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Abstract 

Background Coronavirus disease 2019 (COVID-19) patients exhibit multiple organ malfunctions 

with a primary manifestation of acute and diffuse lung injuries. The Spike protein of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to mediate viral entry into host cells; 

however, whether it can be cellularly pathogenic and contribute to pulmonary hyper-inflammations 

in COVID-19 is not well known.  

Methods and Findings In this study, we developed a Spike protein-pseudotyped (Spp) lentivirus 

with the proper tropism of SARS-CoV-2 Spike protein on the surface and tracked down the fate 

of Spp in wild type C57BL/6J mice receiving intravenous injection of the virus. A lentivirus with 

vesicular stomatitis virus glycoprotein (VSV-G) was used as the control. Two hours post-infection 

(hpi), Spp showed more than 27-75 times more viral burden in the lungs than other organs; it also 

exhibited about 3-5 times more viral burden than VSV-G lentivirus in the lungs, liver, kidney and 

spleen. Acute pneumonia was evident in animals 24 hpi. Spp lentivirus was mainly found in LDLR+ 

macrophages and pneumocytes in the lungs, but not in MARC1+ macrophages. IL6, IL10, CD80 

and PPAR-γ were quickly upregulated in response to infection of Spp lentivirus in the lungs in 

vivo as well as in macrophage-like RAW264.7 cells in vitro. We further confirmed that forced 

expression of the Spike protein in RAW264.7 cells could significantly increase the mRNA levels 

of the same panel of inflammatory factors.  

Conclusions Our results demonstrate that the Spike protein of SARS-CoV-2 alone can induce 

cellular pathology, e.g. activating macrophages and contributing to induction of acute 

inflammatory responses.  
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Introduction   

Coronavirus disease 19 (COVID-19) has become a significant threat to global health. So far, more 

than 64 million infections and 1.5 million victims have been reported worldwide including 191 

countries and regions. The US alone has registered more than 14 million cases and 271 thousand 

deaths as of date December 4, 2020 [1]. Severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) is the causative organism for COVID-19 [2]. SARS-CoV-2, a positive-sense single-

stranded RNA virus, is the newest and seventh known coronavirus that is capable of infecting 

humans [2, 3]. The SARS-CoV2 Spike (S) protein can be cleaved by Furin to produce subunits 

S1 and S2 to form a trimer which can mediate viral entry into host cells via surface angiotensin 

converting enzyme 2 (ACE2) [4]. Host Transmembrane Serine Protease 2 (TMPRSS2) is also 

capable of promoting SARS-CoV-2 entry of target cells by cleavage of the  S2’ site in the S2 

subunit [5, 6]. ACE2 and TMPRSS2 have been found to co-express in lung type II pneumocytes, 

ileal absorptive enterocytes, and nasal goblet secretory cells [7], which are thought to be host 

determinants for viral infection in the initial stage. Recently, Neuropillin (NRP) 1 has been 

identified as the second host factor to facilitate SARS-CoV-2 entry of target cells which appears 

to be ACE2-independent since a different binding motif is used [8-10]. 

   COVID-19 patients can be asymptomatic or symptomatic. The mortality rate of the COVID-19 

varies in different geographic locations and patient populations [1]. Patients with metabolic-

associated preconditions such as hypertension, cardiovascular disorders (CVD), obesity and 

diabetes mellitus (DM) are experienced to develop more severe symptoms [11]. COVID-19 

patients also showed decreases in serum lipid levels [12, 13]. SARS-CoV-2-induced hyper-

inflammation in the lungs is considered to cause the disease progression. The molecular 

mechanisms of COVID-19 pathogenesis have just begun to be elucidated. In this study, we aim 

to investigate whether the S protein of SARS-CoV-2 interacts with macrophages and induce acute 

lung inflammations in vivo using a S protein-pseudotyped (Spp) lentivirus.  
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Methods 

Materials 

Phoenix cells and Dulbecco's Modified Eagle's medium (DMEM) were purchased from ATCC 

(Manassas, VA, USA). Lentiviral vector pLV-mCherry and vesicular stomatitis virus glycoprotein 

(VSV-G) expression vector pMD2.G were obtained from Addgene (Watertown, MA, USA). Coding 

sequence of SARS-CoV-2 S gene (GenBank: QHU36824.1) fusion with a c-terminal His tag was 

synthesized in vitro (Genscript, Piscataway, NJ, USA) after codon optimization for expression in 

human cells. The sequence was cloned into a pcDNA3.1 vector to obtain pcDNA-Spike. Anti-

Spike S1 subunit, anti-low density lipoprotein receptor (LDLR), anti-mannose receptor C-type 1 

(MRC1), anti-CD68 and anti-human immunodeficiency viruses (HIV)-1 p24 antibodies were 

obtained from Novus Biologicals (Littleton, CO, USA). The anti-His tag antibodies were obtained 

from Proteintech (Rosemont, IL, USA) and Thermo Fisher (Waltham, MA, USA). Primers were 

synthesized by IDT (Coralville, IA, USA) and primer sequences are listed in supplementary table 

1. RNA extraction kit was obtained from Zymo Research (Irvine, CA, USA). The RT kit was 

obtained from Takara Bio USA (Mountain View, CA, USA). The SYBR green master mix was from 

BioRad (Hercules, CA, USA). Wild type C57BL/6J mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME, USA).   

Generation of pseudotyped lentivirus  

SARS-CoV-2 S gene (GenBank: QHU36824.1) fusion with a c-terminal 12xHis tag was 

synthesized and cloned into a pcDNA3.1 vector. Phoenix cells were grown in DMEM containing 

10% FBS and co-transfected by pLV-mCherry and pcDNA-Spike or pMD2.G vector using a 

calcium phosphate kit (ThermoFisher, Waltham, MA, USA). The supernatant with produced virus 

(Spp or VSV-G lentivirus) was harvested 72-hours post transfection, clarified by centrifuging at 

5000 g for 15 min followed by filtration of the supernatant through a 0.45 µm filter disk. The virus 

was collected by an ultracentrifugation at 24,000 rpm for 2 hours (hrs) using Beckman SW41 rotor. 

The viral pellets were resuspended by cold PBS buffer and stored at -80 °C before use. The viral 

particle number was determined using a real time RT-PCR assay to quantify the RNA copies of 

mCherry.  

Intravenous viral administration in vivo  

The animal protocol was approved by the University of South Carolina IACUC committee. Male 

wild type C57BL/6J mice (5-6 weeks old) were intravenously administered 100 µl of Spp or VSV-

G lentivirus (8x108 of viral particles) via tail venous or retro-orbital injection. The animals were 

sacrificed at 2 or 24 hrs post-infection (hpi) and perfused by 50 ml PBS per mouse. The tissues 
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including lungs, heart, liver, kidney, aorta, and spleen were collected. One part of tissue was used 

for RNA extraction followed by a real time RT-PCR to determine the number of viral particles in 

each tissue. The other part was fixed, embedded and used for histology and 

immunohistochemistry.      

RAW264.7 cell culture, viral uptake and electroporation 

Macrophage-like RAW264.7 (RAW) cells (ATCC® TIB-71™) were cultured in DMEM (10% FBS) 

medium. The cells were changed into 2% FBS DMEM medium for overnight prior to viral uptake 

assay. Spp or VSV-G lentivirus were added into RAW cells (4.8x107 particles per well) in 12 well-

plate with 90% confluence and incubated for 2 or 16 hours. Following treatment, the cells were 

washed with PBS three times and RNA was extracted using an RNA extraction kit (Zymo, Irvine, 

CA, USA). In a parallel experiment, RAW cells (5x106) were electroporated with pcDNA3.1, 

EGFP-N2 or pcDNA-Spike plasmids (10 µg) using the following parameters: 2 mm gap cuvette, 

250 ul sample volume and 120V (BTX Harvard Bioscience, Inc., Holliston, MA, USA). The cells 

were harvested 48 hrs post-electroporation for analysis.          

Real time RT-PCR and immunohistochemistry assay  

To generate cDNA, 1.0~5 µg of total RNA was reverse-transcribed in a 20-µl reaction containing 

1x RT buffer (Clontech, Mountain View, CA, USA), 0.5 mM dNTPs, 0.5 µg of oligo (dT) 15-mer 

primer, 20 units of RNasin, and 5 units of SMART Moloney murine leukemia virus reverse 

transcriptase (Takara Bio, Mountain View, CA, USA). The RT reaction was carried out at 42°C for 

2 hrs. Seven house-keeping genes were screened for the normalization controls: GAPDH, Rps18, 

Ppia, Nono, Rpp30, Alas2, and β-actin. We found that Rps18 and Nono showed much more stable 

expression levels in tissues crossing various samples (data not shown); both Rps18 and Nono 

were then used as controls to normalize the amplification data. Expression levels of a panel of 23 

inflammatory genes (Supplementary Table 1) were determined using real time RT-PCR. The 

reaction for the multiplex real time PCRs contained 1× SYBR Green qPCR Master Mix (Bio-Rad, 

Hercules, CA, USA), 10 ng of each template, and 10 pmol of each specific primer in a 25-µl total 

volume in a 96-well format. Each reaction was performed in duplicate under identical conditions. 

The PCR conditions were one cycle at 95°C for 2 min followed by 45 cycles of 15 s at 95°C and 

60 s at 60°C. Relative quantification of the real time PCR was based upon the amplification 

efficiency of the target and reference genes and the cycle number at which fluorescence crossed 

a prescribed background level, cycle threshold (Ct).  

    For immunoblot assay, cell lysates were extracted from RAW cells using RIPA lysis buffer 

(Santa Cruz Biotech., Inc., Dallas, TX, USA). Proteins were separated by SDS-PAGE and 
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transferred onto PVDF membranes. Anti-Spike S1 subunit, anti-HIV-1 p24 antibody, or anti-His 

antibodies were used to detect the expression of viral proteins and followed by HRP-labeled 

secondary antibodies. Images were acquired using a Bio-Rad Gel Imaging System (Hercules, CA, 

USA).   

    Lung tissues from mice were fixed in 10% buffered formalin (Fisher Scientific, Pittsburgh, PA, 

USA) and embedded in paraffin. Approximately 6 µm thick sections were cut and collected. The 

sections were blocked with 5% donkey serum and then incubated in a humidified chamber 

overnight at 4oC with primary antibodies. Sections were rinsed and incubated with fluorescent 

conjugated secondary antibodies for 2 hours at room temperature. Images were acquired using 

ImageXpress Pico System (Molecular Device, San Jose, CA, USA) or confocal microscopy 

system (Carl Zeiss AG, Oberkochen, Germany).  

Statistical analyses 

All statistical analyses were performed in Origin 2019. The paired t test or one-way ANOVA was 

used for two groups or multiple comparisons test, respectively. The data was presented as “mean 

± s.d.” and p < 0.05 was considered as significant.  

 

 
Result 
 
Tissue distributions of Spp in infected mice  

     We generated Spp lentivirus from Phoenix cells. Spike protein was shown to be cleaved into 

S1 and S2 subunits assembled on the Spp lentivirus that were produced in Phoenix cells by 

immunoblot analysis (Fig 1A). No evidence of full length, non-cleaved Spike protein was detected 

in the Spp lentivirus (Fig 1A). A lentivirus using a helper vector expressing VSV-G was obtained 

as a control, referred to as VSV-G lentivirus. Gag-p24 is the capsid core shell protein in both Spp 

and VSV-G lentiviruses which was shown in both Spp and VSV-g lentiviruses (Fig 1A). 

Spp or VSV-G lentivirus (8x108 particles) was intravenously injected into C57BL/6J mice. The 

animals were sacrificed at 2 or 24 hpi and various tissues were collected for determining the viral 

load. Both Spp and VSV-G had highest vial loads in the lungs at 2 hpi; Spp showed a factor of 

27, 33, 55, 71 and 74 times the viral loads in the lungs compared to the liver, spleen, heart, aorta 

and kidney (p<0.05, n=3~7 mice); Spp also showed a factor of 2.8, 4.1, 4.5 and 5.7 times viral 

loads compared to VSV-G lentivirus in the lungs, spleen, kidney and liver, respectively (p<0.05, 

n=3~7 mice) (Fig 1B). At 24 hpi, the viral loads for Spp decreased significantly in the lungs, heart, 

liver, kidney and spleen (p<0.05, n=3~7 mice) (Fig 1B).   
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Pathological features of pneumonia in Spp-infected mice  

   We then asked whether the mice treated with Spp virus acquired pneumonia. There were no 

evident histological changes in the lungs 2 hpi in both Spp and VSV-G groups. At 24 hpi with Spp 

lentivirus, many pathological changes in the lungs were evident, including multifocal lesions, 

inflammatory cell infiltrations, thickened alveolar walls, peri-vascular and peri-bronchial 

infiltrations and fibroplasia with exudation of fibrin and proteins (Fig 2). We observed only mild 

inflammations such as mildly thickened alveolar walls in the lungs in the VSV-G group at 24 hpi 

(Fig 2). Taken together, Spp but not VSV-G lentivirus could induce acute and diffuse pneumonia 

in the mouse lungs with very similar pathological manifestations observed in severe COVID-19 

patients. These data also suggested that the S protein of SARS-CoV-2 played an important role 

in the development of acute pneumonia. 

Cellular colocalization of Spp lentivirus in the lungs 

We next examined cellular distribution of Spp lentivirus in the lungs. Spp viral antigen was 

detected by an anti- His antibody. LDLr is expressed in type II alveolar epithelial cells and 

macrophages in the lungs [14, 15]. The majority of cells that demonstrated Spp lentivirus-uptake 

(His+) (82.3%±11.4%) were LDLr+ cells, while 84.4%±14.9% of LDLr+ cells showed uptake of Spp 

lentivirus (Fig 3). We then examined the types of macrophages with uptake of Spp lentivirus in 

the lungs using macrophage markers CD68 and MRC1. We found 10%±4.4% of cells with 

evidence of Spp lentivirus uptake were CD68+ macrophages, while 38.3%±19.3% of CD68+ 

macrophages showed uptake of Spp lentivirus (Fig 3). However, we could find little evidence of 

MRC1+ macrophages that had uptake of Spp lentivirus (Fig 3). 

Dysregulation of inflammatory cytokines in the lungs in Spp-infected mice 

     We next attempted to assess which inflammatory factors might be induced by Spp lentivirus. 

We examined expression levels of a panel of 23 genes that are representative inflammatory 

markers in macrophages (Supplementary Table 1). Two hours post viral administration, the 

mRNA levels of IL 6, IL10, CD80 and PPAR-γ showed a significant and rapid increase in the lungs 

in Spp-infected mice but not VSV-g-infected mice as compared with untreated control mice (Fig 

4). The levels of TNF-α showed an increase in mice both 2 and 24 hpi with Spp and VSV-g as 

compared with untreated control mice (Fig 4). TGF-β showed a significant increase in the lungs 

of Spp-infected mice only at 24 hpi as compared with untreated control mice and mice at 2 hpi 

(Fig 4). We did not find significant changes in expression levels of other inflammatory markers 

that we examined (data not shown). These data suggested that IL 6, IL10, CD80 and PPAR-γ 

were among those factors induced in a rapid response to the Spp infection.   
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Dysregulation of inflammatory cytokines in RAW cells caused by the Spike protein 

In order to investigate the potential immunomodulatory function induced by the S protein, we 

infected RAW cells using Spp or VSV-g lentivirus. The mRNA levels of IL 6, IL10, CD80 and 

PPAR-γ were significantly higher in the Spp-infected group at 2 hpi than untreated controls and 

VSV-G-infected group at 2 hpi (Fig 5). Their mRNA levels were continuously increased in the 

Spp-infected group at 16 hpi than 2 hpi (Fig 5). 

    We next electroporated RAW cells with pcDNA-Spike expression plasmid or two control 

plasmid, pcDNA and EGFP-N2. The expression of EGFP two days post-electroporation showed 

30%~40% transfection efficiency in RAW cells (Fig 6). The mRNA levels of IL 6, IL10, CD80 and 

PPAR-γ were significantly elevated in S protein-expression group than pcDNA or EGFP-N2 group 

(Fig 6).  

 

Discussion  

There is an urgent priority for global healthcare and the research community to mitigate the current 

pandemic of COVID-19. Animal models that can replicate viral transmission and subsequent 

pathological development are critical for this effort to understand the mechanisms of COVID-19 

pathogenesis and develop effective anti-viral countermeasures. However, handling of specimens 

infected with SARS-CoV-2 requires high-security biosafety level 3 (BSL3) facilities and BSL3 work 

practices. We have developed the Spp lentivirus, which confers the Spike protein on the viral 

surface to investigate host tropism in a BSL2 setting. More importantly, using this virus, we have 

demonstrated the pathogenicity of the S protein in isolated cells and an animal model. Therefore, 

our data have proven that the Spp lentivirus, though it cannot completely replicate the infectious 

pathway and pathological process in human, is a very useful system to specifically investigate the 

S protein-mediated cell type susceptibility, host tropism for infection and pathogenicity.  

    SARS-CoV-2 RNA virus can be detected in swab samples from upper respiratory track from 

more than 80% of affected patients [16-18]. Viral RNAs are rarely detectable in blood of 

asymptomatic patients or non-hospitalized patients [16], but have been found more frequently in 

10.5% ~ 67% hospitalized patients with severe symptoms [17-19]. Using a supersensitive RT-

PCR RUO assay (low limit of detection at 625 copies of SARS-CoV-2 RNA/ml), blood SARS-CoV-

2 has been detected in 53% in mild-to-moderate patients and 88% in critically ill patients, with 

levels of virus being associated with disease severity [20]. Viral shedding time (from positive to 

negative) of blood is shorter than that of nasal swab [18]. An animal study also has shown that 

intranasal inoculation of SARS-CoV-2 in a transgenic mouse model expressing human ACE2 
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results in high levels of viral infection in lungs with spread to other organs [21]. These reports 

demonstrate that SARS-CoV-2 can be disseminated from the respiratory system into the 

circulatory system and to many other vital organs during the late stage of disease, which will 

become one crucial determinant for a patient to develop severe symptoms. Therefore, it will be 

necessary to recapitulate how the disease progresses under this viremia condition in an animal 

model. In this study, we intravenously administrated Spp lentivirus into mice and attempted to 

develop an animal model to mimic part of these critical conditions from patients. Our data show 

high preference of Spp lentivirus residing in lung tissues and induction of an acute pneumonia, 

which is thought to be mediated or contributed by the S protein. Therefore, although it may not 

fully simulate the nature of the entry pathway of SARS-CoV-2 through upper airway to the lungs 

at the initial stage of the disease, this study has shown valuable information relevant to 

pathological progression of patients with viremia.  

     The S protein is thought to be the crucial glycoprotein on the surface of SARS-CoV-2 to 

mediate the viral entry of host cells. It can bind to ACE2 in the host cells, followed by an aid of 

TMPRSS2 cleavage, leading to endocytosis of viral/receptor complex into the host cells. ACE2 is 

present in type II alveolar cells, macrophages and endothelial cells in the lungs, which makes 

them targeted by SARS-CoV-2. Indeed, SARS-CoV-2 has been found in pneumocytes and 

endothelial cells from autopsy studies of COVID-19 patients [22]. In this study, we showed that 

Spp lentivirus was mainly present in LDLr+ type II alveolar cells and macrophages in the lungs. 

Those cells also express ACE2 [23, 24]. As ACE2 receptors in rodents have shown a much lower 

affinity to the SARS Spike protein as compared with human ACE2 receptor [21, 25, 26], the uptake 

of Spp lentivirus is less likely solely through the endogenous ACE2 in the lungs of mice. We 

speculate that other receptors or co-factors may facilitate the S protein-mediated viral entry of 

host cells via an ACE2-dependent or independent pathway for example NRP1-mediated entry 

pathway [8-10]. These data provide insight into the possibility of multiple factors/pathways 

involving SARS-CoV-2 entry of various target cells. The Spp lentivirus will allow us to investigate 

the mechanisms of viral entry into target cells in further detail in future studies. 

    Since the Spp is a replication-deficient virus, it will be unable to generate a full spectrum of 

pathological changes in host cells. We did not observe any evident lung inflammatory responses 

in mice at 2 hpi from either Spp or VSV-g. Mice at 24 hpi after Spp but not VSV-g administration 

developed acute, diffuse and evident lung inflammation. The pneumonia was transient and 

resolved 7 days after Spp administration (data not shown). This study demonstrate that Spp is 

able to replicate a portion of the acute lung pathology that SARS-CoV-2 causes in human. SARS-

CoV-2-induced hyper-inflammation in the lungs is considered to cause disease progression. For 
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example, the acute and diffuse lung injuries are supported by the evidence of upregulation of a 

series of serum cancer biomarkers in patients [27]. Our data show that a portion of M1 but not M2 

macrophages exhibit rapid uptake of Spp lentivirus in the lungs (by 2 hpi), which provides direct 

evidence to support this notion. The severity of acute lung inflammation induced in our mouse 

model is more prominent in Spp than VSV-g. Furthermore, a panel of inflammatory factors are 

upregulated in the lungs post Spp infection, which also exhibit different patterns in the lungs with 

VSV-g infection. In consideration of the S protein being the only difference between Spp and VSV-

g lentiviruses, these data lead us to speculate that the S protein may have executed a unique role 

in the development of this lung pathology. Indeed, over-expression of the S protein in the RAW 

cells can induce upregulation of the same panel of inflammatory factors, e.g. IL6, IL10, CD80 and 

PPAR-γ, demonstrating that the S protein has a function to induce intracellular pathological 

alterations. The detailed mechanisms underlying how the S protein contributes to the 

inflammatory reactions in macrophages are unknown and will be studied in future. 

    COVID-19 patients with metabolic-associated preconditions have a high risk to develop more 

severe symptoms. Our recent studies have shown that decreased levels of low and high density 

lipoprotein cholesterols are associated with severity and mortality of the COVID-19 [12, 13], which 

have been confirmed by many other reports [28-31]. The etiology of lipid abnormality in COVID-

19 is likely multi-factorial including liver dysfunction, cytokine storm-induced alterations of lipid 

metabolism, virus-induced aberrant modulations in cholesterol synthesis and increased free 

radical signaling to facilitate modification and degradation of LDL-c [32, 33]. The S protein also 

has a binding pocket for fatty acids, steroids and cholesterol to modulate the host cell entrance 

[34, 35]. In this study, our data show that LDLr+ cells have the highest level of Spp lentivirus 

uptake in the lungs. This correlation together with previous reports indicates that lipid metabolism 

seems tightly associated with SARS-CoV-2 induced acute lung pathology. This data also 

suggests a possibility that LDLr may be directly involved in viral uptake, which shall be 

investigated in the future with the Spp lentivirus.  

    In conclusion, our data show that the Spp lentivirus can induce an acute and transient 

inflammatory response in the lungs of mice. The Spp lentivirus preferably targets those 

macrophages and pneumocytes with expression of LDLr in the lungs and lead to upregulation of 

IL6, IL10, CD80 and PPAR-γ. In addition, forced expression of the S protein can cause elevation 

of IL6, IL10, CD80 and PPAR-γ in RAW cells. Our results demonstrate that the S protein of SARS-

CoV-2 can activate macrophages and contribute to induction of acute inflammations in the lungs.  
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Figure legends 

Fig 1 Systemic dissemination of Spike protein-pseudotyped (Spp) and vesicular stomatitis virus 

glycoprotein (VSV-G) lentiviruses in mice. (A) Detection of S1 and S2 subunits in Spp lentivirus 

by Western blot using a specific antibody against the S1 subunit and an anti-His antibody 

recognizing the S2 subunit. Both Spp and VSV-G lentiviruses have a gag-p24 protein. (B) Spp 

shows a predominant distribution in the lungs after being intravenously administrated. &, p<0.05, 

Spp viral burden as comparison with VSV-g in the same tissue at 2 hours post-infection (hpi); #, 

p<0.05, Spp viral burden at 24 hpi as comparison with 2 hpi in the same tissue.    

 
Fig 2 Mice acquires acute pneumonia 24 hours post-infection (hpi) of Spike protein-pseudotyped 

(Spp) lentivirus. Histological analysis of lungs in control mice (A), mice being administrated with 

lentivirus carrying vesicular stomatitis virus glycoprotein (VSV-G) (B), or Spp lentivirus (C and D) 

shows acute and diffuse inflammatory responses in the lungs after 24 hpi of Spp. Right panel is 

the magnification of boxed area in the corresponding left panel. Scale bar: 500 µm (left panel) 

and 100 µm (right panel).  

 

Fig 3 Cellular colocalizations of Spike protein-pseudotyped (Spp) lentivirus in the lungs 2 hours 

post-infection (hpi). An anti-his tag antibody is used to recognize S-fusion protein in Spp. Yellow 

arrowhead indicates cells positive for both His-tag and corresponding lung markers. Red or green 

arrowhead indicate cells positive for His tag or corresponding lung markers only, respectively. 

Scale bar: 20 µm. 

 

Fig 4 Upregulation of inflammatory factors in the lungs of mice after administration of Spike 

protein-pseudotyped (Spp) lentivirus or lentivirus carrying vesicular stomatitis virus glycoprotein 

(VSV-G). The mRNA level of each target gene is normalized to Rps18 levels.  

 

Fig 5 Upregulation of inflammatory factors in the RAW cells after being infected by Spike protein-

pseudotyped (Spp) lentivirus or lentivirus carrying vesicular stomatitis virus glycoprotein (VSV-G) 

at 2 or 16 hours post-infection (hpi). 

 

Fig 6 S protein of SARS-CoV-2 only induces upregulation of inflammatory factors in the RAW 

cells. (A) The expression of EGFP after electroporation of targeted plasmid into RAW cells to 

estimate the transfection efficiency. The expression of S protein in RAW is detected using an anti-

His antibody by Western Blot. (B) The mRNA levels of IL-6, IL-10, CD80 and PPAR-γ are 
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significantly upregulated after a forced expression of S protein. &, p<0.05 as comparison with 

control groups with electroporation of pcDNA3.1 blank vector or EGFP-N2 plasmid.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.07.414706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414706
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. CoronavirusResourceCenter. COVID-19 Dashboard by the Center for Systems Science 

and Engineering (CSSE) at Johns Hopkins University (JHU) 2020. Available from: 

https://coronavirus.jhu.edu/map.html. 

2. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-

nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020. Epub 2020/03/04. doi: 

10.1038/s41564-020-0695-z. PubMed PMID: 32123347. 

3. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak 

associated with a new coronavirus of probable bat origin. Nature. 2020. Epub 2020/02/06. doi: 

10.1038/s41586-020-2012-7. PubMed PMID: 32015507. 

4. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, 

and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92 e6. Epub 

2020/03/11. doi: 10.1016/j.cell.2020.02.058. PubMed PMID: 32155444; PubMed Central 

PMCID: PMC7102599. 

5. Hoffmann M, Kleine-Weber H, Pohlmann S. A Multibasic Cleavage Site in the Spike 

Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 

2020;78(4):779-84 e5. Epub 2020/05/05. doi: 10.1016/j.molcel.2020.04.022. PubMed PMID: 

32362314; PubMed Central PMCID: PMCPMC7194065. 

6. Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, et al. 

TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human 

airway cells. Life Sci Alliance. 2020;3(9). Epub 2020/07/25. doi: 10.26508/lsa.202000786. 

PubMed PMID: 32703818; PubMed Central PMCID: PMCPMC7383062. 

7. Ziegler C, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-

2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is 

enriched in specific cell subsets across tissues. Cell. 2020. doi: DOI: 10.1016/j.cell.2020.04.035. 

8. Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Anton-Plagaro C, et al. 

Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020. Epub 2020/10/22. doi: 

10.1126/science.abd3072. PubMed PMID: 33082294. 

9. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. 

Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020. Epub 2020/10/22. 

doi: 10.1126/science.abd2985. PubMed PMID: 33082293. 

10. Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, et al. SARS-CoV-2 Spike 

protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. Pain. 2020. Epub 

2020/10/04. doi: 10.1097/j.pain.0000000000002097. PubMed PMID: 33009246. 

11. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. 

Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized 

With COVID-19 in the New York City Area. Jama. 2020. Epub 2020/04/23. doi: 

10.1001/jama.2020.6775. PubMed PMID: 32320003; PubMed Central PMCID: PMC7177629. 

12. Fan J, Wang H, Ye G, Cao X, Xu X, Tan W, et al. Low-density lipoprotein is a potential 

predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism. 2020:154243. 

Epub 2020/04/23. doi: 10.1016/j.metabol.2020.154243. PubMed PMID: 32320740; PubMed 

Central PMCID: PMC7166305. 

13. Wei X, Zeng W, Su J, Wan H, Yu X, Cao X, et al. Hypolipidemia is associated with the 

severity of COVID-19. J Clin Lipidol. 2020. doi: doi: 10.1016/j.jacl.2020.04.008. 

14. Voyno-Yasenetskaya TA, Dobbs LG, Erickson SK, Hamilton RL. Low density 

lipoprotein- and high density lipoprotein-mediated signal transduction and exocytosis in alveolar 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.07.414706doi: bioRxiv preprint 

https://coronavirus.jhu.edu/map.html
https://doi.org/10.1101/2020.12.07.414706
http://creativecommons.org/licenses/by-nc-nd/4.0/


type II cells. Proc Natl Acad Sci U S A. 1993;90(9):4256-60. Epub 1993/05/01. doi: 

10.1073/pnas.90.9.4256. PubMed PMID: 8483941; PubMed Central PMCID: PMCPMC46485. 

15. Gowdy KM, Fessler MB. Emerging roles for cholesterol and lipoproteins in lung disease. 

Pulm Pharmacol Ther. 2013;26(4):430-7. Epub 2012/06/19. doi: 10.1016/j.pupt.2012.06.002. 

PubMed PMID: 22706330; PubMed Central PMCID: PMCPMC3466369. 

16. VM1 C, HF R, O A, D O, MB F, B K-S, et al. SARS-CoV-2 asymptomatic and 

symptomatic patients and risk for transfusion transmission. Transfusion. 2020. doi: 

10.1111/trf.15841. 

17. Chen W, Lan Y, Yuan X, Deng X, Li Y, Cai X, et al. Detectable 2019-nCoV viral RNA 

in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect. 

2020;9(1):5. doi: 10.1080/22221751.2020.1732837. 

18. Fang Z, Zhang Y, Hang C, Ai J, Li S, Zhang W. Comparisons of viral shedding time of 

SARS-CoV-2 of different samples in ICU and non-ICU patients. J Infect. 2020. Epub 

2020/03/27. doi: 10.1016/j.jinf.2020.03.013. PubMed PMID: 32209381; PubMed Central 

PMCID: PMC7118636. 

19. Buetti N, Patrier J, Le Hingrat Q, Loiodice A, Bouadma L, Visseaux B, et al. Risk factors 

for SARS-CoV-2 detection in blood of critically ill patients. Clin Infect Dis. 2020. Epub 

2020/09/03. doi: 10.1093/cid/ciaa1315. PubMed PMID: 32875309; PubMed Central PMCID: 

PMC7499490. 

20. Veyer D, Kerneis S, Poulet G, Wack M, Robillard N, Taly V, et al. Highly sensitive 

quantification of plasma SARS-CoV-2 RNA shelds light on its potential clinical value. Clin 

Infect Dis. 2020. Epub 2020/08/18. doi: 10.1093/cid/ciaa1196. PubMed PMID: 32803231; 

PubMed Central PMCID: PMC7454373. 

21. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, et al. SARS-CoV-2 

infection of human ACE2-transgenic mice causes severe lung inflammation and impaired 

function. Nat Immunol. 2020;21(11):1327-35. Epub 2020/08/26. doi: 10.1038/s41590-020-0778-

2. PubMed PMID: 32839612; PubMed Central PMCID: PMCPMC7578095. 

22. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. 

Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy 

series from New Orleans. Lancet Respir Med. 2020;8(7):681-6. Epub 2020/05/31. doi: 

10.1016/S2213-2600(20)30243-5. PubMed PMID: 32473124; PubMed Central PMCID: 

PMCPMC7255143. 

23. Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC. Angiotensin converting 

enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung. J Cell 

Biochem. 2007;101(5):1278-91. Epub 2007/03/07. doi: 10.1002/jcb.21248. PubMed PMID: 

17340620; PubMed Central PMCID: PMCPMC7166549. 

24. Keidar S, Gamliel-Lazarovich A, Kaplan M, Pavlotzky E, Hamoud S, Hayek T, et al. 

Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in 

congestive heart failure patients. Circ Res. 2005;97(9):946-53. Epub 2005/09/24. doi: 

10.1161/01.RES.0000187500.24964.7A. PubMed PMID: 16179584. 

25. Li W, Greenough TC, Moore MJ, Vasilieva N, Somasundaran M, Sullivan JL, et al. 

Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited 

by murine angiotensin-converting enzyme 2. J Virol. 2004;78(20):11429-33. Epub 2004/09/29. 

doi: 10.1128/JVI.78.20.11429-11433.2004. PubMed PMID: 15452268; PubMed Central 

PMCID: PMCPMC521845. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.07.414706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414706
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for 

SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. Epub 

2020/02/26. doi: 10.1038/s41564-020-0688-y. PubMed PMID: 32094589; PubMed Central 

PMCID: PMCPMC7095430. 

27. Wei X, Su J, Yang K, Wei J, Wan H, Cao X, et al. Elevations of serum cancer 

biomarkers correlate with severity of COVID-19. J Med Virol. 2020. Epub 2020/04/30. doi: 

10.1002/jmv.25957. PubMed PMID: 32347972; PubMed Central PMCID: PMCPMC7267262. 

28. Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol 

is associated with the severity of COVID-19 infection. Clin Chim Acta. 2020. Epub 2020/07/13. 

doi: 10.1016/j.cca.2020.07.015. PubMed PMID: 32653486; PubMed Central PMCID: 

PMC7350883. 

29. Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-

19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel 

therapeutic approaches. Faseb J. 2020. Epub 2020/06/27. doi: 10.1096/fj.202001451. PubMed 

PMID: 32588493; PubMed Central PMCID: PMC7361619. 

30. Wang G, Zhang Q, Zhao X, Dong H, Wu C, Wu F, et al. Low high-density lipoprotein 

level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health 

Dis. 2020;19(1):204. Epub 2020/09/08. doi: 10.1186/s12944-020-01382-9. PubMed PMID: 

32892746; PubMed Central PMCID: PMCPMC7475024. 

31. Tanaka S, De Tymowski C, Assadi M, Zappella N, Jean-Baptiste S, Robert T, et al. 

Lipoprotein concentrations over time in the intensive care unit COVID-19 patients: Results from 

the ApoCOVID study. PLoS One. 2020;15(9):e0239573. Epub 2020/09/25. doi: 

10.1371/journal.pone.0239573. PubMed PMID: 32970772; PubMed Central PMCID: 

PMCPMC7514065. 

32. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of 

SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020. Epub 2020/05/15. doi: 

10.1038/s41586-020-2332-7. PubMed PMID: 32408336. 

33. Cao X, Yin R, Albrecht H, Fan D, Tan W. Cholesterol: A new game player accelerating 

vasculopathy caused by SARS-CoV-2? Am J Physiol Endocrinol Metab. 2020;319(1):E197-

E202. Epub 2020/06/06. doi: 10.1152/ajpendo.00255.2020. PubMed PMID: 32501731; PubMed 

Central PMCID: PMCPMC7347957. 

34. Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD, Kavanagh Williamson M, et 

al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science. 

2020;370(6517):725-30. Epub 2020/09/23. doi: 10.1126/science.abd3255. PubMed PMID: 

32958580. 

35. Shoemark D, Colenso C, Toelzer C, Gupta K, Sessions R, Davidson A, et al. Molecular 

Simulations suggest Vitamins, Retinoids and Steroids as Ligands binding the Free Fatty Acid 

Pocket of SARS-CoV-2 Spike Protein. Chemrxiv. 2020. doi: 

https://doi.org/10.26434/chemrxiv.13143761.v1  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.07.414706doi: bioRxiv preprint 

https://doi.org/10.26434/chemrxiv.13143761.v1
https://doi.org/10.1101/2020.12.07.414706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 1 Primer lists for inflammatory genes  

Gene name Gene ID Primer-forward Primer-reverse 
Amplicon 
size (bp) 

CD86 NM_019388.3 

CCTGGAAAGGTCTGGAG
AATG 

GGCAGATCAGTCCT
TCCATAAA 110 

CD80 NM_001359898.1 

GAGGCAAGCAGAGAAAC
AAAC 

GTATCCCACATGGA
CAGAGAAG 102 

CD68 NM_001291058.1 

ATTGAGGAAGGAACTGG
TGTAG 

CCTCTGTTCCTTGG
GCTATAAG 105 

IL-Ib NM_008361.4 

ATGGGCAACCACTTACC
TATTT 

GTTCTAGAGAGTGC
TGCCTAATG 94 

TLR2 NM_011905.3 

CACTATCCGGAGGTTGC
ATATC 

GGAAGACCTTGCTG
TTCTCTAC 113 

TLR4 NM_021297.3 

AGTATCGAGAGGCTCAG
GTATAG 

TACAGGATGCAGGA
CAAGTAATC 108 

IFN-γ NM_008337.4 

CTCTTCCTCATGGCTGTT
TCT 

TTCTTCCACATCTAT
GCCACTT 105 

IL-6 NM_001314054.1 

GTCTGTAGCTCATTCTG
CTCTG 

GAAGGCAACTGGAT
GGAAGT 102 

Cxcl15 NM_011339.2 

GTCCAAAGAGGACTGTG
TGTAG 

GACTAAGCAGGAAA
TGGAGAGG 94 

IL-12α NM_001159424.2 

CCTCCATCGCTTCTCTC
ATATTC 

TCTTGCTCTTCTGCT
AACACAT 110 

IL-17 NM_010552.3 

CGCAATGAAGACCCTGA
TAGAT 

CTCTTGCTGGATGA
GAACAGAA 123 

IL-18 NM_001357221.1 

TGAGGCATCCAGGACAA
ATC 

GTACTCATCGTTGT
GGGAACA 97 

IL-23 NM_031252.2 

CAGAACCAAAGGAGGTG
GATAG 

GGCAACAGCCATAG
CATTATTAC 123 

TNF-α NM_001278601.1 

CTACCTTGTTGCCTCCT
CTTT 

GAGCAGAGGTTCAG
TGATGTAG 116 

CD36 NM_001159555.1 

GGAGTGCTGGATTAGTG
GTTAG 

GCTGTGAGCAGACG
TATAGAAG 87 

CD200 NM_001358443.1 

TCTGAATCCTGTCTCGT
GTAATG 

AGAGAGAGAGAGAG
AGAGAGAGA 105 

CD163 NM_001170395.1 

CAGACTGGTTGGAGGAG
AAATC 

CAGCTTCCAGAGAC
AAGTCAA 101 

IL-10 NM_010548.2 

TTGAATTCCCTGGGTGA
GAAG 

TCCACTGCCTTGCT
CTTATTT 95 

TGF-β NM_011577.2 

GGTGGTATACTGAGACA
CCTTG 

CCCAAGGAAAGGTA
GGTGATAG 103 

IL-1RII NM_001360800.1 

CTGATAGTCCCGTGCAA
AGT 

GGGTAAGCAGCCGA
GATAAA 98 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.07.414706doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/nuccore/NM_019388.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_001359898.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001291058.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_008361.4
https://www.ncbi.nlm.nih.gov/nuccore/NM_011905.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_021297.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_008337.4
https://www.ncbi.nlm.nih.gov/nuccore/NM_001314054.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_011339.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_001159424.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_010552.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_001357221.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_031252.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_001278601.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001159555.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001358443.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001170395.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_010548.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_011577.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_001360800.1
https://doi.org/10.1101/2020.12.07.414706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Arg1 NM_007482.3 

ACAGCAAAGCAGACAGA
ACTA 

GAAAGGAACTGCTG
GGATACA 110 

PPAR-γ NM_001127330.2 

CTGGCCTCCCTGATGAA
TAAAG 

AGGCTCCATAAAGT
CACCAAAG 111 

FIZZ1 NM_020509.4 

GCTGATGGTCCCAGTGA
ATA 

CGTTACAGTGGAGG
GATAGTTAG 103 

Rps18 NM_011296.3 
ATGTGAAGGATGGGAAG
TACAG 

CCCTCTATGGGCTC
GAATTT 101 

Nono NM_001252518.1 
GGAGGTGCTATGGGCAT
AAA 

GGTTCCATCTGGCA
TCATAGT 105 

Ppia NM_008907.2 
TGGCAAGACCAGCAAGA
A 

CTCCTGAGCTACAG
AAGGAATG 106 

Alas2 NM_001102446.1 
CCATAGAGGAGACCCTG
AAGA 

GCTGAGTCTTTCTG
GTGTAGTT 124 

Rpp40 NM_145938.4 
ATGATGACTGCCCACCA
TAAA 

GTAGCAAGTCTGGG
TGACATATAA 108 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Fig 6 
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