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Abstract 1 

A multi-echo fMRI dataset (N=28 healthy participants) with four task-based and two resting state 2 
runs was collected, curated and made available to the community. Its main purpose is to advance 3 
the development of methods for real-time multi-echo functional magnetic resonance imaging (rt-4 
me-fMRI) analysis with applications in neurofeedback, real-time quality control, and adaptive 5 
paradigms, although the variety of experimental task paradigms supports a multitude of use 6 
cases. Tasks include finger tapping, emotional face and shape matching, imagined finger tapping 7 
and imagined emotion processing. This work provides a detailed description of the full dataset; 8 
methods to collect, prepare, standardize and preprocess it; quality control measures; and data 9 
validation measures. A web-based application is provided as a supplementary tool with which to 10 
interactively explore, visualize and understand the data and its derivative measures: https://rt-me-11 
fmri.herokuapp.com/. The dataset itself can be accessed via a data use agreement on 12 
DataverseNL at https://dataverse.nl/dataverse/rt-me-fmri. Supporting information and code for 13 
reproducibility can be accessed at https://github.com/jsheunis/rt-me-fMRI. 14 
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1. Background and summary 1 

 2 
Real-time functional magnetic resonance imaging (fMRI) is a brain imaging method where 3 
functional brain signals are acquired, processed, and used during an ongoing scanning session. 4 
Applications include real-time data quality control (Dosenbach et al., 2017), adaptive experimental 5 
paradigms (Hellrung et al., 2015), and neurofeedback (Sitaram et al., 2017). Neurofeedback is a 6 
cognitive training method where the real-time feedback signal is presented back to the participant 7 
to allow self-regulation of their blood oxygen level-dependent (BOLD) signal, prompting 8 
researchers to investigate it as an intervention for patients with neurological or psychiatric 9 
conditions. Work by Ros et al. (2020) and Haugg et al. (2020) show an absence of standardisation 10 
in experimental design and outcome reporting restricts the synthesis of evidence to determine the 11 
efficacy of fMRI neurofeedback. Further, it remains a major challenge to delineate the sources of 12 
variance in the brain and in neurofeedback signals and their eventual effects on neurofeedback 13 
training outcomes. Similar challenges exist for separating BOLD and non-BOLD variations and 14 
their influences on data quality, and subsequently on all real-time fMRI applications. 15 
 16 
In recent work (Heunis et al., 2020a) we investigated the available acquisition and processing 17 
methods for improving real-time fMRI signal quality, and identified an absence of methodological 18 
denoising studies and a need for community-driven quality control standards. Here, we aim to 19 
advance this process by curating a multi-echo fMRI dataset (rt-me-fMRI). It builds on known 20 
benefits of multi-echo fMRI for increasing BOLD sensitivity both in resting state and task fMRI 21 
(Olafsson et al., 2015; Gonzalez-Castillo et al., 2016; Kundu et al., 2017; Dipasquale et al., 2017; 22 
Moia et al., 2020). Potential benefits of multi-echo fMRI in the real-time context have been 23 
reported before (Posse et al., 2000; Posse et al., 2003; Weiskopf et al., 2005; Marxen et al., 24 
2016), but real-time multi-echo processing methods remain underexplored. By releasing the rt-25 
me-fMRI dataset, we aim to facilitate a community effort to advance the development of methods 26 
and standards in this domain. 27 
 28 
The rt-me-fMRI dataset includes multi-echo resting state and task-based fMRI data from 28 29 
healthy participants. Fig.1 provides an overview, including the task types: finger tapping, emotion 30 
processing, imagined finger tapping, and imagined emotion. Several factors influenced the 31 
experimental and acquisition protocols: 32 
 33 
Multi-echo fMRI: To facilitate the development of real-time multi-echo methods, all functional 34 
acquisitions have multiple echoes. The first resting state run allows calculation of quantitative 35 
multi-echo parameters such as baseline T2* or S0 maps, which can in turn be used for echo 36 
combination during subsequent runs. 37 
 38 
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 1 
Figure 1: A depiction of the rt-me-fMRI dataset collected for 28 healthy participants. Acquired data include 2 
anatomical MRI, resting state and task-based multi-echo fMRI, task responses and physiology data. The bottom row 3 
indicates the order and type of acquired MRI scans. Colour-coding separates the anatomical scan from functional set 4 
1 and from functional set 2. Functional set 1 includes resting state, fingerTapping and emotionProcessing acquisitions, 5 
while functional set 2 includes resting state, fingerTappingImagined, and emotionProcessingImagined acquisitions. 6 
 7 
Task and resting state: The motor cortex, amygdala, and visual system were selected as 8 
representative regions based on frequency of studies in fMRI and neurofeedback literature 9 
(Thibault et al., 2018), and tasks were selected to elicit appropriate BOLD responses. The 10 
fingerTappingImagined and emotionProcessing tasks respectively allow investigations into 11 
mental imagery and visual shape/face processing. Since these structures are located at distinct 12 
anatomical regions that experience different levels of noise (e.g. the amygdala suffers from more 13 
severe image dropout and physiological noise; Boubela et al., 2015), this allows investigation of 14 
spatially distinct effects of real-time denoising. Resting state scans allow comparison of the effects 15 
of processing steps in the absence and presence of a task. 16 
 17 
Template data: In real-time fMRI applications, anatomical and functional scans are typically 18 
acquired before the main session to generate registration, segmentation, and localisation 19 
templates. This assists real-time realignment and extraction of region-based signals, and 20 
minimises per-volume processing time. 21 
 22 
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No neurofeedback: To keep the setup applicable to a range of real-time scenarios without 1 
introducing additional confounds, no neurofeedback was provided. Instead, to approximate 2 
similar mental states, the second functional set of scans were structured as imagined versions of 3 
the first functional set. This is a common approach in neurofeedback training: amygdala 4 
neurofeedback participants have been asked to think about an emotional event in their past (e.g. 5 
Young et al., 2014; Misaki et al., 2018), while motor cortex neurofeedback participants have been 6 
asked to think about performing physical exercises (e.g. Subramanian et al., 2011). 7 
 8 
Physiology data: To facilitate the development and exploration of real-time physiological 9 
denoising methods and their relation to multi-echo-derived data, cardiac and respiratory signals 10 
were acquired. 11 
 12 
The rt-me-fMRI is available in BIDS format via the DataverseNL repository: 13 
https://dataverse.nl/dataverse/rt-me-fmri. A browser-based environment allows interactive 14 
exploration of the data quality and derivatives (https://rt-me-fmri.herokuapp.com/). 15 

2. Methods 16 

2.1. Ethics and data privacy 17 

The data described here was collected as part of a study for which ethics approval was granted 18 
by two ethics review boards. To confirm that the study protocol is in accordance with the Dutch 19 
national law on medical-scientific research conducted on human participants (see WMO: 20 
https://wetten.overheid.nl/BWBR0009408/2020-01-01), the medical ethical review board at the 21 
Máxima Medisch Centrum (Veldhoven, NL) granted ethics approval. Secondly, the local ethics 22 
review board at Kempenhaeghe Epilepsy Center (Heeze, NL; where the data was collected) 23 
approved the study protocol. 24 
 25 
All participants provided informed and written consent to participate in the study and for their 26 
maximally de-identified data (also referred to as limited data) to be shared publicly under specific 27 
conditions (see GDPR considerations below). Participants were provided with an electronic 28 
version of a "Participant Information Letter" which contained, in addition to standard information 29 
about the study protocol, clear information about their personal data privacy and the risks and 30 
benefits involved in sharing maximally de-identified versions of their data. They were asked to 31 
read it thoroughly and to discuss it with friends and family if they wished to do so. They were 32 
granted an opportunity to discuss any questions or concerns about their voluntary participation in 33 
the study with the lead researcher, both via email and in person. If they decided to continue with 34 
participation, participants signed the consent form and were provided with an electronic copy. 35 
 36 
The dataset was collected, processed and shared in accordance with the European Union's 37 
General Data Protection Regulation (GDPR) as approved by Data Protection Officers (DPOs) at 38 
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Kempenhaeghe Epilepsy Center (Heeze, NL) and the Eindhoven University of Technology. Of 1 
particular note is the procedure that was followed to enable sharing of the dataset under specific 2 
conditions that allow personal data privacy to be prioritised while adhering to FAIR data standards 3 
("findable, accessible, interoperable, reusable"; see Wilkinson et al., 2016), with this being the 4 
first documented implementation. It followed from the collaborative effort of the Open Brain 5 
Consent Working Group (Pernet et al., 2020), a group of researchers, data experts, and legal 6 
practitioners that aim to provide globally standardised templates for informed consent and data 7 
privacy statements that allow for brain research data to be shared while prioritising personal data 8 
privacy. Steps to accomplish this include following best practices to de-identify brain images (e.g. 9 
removing personally identifiable information from image filenames and metadata and removing 10 
facial features from T1-weighted images), converting the data to BIDS format, employing a Data 11 
Use Agreement, and keeping participants fully informed about each of these steps and the 12 
associated risks and benefits. The Data Use Agreement can be accessed in this manuscript's 13 
GitHub repository: https://github.com/jsheunis/rt-me-fMRI.  14 

2.2. Participants 15 

The rt-me-fMRI dataset consists of MRI and physiology data from 28 healthy, right-handed (self-16 
report) adults recruited from the local student population: 20 male, 8 female; age = 24.9 ± 4.7 17 
(mean ± standard deviation). During recruiting, possible participants were excluded if they 18 
reported prior or current (at the time of the study) indications of neurological or psychiatric 19 
conditions, or any other standard contraindications for MRI scanning. 31 participants were initially 20 
recruited for the dataset, but three were excluded because of technical and administrative 21 
challenges. All anatomical scans were inspected by a trained radiologist and no incidental findings 22 
were reported. 23 

2.3. Experimental protocol 24 

2.3.1. Preparation and instructions 25 

A single experimenter interacted with all participants. Data for each participant was collected 26 
during a single scanning session of approximately 1 hour, preceded by a 30 min onboarding 27 
procedure and followed by a 15 min offboarding procedure. Onboarding included a tour of the 28 
scanner and related equipment, detailed instructions for the participant to follow during each scan, 29 
and time for additional questions. 30 
 31 
To minimise participant motion during scans so as to improve spatial and temporal image quality, 32 
participants were asked to remain as still as possible inside the scanner. Additionally, a length of 33 
tape was fixed across the participants' foreheads to the stationary part of the head coil. This 34 
provided tactile feedback which has been demonstrated as a simple and effective way to reduce 35 
head motion during fMRI scanning (Krause et al., 2019). 36 
 37 
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Lights in the scanner room were dimmed during the experiment. Participants viewed instructions 1 
projected on a screen at the back of the scanner bore via a head coil-mounted mirror. For resting 2 
state functional scans, participants were instructed to keep their eyes open and fixate on the cross 3 
on the screen. 4 

2.3.2. Experimental design 5 

All functional scans have 210 volumes and exactly the same sequence parameters. All task scans 6 
follow a block design with 10 volumes (i.e. 20 s) per block, and with blocks alternating between 7 
control and task conditions. All task designs start and end with a control condition. These block 8 
design aspects are depicted in Fig. 2 below for all task runs. Take note that the depictions do not 9 
necessarily agree with the exact stimuli as seen by the participants, as the depictions below are 10 
purely illustrative. 11 
 12 
For the fingerTapping task, participants were instructed to execute finger tapping with their right 13 
hand by steadily tapping the tip of the thumb to the tip of each other finger in succession, reversing 14 
the tapping order until the end of the task block is reached. For the fingerTappingImagined task, 15 
participants were instructed to imagine doing exactly the same as in the actual finger tapping task, 16 
but without actually moving their right fingers. For the control condition during the 17 
fingerTappingImagined task, participants were asked to count backwards in multitudes of 7. 18 
 19 
The emotionProcessing task was an adapted "Hariri" task from the emotion processing task used 20 
in the Human Connectome Project (Van Essen et al., 2013; Hariri et al., 2002; Manuck et al., 21 
2007). Materials were implemented to suit the paradigm for this rt-me-fMRI dataset. During each 22 
20 s task block, participants were presented with a task cue (3 s duration), followed by a trial with 23 
three pictures of faces where the participant had to select one of the bottom figures (left or right) 24 
that resembled the top one, by pressing a left or right button (2 s duration). The inter-trial interval 25 
was 1 s duration (see Fig. 3). Each 20 s block had 6 trials. The same design timing was used for 26 
the control condition blocks, i.e. matching shapes, as for the trial condition blocks depicted in Fig. 27 
3. Participants used an MRI-compatible button box with their right hand to complete the task. 28 
Participants were asked to press the left button with their right index finger if selecting the bottom 29 
left image (shape or face) on the screen, and to conversely press the right button with their right 30 
middle finger if selecting the bottom right image. 31 
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 1 
Figure 2: Depictions of the experimental designs for all tasks. Subfigures include: (A) fingerTapping - right hand 2 
finger tapping, (B) emotionProcessing - matching shapes and faces, (C) fingerTappingImagined - imagined finger 3 
tapping, and (D) emotionProcessingImagined - emotional memory recollection. All designs follow a block paradigm with 4 
10 volumes (i.e. 20 s) per block, and with blocks alternating between control and task conditions. All task designs start 5 
and end with a control condition. Color code: functional set 1 = Green; functional set 2 = Red. FT = finger tapping. 6 
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 1 
Figure 3: The task timing for the emotionProcessing task. Times are provided for the cue, trials and inter-trial 2 
interval during a single block (20 s) of the face matching condition. The same design timing was used for the control 3 
condition blocks. 4 
 5 
For the emotionProcessingImagined task, participants were instructed prior to the scanning 6 
session to identify an emotional event in their past that involved a person or people, and to think 7 
about this event and also try to mentally experience the identified emotion during the task blocks. 8 
For the control condition during this mental emotion task, participants were asked to count 9 
backwards in multitudes of 9. 10 
 11 
Participants were interviewed after the scanning session about their experiences during the MRI 12 
acquisition and the tasks. None reported detrimental issues with regards to their ability to focus 13 
on the task or with task-switching. 14 
 15 
Tasks and instructions were programmed and presented to the participants using E-Prime Studio 16 
version 2.0.10.248. The programmed E-prime files used for each task (".es2" format), as well as 17 
all presented images for trials, conditions, cues and instructions (.jpg format), can be accessed in 18 
the supplementary code repository: https://github.com/jsheunis/rt-me-fMRI. The exact timing 19 
information for the presented material (for all functional runs) and the button presses (for 20 
emotionProcessing), as well as the actual button press responses, were exported from E-prime 21 
(in .dat and .txt format) at the end of each session.1 22 

2.4. MRI acquisition parameters 23 

MRI data was acquired on a 3 Tesla Philips Achieva scanner (software version 5.1.7) and using 24 
a Philips 32-channel head coil.  25 

                                                
1 Note: for the majority of participants, the presentation timing for the emotionProcessing task was delayed by tens of 
milliseconds for each trial (planned versus actual timing). This resulted in the full task presentation running on for 
about 5 s after the scan acquisition stopped. This is not deemed a problem, mainly since the exact presentation time 
was captured and is available in the BIDS dataset. However, users should take note not to use the planned timing 
parameters as that would ignore the delay that occured. 
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2.4.1. Anatomical MRI 1 

A single T1-weighted anatomical image was acquired using a 3D gradient echo sequence (T1 2 
TFE) with scanning parameters: TR = 8.2 ms; TE = 3.75 ms; flip angle = 8˚; field of view =  3 
240×240×180 mm3; resolution = 1×1×1 mm3; total scan time = 6:02 min. 4 

2.4.2. Functional MRI 5 

All six functional MRI scans were acquired using a multi-echo, echo-planar imaging sequence 6 
with scanning parameters: TR = 2000 ms; TE =  14, 28, 42 ms (3 echoes); number of volumes = 7 
210 (excluding 5 dummy volumes discarded by the scanner); total scan time = 7:00 min (excluding 8 
5 dummy volumes); flip angle = 90˚; field of view = 224×224×119 mm3; resolution = 3.5×3.5×3.5 9 
mm3; in-plane matrix size = 64×64; number of slices = 34; slice thickness = 3.5 mm; interslice gap 10 
= 0 mm; slice orientation = oblique; slice order/direction = sequential/ascending; phase-encoding 11 
direction = A/P; SENSE acceleration factor = 2.5; parts of the cerebellum and brainstem were 12 
excluded for some participants to ensure full motor cortex and amygdala coverage. 13 
 14 
The echo times, spatial resolution, and SENSE factor were tuned with the aim of improving spatial 15 
resolution and coverage while limiting the TR at maximum 2000 ms, including a maximum number 16 
of echoes, and keeping the SENSE factor low to prevent SENSE artefacts. 17 

2.5. Physiology data acquisition parameters 18 

Breathing fluctuations were recorded with the use of a pressure-based breathing belt strapped 19 
around the participant's upper abdomen. Heart rate was recorded using a pulse oximeter fixed to 20 
the participant's left index finger. Both of these recording devices were wired directly to the 21 
scanner, sampled at 500 Hz, synchronized internally to the start/stop pulses of each functional 22 
scan, and data were written to Philips's standard "scanphyslog" log file type. 23 

2.6. Standardization: Brain Imaging Data Structure 24 

To adhere to FAIR data principles, the full dataset was curated into the standardized and 25 
community-maintained Brain Imaging Data Structure (BIDS; Gorgolewski et al., 2016). This 26 
involved the use of several software packages and custom scripts to assist in file format 27 
conversion and data structuring, as detailed below. A Jupyter notebook containing Python code 28 
and descriptions for each of the steps below can be accessed at the project's code repository: 29 
https://github.com/jsheunis/rt-me-fMRI.  30 

2.7.1. MRI data 31 

Anatomical and functional MRI data were converted from the Philips PAR/REC format to BIDS 32 
using the Python package bidsify (v0.3; https://github.com/NILAB-UvA/bidsify) This package has 33 
dcm2niix (v1.0.20190410; https://github.com/rordenlab/dcm2niix/releases/tag/v1.0.20190410) as 34 
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a dependency to convert the PAR/REC files to NIfTI. It also structures the data into the directory 1 
system specified by the BIDS standard. 2 
 3 
Anatomical files were additionally de-identified using pydeface (v2.0.0; 4 
https://github.com/poldracklab/pydeface/releases/tag/2.0.0; Gulban et al., 2019), which removes 5 
facial features from the T1w NIfTI image. Further anonymization steps included removing time 6 
and date stamps and any identifiable information related to the acquisition location or system from 7 
the files output from bidsify. 8 
 9 
Since PAR/REC files do not contain slice timing information, the converted NIfTI files did not 10 
contain it either. Slice timing information was calculated using available parameters and added 11 
with a script to the BIDS-specific JSON sidecar files. 12 

2.7.2. Physiology data 13 

Heart rate and breathing traces were converted from the Philips "scanphyslog" format to BIDS 14 
format using the Python package scanphyslog2bids (v0.1; 15 
https://github.com/lukassnoek/scanphyslog2bids). 16 

2.7.3. Task presentation and response data 17 

Presentation timing, button presses and button press response timing information were all 18 
converted to the BIDS format using a combination of custom Python scripts and the convert-19 
eprime package (v0.0.1; https://github.com/tsalo/convert-eprime/releases/tag/0.0.1; Salo, 2020). 20 

2.8. Preprocessing 21 

Raw data was preprocessed using the open source MATLAB-based and Octave-compatible 22 
fMRwhy toolbox (see "Code Availability" for details). The basic anatomical and functional 23 
preprocessing pipeline applied to all data is depicted in Fig. 4 below. 24 
 25 
As a first step, the T1-weighted anatomical image was coregistered to the template functional 26 
image (task-rest_run-1_echo-2, volume 1) using SPM12's coregister/estimate functionality, which 27 
maximizes normalised mutual information to generate a 12 degree-of-freedom transformation 28 
matrix. Before resampling to the functional resolution, this coregistered T1-weighted image was 29 
segmented using tissue probability maps and SPM12's unified segmentation algorithm 30 
(Ashburner and Friston, 2005). This yielded subject-specific probability maps for gray matter, 31 
white matter, CSF, soft tissue, bone and air in the subject functional space. All of these probability 32 
maps were then resampled (using coregister/write) to the subject functional resolution. Masks 33 
were generated for gray matter, white matter, CSF, and the whole brain (a combination - logical 34 
OR after thresholding - of the previous three masks). These were overlaid on the coregistered 35 
and resampled T1w image below, to allow visual inspection of segmentation and registration 36 
quality. 37 
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 1 
Anatomical regions of interest were then taken from the cytoarchitecture-based atlases in the 2 
SPM Anatomy Toolbox (Eickhoff et al., 2005). For the motor cortex, regions 4a and 4p were used. 3 
For the amygdala, regions LB, IF, SF, MF, VTM, and CM were used. For the fusiform gyrus, 4 
regions FG1, FG2, FG3, and FG4 were used. Regions of interest were transformed from MNI152 5 
space to the subject functional space using SPM12 normalise/write, as well as the inverse 6 
transformation field that was saved as part of the segmentation procedure mentioned above. The 7 
regions of interest for this study include the left motor cortex (for the motor processing tasks), the 8 
bilateral amygdala (for the emotion processing tasks) and the fusiform gyrus (for the 9 
emotionProcessing task). These ROIs are overlaid on the coregistered and resampled T1-10 
weighted image, to allow visual inspection of normalisation quality. 11 
 12 
 13 

 14 
 15 

Figure 4: A diagram depicting the preprocessing steps conducted on the rt-me-fMRI dataset in chronological 16 
order.  Steps include: (1) defining a functional template image from the first resting state run; (2) mapping the 17 
anatomical image and atlas-based regions of interest to the functional template space; (3) estimating realignment 18 
parameters from the template echo time series, running slice timing correction, applying realignment parameters to all 19 
echo time series, and applying spatial smoothing, and (4) generating quality control metrics and visualizations for 20 
anatomical and functional data. 21 
 22 
 23 
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Functional data were preprocessed, starting with estimating realignment parameters for each 1 
functional time series using SPM12's realign/estimate, which performs a 6 degree-of-freedom 2 
rigid body transformation that minimizes the sum of squared differences between each volume 3 
and the template volume. Realignment parameters were estimated for the second-echo time 4 
series of each run. Then, slice timing correction was done with SPM12, which corrects for 5 
differences in image acquisition time between slices. Each echo time series of all functional runs 6 
were slice time corrected. 3D volume realignment followed, which applied spatial transformation 7 
matrices derived from the previously estimated realignment parameters to all echo time series of 8 
all functional runs. Both raw time series and slice time corrected time series were realigned. 9 
Lastly, all echo time series of all functional runs were spatially smoothed using a Gaussian kernel 10 
filter with FWHM = 7 mm (i.e. double the voxel size). Smoothing was performed on raw, slice time 11 
corrected and realigned time series data. 12 
 13 
Next, several signal time series were calculated or extracted for use as possible GLM regressors 14 
in functional task analysis, or for quality control. From the realignment parameters (3 translation 15 
and 3 rotation parameters per volume), a Volterra expansion yielded derivatives, squares and 16 
squares of derivatives (Friston et al., 1996). Framewise displacement (FD, Power et al., 2012) 17 
was also calculated from the realignment parameters, and volumes were marked as outliers 18 
based on different thresholds of, respectively, 0.2 mm and 0.5 mm. RETROICOR regressors 19 
(Glover et al., 2000) were generated from the cardiac and respiratory signals using the TAPAS 20 
PhysIO toolbox, which yielded 6 cardiac regressors, 8 respiratory regressors, 4 interaction 21 
regressors, and additionally a cardiac rate regressor (CR; the cardiac rate time series convolved 22 
with the cardiac response function; Chang et al., 2009) and a respiratory volume per time 23 
regressor (RVT; respiratory volume per time convolved with the respiratory response function; 24 
Birn et al. 2006; Birn et al., 2008). From the slice time corrected and realigned time series data 25 
(of all functional runs), signals were extracted per voxel and spatially averaged within the 26 
previously generated tissue masks to yield tissue compartment signals for gray matter, white 27 
matter, cerebrospinal fluid (CSF) and the whole brain.  28 
 29 
The last set of preprocessing steps included calculation of image quality metrics and 30 
visualizations, using the BIDS-compatible fmrwhy_bids_workflowQC pipeline from the fMRwhy 31 
toolbox. Operations on functional time series data were all done on detrended (linear and 32 
quadratic trends) realigned data, except where otherwise specified. Temporal signal-to-noise ratio 33 
(tSNR) maps were calculated for all runs by dividing the voxel-wise time series mean by the voxel-34 
wise standard deviation of the time series. Tissue compartment averages were then extracted 35 
from these tSNR maps. Percentage difference maps (from the time series mean) were calculated 36 
per volume for use in carpet plots (or gray plots). 37 
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3. Data Records 1 

The rt-me-fMRI dataset is available in BIDS format via the Dutch research data repository 2 
DataverseNL at the following link: https://dataverse.nl/dataverse/rt-me-fmri. This repository 3 
includes the raw BIDS data, descriptive metadata, and derivative data including quality reports. 4 
 5 
Apart from the dataset README file, all core files are available in one of 3 formats: NIfTI, TSV 6 
and JSON. Functional and anatomical data are stored as uncompressed NIfTI files (with the ".nii" 7 
extension), which contain image and header data and can be handled/viewed by all major 8 
neuroimaging analysis packages and programming languages. Tabular data such as participants, 9 
task events, response timing and physiology data are stored in tab-separated value text files (with 10 
the extension ".tsv", or if compressed ".tsv.gz") and can be handled by text or spreadsheet 11 
reading/editing software on all major operating systems, or alternatively by all major software 12 
programming languages. Metadata about the dataset, tasks, events and more are stored as key-13 
value pairs in text-based JSON files (with the extension ".json") that can be handled/viewed using 14 
all major software programming languages. 15 
 16 
All data files are organised according to the BIDS convention for dataset participants, MRI data 17 
type (anatomical or functional), and derivatives, as depicted in Fig. 5. 18 
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 1 
 2 
Figure 5: A diagram showing the content of the rt-me-fMRI dataset. The top level directory includes metadata 3 
about the dataset, participants and task events, as well as a directory per participant and lastly a derivatives directory. 4 
The expansion of "sub-001" (top right) shows subdirectories "anat" and "func", each with neuroimages and metadata 5 
related to anatomical and functional scans, respectively. The expansion of the "derivatives" directory (bottom right) 6 
shows subdirectories "fmrwhy-dash" and "fmrwhy-qc". The former contains all derivative data required to run the 7 
interactive browser-based application accompanying this dataset. The latter includes a quality report per participant in 8 
HTML format. 9 
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Each participant directory contains two subdirectories: "anat" and "func", respectively containing 1 
all anatomical and functional images and metadata. Different data types can be distinguished 2 
based on BIDS identifiers, e.g. "_bold" for functional and "_T1w" for anatomical MRI data. The full 3 
list of data acquisitions with their data types, descriptions, and formats are provided below in 4 
Table 1. Note that for functional data, each resting state and task run consists of three separate 5 
image files, one per echo (i.e. "_echo-1_bold.nii", "_echo-2_bold.nii", and "_echo-3_bold.nii"). 6 
JSON sidecar files accompany all BOLD and physiology data files on the participant level, while 7 
the accompanying JSON sidecar files for the four types of task event files are on the dataset level. 8 
Other files on the dataset level include the README, the dataset description (JSON) and the 9 
participant list (TSV). 10 
 11 

Table 1: rt-me-fMRI core dataset acquisitions, types, descriptions and formats 12 

 
Acquisition 

BIDS 
identifier 

(extension) Data Type Description 
Acquired Data 

Format(s) 
BIDS 

Format 

 
T1-weighted _T1w (.nii) 

Anatomical 
MRI 

Standard high-
resolution NIfTI NIfTI 

Resting data: 
task-rest_run-1 _bold (.nii) 

Functional 
MRI Resting state 

PAR/REC, 
DICOM NIfTI 

Task data: 
task-fingerTapping _bold (.nii) 

Functional 
MRI 

Right-hand finger 
tapping 

PAR/REC, 
DICOM NIfTI 

Task data: 
emotionProcessing _bold (.nii) 

Functional 
MRI 

Matching shape and 
faces 

PAR/REC, 
DICOM NIfTI 

Resting data: 
rest_run-2 _bold (.nii) 

Functional 
MRI Resting state 

PAR/REC, 
DICOM NIfTI 

Task data: 
fingerTappingImagined _bold (.nii) 

Functional 
MRI 

Mental motor task - 
imagined finger 
tapping 

PAR/REC, 
DICOM NIfTI 

Task data: 
emotionProcessingImagined _bold (.nii) 

Functional 
MRI 

Mental emotion task 
- emotional memory 
recollection 

PAR/REC, 
DICOM NIfTI 

 
Task responses and timing 

_events 
(.tsv.gz) 

Peripheral 
measure 

Stimulus and 
response timing for 
all tasks, i.e. x4 

Eprime 'dat' and 
'txt' files TSV 

Physiology data 
_physio 
(.tsv.gz) 

Peripheral 
measure 

Cardiac and 
respiratory traces for 
all runs, i.e. x6 

Philips 
scanphyslog.log TSV 

 
n/a n/a Metadata 

JSON sidecar files 
for all files of type 
_bold and _physio 

Philips 
scanphyslog.log JSON 

 13 
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Apart from the core dataset, rt-me-fMRI also includes derivative data in two subdirectories 1 
generated by the fMRwhy toolbox and related scripts: "fmrwhy-qc" and "fmrwhy-dash". The former 2 
results from the fmrwhy_bids_workflowQC pipeline and contains a subdirectory per participant, 3 
each in turn including subdirectories "anat" and "func". These directories contain NIfTI, TSV and 4 
PNG files of quality control outputs, which are all required for the HTML quality report contained 5 
in the "report_[yyyymmddhhmmss]" directory. These reports can be opened with all major Internet 6 
browsers. The "fmrwhy-dash" derivative directory contains (as TSV files) all data required to yield 7 
the interactive visualisations of the supplementary browser-based application provided with this 8 
dataset: https://rt-me-fmri.herokuapp.com/. 9 

4. Technical validation 10 

4.1. BIDS validation 11 

The full dataset was validated for BIDS compatibility with the use of the web-based "BIDS 12 
validator" tool (v1.5.4; available at https://bids-standard.github.io/bids-validator/). A log of the 13 
BIDS validator output can be found in the project's code repository: https://github.com/jsheunis/rt-14 
me-fMRI. 15 

4.2. COBIDAS reporting 16 

Data acquisition and experimental protocol parameters for this study were reported according to 17 
the community-formulated COBIDAS guidelines (Nichols et al., 2017). A modular version of this 18 
information is available in the project's GitHub repository. 19 

4.3. Data quality assessment 20 

Image and data quality of this dataset was assessed using the fMRwhy toolbox. This allowed 21 
quality to be assessed for raw and minimally (pre)processed versions of the data, and also for 22 
interim steps on which the validity of eventual study outcomes might depend. A BIDS-compatible 23 
workflow in the fMRwhy toolbox, fmrwhy_bids_workflowQC, runs initial preprocessing and quality 24 
control of the raw data and outputs a quality report per subject, which includes metrics and 25 
visualizations for anatomical and functional MRI data and for peripheral data. 26 
 27 
For anatomical MRI: 28 

● Coregistered T1w segmentations (gray matter, white matter, CSF, and a whole brain 29 
mask) were overlaid onto the subject functional space, for visual inspection of the 30 
registration and segmentation quality.  31 

● Coregistered anatomical regions of interest (in this case the left motor cortex, bilateral 32 
amygdalae and bilateral fusiform gyri) were overlaid onto the subject functional space, for 33 
visual inspection. 34 
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 1 
For functional MRI (all runs): 2 

● A summary table provides values for all runs per subject for mean framewise displacement 3 
(FD), total FD, FD outliers, and mean tSNR in all tissue compartments. This allows quick 4 
inspection per participant, but is better understood when referenced to the whole dataset. 5 

● Several image montages were generated per run, including the time series mean, the 6 
standard deviation and the tSNR map. The time series mean gives a quick view of the 7 
general quality of the time series and can indicate spike or interference artefacts. The 8 
standard deviation map shows areas with high signal fluctuation that can often be related 9 
to movement (e.g. close to the eyes). The tSNR maps are useful for investigating general 10 
signal quality, to indicate signal dropout and comparing signal quality across regions. 11 

● A carpet (time series) plot was generated per run, which displays voxel intensity in 12 
percentage signal change from the mean over time. The vertical axis (voxels) is either 13 
grouped per tissue type (compartment ordered) or ordered from top to bottom according 14 
to the voxel's time series correlation strength to the global signal. Signal traces above the 15 
carpet plot are also shown, including tissue compartment signals, respiration, heart rate, 16 
and framewise displacement. These plots are useful quality checking tools as they make 17 
it easy to visualise wide scale signal fluctuations across voxels, which can then be related 18 
visually to changes in physiological signals or subject movement. 19 

● Checking the quality of the recorded cardiac and respiratory traces is made possible with 20 
images generated by TAPAS PhysIO during the process of calculating RETROICOR, CR 21 
and RVT regressors. Images include a plot of the temporal lag between derived heart 22 
beats within thresholds for outliers, and a plot showing the breathing belt amplitude 23 
distribution that can be inspected for unexpected shapes. 24 

 25 
All functional quality metrics of the full dataset, generated by the fmrwhy_bids_workflowQC 26 
workflow, are summarised in Table 2. This includes, per run, mean framewise displacement, total 27 
framewise displacement, framewise displacement outliers (based on a conservative 0.2 mm 28 
threshold, and a liberal 0.5 mm threshold), and mean tSNR in all tissue compartments (grey 29 
matter, white matter, cerebrospinal fluid, whole brain). This allows possible data users to inspect 30 
the quality measures and to set personalised thresholds and exclusion criteria. 31 
 32 

Table 2: Functional quality metrics for the rt-me-fMRI dataset 33 
(Online version: https://github.com/jsheunis/rt-me-fMRI/blob/master/data/sub-all_task-all_desc-allQCmetrics.tsv) 34 

 35 
Fig. 6 below displays summarised quality metrics for the rt-me-fMRI dataset, and examples of 36 
single-subject quality images. Individual quality reports can be downloaded together with the 37 
dataset. 38 
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Figure 6: Representative quality checking information for the rt-mf-fMRI dataset. Subfigures include group level 1 
summary plots (A and B) and examples of subject level quality metric figures (C and D): 2 
(A) Vertical distribution (violin) plots of framewise displacement per subject, covering all functional runs. sub-010,  sub-3 
020 and sub-021 show comparatively high means and more outliers. 4 
(B) Vertical distribution (violin) plots of mean grey matter temporal signal-to-noise ratio (tSNR) per functional run, 5 
covering all subjects. Head movement results in higher signal fluctuations and hence lower tSNR, which is exemplified 6 
in the circled high mover data points: sub-021 (blue) and sub-010 (green); 7 
(C) An axial slice montage of temporal signal signal-to-noise ratio. 8 
(D) A time series "carpet plot" showing the global, white matter, CSF, respiration, and cardiac signals, as well as the 9 
calculated framewise displacement time series; (B) an axial slice montage of temporal signal signal-to-noise ratio. 10 

4.4. Task validation 11 

The slice timing corrected, 3D realigned and spatially smoothed Echo 2 time series of all task 12 
runs underwent individual- and group-level statistical analysis using a general linear model with 13 
SPM12. Task regressors included the main "ON" blocks for the fingerTapping, 14 
fingerTappingImagined, and emotionProcessingImagined tasks, and both the separate 15 
"SHAPES" and "FACES" trials for the emotionProcessing task. Regressors not-of-interest for all 16 
runs included six realignment parameter time series and their derivatives, the CSF compartment 17 
time series, and RETROICOR regressors (both cardiac and respiratory to the 2nd order, 18 
excluding interaction regressors, selected based on common implementation procedures in 19 
literature). Additional steps executed by SPM12 before beta parameter estimation include high-20 
pass filtering using a cosine basis set and AR(1) autoregressive filtering of the data and GLM 21 
design matrix. 22 
 23 
Contrasts were then applied to the single task-related beta maps for the fingerTapping, 24 
fingerTappingImagined, and emotionProcessingImagined tasks, and to the FACES, SHAPES, 25 
and FACES>SHAPES beta maps for the emotionProcessing task. Statistical thresholding, 26 
consisting of familywise error rate control with p < 0.05 and a voxel extent threshold of 0, was 27 
then applied on a per-subject basis to identify task-related clusters of activity. Unthresholded 28 
subject-level contrast maps were normalized to MNI152 space and then fed into a group-level 29 
one-sided t-test, for which the t-statistic maps were subsequently thresholded at p < 0.001 and 30 
an extent threshold of 20 voxels. Unthresholded individual- and group-level t-statistic maps can 31 
be accessed as a NeuroVault collection: https://neurovault.org/collections/XWDGUJHD/. 32 
 33 
Fig. 7 below shows the resulting thresholded group t-statistic maps for all four task runs. Fig. 7A 34 
clearly shows activity clusters in the left motor cortex and right cerebellum, as expected for a 35 
finger tapping task as well as a negative activation pattern in the default mode network. Fig. 7C 36 
shows activation in the visual cortex commensurate with a face/shape matching task, specifically 37 
in the left and right fusiform gyri. Additional clusters are found in the amygdalae and hippocampi, 38 
as expected for an emotion processing task. For both imagined tasks, similar but weaker 39 
activation clusters are found in the expected regions (respectively the motor cortex in Fig. 7B, and 40 
amygdalae in Fig. 7D) but both wide scale activation patterns are consistent with mental tasks 41 
including imagery and memory recollection. Additionally, Figs. 7B and 7D show negative 42 
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activation patterns in the dorsal attention network. The activation results in Fig. 7 are further 1 
evidenced by the resulting highest correlated terms when decoding the unthresholded group t-2 
statistic images with the web-based Neurosynth tool (www.neurosynth.org, Yarkoni et al., 2011). 3 
Table 3 shows the resulting terms2. 4 
 5 

 6 
 7 
                                                
2 Task names of the rt-me-fMRI dataset were selected based on the desired activation response for the given use 
cases, e.g. emotionProcessing to elicit a response in regions involving emotion processing, with the knowledge that 
the tasks might yield varied responses and have varied use cases. This can lead to the activation analysis and 
Neurosynth decoding process yielding patterns and terms that do not necessarily reflect the task name, e.g. activation 
of the fusiform face area and related terms ("face", "fusiform", "occipital") for the emotionProcessing task. 
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Figure 7: Group-level t-statistic maps for all tasks of the rt-me-fMRI dataset. Subfigures include: (A) fingerTapping, 1 
(B) fingerTappingImagined, (C) emotionProcessing, and (D) emotionProcessingImagined (p<0.001, voxel extent=20). 2 
Images were generated with bspmview. Fig. 7A clearly shows activity clusters in the left motor cortex and right 3 
cerebellum, as expected for a finger tapping task. Fig. 7C shows activation in the visual cortex commensurate with a 4 
face/shape matching task, specifically in the left and right fusiform gyri. For both imagined tasks, similar but weaker 5 
activation clusters are found in the expected regions (respectively the motor cortex in Fig. 7B, and amygdalae in Fig. 6 
7D) but both wide scale activation patterns are consistent with mental tasks including imagery and memory recollection. 7 

 8 
Table 3: Neurosynth-decoded terms 9 

Task 10 highest correlated decoded terms 

fingerTapping 
motor, premotor, finger, premotor cortex, movements, movement, 

hand, supplementary, execution, finger movements 

emotionProcessing 
face, fusiform, faces, fusiform face, fusiform gyrus, face ffa, ffa, 

occipital, inferior occipital, visual 

fingerTappingImagined 
theory mind, medial prefrontal, social, mind, mind tom, mental states, 

tom, primary, primary motor, junction 

emotionProcessingImagined 
medial, medial prefrontal, autobiographical, social, default, posterior 

cingulate, theory mind, mind, default mode, autobiographical memory 

4.5. Multi-echo data validation 10 

A core contribution of this rt-me-fMRI dataset lies in the multi-echo acquisition. Multi-echo fMRI 11 
samples multiple T2*-weighted images at a range of echo times along the decay curve following 12 
a single transverse magnetic excitation, which theoretically allows the optimum BOLD contrast to 13 
be optimized for a range of baseline tissue T2* values. Subsequently, echo combination through 14 
weighted summation or averaging is a typical processing step that generally increases temporal 15 
signal-to-noise ratio and contrast-to-noise ratio and decreases signal drop-out in regions with high 16 
susceptibility artefacts and signal dropouts (Menon et al., 1993; Posse et al., 1999; Posse et al., 17 
2012). Echoes can be combined using a variety of weights, including baseline voxelwise tSNR 18 
and T2* maps. 19 
 20 
Figs. 8 and 9 illustrate that such combination procedures improve tSNR and signal dropout, hence 21 
validating the use of multi-echo fMRI for improved quality data. Representative signal recovery is 22 
demonstrated in the tSNR maps of Fig. 8 for a single run of a single subject, particularly by the 23 
blue and magenta arrows showing areas of signal dropout in the Echo 2 time series (including, 24 
respectively, the medial temporal and inferior temporal lobes, and the orbitofrontal lobe) and 25 
subsequent recovery in the combined time series. The light green arrows indicate substantial 26 
increases in tSNR in areas close to the bilateral temporal-occipital junction and towards the 27 
occipital lobe as the slices increase in a superior direction. Fig 9 shows distribution plots of the 28 
mean grey matter tSNR for the single (2nd) echo and two combined echo (tSNR-combined and 29 
T2*-combined) time series, covering all functional runs and all subjects. The two combined echo 30 
time series clearly have improved tSNR values, increasing by ~30% from 85 (2nd echo) to 112 31 
(tSNR-combined). 32 
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Further benefits of multi-echo over conventional single-echo fMRI exist (see for example Olafsson 1 
et al., 2015; Dipasquale et al., 2017; Lombardo et al., 2016; Gonzalez-Castillo et al., 2016; Moia 2 
et al., 2020; Caballero-Gaudes et al., 2019), but such analyses are beyond the scope of this 3 
validation step and can be explored further with this publicly available dataset. In complementary 4 
work using this dataset we evaluate the use of several combination and T2*-mapping procedures 5 
for both offline and real-time BOLD sensitivity (Heunis et al., 2020b). 6 
 7 

 8 
Figure 8:  Axial slice montages of temporal signal-to-noise ratios (tSNR) in single and multi-echo combined 9 
time series. Time series include: the 2nd echo time series (top row) and two combined time series (middle row = T2*-10 
combined; bottom row = tSNR-combined). Blue and magenta arrows indicate areas of signal dropout and recovery 11 
(including, respectively, the medial temporal and inferior temporal lobes, and the inferior frontal lobe). Light green 12 
arrows indicate areas with substantial increases in tSNR (in the lateral cortex and towards the anterior cortex as the 13 
slices increase in a superior direction). Combined multi-echo time series result in both substantially higher tSNR and 14 
signal recovery compared to Echo 2. 15 
 16 

 17 
Figure 9:  Vertical distribution (violin) plots of mean grey matter temporal signal-to-noise ratios (tSNR) in single 18 
and multi-echo combined time series. Distributions are shown for three time series: Echo 2, tSNR-combined and 19 
T2*-combined. A single distribution plot covers all subjects and all runs excluding rest_run-1. The two combined echo 20 
time series show clear increases in mean tSNR values. 21 
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4.6. Data inclusion/exclusion 1 

To be a possible participant in this study, individuals had to be healthy, right-handed volunteers 2 
with no prior or current (at the time of the study) indications of neurological or psychiatric 3 
conditions. They also had to report the absence of any other standard contraindications for MRI 4 
scanning. 32 participants were initially recruited for the study, and the datasets of three 5 
participants were excluded due technical and one due to administrative challenges. No further 6 
datasets were excluded, even in cases of more than average or severe motion (e.g. sub-010 and 7 
sub-021), since it was decided that such data could still be useful for future methods development 8 
or related insights. Table 2 (also available in the project's GitHub repository 9 
(https://github.com/jsheunis/rt-me-fMRI) provides a list of all functional quality metrics for all 10 
participants and runs, which allows possible data users to inspect the quality measures and to set 11 
personalised thresholds and exclusion criteria. 12 

5. Code Availability 13 

An interactive environment (https://rt-me-fmri.herokuapp.com/) was created alongside this study 14 
to allow users to interactively explore summaries of the data derivatives and quality control 15 
aspects. 16 
 17 
All software scripts and self-developed tools used to prepare, preprocess and quality check the 18 
data are openly available at the project's code repository https://github.com/jsheunis/rt-me-fMRI. 19 
This includes instructions to download, extract, and understand the data; the data preparation 20 
script; the preprocessing script; the quality reporting script; and the script to reproduce the figures 21 
for this manuscript. 22 
 23 
Dependent software and toolboxes/packages used for these preparation, preprocessing and 24 
quality reporting steps include: 25 

● Python 3.7+ 26 
● bidsify (v0.3; https://github.com/NILAB-UvA/bidsify) 27 
● scanphyslog2bids (v0.1; https://github.com/lukassnoek/scanphyslog2bids). 28 
● dcm2niix (v1.0.20190410; 29 

https://github.com/rordenlab/dcm2niix/releases/tag/v1.0.20190410) 30 
● pydeface (v2.0.0; https://github.com/poldracklab/pydeface/releases/tag/2.0.0; Gulban et 31 

al., 2019) 32 
● convert-eprime (v0.0.1; https://github.com/tsalo/convert-eprime/releases/tag/0.0.1; Salo, 33 

2020) 34 
● MATLAB R2016b or later (9.1.0.441655; The MathWorks Inc)  35 
● fMRwhy (v.0.0.1, https://github.com/jsheunis/fMRwhy) 36 
● SPM12 (r7771; https://github.com/spm/spm12/releases/tag/r7771) 37 
● Anatomy Toolbox (v3.0; Eickhoff et al., 2005) 38 
● bids-matlab (v.0.0.1, https://github.com/jsheunis/bids-matlab/releases/tag/fv0.0.1) 39 
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● dicm2nii (v0.2 from a forked repository; 1 
https://github.com/jsheunis/dicm2nii/releases/tag/v0.2) 2 

● TAPAS PhysIO (v3.2.0; 3 
https://github.com/translationalneuromodeling/tapas/releases/tag/v3.2.0; Kasper et al., 4 
2017) 5 

● Raincloud plots (v1.1 6 
https://github.com/RainCloudPlots/RainCloudPlots/releases/tag/v1.1; Allen et al., 2019) 7 

● bspmview (v20180918; https://github.com/spunt/bspmview/tree/20161108; Spunt, 2016) 8 
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