
An empirical evaluation of functional alignment using inter-subject decoding

Thomas Bazeille1,†,∗ Elizabeth DuPre2,†, Jean-Baptiste Poline2, Bertrand Thirion1
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Inter-individual variability in the functional organization of the brain presents a major obsta-
cle to identifying generalizable neural coding principles. Functional alignment—a class of methods
that matches subjects’ neural signals based on their functional similarity—is a promising strategy
for addressing this variability. At present, however, a range of functional alignment methods have
been proposed and their relative performance is still unclear. In this work, we benchmark five func-
tional alignment methods for inter-subject decoding on four publicly available datasets. Specifically,
we consider piecewise Procrustes, searchlight Procrustes, piecewise Optimal Transport, Shared Re-
sponse Modelling (SRM), and intra-subject alignment; as well as associated methodological choices
such as ROI definition. We find that functional alignment generally improves inter-subject decod-
ing accuracy though the best performing method depends on the research context. Specifically,
SRM performs best within a region-of-interest while piecewise Optimal Transport performs best at
a whole-brain scale. We also benchmark the computational efficiency of each of the surveyed meth-
ods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy
as a quantification of inter-subject similarity, our results support the use of functional alignment
to improve inter-subject comparisons in the face of variable structure-function organization. We
provide open implementations of the methods used.
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1. Introduction

A core challenge for cognitive neuroscience is to find
similarity across neural diversity (Churchland 1998);
that is, to find shared or similar neural processes
supporting the diversity of individual cognitive expe-
rience. Anatomical variability and limited structure-
function correspondence across cortex (Paquola et al.
2019, Rodriguez-Vazquez et al. 2019) make this goal chal-
lenging (Rademacher et al. 1993, Thirion et al. 2006).
Even after state-of-the-art anatomical normalization to a
standard space, we still observe differences in individual-
level functional activation patterns that hinder cross-
subject comparisons (Langs et al. 2010, Sabuncu et al.
2010). With standard processing pipelines, it is there-
fore difficult to disentangle whether individuals are en-
gaging in idiosyncratic cognitive experience or if they are
engaging in shared functional states that are differently
encoded in the supporting cortical anatomy.

To address this challenge, functional alignment is an
increasingly popular family of methods for functional
magnetic resonance imaging (fMRI) analysis: from the
initial introduction of hyperalignment in Haxby et al.
2011, the range of associated methods has grown to in-
clude shared response modelling (SRM; Chen et al. 2015)
and Optimal Transport (Bazeille et al. 2019) with many
variations thereof (see e.g. Xu et al. 2018, Yousefnezhad
and Zhang 2017, among others). The conceptual shift
from anatomically-based to functionally-driven align-
ment has opened new avenues for exploring neural sim-
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ilarity and diversity. In particular, by aligning activa-
tion patterns in a high-dimensional functional space (i.e.,
where each dimension corresponds to a voxel), we can
discover shared representations that show similar trajec-
tories in functional space but rely on unique combina-
tions of voxels across subjects. For a review of current
applications in the literature, see Haxby et al. 2020.

Nonetheless, it remains unclear how researchers should
choose among the available functional alignment methods
for a given research application. We therefore aimed to
benchmark performance of existing functional alignment
methods on several publicly accessible fMRI datasets,
with the goal of systematically evaluating their usage
for a range of research questions. We consider perfor-
mance to include both (1) improving inter-subject simi-
larity while retaining individual signal structure as well
as (2) computational efficiency, as the latter is an im-
portant consideration for scientists who may not have
access to specialized hardware. Technically up-to-date
and efficient implementations to reproduce these results
are provided at https://github.com/neurodatascience/
fmralign-benchmark.

1.1. Defining levels of analysis: region-of-interest
or whole-brain

Functionally aligning whole-brain response patterns at
a voxelwise level is computationally prohibitive and may
yield biologically implausible transformations (e.g., align-
ing contralateral regions). Therefore, currently available
functional alignment methods generally define transfor-
mations within a sub-region. This constraint acts as
a form of regularization, considering local inter-subject
variability rather than global changes such as large-scale
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functional reorganization. It also divides the computa-
tionally intractable problem of matching the whole-brain
into smaller, more tractable sub-problems.

An important consideration, then, is how to define a lo-
cal neighborhood. Broadly, two main strategies exist: (1)
within a given region of interest (ROI) that reflects prior
expectations on the predictive pattern or (2) grouping or
parcellating voxels into a collection of subregions across
the whole-brain. Existing functional alignment methods
have been proposed at each of these scales. For example,
the initial introduction of hyperalignment in Haxby et al.
2011 was evaluated within a ventral temporal cortex ROI
and was later extended to aggregate many local align-
ments into larger transforms using a Searchlight scheme
(Guntupalli et al. 2016). Other methods such as Optimal
Transport have been evaluated on whole-brain parcella-
tions (Bazeille et al. 2019), where transforms are derived
for each parcel in parallel and then aggregated into a
single whole-brain transform. Throughout this work, we
therefore consider functional alignment methods at both
the ROI and parcellated whole-brain level of analysis.

1.2. Quantifying the accuracy of functional
alignment

1.2.1. Image-based statistics

A key question is how to objectively measure the per-
formance of functional alignment. One approach is to
consider alignment as a reconstruction problem, where
we aim to reconstruct images from training data us-
ing functional alignment. These functionally aligned
maps can then be compared with held-out ground-truth
maps. We can quantify this comparison using image-
based statistics such as the correlation of voxel activity
profiles across tasks (Guntupalli et al. 2016, Jiahui et al.
2020), spatial correlation or Dice coefficient between es-
timated and held-out brain maps (Langs et al. 2014) or
other metrics such as reconstruction ratio (Bazeille et al.
2019). However, these image-based statistics are sensi-
tive to low-level image characteristics (e.g., smoothness,
scaling), and their values can therefore reflect trivial im-
age processing effects (such as the smoothness introduced
by resampling routines) rather than meaningful activity
patterns.

1.2.2. Adopting a predictive framework to quantify
alignment accuracy

Rather than using image-based statistics, an alterna-
tive approach is to test functional alignment accuracy
in a predictive framework. Prior work adopting this
framework has used tests such as time-segment matching
from held-out naturalistic data (e.g., Chen et al. 2015,
Guntupalli et al. 2016). However, because time-segment
matching relies on the same stimulus class to train and
test the alignment, it is unclear whether the learnt func-
tional transformations extend to other, unrelated tasks—
particularly tasks with lower inter-subject correlation

(Nastase et al. 2019). We are therefore specifically inter-
ested in predictive frameworks that probe model validity
by measuring accuracy on held-out data from a different
stimulus class, with or without functional realignment.

Inter-subject decoding is a well-known problem in the
literature aimed at uncovering generalizable neural cod-
ing principles. Specifically, in inter-subject decoding we
learn a predictive model on a set of subjects and then test
that model on held-out subjects, measuring the extent to
which learned representations generalize across individ-
uals. In an information-mapping framework (Kriegesko-
rte and Diedrichsen 2019), decoding allows us to assess
the mutual information between task conditions. Func-
tional alignment, therefore, should facilitate information-
mapping by increasing the similarity of condition-specific
representations across subjects, thus improving their de-
coding.

Although the link between mutual information and de-
coding accuracy is non-trivial (Olivetti et al. 2011), we
consider that measuring alignment with decoding accu-
racy on unseen subjects better fulfils neuroscientists’ ex-
pectations of inter-subject alignment in two main ways.
First, decoding accuracy provides a more interpretable
assessment of performance than other measures such as
mutual information estimates. Second, decoding accu-
racy on a held-out sample provides insight into the ex-
ternal validity and therefore generalizability of derived
neural coding principles. Compared to image-based mea-
sures, decoding accuracy is thus a more rigorous measure
of whether functional alignment improves the similarity
of brain signals across subjects while also preserving their
structure and usability for broader research use cases.
In this work, we therefore quantify functional alignment
accuracy by assessing improvements in inter-subject de-
coding when using functional alignment over and above
anatomical alignment.

1.3. The present study

Using this inter-subject decoding framework, we: (1)
establish that functional alignment improves decoding
accuracy above anatomical-only alignment, (2) investi-
gate the impact of common methodological choices such
as whether alignment is learned in subregions across the
whole brain or in pre-defined region-of-interest (ROI),
and (3) compare the impact of specific alignment meth-
ods in whole-brain and ROI-based settings. We then
provide a qualitative comparison of the transformations
learnt by each method to “open the black box” and
provide insights into how potential accuracy gains are
achieved. Finally, we discuss the availability, usability
and scalability of current implementations for each of the
methods considered.

2. Materials and Methods

In this section, we first consider frameworks for aggre-
gating local functional alignment transformations into a
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FIG. 1. Principle of functional alignment The goal of functional alignment is to learn correspondence between data
drawn from two subjects: from a source subject to a target subject using their synchronized alignment data A. In this
paper, each subject comes with additional decoding task data D. Red arrows describe functional alignment methods where
correspondence is learnt from Asource to Atarget, while blue arrow describes intra-subject alignment method, where we learn
correlation structure from Asource to Dsource. Solid arrows indicate a transformation learnt during training. Dashed arrows
indicate when the previously learnt transformation is applied in prediction to estimate D̂target.

single, larger transform (Section 2.1.1) that can be ap-
plied at a region-of-interest (ROI) or whole-brain scale.
We proceed by introducing mathematical notations for
functional alignment, then use these notations to dis-
cuss the five functional alignment methods included in
our benchmark (Section 2.2). We next describe our pro-
cedure to quantify alignment performance using inter-
subject decoding (Section 2.3) and a series of experiments
aimed at investigating the impact of functional alignment
on decoding accuracy (Section 2.4). Finally, we describe
the datasets used to run each experiment (Section 2.5)
and the implementations used (Section 2.6).

2.1. Aggregating local alignments

2.1.1. Comparing searchlight and piecewise schemes

As discussed in Section 1.1, alignment methods are
closely linked with the definition of local correspondence
models. To align the entire cortex across subjects, two
main frameworks have been proposed: searchlight and
piecewise analysis. Each of these frameworks use func-
tional alignment methods to learn local transformations
and aggregate them into a single large-scale alignment;
however, searchlight and piecewise differ in how they
aggregate transforms, as illustrated in Figure 2. The
searchlight scheme (Kriegeskorte et al. 2006), popular in
brain imaging (Guntupalli et al. 2018, 2016), has been
used as a way to divide the cortex into small overlapping
spheres of a fixed radius. A local transform can then
be learnt in each sphere and the full alignment is ob-
tained by averaging across overlapping transforms. Im-
portantly, the aggregated transformation produced is no
longer guaranteed to bear the type of regularity (e.g or-
thogonality, isometry, or diffeomorphicity) enforced dur-
ing the local neighborhood fit.

FIG. 2. Comparing piecewise and searchlight align-
ment. In this illustration, transformations are derived for
the blue, green, and red areas separately. Note that the piece-
wise alignment does not include a green area, as this corre-
sponds to a searchlight overlapping both the red and blue
areas. For non-overlapping parcels, these transformations are
stacked into a larger orthogonal matrix. For the overlapping
searchlight, these transformations are aggregated, with over-
lapping values averaged. Note that the final transformation
for the searchlight alignment is no longer orthogonal in this
example.

An alternative scheme, piecewise alignment (Bazeille
et al. 2019), uses non-overlapping neighborhoods either
learnt from the data using a parcellation method—such
as k-means—or derived from an a priori functional atlas.
Local transforms are derived in each neighborhood and
concatenated to yield a single large-scale transformation.
Unlike searchlight, this returns a transformation matrix
with the desired regularities. This framework might in-
duce staircase effects or other functionally-irrelevant dis-
continuities in the final transformation due to the under-
lying boundaries.
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2.1.2. Aggregation schemes used in this benchmark

In the literature to date, searchlight and piecewise ag-
gregation schemes have both been used in conjunction
with Generalized Procrustes Analysis (detailed in section
2.2) under the names hyperalignment (Guntupalli et al.
2016) and scaled orthogonal alignment (Bazeille et al.
2019), respectively. We therefore include both search-
light Procrustes and piecewise Procrustes in our bench-
mark. With the exception of SRM—which includes an
internal regularization and can therefore be applied di-
rectly to the ROI or whole-brain data—every other local
method is regularized through piecewise alignment.

As piecewise alignment is learnt within a parcellation,
an important question is: which brain atlas should be
used for piecewise alignment? In Section S4 we com-
pare results from the Schaefer et al. 2018 atlases to those
from parcellations derived directly on the alignment data.
By default, the results presented below are derived with
the 300 ROI parcellation of the Schaefer atlas unless
noted otherwise. In the case of searchlight Procrustes,
we selected searchlight parameters to match those used
in Guntupalli et al. 2016 as implemented in PyMVPA
(Hanke et al. 2009).

2.2. Description of the benchmarked methods

As we use inter-subject decoding to compare func-
tional alignment methods, we can only consider methods
that meet the following two criteria. First, the align-
ment transformations should be learnt on temporally
synchronized (i.e., co-occuring) task data, or on con-
trasts matched across individuals. Second, the learnt
transformations must be applicable as such on unseen
data with a different task structure. These two crite-
ria exclude several methods currently used in the lit-
erature such as regularized canonical correlation anal-
ysis (rCCA; Bilenko and Gallant 2016), gradient hyper-
alignment (Xu et al. 2018), connectivity hyperalignment
(Guntupalli et al. 2018), and methods based on Laplacian
embeddings (Langs et al. 2014).

Here, we consider five different alignment methods:
searchlight Procrustes (Guntupalli et al. 2016, Haxby
et al. 2011), piecewise Procrustes, Optimal Transport
(Bazeille et al. 2019), shared response modelling (SRM;
Chen et al. 2015), and intra-subject correlations across
tasks (Tavor et al. 2016), here referred to as “intra-
subject alignment.” We provide a brief summary of these
methods below.

2.2.1. General notations

Assume that for every subject we have alignment data
A ∈ Rp×n and decoding task data D ∈ Rp×d, where
n is the number of alignment time points or frames, d
the number of decoding task image and p is the number
of voxels. The alignment and decoding task data are
collected for both source and target subjects, which we

denote with superscripts.
In general, functional alignment methods learn a trans-

formation matrix R ∈ Rp×p that best maps functional
signals from a source subject to those of a target subject.
To do so, R can be seen as a linear mixing of source vox-
els signals such that RAsource best matches Atarget. R is
then applied on separate, held-out data from the source
subject, Dsource to estimate Dtarget. Because we only
learn an estimate of that held-out decoding task data,
we denote this as D̂target. Thus, D̂target = RDsource.

We consider one method, intra-subject alignment,
which uses the same alignment and decoding task data to
learn a different transformation than the one described
above. Specifically, in intra-subject alignment we are in-
terested in learning Rintra ∈ Rn×s , the “intra-subject”
correlations between Asource and Dsource. We can then
use Rintra to output D̂target = RintraAtarget. Thus,
the main distinction here is that intra-subject alignment
does not learn a source-target mapping; instead, it learns
a A to D mapping within-subjects. These notations are
illustrated in Figure 1.

2.2.2. Procrustes

Generalized Procrustes analysis, known in the cogni-
tive neuroscience literature as as hyperalignment (Haxby
et al. 2011), searches for an orthogonal local transfor-
mation R to align subject-level activation patterns such
that:

min
R=sM

||RAsource−Atarget||2F , s ∈ R+, M ∈ Rp×p (1)

where p is the number of voxels in a given region, such
that

MᵀM = Ip (2)

This transform can be seen as a rotation matrix mix-
ing signals of voxels in Asource to reconstruct the signal
of voxels in Atarget as much as possible. As described
in the Section 2.1.2, we compare two whole-brain im-
plementations of this method: piecewise Procrustes and
searchlight Procrustes, that differ in the way local trans-
formations are aggregated.

2.2.3. Optimal Transport

Optimal transport—first introduced as a functional
alignment method in Bazeille et al. 2019—estimates
a local transformation R that aligns subject-level ac-
tivation patterns at a minimal overall cost. Specifi-
cally, we can compute the cost of aligning two subject-
level activation patterns as Tr(R ·C), where C is
the functional dissimilarity—or difference in activation
patterns—between source and target, as measured by a
pairwise functional distance matrix. Thus, for voxel i in
Asource and voxel j in Atarget:
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Ci,j(A
source,Atarget) = ||Asource

i −Atarget
j || (3)

Importantly, the resulting matching is constrained to
exhaustively map all source voxels to all target voxels,
with every voxel having an equal weight. This implicitly
yields an invertible and strongly constrained transform,
preserving signal structure as much as possible. To allow
for a more efficient estimation, we slightly relaxed this
constraint with an additional entropic smoothing term.
As introduced in Cuturi 2013, we can then find R, the
regularized Optimal Transport plan by finding a mini-
mum for Equation 4 through the Sinkhorn algorithm.

min
R∈R+

p×p;

R1=1/p, 1R>=1/p

Tr(R ·C)− εH(R) (4)

where ε > 0, and the discrete entropy of the transfor-
mation H(R) is defined as:

H(R)
def.
= −

∑
i,j

Ri,j(log(Ri,j)− 1) (5)

This method differs from Procrustes analysis in that it
yields a sparser mapping between source and target vox-
els with high functional similarity, making it less sensitive
to noisy voxels on both ends. The level of sparsity is con-
trolled by ε, a user-supplied hyper-parameter, which we
set to 0.1 throughout our experiments. For our imple-
mentation, we rely on the fmralign package. Optimal
transport transformations are calculated in a piecewise
fashion, following Bazeille et al. 2019.

2.2.4. Shared Response Model

The Shared Response Model (SRM), introduced in
Chen et al. 2015, differs from Procrustes analysis and
Optimal Transport in that it provides a decomposition
of all subjects’s activity at once, rather than being per-
formed pairwise. Specifically, SRM estimates a common
shared response S and a per-subject orthogonal basis Wi

from subject-level alignment data Ai such that:

min
W1,...,Wn,S

∑
i

||Ai−WiS||2F ∀ i, S ∈ Rk×n, Wi ∈ Rp×k

(6)
where n is the number of time points, p is the num-

ber of voxels, and k is a hyper-parameter indexing the
dimensionality, such that:

WiᵀWi = Ik (7)

In practice, SRM decomposes the signal of many sub-
jects in a common basis, with the same orthogonality

constraint as Procrustes. This ability to jointly fit inter-
subject data through orthogonal transforms makes it
reminiscent of Procrustes, with a caveat: SRM is effective
if the number of components k is large enough to capture
all distinct components in the signal. In this work, we set
k to 50 components as in the original SRM benchmarks
provided in Chen et al. (2015).

We specifically use the FastSRM implementation pro-
posed by Richard et al. 2019 and available in the
BrainIAK library (RRID: SCR 01 4824), that approx-
imates this calculation with an emphasis on improved
computational performance. For full details on the com-
putational advantages of FastSRM, we direct the reader
to their work.

2.2.5. Intra-subject alignment

Another alternative to pairwise functional alignment
has been proposed in Tavor et al. 2016. In their paper,
Tavor and colleagues show that while individual activ-
ity patterns in each task may appear idiosyncratic, cor-
respondences learnt across different tasks using a gen-
eral linear model (e.g., to predict object recognition task
from movie-watching data derived features) display less
across-subject variability than individual activity maps.
This provides an interesting twist on the typical func-
tional alignment workflow: while most methods learn
alignments within a single task and across subjects, we
can instead learn within-subject correlations across tasks.
The structure of learnt task-specific correlations should
then hold in new, unseen subjects. We include here a
method for learning these intra-subject correlations in a
piecewise fashion, which we call intra-subject alignment.

Figure 3 illustrates how we can learn the local-level
correlation structure between two independent tasks
Asource ∈ Rp×n,Dsource ∈ Rp×d within a single source
subject. We denote the mapping between these tasks as
Rintra to distinguish it from mappings which are learnt
between pairs of subjects.

First, we divide alignment and decoding data into
1000 parcels using the highest-resolution Schaefer atlas
(Schaefer et al. 2018). On a local parcel i, each voxel is
considered a sample and we train Rintra

i ∈ Rpi×d through
ridge regression:

Rintra
i = arg min

Ri

||Asource
i Ri−Dsource

i ||2F +α||Ri||2F (8)

The hyperparameter α is chosen with nested cross-
validation among five values scaled between 0.1 and 1000
logarithmically.

After repeating this procedure for all source subjects,
we then use Rintra to estimate decoding data for target
subject as D̂target = RintraAtarget. We observed that—
unlike other piecewise techniques (Section S4)—the de-
coding accuracy strictly improved with the number of
parcels in the atlas used so we used the highest resolu-
tion atlas available. As with other functional alignment
methods, we can evaluate the quality of our estimation
using an inter-subject decoding framework.
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FIG. 3. Intra-subject alignment. Using intra-subject alignment to learn piecewise correlations between a single subject’s
alignment and decoding task data. As with other piecewise methods, this mapping is learnt separately for all parcels i . . . j of
the chosen parcellation. For each parcel, we use cross-validated ridge regression to learn the mapping between the two task
conditions—alignment data A and independent decoding task data D—for this source subject. For the ith parcel, we denote
this mapping as the matrix Ri. We then aggregate these piecewise predictions into a single, whole-brain prediction D̂. In
training, this prediction can be directly compared to the ground-truth decoding data, D. When testing, we would have access
to the target subject’s alignment data A but not their decoding task data, D.

2.3. Experimental procedure

For each dataset considered (as described in Sec-
tion 2.5), we calculated the inter-subject decoding ac-
curacy for standard, anatomical-only alignment and for
each of the five considered functional alignment methods.

To calculate inter-subject decoding accuracy, we took
the trial- or condition-specific beta maps generated for
each dataset (see Section 2.5 for full details on beta-
map generation) and fit a linear Support Vector Machine
(SVM). In order to ensure fair comparisons of decoding
accuracy across experiments, we chose a classifier with no
feature selection and default model regularization. Clas-
sifiers were implemented in scikit-learn (Pedregosa et al.
2011), and decoding accuracy was assessed using a leave-
one-subject-out cross-validation scheme. That is, the lin-
ear SVM was trained to classify condition labels on all-
but-one subject and the resulting trained classifier was
used without retraining on the held-out subject, provid-
ing an accuracy score for that cross-validation fold.

For each dataset, we first calculated the inter-subject
decoding accuracy using standard anatomical alignment.
This served as a baseline accuracy against which we could
compare each functional alignment method. Using align-
ment data, functional alignment transformations were
then learnt for each pairwise method, where the left-
out subject for that cross-validation fold was the target
subject for functional alignment. Inter-subject decoding
accuracy was then re-calculated after applying functional
alignment transformations to the decoding beta maps. In
the special case of SRM—which calculates an alignment
from all provided subjects in a single decomposition—we
withheld the left-out subject from the shared response
estimation step to avoid data leakage and finally learned

its projection to the resulting shared response space, in
which decoding was performed.

For each cross-validation fold, we report the inter-
subject decoding accuracy of a given functional align-
ment method after subtracting the baseline, anatomical-
only accuracy for that same fold. An overview of the
experimental procedures is provided in Figure 4.

2.4. Main experiments

Experiment 1 uses the experimental procedure de-
scribed previously to assess accuracy gains provided by
alignment methods with respect to anatomical alignment
when applied on whole-brain images. We benchmarked
the five methods described in Section 2.2: piecewise Pro-
crustes, searchlight Procrustes, piecewise Optimal Trans-
port, SRM, and intra-subject alignment, with relevant
hyperparameters selected as described previously. Re-
sults of this benchmark (on five tasks from four datasets
as described in Section 2.5) are presented in Section 3.1.
For each method, we also assessed its computation time
relative to piecewise Procrustes alignment. Piecewise
Procrustes provides a reasonable computational baseline
as it is the only considered alignment method that does
not include a hyperparameter and therefore shows a sta-
ble computation time across experiments.

We estimate the noise ceiling for this task as within-
subject decoding accuracy. Within-subject decoding was
calculated separately for each subject as the average
leave-one-session-out decoding accuracy. We can then
directly compare this accuracy value to the inter-subject
decoding accuracy when that subject is the target—that
is, the left-out—subject. The difference between within-
and anatomical inter-subject decoding accuracies, then,
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FIG. 4. Analysis pipeline. (A) First-level general linear models are fit for each subject to derive trial- or condition-specific
beta-maps for each session. (B) These beta maps and their matching condition labels are used to train a linear SVM on the
training set of subjects. (C) The trained classifier is applied on a held-out test subject, and accuracy is assessed by comparing
the predicted and actual condition labels. (D) On a separate task, we compare subject-level activation patterns as trajectories
in the high-dimensional voxel space. This allows us to learn functional alignment transformations that maximize the similarity
of these high-dimensional spaces. (E) These voxel-wise transformations are applied on the decoding beta maps, and a new
linear SVC is trained to predict condition labels. This trained classifier can then be applied to the held-out test subject and
decoding accuracy assessed as in (C).

is a good approximation of the decoding accuracy lost to
inter-subject variability; therefore, it provides a range of
possible accuracy gains that can be expected from func-
tional realignment.

We then conducted Experiment 2 to understand how
whole-brain results compare to ROI-based analyses.
Specifically, we replicated Experiment 1 within selected
ROIs, where ROIs were chosen based on a priori expec-
tations of each decoding task (see Section 2.5 for details
for each dataset). Results from Experiment 2 are shown
in Section 3.2.

Experiment 3 tackles the notoriously hard problem of
understanding how each of the considered methods align
subjects by examining qualitatively their impact on ac-
tivity patterns across individuals. To “open the black-
box,” we reused IBC dataset full-brain alignments learnt
in Experiment 1. Specifically, we consider the transfor-
mation to sub-04’s activity pattern from all other sub-
jects’s functional data. With these transformations, we
align two contrasts from the IBC dataset: Rapid Serial
Visual Presentation of words (RSVP language task) and
sound listening. Finally, we run a group conjunction
analysis (Heller et al. 2007) on these aligned contrasts
and display its results. This statistical analysis, more
sensitive than its random effect equivalent on small sam-
ples, allows one to infer that every subject activated in
the region with a proportion γ showing the effect consid-

ered. Here we use γ = 0.25 to recover all regions selec-
tively activated by at least a few subjects, and we show
in Section 3.3 how this group functional topography is
modified by alignment.

2.4.1. Control analyses

In addition to our three main experiments, we ran
three additional control analyses on the IBC dataset.
First, we aimed to assess the impact of the brain parcella-
tion and its resolution on piecewise alignment by compar-
ing whole-brain decoding accuracy for two IBC dataset
tasks using piecewise Procrustes across both data-driven
and pre-defined parcellations (Section S4). Second, we
calculated inter-subject decoding performance after ap-
plying Gaussian smoothing kernels of several widths on
both IBC dataset decoding tasks (Section S5). Gaus-
sian smoothing is of particular interest as a comparison
to functional alignment, as it is commonly used to facil-
itate inter-subject comparisons by smoothing over resid-
ual variance in functional mappings. Finally, in a third
control experiment, we assessed the impact of whether
data is represented on the surface or the volume and res-
olution on decoding accuracy in the IBC RSVP language
task (Section S6).
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Dataset S Alignment data Decoding task data Categories d

Individual
Brain Charting
(IBC)

10
53 contrasts from HCP and
ARCHI task batteries

RSVP Language

Words, Non-Words, Consonants,
Simple / Complex sentences,

Jabberwocky 360

Sounds dataset
Voice, Nature, Animal, Music, Speech,

Tools 72

BOLD5000 4 ImageNet content
Plant, Animal, Food,

Artifact Coco, Imagenet and Scenes images 350

Forrest 10
Forrest Gump audio-movie

listening Music genre
Country, Metal, Ambient, Symphonic,

Rock 200
Courtois

Neuromod 4 Life movie watching Visual category Body, Face, Place, Tools 52

TABLE I. Datasets used to benchmark alignment methods. The four datasets used in this benchmark, where each
dataset consists of S subjects. We note the alignment data used for each dataset, showing the range of possible task structures
which work for alignment—from static images for BOLD5000, to statistical contrast maps for IBC, to complex audio or audio-
visual movies for Forrest and Courtois Neuromod. We also note the decoding task(s) used for each dataset. Of note, IBC
dataset has two independent decoding tasks, bringing the total number of decoding tasks to five. Each subject’s decoding
task data comprises d images evenly divided across the listed stimulus categories (except for BOLD5000 categories which are
unbalanced).

2.5. Datasets and preprocessing

In order to assess the performance of each functional
alignment method in a range of applications, we searched
for publicly accessible datasets that included both a task
suitable to learn the alignment (e.g. naturalistic or local-
izer protocols) as well as an independent decoding task
on which we could evaluate functional alignment perfor-
mance. After discarding datasets where we could not
obtain above-chance accuracy levels for within-subject
decoding, we retained four datasets: BOLD5000 (Chang
et al. 2019), Courtois-NeuroMod (Boyle et al. 2020), In-
dividual Brain Charting (IBC; Pinho et al. 2018), and
Study Forrest (Hanke et al. 2016). For the IBC dataset,
we included both a language (RSVP language) and audi-
tory (Sounds dataset) decoding task, yielding a total of
five decoding tasks that probe visual, auditory and lan-
guage systems. For a complete description of the align-
ment and decoding data included in each experiment,
please see Table I.

BOLD5000, StudyForrest and Courtois-NeuroMod
were preprocessed with fMRIPrep (Esteban et al. 2019),
while IBC data were preprocessed using an SPM-based
pipeline as described in Pinho et al. 2018. A com-
plete description of the fMRIPrep preprocessing proce-
dures is available in the appendix (Section S1). Prepro-
cessed data were then masked using a grey matter mask,
detrended, and standardized using Nilearn (Abraham
et al. 2014). To reduce the computational cost of func-
tional alignment, we downsampled all included datasets
to 3mm resolution. Decoding task data were addition-
ally smoothed with a 5mm Gaussian kernel. A general
linear model (GLM) was fit to each decoding task run to
derive trial-specific beta maps (or condition-specific beta
maps for the Courtois Neuromod and IBC Sounds tasks),
which were carried forward for inter-subject decoding.

As described in Section 2.3, Experiment 2 uses pre-
defined regions of interest (ROIs). We selected large,

task-relevant ROIs to ensure that sufficient signal was
available when decoding. A large visual region, extracted
from the Yeo7 (Buckner et al. 2011) atlas was used for
the visual tasks in BOLD5000 and Courtois-NeuroMod.
For Forrest and IBC Sounds—which are auditory tasks—
we took the Neuroquery (Dockès et al. 2020) predicted
response to the term “auditory”. We then compared
this predicted response with the BASC atlas (at scale
36; Bellec et al. 2010) and took the parcel most over-
lapping with the predicted response; namely, parcel 25.
For IBC RSVP, which is a reading task, we extracted
the BASC (at scale 20) atlas components most overlap-
ping with MSDL (Varoquaux et al. 2011) atlas parcels
labeled as left superior temporal sulcus, Broca and left
temporo-parietal junction: namely, the 8 and 18 BASC
components. We then kept only the largest connected
component. All included ROIs are displayed in Figure 7.

2.6. Implementation

With the exception of Courtois Neuromod, all other
included datasets are available on OpenNeuro (Poldrack
et al. 2013) under the following identifiers: ds000113
(Study Forrest), ds001499 (BOLD5000), and ds002685
(IBC). Courtois Neuromod 2020-alpha2 release will be
available under a data usage agreement as outlined on
https://docs.cneuromod.ca.

Our pipeline entirely relies on open-source Python soft-
ware, particularly the SciPy stack (Virtanen et al. 2020).
All included methods are implemented in fmralign or
accessed through their original, open source implementa-
tions as described in Section 2.2. To ease replication and
extension of the presented results, we have created the
fmralign-benchmark repository under https://github.
com/neurodatascience/fmralign-benchmark. This repos-
itory provides an implementation of the procedures
adopted in these experiments, building on fmralign and
previously cited tools.
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FIG. 5. Decoding accuracy improvement and computation time after whole-brain functional alignment. In the
left panel, we show decoding accuracy improvement for each of the considered functional alignment methods at the whole-brain
level of analysis. Each dot represents a single subject, and subjects are colored according to their decoding task. To aggregate
results across datasets, we show accuracy scores after subtracting inter-subject decoding accuracy for the same leave-one-
subject-out cross-validation fold with anatomical-only alignment. In the right panel, we show the computational time for each
of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each box
plot describes the distribution of values across datasets, where the green line indicates the median. We see that piecewise
Procrustes, Optimal Transport, and intra-subject alignment consistently improve decoding accuracy across datasets. We also
see that piecewise Optimal Transport is 10 times slower and searchlight Procrustes is more than 30 times slower than piecewise
Procrustes.

3. Results

3.1. Functional alignment improves inter-subject
decoding

The left panel of Figure 5 displays absolute decoding
accuracy change brought by each functional alignment
method relative to anatomical alignment on whole-brain
images. As every method is trained and tested on same
cross-validation folds, we report the fold-by-fold perfor-
mance change. The right panel displays each method’s
relative computation time compared to piecewise Pro-
crustes alignment. For each panel, each point displayed
is the result for one leave-one-subject-out cross validation
fold and each color corresponds to one of the five decod-
ing tasks. Note that these timings are based on avail-
able implementations — fmralign for piecewise align-
ment methods, pymvpa2 for searchlight, and BrainIAK
for SRM— and are therefore subject to change as imple-
mentations improve. Nonetheless, these estimates pro-
vide insight into the current state-of-the-art.

3.1.1. Alignment substantially improves inter-subject
decoding accuracy

Overall, we can conclude that most functional align-
ment methods consistently improve decoding accuracy

with gains from 2-5% over baseline. This trend is rel-
atively consistent across datasets and target subjects.
Thus, alignment methods manage to reliably reduce indi-
vidual signal variability while preserving task-relevant in-
formation in a variety of conditions. Although between-
dataset variance yields large boxplot, these methods have
significant effect. Indeed, as reported in Table S1, base-
line accuracy is around 20% above chance across datasets.
In this setting, a 5% average improvement across datasets
is a substantial increase.

In order to further contextualize these results, we also
estimated the noise ceiling for inter-subject decoding.
Figure 6 reports that across datasets, the leave-one-
session-out (i.e., within-subject) decoding accuracy for
the target subject is on average 8.5% higher than the
corresponding leave-one-subject-out (i.e., inter-subject)
decoding accuracy after standard anatomical alignment
for the same target subject. Thus, we expect that func-
tional alignment methods will achieve at most an 8.5%
increase in inter-subject decoding accuracy over stan-
dard, anatomically-driven alignment. In this light, we
can see that the best functional alignment method recov-
ers roughly half of the decoding accuracy lost to inter-
subject variability.

Additional control analyses suggest that this effect can-
not be explained by smoothing (Section S5). We further
find that the presented results are largely insensitive both
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FIG. 6. Within-subject minus inter-subject decod-
ing accuracy. We show the difference between the average
leave-one-session-out within-subject decoding accuracy and
anatomically-aligned leave-one-subject-out inter-subject de-
coding accuracy, when that target subject is left-out. Thus,
each dot corresponds to a single subject, and the dot’s color
indicates the decoding task. Of note, BOLD5000 was dropped
since it didn’t contain inter-subject decoding cross-validation
didn’t have independent folds therefore could not be used for
within-subject cross-validation. The box plot describes the
distribution of differences, where the green line represents the
median value. We that argue this difference approximates
the effects of inter-individual variability, and so the best av-
erage accuracy improvement we can hope for using functional
alignment is around 9%.

to whether the data is represented on the cortical surface
or in volumetric space as well as to the parcellation res-
olution used (see section S6).

3.1.2. Piecewise methods show computational and accuracy
advantages

Procrustes alignment results in better inter-subject de-
coding accuracies when performed in a piecewise as com-
pared to a searchlight approach. Specifically, searchlight
shows very low decoding accuracies on average, suggest-
ing that its internal averaging destroys part of the signal
structure recovered by Procrustes. With respect to com-
putational cost, we can see that searchlight Procrustes
is 30 times slower on average than piecewise Procrustes.
These results suggest that piecewise alignment is a better
choice when calculating functional alignment transforma-
tions on full-brain data. Moreover, Section S4 shows that
gains to expect from piecewise alignment are quite insen-
sitive to the resolution and type of parcellation used; i.e.,
taken from an atlas or learnt from subject data.

Another piecewise method, Optimal Transport, yields
the highest decoding accuracy on average. Compared to
other methods—especially Procrustes—we observe that
Optimal Transport gives non-trivial gains in most con-
figurations and only rarely decreases decoding accuracy,
likely because of the stronger constraints that it imposes.
However, this extra-performance comes at a computa-
tional cost: it is on average 10 times slower than Pro-
crustes.

3.1.3. Task-specific mappings can be learnt within subjects

The intra-subject alignment approach differs from
other considered functional alignment methods in that it

learns mappings between the alignment data and decod-
ing task data, with the assumption that these mappings
can be generalized across subjects. Our results support
this assumption, although this method yields gains half
as large as the best performing alignment method and
comes with a significant computational cost. Part of this
cost can be accounted for by the increase in the num-
ber of parcels which must be learnt to preserve signal
specificity. Nonetheless, using task-specific mappings as
a functional alignment method suggests that future work
on refining related methods may be a promising direction
of research.

3.2. Whole-brain alignment outperforms
ROI-based alignment

The left panel of Figure 7 displays the performance of
each functional alignment method relative to anatomi-
cal alignment within task-relevant ROIs. The right panel
displays each method’s relative computation time com-
pared to piecewise Procrustes alignment.

When visually compared to Figure 5, ROI-based de-
coding accuracies appear to be slightly lower than whole-
brain decoding accuracies for most of the considered
methods. We directly compare ROI-based and whole-
brain alignment in a supplementary analysis, depicted
in Figure S1, confirming that ROI-based decoding accu-
racies are in fact lower. Our results support previous
work from the inter-subject decoding literature (Chang
et al. 2015, Schrouff et al. 2018) and suggest that full-
brain piecewise alignment yields the best overall decod-
ing pipeline.

Computationally, we see that piecewise Optimal Trans-
port shows faster performance when restricting the align-
ment to an ROI, running nearly as quickly as piece-
wise Procrustes. The slowest methods here are around
10 times slower than piecewise Procrustes and 50 times
slower than SRM.

We also note that—on average—intra-subject align-
ment does not show increased inter-subject decoding ac-
curacy within task-relevant ROIs. We suspect that this
is likely because the very low number of components pre-
dicted do not enable it to find stable multivariate pat-
terns in this context.

3.2.1. SRM shows higher performance in ROI-based
decoding

Uniquely, the Shared Response Model (SRM) shows
decreased whole-brain decoding accuracy compared to
ROI-based decoding accuracy. Specifically, as visible in
Figure 7, SRM yields the best accuracy improvement at
the ROI level of analysis at a low computational cost (five
times quicker than piecewise Procrustes). In ROI-based
setting, the baseline is around 10 % above chance in all
datasets (except Neuromod). Hence SRM 3% accuracy
increase is a strong effect(see Table S2).

SRM is not well-suited to full-brain decoding because
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FIG. 7. Decoding accuracy improvement and computation time after ROI-based functional alignment. In the
left panel, we show decoding accuracy for each of the considered functional alignment methods at the ROI level of analysis.
The ROIs used for each dataset are displayed on the far right. Each dot represents a single subject, and subjects are colored
according to their decoding task. Rather than raw values, we show accuracy scores after subtracting inter-subject decoding
accuracy for the same leave-one-subject-out cross-validation fold with anatomical-only alignment. In the right panel, we show
the computational time for each of the considered methods. All computation times are depicted as relative to piecewise
Procrustes. For both panels, each box plot describes the distribution of values where the green line indicates the median.

it estimates the shared response using a limited number of
components. Projection into a common space results in
sharp data rank reduction and thus a loss of information
compared to using original data. In an ROI, by contrast,
we have a smaller number of voxels p compared to the
number of training samples n. This increases the ratio
of n/p which ensures both (1) more stable estimations
thanks to increased number of samples (2) that we do not
lose relevant information when projecting voxel signal to
a lower number of components; i.e., the shared response
(n/p must be above 1 to ensure full-rank decomposition).

3.3. Qualitative display of transformations learnt
by various methods

Understanding the effects of high-dimensional
transformations—such as those used in functional
alignment—is non-trivial. To aid in this process, we
“open the black box” by functionally aligning a group
of subjects to an individual target subject’s functional
space and depict the resulting maps in Figure 8. Here,
we reuse whole-brain alignments learnt in Experiment 1.

We also display the ground-truth individual activation
maps in panel A, in order to better highlight how each
method affects the signal distribution. As a reminder,
the contrast data displayed here was not used to learn
alignments, so it means that alignment learnt on various
task data, not specifically related to language nor audi-
tion carried enough information for fine-grain registration

of these networks.

We can see that overall, functional alignment methods
enhance group-level contrasts compared to anatomical-
only alignment; i.e., activation maps are more similar
across functionally-aligned subjects. This result is not at
the expense of signal specificity, since the aligned group
topographies are still sharp. From the comparison be-
tween panels A and B, we can also conclude that align-
ment methods bring group topography much closer to
the targeted subject topography across many contrasts.
Nonetheless, we can still observe that there seems to be
a trade-off between sharpness of activation (low smooth-
ness of image, due to low variance across aligned sub-
jects) with Optimal Transport, and accuracy of their lo-
cation compared to the target ones (low bias introduced
by the matching) with searchlight Procrustes.

One exception to this is the Shared Response Model
(SRM), that yields smoother group topography than the
other alignment methods considered. This discrepancy
can be explained by the fact all of the depicted alignments
are learnt on full-brain data. For SRM, this truncates
the whole-brain signal to its main components, and the
visual smoothness impression is thus a correlate of its
poor performance in full-brain decoding.

4. Discussion

In this work, we have proposed a new procedure to
measure the information recovered through functional
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FIG. 8. Comparison of alignment methods geometrical effects. (A) Activation patterns for the Target subject (IBC
sub-04) for two contrasts from the IBC Sounds task (Speech > Silence, Voice > Silence) and IBC RSVP task (Sentence >
Word, Word > Consonants). Here, we only show contrast maps from a sub-region of the temporal-parietal region containing
contrast-relevant information. Note that this sub-region differs slightly between the Sounds and RSVP task. (B) Visualization
of a group conjunction analysis of all IBC subjects after alignment to the target subject for each of the considered methods.
We used a γ value of 0.25 in the group conjunction analysis, which corresponds to at least 25% of the IBC sample showing
activation in this temporal-parietal region after alignment. For ease of comparison, the colorbar for each contrast and method
was scaled to show the full range of values (i.e., the colorbar spans different interval across methods and contrasts) and so is not
included here. All displayed maps were thresholded at 1/3 of their maximum value. We see that functional alignment yields
stronger contrasts overall when compared to anatomical alignment. Piecewise Procrustes and piecewise Optimal Transport
yield less smooth representations, better preserving signal specificity.

alignment using inter-subject decoding, and we have used
this framework to benchmark five functional alignment
methods on five distinct decoding tasks across four pub-
licly available datasets.

In general, we find that functional alignment improves
inter-subject decoding accuracy in both whole-brain and
ROI settings. These results, combined with our quali-

tative visualization of the effects of functional alignment
on signal structure, suggest that functional alignment im-
proves inter-subject correspondence while matching sig-
nal to realistic functional topographies. This extend con-
clusions from earlier work (Güçlü and van Gerven 2015,
Guntupalli et al. 2016). Specifically, the baseline inter-
subject decoding accuracy is roughly 20% above chance
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across datasets (Table S1). The best performing method
in our benchmark, piecewise Optimal Transport bring a
substantial 4% improvement over this baseline on aver-
age, recovering roughly half of the accuracy lost to inter-
subject variability.

Although we see improved decoding accuracy on aver-
age, we also note that the functional alignment methods
considered show different performance at the ROI and
whole-brain scale. While piecewise Optimal Transport
performs best when aggregating transformations across
the whole-brain, SRM performs best to enhance decod-
ing within regions of interest, bringing a 3% important
improvement over a baseline only 10-15% above chance
(Table S2). We therefore caution that the most appro-
priate method may depend on the research question of
interest. Nonetheless, we observe that increases in de-
coding accuracy were reliably greater than the effect of
Gaussian smoothing (see section S5). From a minimal-
istic replication, this effect seem to hold for both vol-
umetric and surface data, and at different parcellation
resolutions (see section S6; cf. Oosterhof et al. 2011).

Our benchmark also brings new evidence that the la-
tent correspondences that can be learnt between differ-
ent tasks display less inter-individual variability than the
task-specific activation maps (Tavor et al. 2016). Exper-
iment 1 indeed showed that such correspondences could
even be used to transfer signals subjects to solve an inter-
subject decoding problem, which is—to the best of our
knowledge—an original experimental result. By releasing
efficient and accessible implementations of these methods
in the fmralign package, we hope to facilitate future cog-
nitive neuroscience research using functional alignment
methods.

4.1. Combining local alignment models

Across datasets, we find that the spatial framework of
alignment and decoding significantly affects subsequent
performance. Notably, piecewise Procrustes outperforms
searchlight Procrustes, both in terms of accuracy and
computational performance. The methodological differ-
ence between these methods is whether alignment trans-
formations are learnt within overlapping neighborhoods
(as in searchlight Procrustes) or not (as in piecewise Pro-
crustes). Searchlight alignment suffers in that the overlap
between searchlights requires multiple computations for
a given neighborhood, and the aggregated transforma-
tion is no longer guaranteed to reflect properties of the
original transforms, e.g. orthogonality. Although piece-
wise alignment may introduce discontinuities at parcel
boundaries, in our results this overall benefited decoding
performance. Importantly, we found that the improved
performance of piecewise Procrustes was largely insensi-
tive to parcel size and definition (see Figure S2).

SRM performance was found to depend strongly on
the spatial context, though at a larger scale than lo-
cal neighborhood definition. Specifically, SRM performs
best when restricted to an ROI. This can be explained

by the built-in dimensionality reduction that may discard
relevant information when applied at a whole-brain level
of analysis. We therefore suggest that an extension of
SRM to piecewise alignment may be an important direc-
tion for future research.

4.2. Evaluating alignment performance with
decoding

We use inter-subject decoding to quantify the amount
of mutual information recovered by functional align-
ment methods. In general, identifying publicly available
datasets with tasks appropriate for both inter-subject de-
coding as well as functional alignment remains a chal-
lenge. Beyond the four datasets included in these re-
sults, we investigated several other publicly available
datasets such as the Neuroimaging Analysis Replication
and Prediction Study (NARPS; Botvinik-Nezer et al.
2020),the Healthy Brain Network Serial Scanning Ini-
tiative (HBN-SSI; O’Connor et al. 2017), the interTVA
dataset (Aglieri et al. 2019, available as Openneuro
ds001771 ) and the The Dual Mechanisms of Cognitive
Control Project (DMCC, Braver et al. 2020).

We had difficulties in achieving sufficient baseline ac-
curacy levels in these and other datasets, and we there-
fore chose not to include them in the present study.
This suggests that the amount of signal discriminating
complex experimental conditions is not strong enough
to find inter-subject patterns robust to variability in
many publicly available datasets, likely due to lim-
ited sample sizes and inappropriate experimental de-
signs. We hope that broader recognition of the ben-
efits of using inter-subject decoding to uncover neural
coding principles across subjects—using functional align-
ment if necessary—will encourage investigators to collect
and share more datasets supporting this type of anal-
ysis. Greater data availability will encourage robust,
principled comparisons of alignment methods and foster
progress in the field.

4.3. Study limitations and future directions

Although our study provides a broad evaluation of
the performance of several functional alignment methods,
there are several dimensions which we hope future work
will better address. Notably, we did not thoroughly in-
vestigate how alignment performance is impacted by im-
age resolution and whether data are represented on the
surface or the volume. Using volumetric images down-
sampled to a standard resolution of 3mm isotropic en-
abled us to make fairer comparisons across datasets at
a reasonable computational cost. We also show in Sec-
tion S6 that results from piecewise Procrustes alignment
on the IBC dataset hold in a higher resolution, surface-
based setting. Nonetheless, other functional alignment
methods might show different patterns of performance
in this setting or at different resolution levels. More-
over, applying these methods on high-resolution images
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is an exciting perspective to better understand how pre-
cise brain function varies across subjects. To progress
in this direction, a stronger focus on developing com-
putationally efficient methods will be needed. The use
of high-resolution parcellations—combined with more ef-
ficient implementations of piecewise Optimal Transport
or a piecewise Shared Response Model—seem to be par-
ticularly promising directions.

We have also not examined the impact of alignment
data on the learnt transformations and whether this im-
pact varies across cortex. That is, we could further ask
whether certain kinds of stimuli may produce more ac-
curate functional alignments for specialized functional
regions. In general, the surveyed functional alignment
methods view each subject alignment image as a sam-
ple, and the resulting transformation is trained to match
corresponding samples across subjects. If some training
images lack stable signal in a given ROI, functional align-
ment methods are unlikely to learn meaningful transfor-
mations in this region. In future work, we intend to
address the above questions to learn more about when
functional alignment methods are most appropriate.

5. Conclusion

In the present work, we have provided an extensive
benchmark of five popular functional alignment methods
across five unique experimental tasks from four publicly
available datasets. Assessing each method in an inter-
subject decoding framework, we show that Shared Re-
sponse Modelling (SRM) performs best at a region-of-
interest level of analysis, while Optimal Transport out-
performs other methods at the whole-brain scale. Our
results support previous work proposing functional align-
ment to improve across-subject comparisons, while pro-
viding nuance that some alignment methods may be most
appropriate for a given research question. We further

suggest that identified improvements in inter-subject de-
coding demonstrate the potential of functional alignment
to identify generalizable neural coding principles across
subjects.
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Hanke, M., Adelhöfer, N., Kottke, D., Iacovella, V., Sengupta,
A., Kaule, F. R., Nigbur, R., Waite, A. Q., Baumgartner, F.,
and Stadler, J. (2016). A studyforrest extension, simultane-
ous fMRI and eye gaze recordings during prolonged natural
stimulation. Sci Data, 3:160092.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J.,
Haxby, J. V., and Pollmann, S. (2009). PyMVPA: A python
toolbox for multivariate pattern analysis of fMRI data. Neu-
roinformatics, 7(1):37–53.

Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko,
Y. O., Conroy, B. R., Gobbini, M. I., Hanke, M., and Ra-
madge, P. J. (2011). A common, high-dimensional model of

the representational space in human ventral temporal cortex.
Neuron, 72(2):404–416.

Haxby, J. V., Guntupalli, J. S., Nastase, S. A., and Feilong,
M. (2020). Hyperalignment: Modeling shared information en-
coded in idiosyncratic cortical topographies. Elife, 9:e56601.

Heller, R., Golland, Y., Malach, R., and Benjamini, Y. (2007).
Conjunction group analysis: An alternative to mixed/random
effect analysis. NeuroImage, 37:1178–85.

Jiahui, G., Feilong, M., Visconti di Oleggio Castello, M., Gun-
tupalli, J. S., Chauhan, V., Haxby, J. V., and Gobbini, M. I.
(2020). Predicting individual face-selective topography using
naturalistic stimuli. Neuroimage, 216:116458.

Kriegeskorte, N. and Diedrichsen, J. (2019). Peeling the onion
of brain representations. Annu. Rev. Neurosci., 42(1):407–
432.

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006).
Information-based functional brain mapping. Proc. Natl.
Acad. Sci. U. S. A., 103(10):3863–3868.

Langs, G., Golland, P., Tie, Y., Rigolo, L., and Golby, A. J.
(2010). Functional geometry alignment and localization of
brain areas. Adv. Neural Inf. Process. Syst., 1:1225–1233.

Langs, G., Sweet, A., Lashkari, D., Tie, Y., Rigolo, L., Golby,
A. J., and Golland, P. (2014). Decoupling function and
anatomy in atlases of functional connectivity patterns: lan-
guage mapping in tumor patients. Neuroimage, 103:462–475.

Nastase, S. A., Gazzola, V., Hasson, U., and Keysers, C.
(2019). Measuring shared responses across subjects using in-
tersubject correlation.

Olivetti, E., Veeramachaneni, S., and Avesani, P. (2011).
Testing for information with brain decoding. In 2011 Inter-
national Workshop on Pattern Recognition in NeuroImaging,
pages 33–36.

Oosterhof, N. N., Wiestler, T., Downing, P. E., and Diedrich-
sen, J. (2011). A comparison of volume-based and surface-
based multi-voxel pattern analysis. Neuroimage, 56(2):593–
600.

O’Connor, D., Potler, N. V., Kovacs, M., Xu, T., Ai, L., Pell-
man, J., Vanderwal, T., Parra, L. C., Cohen, S., Ghosh, S.,
et al. (2017). The healthy brain network serial scanning ini-
tiative: a resource for evaluating inter-individual differences
and their reliabilities across scan conditions and sessions. Gi-
gascience, 6(2):giw011.

Paquola, C., De Wael, R. V., Wagstyl, K., Bethlehem, R. A.,
Hong, S.-J., Seidlitz, J., Bullmore, E. T., Evans, A. C., Misic,
B., Margulies, D. S., et al. (2019). Microstructural and func-
tional gradients are increasingly dissociated in transmodal
cortices. PLOS Biology, 17(5):e3000284.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Pinho, A. L., Amadon, A., Ruest, T., Fabre, M., Dohmatob,
E., Denghien, I., Ginisty, C., Becuwe-Desmidt, S., Roger, S.,
Laurier, L., Joly-Testault, V., Médiouni-Cloarec, G., Doublé,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.415000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.415000
http://creativecommons.org/licenses/by/4.0/


16

C., Martins, B., Pinel, P., Eger, E., Varoquaux, G., Pallier,
C., Dehaene, S., Hertz-Pannier, L., and Thirion, B. (2018).
Individual brain charting, a high-resolution fMRI dataset for
cognitive mapping. Sci Data, 5:180105.

Poldrack, R. A., Barch, D. M., Mitchell, J., Wager, T., Wag-
ner, A. D., Devlin, J. T., Cumba, C., Koyejo, O., and Milham,
M. (2013). Toward open sharing of task-based fmri data: the
openfmri project. Frontiers in neuroinformatics, 7:12.

Rademacher, J., Caviness, Jr, V. S., Steinmetz, H., and Gal-
aburda, A. M. (1993). Topographical variation of the human
primary cortices: implications for neuroimaging, brain map-
ping, and neurobiology. Cereb. Cortex, 3(4):313–329.

Richard, H., Martin, L., Pinho, A. L., Pillow, J., and Thirion,
B. (2019). Fast shared response model for fmri data. arXiv
preprint arXiv:1909.12537.

Rodriguez-Vazquez, B., Suarez, L. E., Shafiei, G., Markello,
R., Paquola, C., Hagmann, P., Van Den Heuvel, M., Bern-
hardt, B., Spreng, R. N., and Misic, B. (2019). Gradients of
structure-function tethering across neocortex. BioRxiv, page
561985.

Sabuncu, M., Bryan, E., Ramadge, P. J., and Haxby, J. V.
(2010). Function-based intersubject alignment of human cor-
tical anatomy. Cerebral Cortex, 20:130–140.

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O.,
Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., and Yeo, B. T. T.
(2018). Local-Global parcellation of the human cerebral cor-
tex from intrinsic functional connectivity MRI. Cereb. Cortex,
28(9):3095–3114.

Schrouff, J., Monteiro, J. M., Portugal, L., Rosa, M. J.,
Phillips, C., and Mourao-Miranda, J. (2018). Embedding
Anatomical or Functional Knowledge in Whole-Brain Mul-
tiple Kernel Learning Models. Neuroinformatics, 16(1):117–
143.

Tavor, I., Parker Jones, O., Mars, R. B., Smith, S. M.,
Behrens, T. E., and Jbabdi, S. (2016). Task-free MRI pre-
dicts individual differences in brain activity during task per-
formance. Science, 352(6282):216–220.

Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., and
Poline, J.-B. (2006). Dealing with the shortcomings of spatial
normalization: multi-subject parcellation of fMRI datasets.
Hum. Brain Mapp., 27(8):678–693.

Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., and
Thirion, B. (2011). Multi-subject dictionary learning to seg-
ment an atlas of brain spontaneous activity. In Information
Processing in Medical Imaging, volume 6801 of Lecture Notes
in Computer Science, pages 562–573, Kaufbeuren, Germany.
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