1	Evaluating Specimen Quality and Results from a Community-Wide, Home-Based Respiratory
2	Surveillance Study
3	
4	Running Title: Evaluating Home-Based Respiratory Surveillance
5	
6	Authors: Ashley E. Kim, BS ^{1#} ; Elisabeth Brandstetter, MPH ¹ ; Naomi Wilcox, MPH ¹ ; Jessica
7	Heimonen, MPH ¹ ; Chelsey Graham, MEng ² ; Peter D. Han, MS ² ; Lea M. Starita, PhD ^{2,3} ; Denise J.
8	McCulloch, MD MPH ¹ ; Amanda M. Casto, MD PhD ¹ ; Deborah A. Nickerson, PhD ^{2,3} ; Margaret M.
9	Van de Loo, BA ⁴ ; Jennifer Mooney, BFA ⁴ ; Misja Ilcisin, BSc ⁵ ; Kairsten A. Fay, BSc ⁵ ; Jover Lee,
10	BSc ⁵ ; Thomas R. Sibley, BA ⁵ ; Victoria Lyon, MPH ⁷ ; Rachel E. Geyer, MPH ⁷ ; Matthew Thompson,
11	MBChB, MPH, DPhil ⁷ ; Barry R. Lutz ^{7,8} , PhD; Mark J. Rieder, PhD ² ; Trevor Bedford, PhD ^{2,3,5} ;
12	Michael Boeckh, MD, PhD ⁵ ; Janet A. Englund, MD ⁶ ; Helen Y. Chu, MD, MPH ^{1,2#} ; on behalf of the
13	Seattle Flu Study Investigators ⁹
14	
15	Affiliations:
16	¹ Department of Medicine, University of Washington, Seattle WA
17	² Brotman Baty Institute for Precision Medicine, Seattle WA
18	³ Department of Genome Sciences, University of Washington, Seattle WA
19	⁴ Formative, Seattle WA
20	⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA
21	⁶ Seattle Children's Research Institute, Seattle WA
22	⁷ Department of Family Medicine, University of Washington, Seattle WA

- ⁸Department of Bioengineering, University of Washington, Seattle WA
- ⁹ For complete investigator list, see below.
- [#]Address Correspondence to Ashley E. Kim (ashleyek@uw.edu) and Dr. Helen Y. Chu

26 (helenchu@uw.edu)

- 27
- 28 Keywords: influenza, respiratory pathogens, rapid diagnosis, nasal swab, pandemic
- 29 preparedness
- 30

31 Abstract

32

33 Introduction. While influenza and other respiratory pathogens cause significant morbidity and

34 mortality, the community-based burden of these infections remains incompletely understood.

35 The development of novel methods to detect respiratory infections is essential for mitigating

36 epidemics and developing pandemic-preparedness infrastructure.

37

Methods. From October 2019 to March 2020, we conducted a home-based cross-sectional study in the greater Seattle area, utilizing electronic consent and data collection instruments. Participants received nasal swab collection kits via rapid delivery within 24 hours of selfreporting respiratory symptoms. Samples were returned to the laboratory and were screened for 26 respiratory pathogens and a human marker. Participant data were recorded via online survey at the time of sample collection and one week later.

45	Results. Of the 4,572 consented participants, 4,359 (95.3%) received a home swab kit, and
46	3,648 (83.7%) returned a nasal specimen for respiratory pathogen screening. The 3,638 testable
47	samples had a mean RNase P C_RT value of 19.0 (SD: 3.4) and 1,232 (33.9%) samples had positive
48	results for one or more pathogens, including 645 (17.7%) influenza-positive specimens. Among
49	the testable samples, the median time between shipment of the home swab kit and completion
50	of laboratory testing was 8 days [IQR: 7.0-14.0].
51	
52	Discussion. Home-based surveillance using online participant enrollment and specimen self-
53	collection is a feasible method for community-level monitoring of influenza and other
54	respiratory pathogens, which can readily be adapted for use during pandemics.
55	
55 56	Introduction
	Introduction
56	Introduction Acute respiratory illnesses (ARIs) constitute a significant burden on the healthcare system in the
56 57	
56 57 58	Acute respiratory illnesses (ARIs) constitute a significant burden on the healthcare system in the
56 57 58 59	Acute respiratory illnesses (ARIs) constitute a significant burden on the healthcare system in the United States and represent an important cause of morbidity and mortality worldwide [1-4]. In
56 57 58 59 60	Acute respiratory illnesses (ARIs) constitute a significant burden on the healthcare system in the United States and represent an important cause of morbidity and mortality worldwide [1-4]. In the United States, influenza causes 140,000 - 810,000 hospitalizations and 12,000 - 67,000
56 57 58 59 60 61	Acute respiratory illnesses (ARIs) constitute a significant burden on the healthcare system in the United States and represent an important cause of morbidity and mortality worldwide [1-4]. In the United States, influenza causes 140,000 - 810,000 hospitalizations and 12,000 - 67,000 deaths annually [1-4]. Additionally, respiratory syncytial virus (RSV) leads to approximately 2

65 moderate ARI in community-dwelling individuals who may not seek care for their illness [11-

66 13].

68	Active, community-level monitoring of respiratory infections is essential to assess the seasonal
69	activity of ARI-causing pathogens and can be used to inform public health prevention strategies
70	and influence treatment decisions made at the community level. Previous respiratory pathogen
71	surveillance studies evaluated specific subsets of the population, such as households with
72	children, or used labor-intensive, coordinated efforts to capture a representative sample of the
73	community, which makes such approaches difficult to replicate [14-16]. Additionally, similar to
74	traditional respiratory surveillance networks, some of these studies relied on healthcare facility
75	visits which have the potential to result in the nosocomial spread of respiratory pathogens [17-
76	18]. Despite the limitations of earlier analyses, community-wide surveillance studies remain of
77	vital importance as they provide opportunities to better understand the epidemiology of
78	respiratory illness among symptomatic individuals with variable disease severities and
79	healthcare-seeking behaviors.
80	
81	The Seattle Flu Study Swab and Send sub-study is a novel, city-wide, cross-sectional study of
82	home-based detection of respiratory pathogens. This study demonstrates the feasibility of
83	using a home-based surveillance approach to assess the epidemiology of influenza and other
84	respiratory pathogens in a community-based setting.
85	
86	Methods
87	
88	<u>Study Design</u>

89	The "Swab and Send" sub-study was nested within the Seattle Flu Study (SFS), a multi-armed
90	influenza surveillance system [19]. This sub-study aimed to assess the feasibility of city-wide
91	home-based cross-sectional respiratory pathogen surveillance, utilizing rapid delivery systems
92	for at home collection of a nasal swab from individuals experiencing ARIs with return of
93	specimens to the laboratory for respiratory pathogen detection. Individuals residing within the
94	greater Seattle area with ARI symptoms were prospectively enrolled from October 2019 -
95	March 2020. Participants resided in 89 different zip codes within King County in and around the
96	city of Seattle. This study was approved by the University of Washington Institutional Review
97	Board.
98	
99	<u>Recruitment</u>
100	Study recruitment occurred through 1) referrals from healthcare providers, clinics, Seattle Flu
100 101	Study recruitment occurred through 1) referrals from healthcare providers, clinics, Seattle Flu Study community kiosks (an in-person enrollment center), schools, and workplaces, 2)
101	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2)
101 102	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2) dissemination of printed flyers posted at community locations, and 3) posting of targeted
101 102 103	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2) dissemination of printed flyers posted at community locations, and 3) posting of targeted online advertisements (e.g., Facebook, Instagram, Twitter, Google). Recruitment materials
101 102 103 104	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2) dissemination of printed flyers posted at community locations, and 3) posting of targeted online advertisements (e.g., Facebook, Instagram, Twitter, Google). Recruitment materials directed potential participants to the study website (<u>www.seattleflu.org</u> , henceforth referenced
101 102 103 104 105	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2) dissemination of printed flyers posted at community locations, and 3) posting of targeted online advertisements (e.g., Facebook, Instagram, Twitter, Google). Recruitment materials directed potential participants to the study website (<u>www.seattleflu.org</u> , henceforth referenced as the "study website"). To determine their eligibility, individuals completed a screening survey
101 102 103 104 105 106	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2) dissemination of printed flyers posted at community locations, and 3) posting of targeted online advertisements (e.g., Facebook, Instagram, Twitter, Google). Recruitment materials directed potential participants to the study website (<u>www.seattleflu.org</u> , henceforth referenced as the "study website"). To determine their eligibility, individuals completed a screening survey on the study website by providing their age, home zip code, and information about the
101 102 103 104 105 106 107	Study community kiosks (an in-person enrollment center), schools, and workplaces, 2) dissemination of printed flyers posted at community locations, and 3) posting of targeted online advertisements (e.g., Facebook, Instagram, Twitter, Google). Recruitment materials directed potential participants to the study website (<u>www.seattleflu.org</u> , henceforth referenced as the "study website"). To determine their eligibility, individuals completed a screening survey on the study website by providing their age, home zip code, and information about the

111	sore throat or itchy/scratchy throat, nausea or vomiting, runny/stuffy nose or sneezing, fatigue,
112	muscle or body aches, increased trouble with breathing, diarrhea, ear pain/discharge, or rash)
113	within seven days of enrollment (Table A1), were English-speaking, had a valid email address,
114	and had access to the internet at home. All individuals consented to participate in the research
115	study electronically, with consent by a parent or legally-authorized representative for
116	individuals under 18 years and concurrent assent for those between 7 and 18 years.
117	
118	Data Collection
119	Upon consenting, participants completed an online <i>Enrollment Questionnaire</i> to provide their
120	home address and contact information such as an email address or phone number. Participants
121	were mailed a home swab kit within 48 hours of submitting the Enrollment Questionnaire,
122	which included a <i>Quick Start Instruction Card</i> (Fig. A1), a universal viral transport media (UTM)
123	tube (Becton, Dickinson and Company, Sparks, MD), a nylon flocked mid-turbinate swab
124	(COPAN Diagnostics Inc., Murietta, CA), a return box with an affixed Category B UN3373 label
125	(as required by International Air Transport Association (IATA) guidelines [20]), and a pre-paid
126	return shipping label. Pediatric nasal swabs (COPAN Diagnostics Inc., Murietta, CA) were
127	available for participants 5 years of age or younger. Various couriers were used to deliver home
128	swab kits to participants across King County, depending on geographical location as determined
129	by zip code. For the 2,398 of participants who resided within the city of Seattle, FedEx Same
130	Day City was used to deliver kits with a target delivery time of two hours.
131	

	to
133 demographics, illness characteristics, and health behaviors. Education level was only asked	
134 participants 18 and older. Additionally, participants were asked to rate the impact of their	
135 current illness on regular activities at the time of their enrollment using a five-point Likert se	cale
136 with the following levels: not at all, a little bit, somewhat, quite a bit, or very much. These	
137 categories were transformed into none, low (a little bit, somewhat), and high (quite a bit, ve	ery
138 much).	

139

140 At the end of the *Illness Questionnaire*, participants were prompted to self-collect a mid-nasal 141 swab using the provided Quick Start Instruction Card (Fig. S1) included in the swab kit box. 142 Participants were instructed to place their self-collected nasal swabs directly into the UTM tube 143 which was pre-labeled with a unique sample barcode. Next, participants were instructed to 144 place the UTM tube containing the self-collected nasal swab into a specimen bag, pre-packaged 145 with an absorbent sheet, and then to put the specimen bag into the provided return shipping 146 box. United States Postal Service (USPS) return postage and Category B UN3373 stickers were 147 affixed to the outside of the return box. Although previous testing has demonstrated that 148 respiratory viral RNA is stable at room-temperature in UTM for up to one week [21], 149 participants were encouraged to return their nasal specimen within 24 hours or as soon as 150 possible. For the subset of participants where detailed courier data was available, median 151 delivery times were determined through the use of proof of delivery (POD) data on scheduled 152 shipment times, completed delivery times, and mileage.

153

154	Seven days after nasal swab collection, participants were re-contacted to complete a One Week
155	Follow-Up Questionnaire to assess the impact of their illness on behavioral outcomes such as
156	absenteeism and healthcare-seeking behaviors (provider visits, antiviral use, etc). Care-seeking
157	was marked as "any care" if the participant indicated they had sought care in the <i>Illness</i>
158	Questionnaire or One Week Follow-Up Questionnaire. Any care-seeking included doctor's office
159	or urgent care, pharmacy, hospital or emergency department, or other.
160	
161	All study questionnaires were collected through REDCap (Table A3) [22]. A full timeline of study
162	events may be found in Table A2. Access to de-identified, aggregate study data and analysis
163	code will be publicly available on the study website.
164	

165 *Laboratory Testing*

When kits arrived in the study laboratory, contents of the box and deviations from return mail 166 167 instructions were recorded. 200 µl of UTM was removed and subjected to RNA extraction using 168 a MagNA Pure 96 System (Roche) and the remainder was banked at -80°C. The extracted 169 nucleic acids were screened for respiratory pathogens using a custom, TagMan-based Open 170 Array panel (Thermo Fisher) and an additional SARS-CoV-2 RT-PCR research assay. Samples 171 were subjected to the SARS-CoV-2 assay in real-time if they were collected after February 25, 172 2020 and retrospectively if collected between January 1, 2020 and February 24, 2020 (Table A4) 173 [23]. Samples with RNase P relative cycle threshold (C_{RT}) values ≤ 28 for the Open Array assay, 174 which has a preamplification step, and ≤36 for the SARS-CoV-2 assay were considered to 175 contain sufficient material for pathogen detection [24]. Samples were screened for influenza A

176	H3N2, H1N1, and pan influenza A, influenza B, influenza C, respiratory syncytial viruses (RSV) A
177	and B, human coronaviruses (hCoV) 229E, NL63, OC43, and HKU1, SARS-CoV-2, adenovirus
178	(AdV), human rhinovirus (hRV), human metapneumovirus (hMPV), human parechovirus (hPeV),
179	enteroviruses A, B, C, D, D68, and G, human bocavirus (hBoV), Streptococcus pneumoniae,
180	<i>Mycoplasma pneumoniae,</i> and <i>Chlamydia pneumoniae</i> (Table A4). C _{RT} values for RNase P,
181	influenza, hCoV, RSV, and hRV from 11,984 nasal samples collected between October 2019 to
182	March 2020 at Seattle Children's Hospital were analyzed as a contemporary control of
183	healthcare worker-collected specimens and compared to the self-collected specimens in this
184	study.
185	
186	<u>Data Analyses</u>
187	Descriptive statistics were performed for categorical and continuous covariates. Bivariate
188	analyses were conducted using parametric and nonparametric tests as appropriate, with
189	statistical significance defined as p<0.05. The Kruskal-Wallis test was used to determine p-
190	values for study procedure compliance categories, comparing each of the three nasal swab
191	error types to those with no errors. ANOVA was used to calculate an overall p-value for RNase P
192	values across confidence and discomfort levels. Respiratory pathogen prevalence is defined as
193	the total number of cases detected out of the total number of tested samples.
194	
195	Results
196	
197	Participant Characteristics

198 A total of 4,572 participants were consented and enrolled in the SFS Swab and Send sub-study 199 from October 16, 2019 to March 9, 2020. The majority of participants were recruited into the 200 study through online or social media advertisements (53.9%) or through referrals from friends 201 or family (19.3%). Of the 4,572 participants who completed the electronic consent form, 4,359 202 (95.3%) participants also completed the Enrollment Questionnaire and provided a valid home 203 address, which was required to receive a home swab kit. Participant characteristics, including 204 age, sex, race, Hispanic ethnicity, income, education level, influenza vaccination status, 205 healthcare-seeking status, test results, baseline impact of illness on regular activities, and 206 recruitment method are shown in Table 1. The mean age of study participants was 36.6 (SD: 15) 207 years old. Most (73.7%) of participants were 18-49 years old. On average, the study population 208 was more highly educated and had a higher household income than the general population of 209 King County. A total of 31.4% of participants had a bachelor's degree as their highest degree 210 while 31.6% had an advanced degree. 26.6% had a household income of \geq \$150,000 per year 211 (Table 1).

212

At time of enrollment, 42.0% of participants who were sent a nasal swab rated the impact of their current illness on their regular activities as high although 67.5% had not sought clinical care. The majority of study participants did not seek clinical care for their illness during the study period. A total of 27.1% of participants sought clinical care for their current illness prior to enrollment or during the study period whereas 50.1% never sought clinical care during this time frame (Table 1). In general, participants who sought care were more likely to do so after enrolling and completing their home swab kits. Among those who sought care (N=1,178), 727

- 220 (61.7%) participants sought care prior to enrollment and 989 (84.0%) sought care within one
- 221 week after enrollment, though these categories are not mutually exclusive.
- 222
- 223 Of the 4,359 participants who received a home swab kit, 3,648 (83.7%) returned a nasal
- specimen to the laboratory and 3,638 (99.7%) of returned specimens contained sufficient UTM
- in the tube and RNase P levels for respiratory pathogen screening (Fig. 1). Influenza A (10.8%),
- hRV (10.4%), hCoV (8.6%), and influenza B (6.9%) were the most commonly detected pathogens
- (Table A5; Fig. 2). Samples collected on or after January 1, 2020 were tested for SARS-CoV-2, of
- which 36 out of 2,843 (1.2%) were positive for the novel coronavirus. The 3,629 self-collected
- nasal specimens with available RNase P data yielded a mean RNase P C_{RT} value of 19.0 (SD: 3.4)
- 230 (Table A5). A contemporary comparison of C_{RT} values from healthcare worker-collected nasal
- 231 specimens to self-collected nasal specimens is shown in Table A6.
- 232

233 <u>Study Logistics</u>

234 For the 4,359 participants who received a home swab kit, the median time between participant 235 completion of enrollment and scheduling of the shipment was 7.2 hours [IQR: 0.45-19.6]. The 236 total median delivery transit time to participants who received their home swab kit via FedEx 237 Same Day City was 2.2 [IQR: 1.7 - 3.0] hours with 79% of deliveries meeting the two-hour target 238 delivery time. A subset of the delivery time data was reported previously [25]. The median 239 delivery time via FedEx Same Day City to participants' homes by distance from the study 240 laboratory is shown in Fig. 3. Of the 2,398 FedEx Same Day City deliveries, there were a total of 241 78 (3.3%) redelivery attempts. The estimated median time between nasal swab collection to

242	receipt at the study	y laborator	y was 3.0	[IQR: 2.0, 4	.0] da	ys for the 3	,648	partici	oants w	vho

- returned specimens. Of the 3,638 testable samples, the median time between shipment and
- completed laboratory testing was 8.0 [IQR: 7.0 14.0] days (Table 2).
- 245
- 246 <u>Study Procedure Completion and Compliance</u>

247 Study procedure completion rates are shown in Fig. 1. Of the 4,359 participants who completed

248 the *Enrollment Questionnaire* and received a home swab kit, 3,214 (73.9%) completed all study

249 procedures. Study procedure completion and compliance by age, sex, income, education, care-

250 seeking status, and baseline illness-impact are shown in Table 3. None of these variables were

significantly associated with study procedure compliance (Table 3).

252

253 The majority of participants correctly followed instructions to package their collected nasal 254 swab for return to the laboratory. Of the 3,648 returned nasal specimens, 3,208 (88.1%) home 255 swab kits were returned correctly packaged. A total of 205 (5.6%) contained a sample tube 256 labeling error, such as a missing written name or collection date, and 205 (5.6%) were 257 mispackaged. Criteria for mispackaged samples included improper use of the provided return 258 box, specimen transport bag, or lack thereof. Additionally, 24 (0.66%) returned specimens had a sample tube use error, such as a damaged UTM tube, a missing or misused nasal swab, or 259 260 leakage. Four out of 3,648 (0.11%) returned home swab kits contained leakage and these 261 samples were immediately disposed of upon unpackaging (Table 3).

262

263	Participants who enrolled between January 6, 2020 and March, 9, 2020 were asked to rate their
264	confidence in correctly self-collecting their nasal swab and their discomfort level while doing so.
265	Higher confidence and discomfort levels were significantly associated with lower RNase P C_{RT}
266	values (p<0.001 and p=0.04, respectively). The average RNase P C_{RT} value for participants who
267	experienced strong discomfort was 1.4 lower than the average value for those who had no
268	discomfort. The average RNase P C $_{ m RT}$ value for those who were very confident was 1.2 lower
269	than those who were not confident at all (Fig. 4). Among the 4,359 participants who received a
270	home swab kit, there was one (0.0%) reported adverse event related to strong discomfort while
271	collecting the nasal swab. The affected participant's discomfort resolved within two minutes.
272	The participant suffered no long-term effects and did not require medical attention. Results
273	suggest that non-medically trained individuals can safely and adequately collect a nasal sample
274	from themselves or their family members.
275	
276	Discussion
277	
278	Over the 2019-2020 influenza season, we enrolled a large cohort of participants with acute
279	respiratory illness in a study of home-based swab collection for detection of respiratory
280	pathogens. The majority of participants completed all study procedures and returned their
281	nasal specimens to the study laboratory in a timely manner and in compliance with federal
282	transport guidelines for biohazards. The majority of returned nasal specimens were adequately
283	self-collected as quantified by RNase P C_{RT} value. These results support the feasibility of using

284 online enrollment and self-collected nasal swabs for community surveillance of respiratory
285 pathogens.

286

287	Existing methods to estimate the community-level prevalence of influenza rely on estimator
288	models based on laboratory-confirmed cases and adjusted for various confounding factors
289	including medical care seeking, collection and testing of specimens, and reporting of cases.
290	These methods are limited to medically attended illnesses and require relatively comprehensive
291	data for accuracy, which leads to long periods of time between data collection and the
292	availability of results [19]. In this study, we directly surveyed for influenza and other respiratory
293	pathogens in the community allowing rapid assessment of pathogen characteristics and the
294	associated clinical presentations among both care-seeking and non-care-seeking study
295	populations. When combined with estimator models, on-the-ground surveillance of
296	community-dwelling individuals with less severe illness and a wider range of demographic
297	backgrounds may enhance our understanding of the burden of various respiratory pathogens in
298	a community.
299	
300	Similarly, estimator models with complete reliance on laboratory-confirmed cases can be
301	limiting, especially during epidemics or pandemics in heavily-affected regions where outbreak

302 dynamics are rapidly evolving and the capacity of the healthcare system to adequately test

303 cases has been exceeded [19]. The benefits of direct, home-based surveillance among

304 community-dwelling individuals can be seen in context of the current COVID-19 pandemic.

305 From January 1, 2020 to March 9, 2020, the Seattle Flu Study detected 78 cases of SARS-CoV-2

306 through direct sampling of community members including the first documented case of 307 community transmission in the US, with 36 cases identified through the Swab and Send sub-308 study [25, 26]. This study enrolled and tested a large cohort of individuals with ARI symptoms 309 across a large geographical area, half of whom did not seek clinical care prior to or during the 310 study period. The at home study design proved to be an effective means of studying individuals 311 infected with influenza and other respiratory pathogens, many of whom may not have been 312 captured by traditional clinic or hospital surveillance. This demonstrates that when faced with 313 an emerging infectious disease, home-based testing can identify cases among non-care-seeking 314 individuals, providing essential information for pandemic identification, spread, and 315 management. 316 317 Limitations of this study include the enrollment of a study population that was not

318 representative of the greater Seattle area. King County demographic data from the 2010 census 319 shows that 49.8% of residents were male and 21.4% were 17 years of age and under, whereas 320 our study population included 27.3% males and 7.7% minors. Additionally, the King County 321 population is 6.0% black or African American and 8.9% Hispanic individuals whereas our study 322 cohort was only 0.8% black or African American and 4.2% Hispanic. The median King County 323 household income in 2016 was \$78,800 per year whereas the largest proportion (26.6%) of 324 participants had a household income of greater than \$150,000 per year [27]. We hypothesize 325 that factors related to lack of internet access and unfamiliarity with online systems may have 326 contributed to lack of representativeness among certain groups in our study population. The 327 utilization of targeted recruitment strategies aimed at enrolling a larger proportion of

participants who were underrepresented in this cohort including males, children, minorities,
 and individuals of lower socioeconomic statuses could be implemented to yield a more
 representative study population.

331

332 Additionally, while most participants returned their home swab kits with no packaging or 333 sample tube use errors at a rate concordant with a previous study [28], improvements to 334 instructions (e.g. inclusion of instructional videos) may decrease these error rates. Further 335 limitations of this study include use of self-collected mid-nasal swabs, which are not the gold 336 standard for respiratory pathogen detection. However, our group has previously demonstrated 337 that self-collected mid-nasal swabs are highly concordant with health care worker-collected 338 nasopharyngeal swabs for detection of SARS-CoV-2 [29], with results comparable to those of 339 previous studies on the detection of viral pathogens by patient-collected mid-nasal swabs [30-33]. In addition, the contemporary control analysis included in this study shows that C_{BT} values 340 341 for pathogen-positive samples collected by healthcare workers are comparable to those of self-342 collected samples, with C_{RT} values for healthcare-collected swabs lower for some targets but 343 higher for others than self-collected swabs. Finally, the requirement of internet access and 344 delivery addresses that are easily accessible by standard shipping couriers may limit the 345 scalability of this method in low resource or rural settings.

346

In conclusion, at home surveillance with self-collected nasal swabs is a feasible method to study
the community-based prevalence of influenza during seasonal epidemics on a city-wide scale.
This methodology can be adapted to study a variety of respiratory pathogens affecting diverse

350	study populations with the ability to scale-up to larger sample sizes. In particular, this approach
351	allows for the inclusion of non-care-seeking individuals in respiratory pathogen surveillance
352	studies and may be especially useful during epidemics or pandemics when quarantine and
353	social distancing measures are in place to reduce transmission risks.
354	
355	Acknowledgements
356	The Seattle Flu Study is funded by Gates Ventures. The funder was not involved in the design of
357	the study, does not have any ownership over the management and conduct of the study, the
358	data, or the rights to publish.
359	
360	Helen Y. Chu, Janet A. Englund, Michael Boeckh, Mark J. Rieder, Matthew Thompson, Barry R.
361	Lutz, Deborah A. Nickerson, Lea M. Starita, and Trevor Bedford designed the study including the
362	laboratory and data informatics procedures. Ashley E. Kim wrote the manuscript, developed the
363	data collection instruments and logistics infrastructure for study implementation, and managed
364	day-to-day responsibilities of the study. Naomi Wilcox performed the data analysis for the
365	manuscript. Chelsey Graham developed the logistics infrastructure of the study. Elisabeth
366	Brandstetter managed the IRB and assisted with quality assurance of the study. Denise J.
367	McCulloch contributed to the implementation and quality assurance of the study. Jessica
368	Heimonen wrote the background section of the manuscript and critically revised the
369	manuscript. Victoria Lyon and Rachel E. Geyer contributed to the design of the home-collection
370	kits, including the Quickstart Instructions Card, as well as managing the kit fabrication
371	procedures. Peter D. Han managed laboratory procedures of the study. Misja Ilcisin, Kairsten A.

372	Fay, Jover Lee, and Thomas R. Sibley contributed to the databasing, informatics, and data
373	preparation of the study. Margaret M. Van de Loo and Jennifer Mooney contributed to the
374	recruitment procedures of the study. Amanda M. Casto helped to edit the manuscript.
375	
376	We would also like to acknowledge Lincoln Pothan, Mariah Anyakora, Grace Kim, and Miguel
377	Martinez for their assistance in the day-to-day shipping responsibilities for the study, Sarah
378	Sohlberg for assisting with participant communication and overall study support, Jack Henry
379	Kotnik, Kara De Leon, Angel Wong, Rose Marzan, Eshin Ang, Regina Garvey, Peiyu Yi, Ashley
380	Bender, Ashley Song, and Kendall Escene for their role in home swab kit fabrication, and Audrey
381	Obsterbind for her support in study implementation.
382	
383	Competing Interests
383 384	Competing Interests Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a
384	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a
384 385	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a consultant for Merck and GlaxoSmithKline. Janet Englund receives research support from
384 385 386	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a consultant for Merck and GlaxoSmithKline. Janet Englund receives research support from GlaxoSmithKline, AstraZeneca, Merck, and Novavax, and is a consultant for Sanofi Pasteur and
384 385 386 387	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a consultant for Merck and GlaxoSmithKline. Janet Englund receives research support from GlaxoSmithKline, AstraZeneca, Merck, and Novavax, and is a consultant for Sanofi Pasteur and Meissa Vaccines. Michael Boeckh receives research support and serves as a consultant for
384 385 386 387 388	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a consultant for Merck and GlaxoSmithKline. Janet Englund receives research support from GlaxoSmithKline, AstraZeneca, Merck, and Novavax, and is a consultant for Sanofi Pasteur and Meissa Vaccines. Michael Boeckh receives research support and serves as a consultant for Ansun Biopharma, Gilead Sciences, Janssen, and Vir Biotechnology; and serves as a consultant
384 385 386 387 388 389	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a consultant for Merck and GlaxoSmithKline. Janet Englund receives research support from GlaxoSmithKline, AstraZeneca, Merck, and Novavax, and is a consultant for Sanofi Pasteur and Meissa Vaccines. Michael Boeckh receives research support and serves as a consultant for Ansun Biopharma, Gilead Sciences, Janssen, and Vir Biotechnology; and serves as a consultant to GSK, ReViral, ADMA, Allovir, Pulmocdie and Moderna. Ashley E. Kim, Elisabeth Brandstetter,
384 385 386 387 388 389 390	Helen Y. Chu receives research support from Sanofi, Cepheid, and Genentech/Roche and is a consultant for Merck and GlaxoSmithKline. Janet Englund receives research support from GlaxoSmithKline, AstraZeneca, Merck, and Novavax, and is a consultant for Sanofi Pasteur and Meissa Vaccines. Michael Boeckh receives research support and serves as a consultant for Ansun Biopharma, Gilead Sciences, Janssen, and Vir Biotechnology; and serves as a consultant to GSK, ReViral, ADMA, Allovir, Pulmocdie and Moderna. Ashley E. Kim, Elisabeth Brandstetter, Chelsey Graham, Denise J. McCulloch, Jessica Heimonen, Amanda M. Casto, Peter D. Han, Lea

394

395 Seattle Flu Study Investigators:

396

- 397 Principal Investigators:
- Helen Y. Chu, MD, MPH^{1,7}, Michael Boeckh, MD, PhD^{1,2,7}, Janet A. Englund, MD^{3,7}, Michael
- 399 Famulare, PhD⁴, Barry R. Lutz, PhD^{5,7}, Deborah A. Nickerson, PhD^{6,7}, Mark J. Rieder, PhD⁷, Lea
- 400 M. Starita, PhD^{6,7}, Matthew Thompson, MBChB, MPH, DPhil⁹, and Jay Shendure, MD, PhD^{6,7,8}
- 401 and Trevor Bedford, PhD^{2,6,7}

402

- 403 Co-Investigators:
- 404 Amanda Adler, MS³, Elisabeth Brandstetter, MPH¹, Roy Burstein, PhD⁴, Amanda M. Casto, MD,
- 405 PhD^{1,2}; Shari Cho, MS⁷, Anne Emanuels, MPH¹, Chris D. Frazar, MS⁶, Rachel E. Geyer, MPH⁹,
- 406 Peter D. Han, MS⁷, James Hadfield, PhD¹, Jessica Heimonen, MPH¹, Michael L. Jackson, PhD,
- 407 MPH¹⁰, Anahita Kiavand, MS⁷, Ashley E. Kim, BS¹, Louise E. Kimball, PhD², Jack Henry Kotnik,
- 408 BA⁹, Kirsten Lacombe, RN, MSN³, Jennifer K. Logue, BS¹, Victoria Lyon, MPH⁹, Denise McCulloch,
- 409 MD, MPH¹, Jessica O'Hanlon, BS¹, Matthew Richardson BA⁶, Julia Rogers, MPH¹, Thomas R.
- 410 Sibley, BA², Monica L. Zigman Suchsland, MPH⁹, Melissa Truong, BS⁷, Caitlin R. Wolf, BS¹ and
- 411 Weizhi Zhong, BS⁷.

- 413 Affiliations:
- 414 1 Department of Medicine, University of Washington
- 415 2 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center

- 416 3 Seattle Children's Research Institute
- 417 4 Institute for Disease Modeling
- 418 5 Department of Bioengineering, University of Washington
- 419 6 Department of Genome Sciences, University of Washington
- 420 7 Brotman Baty Institute
- 421 8 Howard Hughes Medical Institute
- 422 9 Department of Family Medicine, University of Washington
- 423 10 Kaiser Permanente Washington Health Research Institute
- 424

425 References

- 426 1. GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalizations due to
- 427 influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of
- 428 Disease Study 2017. Lancet Respir Med. 2019;7(1):69-89. doi:10.1016/S2213-
- 429 <u>2600(18)30496-X</u>
- 430 2. Troeger C, Forouzanfar M, Rao PC, et al. Estimates of the global, regional, and national
- 431 morbidity, mortality, and aetiologies of lower respiratory tract infections in 195
- 432 countries: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet*
- 433 Infect Dis. 2017;17(11), 1133-1161. doi: 10.1016/S1473-3099(17)30396-1
- 434 3. Putri WCWS, Muscatello DJ, Stockwell MS, Newall AT. Economic burden of seasonal
- 435 influenza in the United States. *Vaccine*. 2018;36(27),3960-3966.
- 436 doi:<u>10.1016/j.vaccine.2018.05.057</u>

- 437 4. Fendrick AM, Monto AS, Nightengale B, Sarges M. The economic burden of non-
- 438 influenza-related viral respiratory tract infection in the United States. Arch Intern Med.
- 439 2003;163(4):487-494. doi:<u>10.1001/archinte.163.4.487</u>
- 440 5. Centers for Disease Control and Prevention. Estimated Range of Annual Burden of Flu in
- 441 the U.S.<u>https://www.cdc.gov/flu/about/burden/index.html</u>. Updated January 10, 2020.
- 442 Accessed February 20, 2020.
- 443 6. Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, et al. The burden
- 444 of respiratory syncytial virus infection in young children. *New Engl J Med*.
- 445 2009;360(6):588-598. doi:<u>10.1056/NEJMoa0804877</u>
- 446 7. Rolfers MA, Foppa IM, Garg S, et al. Annual estimates of the burden of seasonal
- 447 influenza in the United States: A tool for strengthening influenza surveillance and
- 448 preparedness. Influenza Other Respir Viruses. 2018;12(1):132-137.
- doi:<u>10.1111/irv.12486</u>
- 450 8. Zhou H, Thompson WW, Viboud CG, et al. Hospitalizations associated with influenza and
- 451 respiratory syncytial virus in the United States, 1993-2008. *Clin Infect Dis*.
- 452 2012;54(10):1427-1436. doi:<u>10.1093/cid/cis211</u>
- 453 9. Centers for Disease Control and Prevention. Overview of influenza surveillance in the
- 454 United States. Available at: <u>https://www.cdc.gov/flu/weekly/overview.htm</u>. Updated
- 455 October 15, 2019. Accessed February 20, 2020.
- 456 10. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden form
- 457 population-based surveillance data in the United States. *PLoS One*.
- 458 2015;10(3):e0118369. doi:<u>10.1371/journal.pone.0118369</u>

459	11. Hayward AC	Fragaszy FB	Bermingham A	et al. Comparative	community burden and
TUU	III III WAIU AC,	I LAGASLY LD	DETITINGHATHA		

- 460 severity of seasonal pandemic influenza: results of the Flu Watch cohort study. *Lancet*
- 461 *Respir Med.* 2014;2:445-454. doi: 10.1016/ S2213-2600(14)70034-7
- 462 12. Garske T, Legrand J, Donnelly CA, et al. Assessing the severity of the novel influenza
- 463 A/H1N1 pandemic. *BMJ* 2009; **339:** b2840. DOI: 10.1136/bmj.b2840
- 464 13. Brooks-Pollock E, Tilston N, Edmunds WJ, Eames KTD. Using an online survey of
- 465 healthcare-seeking behaviour to estimate the magnitude and severity of the 2009
- 466 H1N1v influenza epidemic in England. *BMC Infect Dis* 2011; **11:** 68. doi: <u>10.1186/1471-</u>
- 467 <u>2334-11-68</u>
- 468 14. Monto AS. Studies of the community and family: acute respiratory illness and infection.
- 469 Epidemiol Rev. 1994;16(2):351-373. doi:<u>10.1093/oxfordjournals.epirev.a036158</u>
- 470 15. Petrie JG, Ohmit SE, Cowling BJ, et al. Influenza transmission in a cohort of households
- 471 with children: 2010-2011. *PLoS One*. 2013;8(9):e753339.
- 472 doi:<u>10.1371/journal.pone.0075339</u>
- 473 16. Monto AS, Kioumehr F. The Tecumseh Study of Respiratory Illness. IX. Occurrence of
- 474 influenza in the community, 1966-1971. *Am J Epidemiol*. 1975;102(6):553-563.
- 475 doi:<u>10.1093/oxfordjournals.aje.a112193</u>
- 476 17. Aitken C, Jeffries DJ. Nosocomial Spread of Viral Disease. *Clinical Microbiology Reviews*.
- 477 2001;14(3):528-546. doi:10.1128/CMR.14.3.528-546.2001.
- 478 18. Salgado CD, Farr BM, Hall KK, et al. Influenza in the acute hospital setting. *Lancet Infect*
- 479 *Dis*. 2002;2(3):145-155. doi:10.1016/S1473-3099(02)00221-9

- 480 19. Chu HY, Boeckh M, Englund JA, et al. The Seattle Flu Study: A Community-Based Study of
- 481 Influenza. *Open Forum Infectious Diseases*. 2020; Submitted.
- 482 20. UN3373 Medical Packaging. Biological Substance Category B. Available at:
- 483 https://www.un3373.com/category-biological-substances/category-b/. Updated June
- 484 2018. Accessed March 1, 2020.
- 485 21. Druce J, Garcia K, Tran T, et al. Evaluation of Swabs, Transport Media, and Specimen
- 486 Transport Conditions for Optimal Detection of Viruses by PCR. *Journal of Clinical*
- 487 *Microbiology*. 2012;50(3):1064-1065. doi:10.1128/JCM.06551-11
- 488 22. Institute of Translational Health Sciences. What is 21 CFR Part 11? Available at:
- 489 <u>https://www.iths.org/wp-content/uploads/Part11Compliant_validation---REDCap-</u>
- 490 <u>Wiki.pdf</u>. Updated September 19, 2013. Accessed March 1, 2020.
- 491 23. Thermo Fisher Scientific. (2019). *Respiratory Tract Microbiota Profiling Experiments*.
- 492 Available at: <u>https://assets.thermofisher.com/TFS-</u>
- 493 Assets/LSG/manuals/MAN0017952 RespiratoryTractMicrobiotaProfiling OA AG.pdf.
- 494 Updated September 2019. Accessed March 1, 2020.
- 495 24. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1)
- 496 2009, United States, April-July 2009. *Emerg Infect Dis*. 2009;15(12):2004-2007.
- 497 doi:<u>10.3201/eid1512.091413</u>
- 498 25. Chu HY, Englund JA, Starita LM, et al. Early Detection of Covid-19 through a Citywide
- 499 Pandemic Surveillance Platform. *New England Journal of Medicine*.
- 500 2020; NEJMc2008646. doi: <u>10.1056/NEJMc2008646</u>

- 501 26. Bedford T, Greninger AL, Roychoudhury P, et al. Cryptic transmission of SARS-CoV-2 in
- 502 Washington State. Pre-print at
- 503 https://www.medrxiv.org/content/10.1101/2020.04.02.20051417v2.
- 504 27. Seattle King County Public Health. Statistical Profile of King County. Available at:
- 505 https://www.kingcounty.gov/~/media/depts/executive/performance-strategy-
- 506 budget/regional-planning/Demographics/Dec-2018-Update/KC-Profile2018.ashx?la=en.
- 507 Accessed August 27. 2020.
- 508 28. Jackson ML, Nguyen M, Kirlin B, et. al. Self-Collected Nasal Swabs for Respiratory Virus
- 509 Surveillance. *Open Forum Infectious Diseases*. 2015;2(4):ofv152.
- 510 doi:<u>10.1093/ofid/ofv152</u>
- 511 29. McCulloch DJ, Kim AE, Wilcox NC, et. al. Comparison of Unsupervised Home Self-
- 512 collected Midnasal Swabs With Clinican-Collected Nasopharyngeal Swabs for Detection
- 513 of SARS-CoV-2 Infection. *JAMA Netw Open*. 2020;3(7):e2016382.
- 514 doi:10.1001/jamanetworkopen.2020.16382
- 515 30. Dhiman N, Miller RM, Finley JL et. al. Effectiveness of Patient-Collected Swabs for
- 516 Influenza Testing. *Mayo Clin Proc.* 2012;87(6):548-554. doi:
- 517 <u>10.1016/j.mayocp.2012.02.011</u>
- 518 31. Wenham C, Gray ER, Keane CE, et. al. Home swabbing for Virological Confirmation of
- 519 Influenza-Like Illness Among an Internet-Based Cohort in the UK During the 2014-2015
- 520 Flu Season: Pilot Study. J Med Internet Res. 2018;20(3): e71. doi:10.2196/jmir.9084

- 521 32. Wehrhahn M, Robson J, Brown S, et. al. Self-collection: An appropriate alternative
- 522 during the SARS-CoV-2 pandemic. J Clin Virol. 2020;128:104417.
- 523 doi:10.1016/j.jcv.2020.104417
- 524 33. Seaman C, Tran LTT, Cowling BJ, et. Al. Self-collected compared with professional-
- 525 collected swabbing in the diagnosis of influenza in symptomatic individuals: A meta-
- 526 analysis and assessment of validity. *J Clin Virology*. 2019;118:28-35. doi:
- 527 <u>10.1016/j.jcv.2019.07.010</u>

528 Table 1: Clinical and sociodemographic characteristics of enrolled participants, October 16, 2019 -

529 March 9, 2020

	N=4,359 (%)
Age	
<5у	128 (2.9%)
5-17у	208 (4.8%)
18-49у	3212 (73.7%)
50-64y	614 (14.1%)
>=65y	192 (4.4%)
Sex	
Male	1191 (27.3%)
Female	2451 (56.2%)
Other	19 (0.4%)
Race	
American Indian/ Alaska Native	17 (0.4%)
Asian	724 (16.6%)
Native Hawaiian/ Pacific Islander	7 (0.2%)
Black/African American	37 (0.8%)
White	2542 (58.3%)
Other	92 (2.1%)
Multiple	188 (4.3%)
Hispanic ethnicity (N=2856)	183 (4.2%)
Income	
≤\$25K	196 (4.5%)
\$25-50K	367 (8.4%)
\$50-100K	860 (19.7%)
\$100-150K	738 (16.9%)
≥\$150K	1160 (26.6%)
Education level	

Graduated high school/obtained GED or less	109 (2.5%)
Some college (including vocational training, associate's degree)	492 (11.3%)
Bachelor's degree	1371 (31.5%)
Advanced degree	1377 (31.6%)
Care-seeking	
Any care prior to enrollment or during study period	1182 (27.1%)
No care prior to enrollment or during study period	2183 (50.1%)
Illness impact on regular activities at enrollment	
None	243 (5.6%)
Low	1597 (36.6%)
High	1831 (42.0%)
How participant heard about the study	
Saw an ad on Facebook/Instagram/Twitter	1369 (31.4%)
Referral from a friend/family member	841 (19.3%)
Other online	667 (15.3%)
Saw an ad on Google	314 (7.2%)
Referral from my place of work	280 (6.4%)
Other	172 (3.9%)
Saw a Seattle Flu Study kiosk	86 (2.0%)
Email/Seattle Community Pulse	86 (2.0%)
Referral from a healthcare provider, travel clinic, or immigrant/refugee health screening	60 (1.4%)
Referral from my child's school	29 (0.7%)

531 Table 2: Study Logistics & Turnaround Time Metrics

532

Metric	Time (Median [IQR])
Completed enrollment to shipment scheduled (hours) ^a	7.2 [0.45-19.6]
Delivery time to participant's home (hours) ^b	2.2 [1.7-3.0]
Nasal swab collection to returned specimen received at the laboratory (days) ^c	3.0 [2.0-4.0]
Shipment of home swab kit to participant's home to completed laboratory testing (days) ^d	8.0 [7.0-14.0]

533

^a Time between participant completion of the *Enrollment Questionnaire* and scheduled shipment of the

535 home swab kit

536 ^b FedEx Same Day City was used to rapidly deliver home swab kits within the city of Seattle. Median

537 FedEx Same Day City delivery times from ordering the shipment to arrival at the participant's residence,

538 adjusting for redeliveries.

539 ^c Estimated time between nasal swab collection, measured by completion of the *Illness Questionnaire* &

540 *Nasal Swab Collection* survey, and the return of completed home swab kits at the laboratory. Completed

541 home swab kits were returned via pre-paid USPS Priority Mail.

^d Time between scheduled shipment of home swab kits to participants' homes and available results for

543 tested specimens

544 **Table 3:** Clinical and sociodemographic characteristics of enrolled participants, October 16, 2019 -

545 March 9, 2020 by study procedure completion and compliance

	Study procedure completion		Study procedure compliance				
	Returned	Completed All Study Procedures N=3214	Mail Packaging Error [†] N=205	Sample Tube Use Error [§] N=24	Sample Tube Labeling Error [¶] N=205	No Packaging or Sample Tube Errors N=3211	P value*
Age							0.11
<5у	110 (3.0%)	89 (2.8%)	9 (4.4%)	1 (4.2%)	6 (2.9%)	92 (2.9%)	
5-17y	173 (4.8%)	149 (4.6%)	12 (5.9%)	0 (0%)	16 (7.8%)	149 (4.6%)	
18-49y	2638 (72.5%)	2324 (72.3%)	144 (70.2%)	15 (62.5%)	141 (68.8%)	2339 (72.8%)	
50-64y	545 (15.0%)	496 (15.4%)	33 (16.1%)	6 (25.0%)	29 (14.1%)	480 (14.9%)	
>=65y	168 (4.6%)	153 (4.8%)	6 (2.9%)	2 (8.3%)	10 (4.9%)	150 (4.7%)	
Sex							0.38
Male	1142 (31.4%)	1013 (31.5%)	70 (34.1%)	8 (33.3%)	70 (34.1%)	994 (31.0%)	
Female	2340 (64.3%)	2178 (67.8%)	115 (56.1%)	13 (54.2%)	118 (57.6%)	2097 (65.3%)	
Other	18 (0.5%)	15 (0.5%)	3 (1.5%)	0 (0%)	1 (0.5%)	14 (0.4%)	
Income							0.81
<= \$25K	180 (4.9%)	161 (5.0%)	5 (2.5%)	1 (4.2%)	9 (4.4%)	164 (5.1%)	
\$25-50K	344 (9.5%)	315 (9.8%)	21 (10.3%)	2 (8.3%)	27 (13.2%)	294 (9.2%)	
\$50-100K	818 (22.5%)	760 (23.6%)	39 (19.0%)	10 (41.7%)	49 (23.9%)	716 (22.3%)	
\$100-150K	700 (19.2%)	639 (19.9%)	33 (16.1%)	2 (8.3%)	32 (15.6%)	635 (19.8%)	
>=\$150K	1129 (31.0%)	1042 (32.4%)	69 (33.7%)	6 (25.0%)	48 (23.4%)	1010 (31.5%)	
Education level							0.53

	1		1		n	-	
Graduated high							
school/obtained GED or							
less	101 (2.8%)	80 (2.5%)	9 (4.4%)	0 (0%)	10 (4.9%)	81 (2.5%)	
Some college (including							
vocational training,	449	414	20	5	32	395	
associate's degree)	(12.3%)	(12.9%)	(9.8%)	(20.8%)	(15.6%)	(12.3%)	
	1324	1220	67	5	58	1189	
Bachelor's degree	(36.4%)	(38.0%)	(32.7%)	(20.8%)	(28.3%)	(37.0%)	
	1328	1229	68	10	66	1188	
Advanced degree	(36.5%)	(38.2%)	(33.2%)	(41.7%)	(32.2%)	(37.0%)	
Care-seeking							0.80
Any care prior to							
enrollment or during	1138	1077	52	7	63	1013	
study period	(31.3%)	(33.5%)	(25.4%)	(29.2%)	(30.7%)	(31.5%)	
No care prior to							
enrollment or during	2136	2136	114	13	105	1912	
study period	(58.7%)	(66.5%)	(55.6%)	(54.2%)	(51.2%)	(59.5%)	
Illness impact on regular							
activities at enrollment							0.07
None	234 (6.4%)	203 (6.3%)	17 (8.3%)	1 (4.2%)	11 (5.4%)	205 (6.4%)	
	1521	1373	90	10	73	1345	
Low	(41.8%)	(42.7%)	(43.9%)	(41.7%)	(35.6%)	(41.9%)	
	1754	1637	81	10	107	1564	
High	(48.2%)	(50.9%)	(39.5%)	(41.7%)	(52.2%)	(48.7%)	

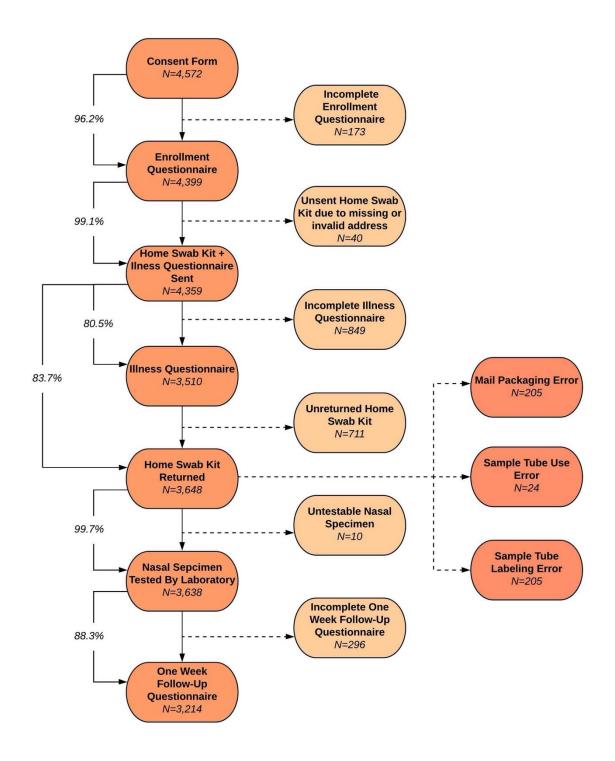
546

547 * Kruskal-Wallis test used to determine p-values for study procedure compliance categories (excludes

548 first three columns)

[†] Mail packaging errors include returning the nasal specimen in a damaged box, a different box than the

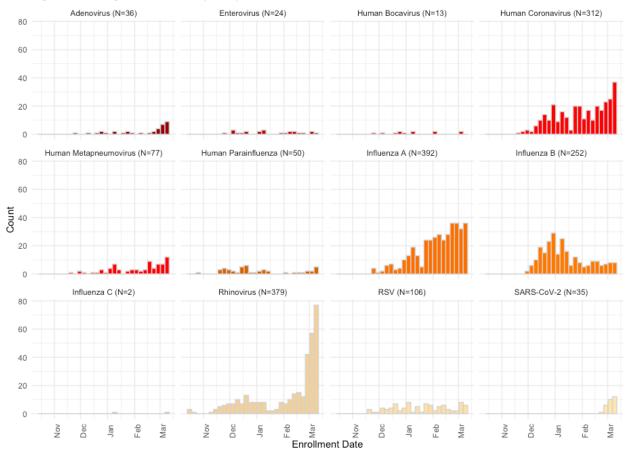
one provided, an improperly closed box, or an improperly used specimen transport bag or lack thereof


551 [§] Sample tube use errors include returned nasal specimens with a damaged or broken UTM tube, an

552 absent swab, or leakage

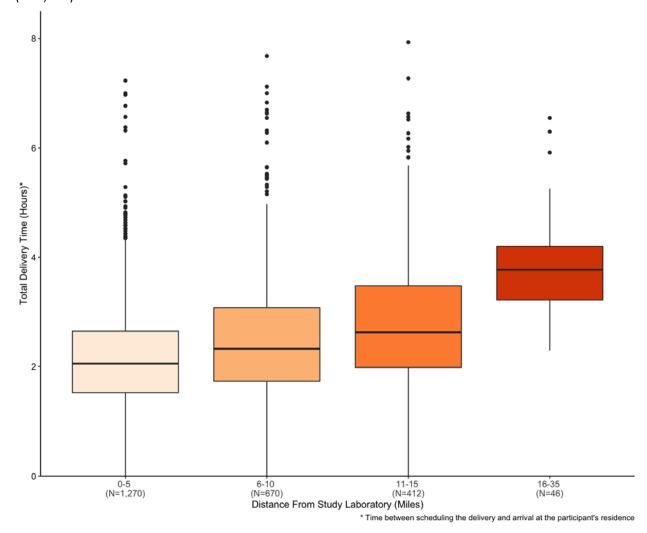
553 [¶] Sample tube labeling errors include a missing written full name or date of collection on the UTM tube

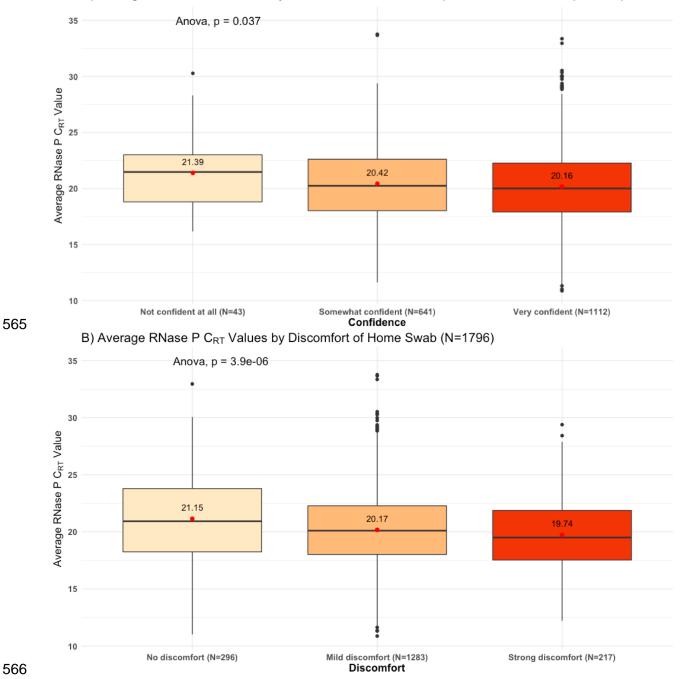
554 **Figure 1**: Study procedure completion rates


555

557 Figure 2: Pathogens detected in participants over time

558


559


Figure 2: Pathogens detected in participants over time

560 Figure 3: Median delivery times of home swab kits to participants by distance from study laboratory

561 (N=2,398)

563 Figure 4: Average RNase P C_{RT} values by discomfort of and confidence in home swab collection 564

A) Average RNase P C_{RT} Values by Confidence in Correct Completion of Home Swab (N=1796)