GUI’s back-end so that the final users can 138

benefit from a better quality product. Moreover, the RR layer has to be transparent but 139

understandable to not-expert users. Ideally speaking, at the end of the analysis, the 140

user should have a human-readable report analogous to the one obtained using 141

command-line approaches. 142

Easyreporting methods can be easily adapted to support the automatic tracing of 143

any given function by combining a rendering function that performs the required step 144

with a wrapping function that traces its execution. The wrapper function (WF) needs 145

an easyreporting instance, and the arguments of the function to be traced (TF). Then, 146

the developer inserts the WF in the back-end of the interface (i.e., the server if the 147

context of a GUI implemented with the shiny library) in the TF place. The front-end of 148

the interface (i.e., the UI with the shiny library) remains unchanged. When the user 149

interacts with the interface to invoke the TF, the back-end will invoke the WF, which 150

will call both the TF function of interest and trace its usage with all parameters. In 151

brief, employing wrapper functions makes it possible to implement a reproducible 152

research layer within the GUI without implementing all the tracing rmarkdown code. 153

Listings 4-6 illustrate a specific case with a volcano plot, and Figure 2 schematically 154

represents the entire workflow of information. 155

December 9, 2020 5/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://shiny.rstudio.com
https://www.bioconductor.org
https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

TraceAndRenderPlotFunction(

 arguments,

 commentMsg

)

Graphical User Interface

RMarkdown report HTML report

EasyreportingTracingFunction(

 title, level,

 codeMsg(arguments),

 commentMsg,

 functionsFileSource)

GUIRenderPlotFunction(arguments)

1 2

Developer Side User Side

Fig 2. Example of a Graphical User Interface working with easyreporting package. The
right panel shows the user side of the software with the user interactive GUI. The left
panel shows the RR layer transparent to the user, which traces the performed step as
organized by the developer. In this example, the GUI allows performing a Volcano Plot
starting from a DEGs data frame that includes Log Fold change and p-values as column
variables. With the p-value threshold selector (in blue), the user can set the threshold
for the significance of the p-values. Moreover, the user can add a personal comment (in
yellow) that wants to add alongside the traced code. The user has to press the perform
button (in red) to visualize the plot into the GUI. In the meantime, the back end will
trace the step into the rmarkdown file and will return the plot to the user interface.
The user can then compile the report through the compile report button (in green) and
visualize the HTML report. The back-end will execute the compile() function and
return the result to the interface. To make this possible, the developer needs to include
a RR layer into the GUI engine (i.e., the shiny server-side). For example, the developer
can define a traced function (TF) that renders the Volcano-plot and a wrapper function
(WF) that takes as input the input arguments from the graphical GUI (i.e., the shiny
UI side). The WF code can be structured to render the plot into the graphical GUI and
make a call to an easyreporting method, combining the input arguments with the
easyreporting class method required ones, to write a new CC into the analysis
rmarkdown. Additionally, the developer has to bind the Compile Report button with
the compile easyreporting method to generate the HTML final report.

Results 156

To illustrate the capabilities of easyreporting we first show its usage for generating an 157

analysis report in a case study concerning the analysis of RNA-seq data (see 158

Supplementary File 1 for details), then we illustrate how to implement a simple GUI 159

December 9, 2020 6/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

that automatically traces its usage and the choice of parameters to produce a report. 160

Easyreporting for the creation of analysis report 161

The RNA-seq data used in the example allows investigating the differences in CD8+ 162

dendritic T-cells of the immune response of two different antibodies compared with 163

control, see [19] for more details. We chose this illustrative example since it is 164

well-known that the analysis of RNA-seq data can lack reproducibility [20]. The dataset 165

contains the raw counts of 37991 genes and is composed of two replicates for each of the 166

three conditions: DEC (fd-scaDEC-205 antibody samples); E2 (E2 antibody samples) 167

and UNTR (control samples). For illustrative purposes, in our Supplementary file 1, we 168

start the analysis from the raw count-matrix. Moreover, we released the raw counts as 169

supplementary data with the easyreporting package, allowing the readers to reproduce 170

our example. The naive pipeline will first load the data, perform some diagnostic plots, 171

filter and normalize the raw counts, and visualize the principal component projection. It 172

will then perform differential gene expression analysis and depict the results as a Venn 173

diagram and MA-plots. A specific CC describes each phase. 174

In the following, we show the main fundamental steps that a user can adapt to any 175

analysis, and we refer to the Supplementary File 1 for the detailed description of the 176

remaining steps and to the Supplementary File 2 for the complete report. 177

Report Initialization 178

After loading the easyreporting package in the R environment, the analyst needs to 179

initialize an analysis report by providing the file name (i.e., ”rnaseq report”) and the 180

title of the document (i.e., ”RNA-seq Analysis Report”). It is also possible to specify an 181

author (i.e., ”Dario Righelli”). For simplicity, we set-up a project directory path 182

starting from the working directory for our report, but the user can choose other 183

locations by setting the filenamepath parameter. The initialization is carried out by 184

using the easyreporting() function. Note that the filenamepath and title are mandatory 185

parameters, while the author is optional. The following Listing 1 code illustrates the 186

initialization of a report. 187

Listing 1. Initialization chunk

l i b r a r y (” ea sy r epo r t i ng ”) 188

pro j . path <− f i l e . path (getwd () , ” r n a s e q r e p o r t ”) 189

bioEr <− ea sy r epo r t i ng (f i l enamepath=pro j . path , 190

t i t l e =”RNA−seq Ana lys i s Report ” , 191

author=c (” Dario R i g h e l l i ”)) 192

Creation of a chunk of code 193

Once the analyst has initialized the report, he/she can add a CC for each step of the 194

analysis. As mentioned in the General Exploitation section, EasyReporting provides two 195

main approaches for adding CCs within a report: 1) building up the CC step by step 196

(as shown in Listing 2) and 2) using several kinds of wrapper functions (as shown in 197

Listing 3). 198

As mentioned above, in the first case, the analyst has to use the mkdCodeChunkSt to 199

open a new CC. Then, he/she needs to add the code to markdown, by using the 200

mkdVariableAssignment and/or the mkdGeneralMsg functions, for tracking variables 201

and functions. Finally, the analyst has to close the CC using the mkdCodeChunkEnd 202

function. The following Listing 2 code illustrates a step-by-step CC for loading the 203

counts matrix released with the package. 204

December 9, 2020 7/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

Listing 2. Step-by-step chunk construction

mkdTitle (bioEr , t i t l e =”Loading Counts Data ”) 205

mkdCodeChunkSt (bioEr , s o u r c e F i l e s L i s t=system . f i l e (206

” s c r i p t / importFunctions .R” , 207

package=”ea sy r epo r t i ng ”) , 208

i sComplete=TRUE) 209

mkdVariableAssignment (bioEr , ”geneCounts ” , 210

paste (” as . matrix (211

importData (system . f i l e (’ ” , 212

” extdata /BMDC counts FeatureCounts . x lsx ’ , ” , 213

” package=’ easyrepor t ing ’))) ” , sep=”\n ”) , 214

show=FALSE) 215

mkdGeneralMsg (bioEr , ”head (geneCounts , 20)”) 216

mkdCodeChunkEnd(bioEr) 217

Although the first approach leaves complete freedom to the analyst, it can be tricky 218

for small CCs. The second approach can be more straightforward for small CCs. To this 219

purpose, the mkdCodeChunkComplete function allows tracing the steps through the 220

message parameter. The following Listing 3 code illustrates an example of a single step 221

CC. As for the above CC, we assume that the analyst wants to read the raw counts 222

using a user-defined function, here named ”importData.R”, that we stored into the 223

importFunctions.R file available in the package ”script” folder. 224

Listing 3. One command chunk construction

mkdCodeChunkComplete (ob j e c t=bioEr , 225

message=paste (” geneCounts <− ” , 226

” as . matrix (importData (system . f i l e (” , 227

” ’ extdata /BMDC counts FeatureCounts . x lsx ’ , ” , 228

” package=’ easyrepor t ing ’))) ” , 229

”head (geneCounts , 20)” , sep=”\n ”) , 230

s o u r c e F i l e s L i s t=system . f i l e (231

” s c r i p t / importFunctions .R” , 232

package=”ea sy r epo r t i ng ”) , 233

o p t i o n L i s t=makeOptionsList (eva lF lag=FALSE)) 234

Note that the mkdCodeChunkComplete allows also to provide specific options for the 235

CC that we are creating. In particular, in this case, if we turn the evalFlag to FALSE, 236

the code will not be compiled during the final report construction. 237

It is possible to organize the report in both cases using the mkdTitle function. The 238

user has to repeat this operation for each step of the analysis, as shown in the 239

Supplementary File 1. At the end of the process, it is possible to compile the 240

easyreporting instance and obtain the analysis report as in Supplementary File 2 in 241

HTML format. 242

Implementing automatical tracing functions 243

This section shows a possible approach on how to encapsulate easyreporting methods 244

into third-parties functions to trace the analysis step and execute the code 245

automatically. 246

First of all, the developer has to write an R function that performs the analysis step 247

of interest (such as the MAedgeRMAPlotEx function for rendering an MA-plot, in our 248

example). Listings 4 shows a simple example of rendering function. 249

Listing 4. MA-plot rendering function

December 9, 2020 8/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

MAedgeRMAPlotEx <− f unc t i on (degL i s t) 250

{ 251

f o r (i in s eq a l ong (degL i s t)) { 252

degenes <− degL i s t [[i]] $FDR < 0 .01 253

with (degL i s t [[i]] , p l o t (logCPM , logFC , 254

pch=16, cex =0.2 , main=names (degL i s t) [i])) 255

with (degL i s t [[i]] , po in t s (logCPM [degenes] , 256

logFC [degenes] , c o l =’red ’ , pch=16, cex =0.2)) 257

} 258

} 259

Note that the developer does not require any extra effort at this stage. Moreover, 260

the rendering function could also be any function available from other packages. 261

Then, the developer needs also to write a wrapper function (here 262

traceAndPlotMAPlot). The wrapper function should take as input the arguments of the 263

rendering function (here MAedgeRMAPlotEx), and a generic easyreporting object (here 264

er). Moreover, the wrapper function has to call the mkdCodeChunkTitledCommented 265

function of easyreporting (where we insert the rendering function call to be traced 266

(MAedgeRMAPlotEx) in the codeMsg argument) and the call to rendering function 267

(MAedgeRMAPlotEx). Listings 5 shows the wrapper function of our example. 268

Listing 5. Tracing wrapper function chunk

traceAndPlotMAPlot <− f unc t i on (degList , e r) 269

{ 270

mkdCodeChunkTitledCommented (er , 271

t i t l e =”Recurs ive Tracing Function ” , l e v e l =2, 272

codeMsg=”MAedgeRMAPlotEx(degL i s t =‘ degList ‘) ”) 273

MAedgeRMAPlotEx(degL i s t=degL i s t) 274

} 275

In this way, the wrapper function allows both to show the result and trace the 276

function in the same step. It is easy to place the traceAndPlotMAPlot function-call 277

wherever needed in the main code. 278

Listing code 5) shows how to use the wrapper function. In particular, we pass as 279

input i) the object required by the rendering function (an edgeR result class in this 280

particular example), ii) an easyreporting class instance (here it is the bioEr instantiated 281

in the example). 282

Listing 6. Tracing function call chunk

traceAndPlotMAPlot (degL i s t=degList , e r=bioEr) 283

Note that writing the wrapper function is the only extra effort required to achieve 284

reproducibility. 285

easyreporting for GUI implementation 286

To better illustrate how to incorporate a RR layer into a GUI, easyreporting (since 287

version >= 1.3.1 released with Bioconductor 3.13) contains a simple ShinyApp example 288

for plotting a Volcano plot. The command erGUIVolcano() allows executing the app 289

and opens the user interface. The user interface allows the user to choose a threshold 290

for the P-value (i.e., the P-value threshold for detecting the significant genes in this 291

example) and provide a text area for adding comments. In the interface, there are also 292

two buttons (Perform Plot and Compile Report) for executing the plot and compiling 293

the report, respectively. The ui function provides the code for the user interface. This 294

December 9, 2020 9/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

code does not need to be modified to allow reproducibility. Instead, the back-end of the 295

interface that executes the job has to incorporate a wrapper function (here 296

traceAndPlotVolcano), and the call to the wrapper function, respectively. In this 297

example, we also added the report’s initialization. The server function provides the 298

code for the back-end interface. 299

Figure 2 right side shows a schematic representation of the user interface as in the ui 300

function. The left side illustrates the back-end as in the server function. By using the 301

Perform Plot button (red box), the user activates the WF into the server-side, which in 302

turn performs the plot and traces the executed function (the red cascade). In blue is 303

highlighted the argument value and how it is traced through the function cascade. 304

Additionally, when the user adds its comments (yellow box) to the performed 305

analysis step, the text is passed to the server. 306

Finally, the user can compile the report using the Compile Report button (green 307

box). In this way, the server executes the compile() function and produces the HTML 308

report that is automatically showed to the user. 309

This simple example can be generalized to complex interfaces in order to trace all 310

user interactions. 311

Conclusions 312

Easyreporting can be used to support RR in different analysis contexts. However, it is 313

particularly suited for analyzing omics data and developing software/GUIs, as we have 314

shown in this work. Compared to other previously proposed solutions such as [21], that 315

require not negligible commitments by the final user, potentially bringing him/her to 316

renounce to include RR inside the scripts, the implementation of a RR layer with our 317

approach is straightforward. Moreover, it leaves maximum freedom to the 318

developer/analyzer for automatically creating and storing an rmarkdown document and 319

providing methods for its compilation and adding comments in natural language. 320

Although several functionalities are already available, easyreporting can still benefit 321

from some extra features such as methods for file editing, graphical representation of 322

the analysis, and data caching. In particular, file editing can be useful for modifying 323

specific CCs, and the graphical representation of the analysis can be useful to provide 324

reports not only readable by third-party users but also graphically visualized as 325

workflows. On the other hand, even though a dedicated data caching infrastructure can 326

offer more manageability and share-ability of the data at the moment, it can be already 327

performed in easyreporting by rmarkdown CCs option flag. 328

Finally, thanks to its versatility, easyreporting can be ideally included in any 329

well-structured R project and the development of GUIs, helping to fulfill most of the 330

proposed rules in [2]. Moreover, if combined with other tools such as dockers (i.e., 331

docker4seq [22]) it helps to create fully reproducible projects. Easyreporting naturally 332

complements dockers in terms of reproducibility, allowing both the preserve code lines 333

and user parameters and the computational environments and dependencies. 334

To conclude, our approach still requires the developer’s effort to implement a RR 335

layer into their software, which makes us imagine possible future works in this area 336

where the code tracing is entirely left to the machine. The Java language provides a 337

well-known example that uses the Aspect-Oriented Programming (AOP) paradigm for 338

the software logging aspects. Unfortunately, this paradigm is still missing in the R 339

language, but possible future approaches in the Reproducible Research area inside R 340

could rely on implementing it, which, combined with rmarkdown or similar procedures, 341

can be used to trace ad-hoc tagged functions and to log them into the report file. In 342

such a way, reproducibility could be easier to implement and lesser subject to human 343

errors. 344

December 9, 2020 10/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

Supporting information 345

Supplementary File 1 provides an illustrative example for the creation of an analysis 346

report. 347

Supplementary File 2 provides the report file obtained using the analysis steps 348

described in the Supplementary File 1. 349

Author Contribution 350

Dario Righelli, Conceptualization, Data curation, Formal analysis, Methodology, 351

Software, Writing – original draft and Claudia Angelini, Conceptualization, Funding 352

acquisition, Methodology, Supervision, Writing – original draft 353

References

1. Ioannidis JPA. Why most published research findings are false. In: Getting to
Good: Research Integrity in the Biomedical Sciences; 2018.

2. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for
Reproducible Computational Research; 2013.

3. Brito JJ, Li J, Moore JH, Greene CS, Nogoy NA, Garmire LX, et al.
Recommendations to enhance rigor and reproducibility in biomedical research.
GigaScience. 2020;9(6):1–6. doi:10.1093/gigascience/giaa056.

4. Griffin PC, Khadake J, LeMay KS, Lewis SE, Orchard S, Pask A, et al. Best
practice data life cycle approaches for the life sciences. F1000Research.
2018;doi:10.12688/f1000research.12344.2.

5. Knuth DE. Literate Programming. The Computer Journal. 1984;27(2):97–111.
doi:10.1093/comjnl/27.2.97.

6. Russo F, Righelli D, Angelini C. Advantages and Limits in the Adoption of
Reproducible Research and R-Tools for the Analysis of Omic Data. In:
International Meeting on Computational Intelligence Methods for Bioinformatics
and Biostatistics. Springer; 2015. p. 245–258.

7. Bailey DH, Borwein JM, Stodden V. Facilitating Reproducibility in Scientific
Computing: Principles and Practice. In: Reproducibility: Principles, Problems,
Practices, and Prospects; 2015.

8. Boettiger C. An introduction to Docker for reproducible research. In: Operating
Systems Review (ACM); 2015.

9. Piccolo SR, Frampton MB. Tools and techniques for computational
reproducibility; 2016.

10. Leisch F. Sweave: Dynamic Generation of Statistical Reports Using Literate
Data Analysis. Compstat. 2002;.

11. Yihui Xie, J J Allaire GG. R Markdown: The Definitive Guide. Transforming
Climate Finance and Green Investment with Blockchains.
2018;doi:10.1016/B978-0-12-814447-3.00041-0.

12. Landau WM. The drake R package: A pipeline toolkit for reproducibility and
high-performance computing. Journal of Open Source Software. 2018;3(21):550.

December 9, 2020 11/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

13. Russo F, Angelini C. RNASeqGUI: A GUI for analysing RNA-Seq data.
Bioinformatics. 2014;doi:10.1093/bioinformatics/btu308.

14. Russo F, Righelli D, Angelini C. Advancements in RNASeqGUI towards a
Reproducible Analysis of RNA-Seq Experiments. BioMed Research International.
2016;2016:11. doi:10.1155/2016/7972351.

15. Greenbaum D, Rozowsky J, Stodden V, Gerstein M. Structuring supplemental
materials in support of reproducibility. Genome Biology.
2017;doi:10.1186/s13059-017-1205-3.

16. Rue-Albrecht K, Marini F, Soneson C, Lun AT. iSEE: interactive
summarizedexperiment explorer. F1000Research. 2018;7.

17. Criscuolo NG, Angelini C. StructuRly: A novel shiny app to produce
comprehensive, detailed and interactive plots for population genetic analysis. Plos
one. 2020;15(2):e0229330.

18. Di Filippo L, Righelli D, Gagliardi M, Matarazzo MR, Angelini C. HiCeekR: a
novel Shiny app for Hi-C data analysis. Frontiers in genetics. 2019;10:1079.

19. Costa V, Righelli D, Russo F, De Berardinis P, Angelini C, D’Apice L. Distinct
antigen delivery systems induce dendritic cells’ divergent transcriptional response:
New insights from a comparative and reproducible computational analysis.
International Journal of Molecular Sciences. 2017;18(3):494.
doi:10.3390/ijms18030494.

20. Simoneau J, Dumontier S, Gosselin R, Scott MS. Current RNA-seq methodology
reporting limits reproducibility. Briefings in Bioinformatics.
2019;doi:10.1093/bib/bbz124.

21. Napolitano F. repo: An R package for data-centered management of bioinformatic
pipelines. BMC Bioinformatics. 2017;18(1):112. doi:10.1186/s12859-017-1510-6.

22. Kulkarni N, Alessandr̀ı L, Panero R, Arigoni M, Olivero M, Ferrero G, et al.
Reproducible bioinformatics project: A community for reproducible
bioinformatics analysis pipelines. BMC Bioinformatics. 2018;19(10):211.
doi:10.1186/s12859-018-2296-x.

December 9, 2020 12/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.07.414417doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.07.414417
http://creativecommons.org/licenses/by/4.0/

