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Abstract 

In multicellular organisms, secreted ligands selectively activate, or “address,” specific target cell 

populations to control cell fate decision-making and other processes. Key cell-cell communication 

pathways use multiple promiscuously interacting ligands and receptors, provoking the question 

of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, 

we developed a general mathematical modeling framework based on the bone morphogenetic 

protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor 

systems allow a small number of ligands, acting in combinations, to address a larger number of 

individual cell types, each defined by its receptor expression profile. Promiscuous systems 

outperform seemingly more specific one-to-one signaling architectures in addressing capacity. 

Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, 

grows more powerful with increasing receptor multiplicity, and is maximized by specific 

biochemical parameter relationships. Together, these results identify fundamental design 

principles governing cell addressing by ligand combinations. 
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Introduction 

Communication systems such as email enable individuals to address messages to specific 

recipients and groups of recipients. In biological systems, it is crucial to activate the right cells at 

the right time. Addressing is essential for targeted cell-cell communication by allowing signals to 

activate specific cell types or defined groups of cell types. Uncovering how signaling pathways 

enable different types of addressing is critical for understanding natural developmental programs 

and predictively controlling pathway activation of target cell types for regenerative medicine or 

clinical applications (Epstein, 2011; Poon et al., 2016). However, the principles that enable cell-

cell communication systems to address biological messages have generally remained unclear. 

The simplest conceivable realization of addressing would use specific, one-to-one interactions 

between ligands and cognate receptors (Figure 1A, left). This architecture is conceptually 

straightforward, has been implemented synthetically in the SynNotch system (Morsut et al., 2016), 

and is extendable, as new orthogonal ligand-receptor pairs can provide additional communication 

channels without disturbing existing ones. Despite the simplicity of a one-to-one addressing 

system, most natural cell-cell communication systems instead employ an interconnected, many-

to-many architecture (Figure 1A, right). Pathways such as bone morphogenetic protein (BMP) 

(Dudley and Robertson, 1997; Heldin et al., 1997; Massagué, 1998; Mueller and Nickel, 2012; 

Nickel and Mueller, 2019; Schmierer and Hill, 2007), Wnt (Llimargas and Lawrence, 2001; 

Wodarz and Nusse, 1998), Notch (Shimizu et al., 2000a, 2000b), Eph-Ephrin (Dai et al., 2014), 

and fibroblast growth factor (FGF) (Ornitz et al., 1996; Zhang et al., 2006) exhibit promiscuous 

interactions among their multiple ligand and receptor variants. However, these ligand and receptor 

combinations may activate similar downstream targets. These observations provoke the 

questions of whether and how molecular promiscuity enables addressing, and what advantages 

it could have over the one-to-one architecture. 

The BMP pathway provides an ideal system to study these questions. BMP plays diverse roles in 

most tissues and has demonstrated therapeutic potential (David and Massagué, 2018; Massagué, 

2000; Miyazono et al., 2010; Wagner et al., 2010; Wang et al., 2014). In addition, the BMP 

pathway shows a high degree of promiscuous interactions between its ligands and receptors. In 

mammals, the pathway comprises more than 10 distinct ligand variants as well as 4 type I and 3 

type II receptor variants (Massagué, 2000; Miyazono et al., 2010; Shi and Massagué, 2003). 

Signaling complexes, comprising a ligand dimer with two type I and two type II receptor subunits, 

phosphorylate SMAD1/5/8 effectors, which translocate to the nucleus and act as transcription 

factors to control the expression of target genes (Figure 1B). Individual cells often co-express 

multiple receptor variants and are exposed to multiple ligands, suggesting that the pathway could 

function combinatorially (Diez-Roux et al., 2011; Godin et al., 1999; Graham et al., 2014; 

Kapushesky et al., 2010; Li and Ge, 2011; Liem et al., 1995; Simic and Vukicevic, 2005; Zhang 

et al., 1998).  

Previous observations suggest that BMP ligands could show addressing capacity. For example, 

during neural tube development, different BMP ligands direct distinct dorsal interneuron identities 

(Andrews et al., 2017), with each ligand showing specific effects on a subset of interneuron 

identities but not others. In this way, different ligands appear to address specific progenitors. 
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Moreover, cells also appear to selectively respond to specific ligand combinations in other 

developmental contexts (Chen et al., 2013; Grassinger et al., 2007; Varley and Maxwell, 1996), 

and receptor expression patterns can modulate the cellular response (Baur et al., 2000; Lind et 

al., 1996; Yu et al., 2008). 

Recently, mathematical modeling, together with in vitro experiments, showed that competitive 

formation of distinct BMP signaling complexes with different ligands and receptors effectively 

generates a set of “computations,” in which pathway activity depends on the relative 

concentrations and identities of multiple ligands (Antebi et al., 2017; Klumpe et al., 2020; 

Martinez-Hackert et al., 2020). These computations comprise distinct response functions, 

including additive and ratiometric responses as well as balance and imbalance detection 

responses that are maximal or minimal, respectively, at defined ligand ratios (Figure S1). Further, 

the pathway can perform different computations on the same ligands depending on the 

combinations of receptors expressed by individual cells. In other words, these results suggest the 

possibility that different ligand combinations could selectively activate, or address, particular cell 

types based on their receptor expression profiles. Using combinations of ligands to activate 

specific cell types, promiscuous ligand-receptor interactions may in fact produce additional 

orthogonal communication channels compared to a one-to-one scheme (Figure 1C, left). In a 

spatial context, this type of combinatorial addressing could further enable morphogenetic 

gradients of multiple ligands to activate distinct cell types at specific locations within a tissue. 

To understand the principles that govern combinatorial addressing systems, we developed a 

minimal mathematical model that accounts for promiscuous ligand-receptor interactions, 

independently representing both the affinities for forming each ligand-receptor signaling complex 

and their enzymatic activities for activating the pathway. Using a computational optimization 

approach, we found that promiscuous ligand-receptor interactions generate an extensive 

repertoire of orthogonal communication channels, exceeding the number possible with the same 

number of ligands and receptors interacting in a one-to-one fashion (Figure 1C, left). Modest 

increases in the number of receptor variants substantially increase the number and orthogonality 

of these addressing channels. Furthermore, the promiscuous architecture allows ligand 

combinations to address not only individual cell types but also more complex groups of cell types 

(Figure 1C, right). Finally, using an information theoretic framework, we showed how specific 

biochemical features, such as anti-correlations between affinity and activity parameters, maximize 

the information content that can be transmitted through promiscuous ligand-receptor interactions, 

providing a design principle for building synthetic addressing systems out of promiscuously 

interacting ligands and receptors.  
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Results 

Cell lines show combinatorial addressing in vitro 

As an initial test of whether the BMP pathway could allow addressing, we analyzed the ability of 

mixtures of ligands at specific concentrations, or ligand words, to preferentially activate, or 

address, specific cell types in cell culture, where “cell type” here and throughout the paper refers 

to a group of cells sharing a common receptor expression profile. (An overview of addressing 

terminology is provided in Box 1.) To read out pathway activity, we used a transcriptional 

fluorescent reporter for Smad1/5/8 containing BMP response elements from the Id1 promoter 

(Korchynskyi and ten Dijke, 2002). We stably integrated the reporter into three cell lines with 

different receptor expression profiles, then analyzed their responses to a range of BMP ligand 

combinations by flow cytometry 24 hours after ligand addition (Methods: Addressing of Cell 

Lines).  

Two of the lines were based on a previously characterized epithelial cell line, NAMRU mouse 

mammary gland (NMuMG) cells, that robustly responds to a variety of BMP ligands (Antebi et al., 

2017). In this background, knockdown of ACVR1, which directly interacts with BMP9 (Luo et al., 

2010), resulted in a minimal response to BMP9 but a strong response to BMP4, thereby 

generating a ratiometric response profile (Figure 2A, left). By contrast, knockdown of BMPR2, the 

major BMP4 receptor (Xia et al., 2007), gave rise to a reduced responsiveness to BMP4 with a 

strong BMP9 response, producing a complementary ratiometric response (Figure 2A, center). 

Finally, we also analyzed E14 mouse embryonic stem cells (mESCs) (Figure 2A, right), a different 

cell type expressing a distinct receptor profile. This line exhibited a synergistic response to BMP4 

and BMP9, consistent with previous results (Antebi et al., 2017).  

Comparing the responses of these cell lines at different concentrations of BMP4 and BMP9 

showed that the two ligands could be used to preferentially activate certain cell types individually 

or in groups (Figure 2B). For example, BMP4 alone produced 2.3-fold greater response in the 

NMuMG ACVR1 knockdown cells, compared to the next most responsive cell line. Conversely, 

BMP9 alone preferentially activated NMuMG BMPR2 knockdown cells, 2.4-fold more strongly 

than the next most responsive cell line. By contrast, mESCs were strongly activated only when 

BMP4 and BMP9 were added in combination, a condition that activated all three cell types 

simultaneously. Overall, distinct combinations (words) of BMP4 and BMP9 preferentially activated 

three distinct cell type combinations, establishing that the BMP pathway has combinatorial 

addressing capability. However, the overall potential for addressing remains unknown. 

A minimal model allows analysis of promiscuous BMP ligand-receptor interactions 

To explore the addressing capacity of promiscuous ligand-receptor systems, we developed a 

minimal mathematical model based on the architecture of the BMP pathway (Methods: One-Step 

Model for Promiscuous Interactions). Briefly, the model describes a set of 𝑛𝐿 ligands, 𝑛𝐴 type I 

receptors, and 𝑛𝐵 type II receptors. A ligand 𝐿𝑖 binds simultaneously to type I and type II receptor 

subunits 𝐴𝑗 and 𝐵𝑘 to form an active signaling complex 𝑇𝑖𝑗𝑘 (Figure 3A, left). A set of effective 

interaction strengths, denoted 𝐾𝑖𝑗𝑘, represents the strength of binding between a ligand, a type I 

receptor subunit, and a type II receptor subunit. We further assume that each signaling complex 

has its own specific activity, denoted 𝑒𝑖𝑗𝑘, controlling the rate at which it phosphorylates 
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downstream SMAD effector proteins. The overall activity of the pathway is then the sum of the 

concentrations of the signaling complexes, each weighted by its own activity parameter. At steady 

state, this model can be described by one set of equations representing binding and unbinding 

interactions, a second set of equations representing conservation of total receptor levels, and an 

expression for total pathway activity, 𝑆 (Figure 3A, right). To solve the model efficiently, we used 

Equilibrium Toolkit (EQTK), an optimized Python-based numerical solver for biochemical reaction 

systems (Bois, 2020; Dirks et al., 2007) (Methods: One-Step Model for Promiscuous Interactions). 

For simplicity, the model neglects some specific features of the natural BMP pathway, including 

sequential binding of ligands to receptors and the hexameric nature of the full BMP signaling 

complexes (Massagué, 2000; Shi and Massagué, 2003). These features could enable even 

greater complexity in pathway behavior beyond that described for this minimal model (Methods: 

Comparison with Alternative Models). 

An optimization approach identifies possible addressing schemes 

In orthogonal addressing, each ligand word exclusively activates a single cell type, providing one 

communication channel per cell type. Intuitively, increasing the number of variants of ligand (𝑛𝐿) 

and receptors (𝑛𝐴 and 𝑛𝐵) should expand the number 𝑁 of possible channels by allowing greater 

diversity of ligand words and cell types. However, it remains unclear whether the number of 

channels in a promiscuous architecture can exceed the number possible in a one-to-one 

architecture, how the number of addressable channels grows with increasing ligand and receptor 

multiplicity, and what biochemical properties enable optimal orthogonal addressing.  

To systematically identify parameters that generate orthogonal channels, we used an optimization 

approach (Figure 3B). We considered discrete ligand concentrations, allowing each ligand to take 

on one of three logarithmically spaced concentrations, 100 = 1, 101.5 ≈ 32, and 103 = 1000 arbitrary 

units (AU), reflecting the experimentally observed input dynamic range for BMP signaling (Antebi 

et al., 2017; Bradford et al., 2019; Hatsell et al., 2015). This discretization defines a finite set of 

3𝑛𝐿 possible ligand words. To identify a system with 𝑁 channels, we chose a subset of 𝑁 ligand 

words (Figure 3Bi). Each such choice defines an “addressing scheme.” Achieving an addressing 

scheme requires identifying 𝑁 cell types that are each individually activated by one word (Figure 

3Bii). We then used least-squares optimization to identify biochemical parameters (affinities, 𝐾𝑖𝑗𝑘, 

and activities, 𝑒𝑖𝑗𝑘) and 𝑁 receptor expression profiles (one for each cell type) that best implement 

the target addressing scheme (Figure 3Biii; Methods: Optimization of Orthogonal Addressing 

Schemes). To obtain a more complete view of its functional behavior, we then computed the 

responses of each cell type on a higher-resolution (10×10) grid of ligand levels (Figure 3Biv). 

To quantify the channel structure of the resulting communication system, we computed the 

crosstalk matrix (Figure 3C), where each row is a ligand word, each column is a cell type, and 

each value represents the normalized response of that cell type to the corresponding ligand word. 

Diagonal elements of this matrix represent “on-target” signaling, which ideally approach 1. Off-

diagonal elements represent “off-target” signaling, ideally 0. To quantify the addressing specificity, 

we computed a distinguishability score, defined as the fold difference between the highest off-

target activity and the lowest on-target activity (Methods: Distinguishability of Orthogonal 

Channels). 
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Two ligands can orthogonally address five distinct cell types 

We first applied this procedure to test whether the promiscuous architecture can achieve more 

channels than a one-to-one system. Since a one-to-one architecture with two ligands allows for 

only two orthogonal channels (albeit with perfect specificity), we searched for two ligand systems 

(𝑛𝐿 = 2) that generate three orthogonal channels in a model with two type I and two type II 

receptor subunits (𝑛𝐴 = 2 and 𝑛𝐵 = 2), reflecting the receptor multiplicity seen in Drosophila. We 

enumerated all 31 possible discrete addressing schemes (Methods: Enumeration of Orthogonal 

Addressing Schemes), optimized parameters for each scheme, and analyzed the resulting 

responses (Figure 3D). In 28 of the 31 possible schemes, all on-target activity levels (orange 

shaded regions) exceeded all off-target activity levels (blue shaded regions), giving rise to 

orthogonal addressing. While any distinguishability value over 1 achieves addressing, we 

imposed a stricter threshold of at least 1.5 to ensure better separation of on- and off-target 

signaling. In fact, 25 schemes showed distinguishability scores above this threshold. Thus, a wide 

variety of addressing schemes are possible in this minimal system. Among these, the best 

scheme, based on using each ligand individually as well as a word with both ligands at their 

maximal level, produced a distinguishability of over 45 (Figure 3D, scheme 1). We note that these 

results represent a lower bound on the potential addressing capacity and specificity, as global 

optima are not guaranteed. 

Addressing schemes can be realized using a variety of combinations of archetypal response 

functions previously observed in the BMP signaling pathway (Figure S1) (Antebi et al., 2017). For 

most addressing schemes, two cell types produced opposite ratiometric responses to the two 

ligands (Figure S2), with the third cell type exhibiting a variety of responses. The third response 

types included a balance detector, in which the two ligands combined synergistically activated the 

pathway more than either ligand alone (Figure S2, e.g. schemes 1 and 2); a nonmonotonic 

response, in which the pathway was most highly activated at intermediate concentrations of a 

given ligand (e.g. schemes 3 and 4); a distinct ratiometric response (e.g. schemes 18 and 19); 

and an additive response to the two ligands (e.g. scheme 17). Thus, the ability of cells to access 

a variety of multi-ligand response functions with different receptor configurations facilitates 

addressing. 

To extend these results to more channels, we repeated this procedure for schemes of up to eight 

channels. The eight-channel limit reflects the discretization of ligand concentration space and is 

not inherent in the system. With the fly-like (𝑛𝐿 = 2, 𝑛𝐴 = 2, 𝑛𝐵 = 2) model, up to five orthogonal 

channels could be addressed with at least 1.5-fold distinguishability between on- and off-target 

conditions (Figures 4A-B). One five-channel scheme achieves 3.6-fold separation between 

channels using a combination of ratiometric, balance detection, and nonmonotonic responses 

(Figures 4C and S3A). Additional channels significantly reduced the distinguishability (Figure 4B). 

Taken together, these results demonstrate that two ligands with promiscuous ligand-receptor 

interactions can address a larger number of cell types.  

Addressing can occur despite gene expression noise 

Stochastic fluctuations, or noise, in gene expression presents a challenge for addressing (Elowitz 

et al., 2002; Raser and O’Shea, 2005). On the one hand, signaling must be sensitive to receptor 

expression in order for cell types to have different responses to the same ligand words. On the 
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other hand, if sensitivity is too high, receptor expression noise could disrupt addressing. Here, we 

asked whether addressing could occur despite correlated (extrinsic noise) and uncorrelated 

(intrinsic noise) fluctuations in receptor expression. We quantified noise using the coefficient of 

variation (CV, or s.d./mean) and focused on a physiologically reasonable value of 0.5 (Elowitz et 

al., 2002; Raj et al., 2006; Suter et al., 2011). 

We used two metrics to characterize the extent to which each type of noise degrades addressing. 

First, we computed receiver operating characteristic (ROC) curves and corresponding area under 

the curve (AUC) values (Figure 4D; Methods: Analysis of Robustness), which characterize the 

proportion of on- and off-target cells that are correctly classified (Hanley and McNeil, 1982). (AUC 

values range from 0.5 for a random system to 1.0 for an ideal system.) Extrinsic and intrinsic noise 

generated modest reductions in AUC to values of 0.9820 and 0.9400, respectively. Examining 

the more stringent metric of distinguishability, which is sensitive to incorrect activation of even a 

single cell type, revealed that intrinsic, but not extrinsic, noise could degrade distinguishability 

(Figure S3B, left). These results suggest that minimizing intrinsic noise is important for maximizing 

addressing capacity. 

More receptor variants increase the number of addressable channels 

BMP receptor multiplicity has varied during evolution, leading to different numbers of receptor 

variants in Drosophila (2 type I and 2 type II), humans (4 type I and 3 type II), and other species 

(Massagué, 1998; Newfeld et al., 1999; O’Connor et al., 2006). A model with 4 type I and 3 type 

II receptor subunit variants, reflecting the multiplicity observed in mammals, significantly 

outperformed the fly-like model with 2 variants of each receptor subunit (Figure 4E), achieving 

better specificity at any given number of channels (cf. Figure 4A). In fact, in this model two ligands 

were able to address as many as eight orthogonal channels with at least 1.5-fold distinguishability 

between on- and off-target activity (Figure 4F), resulting in a generally diagonal crosstalk matrix 

(Figure 4G). We note that eight is the maximum number of channels in this three-level ligand 

discretization scheme; more channels may be possible with higher-resolution grids. 

Eight-channel addressing was robust to extrinsic but not intrinsic noise in receptor expression 

levels, with AUC values of 0.9794 and 0.8853 for extrinsic and intrinsic noise, respectively (Figure 

4H). Distinguishability values were generally preserved above 1 for correlated fluctuations of 

receptor expression but not for uncorrelated noise (Figure S3B, right). This system took 

advantage of diverse single-cell responses, including ratiometric, balance detection, and 

nonmonotonic behaviors (Figure 4I). Taken together, these results show that a modest increase 

in the number of receptor variants generates a substantial expansion in addressing capacity and 

that the use of multiple distinct response types enables this expanded capacity. 

Promiscuous architectures enable subset addressing  

Beyond the addressing of individual cell types, as explored thus far, ligands could in principle 

generate more complex, multi-cell type response patterns, in which each ligand word activates a 

specific subset of cell types. In the olfactory system, for example, odorants activate specific 

subsets of olfactory receptor neurons, giving rise to a combinatorial representation of odors 

(Hallem and Carlson, 2006; Malnic et al., 1999). Subset addressing systems can be characterized 

by an “addressing repertoire,” defined as all unique subsets of cell types that can be addressed 
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across all possible ligand words (Figure 5A). Each of these unique subsets represents a channel. 

For example, a system with 3 cell types that are orthogonally activated would have 3 channels 

(Figure 5A, top). Higher capacity can occur when some ligand words activate multiple cell types 

simultaneously (Figure 5A, middle), such as the 4 addressable subsets of the experimental 

system (cf. Figure 2). The highest bandwidth of 7 addressable subsets occurs when all cell types 

can be activated in any required combination using some ligand word (Figure 5A, bottom).  

To determine what addressing repertoires can be achieved in promiscuous ligand-receptor 

systems, we first considered systems with three cell types, giving rise to seven possible channels. 

Using the optimization approach for the mammalian-like system of 4 type I and 3 type II receptors, 

we first sought to identify parameters to achieve this fully addressable system and plotted the 

corresponding responses of each cell type to each ligand word (Figure 5B), confirming that they 

do indeed allow for addressing of any of the seven possible channels. We then generalized this 

approach to all 32 possible addressing repertoires and successfully identified parameter sets that 

generated 31 with distinguishability values greater than 1.5 (Figure 5C; Methods: Addressing 

Repertoires). Even the worst repertoire still exhibited distinguishability value greater than 1. Thus, 

just two ligand variants can generate a broad variety of addressing repertoires. 

Achieving such a broad set of addressing repertoires requires promiscuous ligand-receptor 

interactions. A one-to-one model with two ligands can at most implement two orthogonal 

channels, and thus would require additional ligands to produce many of the addressing repertoires 

(Figure 5C, purple squares). Further, half of the addressing repertoires achievable in a 

promiscuous architecture cannot occur, even theoretically, in a one-to-one architecture with any 

number of ligands (Figure 5C, orange stars; Methods: Addressing Repertoires). Taken together, 

these results demonstrate that the promiscuous ligand-receptor architecture allows for an 

astonishing diversity of addressing repertoires. 

Response function diversity increases addressability  

The values of key biochemical parameters – affinities and activities – ultimately determine the 

addressing bandwidth of a promiscuous ligand-receptor system. What is the distribution of 

addressing bandwidth across different parameter sets? Are there design rules that allow tuning 

of those values, in absolute or relative terms, to optimize addressing? Information theory provides 

a natural framework to answer these questions (Huntley et al., 2016; Itzkovitz et al., 2006). More 

specifically, the concept of mutual information can be used to quantify the addressing power of a 

promiscuous ligand-receptor system without assuming any particular choice of ligand words or 

cell types, or any particular mapping between them (Methods: Computation of Mutual 

Information). 

To identify parameter sets that maximize mutual information, we systematically analyzed the 

diversity of responses across a set of cell types to a set of ligand words for different biochemical 

parameter sets (Figure 6A). Mutual information measures information communicated by the 

optimal subset of ligand words to the optimal subset of cell types, allowing the use of 

comprehensive libraries (Methods: Libraries of Ligand Words and Cell Types). In a fly-like model, 

we constructed a discrete ligand word library in which each of two ligands takes on one of three 

concentration values (3𝑛𝐿 ligand words, or 9); a cell type library, in which each of the 2 type I and 
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2 type II receptors is expressed at one of two values (2𝑛𝐴+𝑛𝐵 cell types, or 16); and a biochemical 

parameter library, in which each 𝐾𝑖𝑗𝑘 and 𝑒𝑖𝑗𝑘 takes on one of two values (22𝑛𝐿𝑛𝐴𝑛𝐵 parameter 

sets, or 65,536). We then simulated the response of each cell type to each ligand word for each 

biochemical parameter set and computed the mutual information between the sets of ligand words 

and pathway activity across the library of cell types (Figures 6A-B; Methods: Sampling of 

Biochemical Parameters). Random, rather than grid-based, sampling of 𝐾𝑖𝑗𝑘 and 𝑒𝑖𝑗𝑘 produced 

similar results (Figure S4A). Mutual information values varied broadly across parameter sets, from 

0.32 to 1.91 bits, with a median value of 1.36 bits (Figure 6B). By refining our search over 

biochemical parameters, we were able to identify parameters with values as high as 2.38 bits 

(Methods: Sampling of Biochemical Parameters). 

To assess whether mutual information correlates with addressing, we defined an addressability 

metric, which quantifies how strongly activation patterns differ for different ligand words without 

requiring specific targeted profiles (Methods: Addressability Metric of Ligand Words). For every 

pair of ligand words, we identify the largest fold difference of activation levels across all cell types. 

This value is high when two ligand words induce distinct responses in at least one cell type. The 

addressability metric is then defined as the lowest such value across all ligand word pairs. We 

calculate this value for a given number of channels 𝑁 by taking the best choice of all possible 

subsets of 𝑁 ligand words. Using this metric, we analyzed addressability for systems with low, 

intermediate, and high mutual information (Figure 6C). For the parameter set of highest mutual 

information (2.38 bits), each of the 8 ligand words activated a distinct cell type combination with 

over 5.5-fold addressability. The median parameter set (1.36 bits) addressed up to 7 distinct cell 

combinations at an addressability of 1.6, while the parameter set with lowest mutual information 

(0.32 bits) addressed only 2 distinct cell combinations with addressability of at least 1.5 (Figure 

6C). Overall, a 1-bit difference in mutual information can increase addressing specificity as well 

as bandwidth, enabling diverse responses to different ligand words. 

We next wanted to understand how high addressing bandwidth arises from the individual 

response functions of each cell type for the parameter sets with the lowest and highest mutual 

information (Methods: Analysis of Archetypal Responses). The parameter set with the lowest 

mutual information generated a homogeneous spectrum of responses across all cell types (Figure 

6D). These responses predominantly varied quantitatively in their sensitivity to ligand. By failing 

to fully exploit the two-dimensional nature of ligand concentration space, this parameter set 

exhibited limited addressing potential. By contrast, the parameter set with the highest mutual 

information generated a broad diversity of ligand response functions across the cell types, 

reproducing the experimentally observed ratiometric, additive, imbalance detection, and balance 

detection “archetypal” functions (Figure 6E) (Antebi et al., 2017). By generating diverse two-

dimensional response functions, this parameter set allows each ligand word to activate a 

distinctive combination of cell types. In fact, such a correlation between the diversity of response 

functions and mutual information is seen across the full library of parameter sets (Figure 6F). 

Affinity-activity relationships control addressing bandwidth 

We next asked how parameter sets with high mutual information generate the varied response 

functions associated with addressing. Inspection of the highest mutual information parameter set 

revealed two striking relationships between binding affinities 𝐾𝑖𝑗𝑘 and signaling efficiencies 𝑒𝑖𝑗𝑘 
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(Figure 6E). First, complexes that formed with strong affinity (large 𝐾𝑖𝑗𝑘) often had low signaling 

efficiency (small 𝑒𝑖𝑗𝑘). Second, the activity of a given receptor pair strongly depended on the 

identity of the bound ligand, producing opposite values for 𝑒1𝑗𝑘 or 𝑒2𝑗𝑘. Systematic analysis of 

these relationships (Methods: Analysis of Parameter Correlations) revealed their dependence on 

mutual information and, more specifically, showed anticorrelations between the affinity and 

activity (𝐾𝑖𝑗𝑘 and 𝑒𝑖𝑗𝑘, Figure 6G) and between the activity of complexes with distinct ligands (𝑒1𝑗𝑘 

and 𝑒2𝑗𝑘, Figure 6H). These results suggest that such anticorrelations could predict high 

addressing capacity.  

To test whether the anticorrelated structure of the parameters is sufficient to produce high mutual 

information, we developed an evolutionary algorithm that evolves the biochemical parameters to 

maximize the above anti-correlations (Figures 6I-K). The algorithm starts with an initial parameter 

set, proposes a random change to one 𝐾𝑖𝑗𝑘 or 𝑒𝑖𝑗𝑘 value, and accepts that change with probability 

1 if the change increases the fitness function 𝐹 and with probability 𝑒𝑠𝛥𝐹 if it does not, where 𝑠 is 

a parameter that controls the strength of the selection (Methods: Evolutionary Algorithm as a 

Generative Model). Iteration of this procedure increased mutual information between ligand words 

and cell types to values comparable to the strongest ones identified in the systematic screen 

(Figure 6K, cf. Figure 6B). 

These results indicate that strong addressing is not confined to a small corner of parameter space. 

Rather, it is realized to varying degrees across all of 𝐾, 𝑒 space and enhanced by the parameter 

anticorrelations identified here. An accompanying experimental analysis of ligand-receptor 

interactions (Klumpe et al., 2020) suggests that this structure of parameters is present in the 

natural BMP system. Responses were measured for all pairs of 5 ligands in multiple cell types, 

which expressed different levels of 2 type I and 3 type II receptors. Fitting a model of receptor 

competition to these responses predicted anticorrelations between affinity and activity for BMP4, 

BMP7, BMP9, and BMP10. These four ligands have predicted strong affinity for BMPR1A/BMPR2 

receptors but produce low-activity complexes. Similarly, these ligands were predicted to have 

weak affinity for ACVR1/ACVR2A receptors but produce strong complexes with these receptors. 

Indeed, analyzing the addressability for each pair of ligands revealed a broad range of addressing 

capability (Figure S4B). The ligands BMP4, BMP7, and BMP10 together showed the highest 

addressability, with any pair of these three ligands able to specifically address distinct cell type 

groups for each ligand combination. Other ligand pairs exhibited lower overall bandwidth but still 

showed increased specificity at lower bandwidths by an order of magnitude compared to our 

previously analyzed parameters (cf. Figure 6C). These empirically derived behaviors thus 

exemplify the anticorrelations that predict high mutual information and addressability. 
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Discussion 

A fundamental mystery in cell-cell communication is how freely diffusing ligands can precisely 

target, or address, specific cell types. The promiscuity of ligand-receptor interactions in BMP and 

other communication pathways makes this question especially perplexing, since it appears to 

reduce rather than enhance communication specificity. However, promiscuous architectures are 

employed for specificity in other biological contexts. For example, promiscuous ligand-receptor 

interactions in the olfactory system enable a limited number of receptors to sense a great diversity 

of odorants through a combinatorial population code (Duchamp-Viret et al., 1999; Goldman et al., 

2005; Hallem and Carlson, 2006; Malnic et al., 1999). Such architectures also appear analogous 

to simple neural networks, which can compute complex functions of multi-dimensional inputs 

(Bray, 1995). This computational ability could allow different cell types to respond to different 

ligand combinations, as observed experimentally (Figure 2) (Antebi et al., 2017; Klumpe et al., 

2020).  

Our results show that promiscuity indeed allows ligand combinations to address different cell 

types or groups of cell types with remarkable specificity (Figures 7A-B). While one-to-one 

architectures can achieve perfect specificity, promiscuous signaling pathways can target more 

cell types independently (Figure 4) as well as enable greater flexibility in addressing arbitrary 

subsets of cell types (Figure 5). High addressing capacity can be a robust feature of promiscuous 

ligand-receptor systems, withstanding correlated noise in receptor expression levels (Figures 

4D,H) and emerging across a broad range of biochemical parameter values. A more general 

mutual information framework identified design principles that maximize addressing capacity 

(Figure 6). Specifically, these include anticorrelations between the affinity and activity of a given 

ligand-receptor complex, and anticorrelations between the activities of two ligands interacting with 

the same receptor dimer. Together, these results show how addressing specificity emerges from 

molecular promiscuity in a canonical cell-cell communication system. 

Are the biochemical parameters of the natural BMP pathway compatible with addressing? 

Systematic analysis of the activity of pairwise ligand combinations showed complex responses to 

ligand combinations and revealed their dependence on specific receptors (Klumpe et al., 2020). 

When fit to the same model used here (Figure 3A), these data provide estimated values for 𝐾𝑖𝑗𝑘 

and 𝑒𝑖𝑗𝑘. These values exhibit the types of anticorrelations that favor addressing, suggesting that 

the BMP pathway may have evolved to facilitate high-capacity addressing. 

BMPs function as morphogens, provoking the question of how addressing plays out in a dynamic, 

spatially extended tissue context. BMP-dependent developmental patterning processes typically 

use multiple BMP ligands in spatially and temporally overlapping gradients that can be further 

shaped by shuttling and other extracellular processes. For example, during early Xenopus embryo 

development, an antiparallel gradient of BMP ligands is formed between ventral and dorsal 

centers (Ben-Zvi et al., 2008; Reversade and De Robertis, 2005). Similarly, overlapping 

expression patterns of GDF5 and multiple BMP ligands, together with distinct receptor expression 

patterns, play a key role in activation (and suppression) of BMP signaling in specific cell 

populations during joint formation (Lyons and Rosen, 2019; Salazar et al., 2016). In such 

overlapping gradients, addressing could allow different cell types, all with functional BMP 
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pathways, to each selectively respond in distinct regions based on the concentrations of multiple 

ligands, as shown schematically in Figure 7C. Additionally, temporal changes in receptor 

expression are common during development (Danesh et al., 2009; Dewulf et al., 1995; Erickson 

and Shimasaki, 2003; Sanyal et al., 2002). For instance, in neural precursors, Bmpr1a is 

expressed early and ubiquitously; subsequent treatment with BMP2 induces activation of 

BMPR1A and expression of Bmpr1b (Panchision et al., 2001). These different receptor 

expression states could preferentially respond to different ligand combinations and therefore be 

addressable. Spatiotemporal addressing could be tested experimentally by genetically modifying 

the expression of BMP variants in developmental contexts and analyzing the effects on different 

cell types. In vitro reconstitution of multi-ligand gradients could allow a complementary, systematic 

analysis of spatial addressing (Li et al., 2018). 

An increasing amount of receptor expression data is available from cell atlas projects. Together 

with quantitative measurements of effective biochemical parameters, these data could be used to 

design ligand combinations that selectively address target cell populations. The ability to design 

selective targeting would be useful in biomedical applications such as directed differentiation and 

targeted therapy. For example, recombinant BMP2 has been tested in a variety of therapeutic 

applications, largely related to promoting bone healing and regrowth. However, there are 

significant risks, such as ectopic bone formation, respiratory failure, tissue inflammation, and 

others (Epstein, 2011; Poon et al., 2016). If these complications result from undesired activation 

of off-target cell types, using a combination of ligands could potentially provide more specific 

addressing of the appropriate cell type(s). Other potential therapeutic applications for modulators 

of BMP signaling include cardiac fibrosis, where BMP2 and BMP7 have both shown promise in 

animal models (Flevaris et al., 2017; Wang et al., 2012); Parkinson disease, where BMP2 and 

GDF5 both appear to promote survival of dopaminergic neurons (Hegarty et al., 2014; O’Keeffe 

et al., 2017; O’Sullivan et al., 2010); and cancer, where inhibition of BMP signaling reduces tumor 

formation in mice (Yokoyama et al., 2017). As the range of clinical applications targeting BMP 

signaling continues to grow, it will be essential to determine whether combinations of ligands could 

provide greater specificity than individual ligands. 

The principles elucidated here in the context of BMP signaling could apply to other pathways that 

exhibit promiscuous ligand-receptor interactions, including the broader TGF-β pathway as well as 

the Wnt, FGF, Eph-Ephrin, and JAK-STAT pathways. The principle of addressing suggests that 

beyond sensing the concentration of a given set of ligands, these pathways may serve more 

broadly as computational devices that exploit promiscuous interactions, enabling cells to tune in 

to specific ligand words and thereby receive information specifically addressed to them. 
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Box 1: Addressing Terminology 

Combinatorial addressing involves mappings between combinations of ligands and responses of 

cell types defined by their receptor subunit expression. Here, we define some of the terminology 

introduced in the paper to describe these relationships. 

Ligand word: A set of specific concentration values for each ligand variant in a combination. For 

example, a concentration of 10 µM for ligand 1 and 100 µM for ligand 2 constitutes a ligand word 

(10 µM, 100 µM). 

Cell type: A set of specific receptor subunit expression levels. For example, a cell expressing 

receptor subunits 1 and 3 would represent a different cell type than a cell expressing subunits 1, 

2, and 4 or a cell expressing more subunit 1 and less subunit 3. 

Channel: A set of one or more cell types that can be selectively activated (without activating other 

cell types) by some ligand word. For example, if ligand word 1 activates cell type A, while ligand 

word 2 activates cell types B and C, then (A) and (B, C) constitute distinct channels. 

Combinatorial addressing (or simply addressing): A mapping between ligand words and the 

corresponding cell type(s) activated by those words. 

Orthogonal addressing: A particular form of combinatorial addressing in which each ligand word 

activates a single, unique cell type. An example of 3-channel orthogonal addressing is shown in 

Figure 3B. 

Addressing repertoire: The combinations of cell types (each combination representing a 

channel) that can be activated across all possible ligand words for a given set of cell types and 

biochemical parameters. Examples of addressing repertoires are shown with the Venn diagrams 

in Figure 5A. 

Bandwidth: The number of unique channels in a given system. For example, a system where 

ligand words 1 and 2 both activate only cell type A while ligand word 3 activates cell type B would 

have a bandwidth of 2, as ligand words 1 and 2 yield the same activation profile. 

The next two terms define quantitative metrics used in this paper. 

Distinguishability (Figures 3-5, Methods: Distinguishability of Orthogonal Channels) quantifies 

the specificity of a given addressing scheme and is defined as (lowest on-target)/(highest off-

target) activity. For example, suppose ligand word 1 activates on-target cell type A and off-target 

cell type B at levels of (0.8, 0.1) units, respectively, while ligand word 2 activates off-target cell 

type A and on-target cell type B at levels of (0.4, 0.9). The distinguishability for orthogonal 

addressing of (A) and (B) is 0.8/0.4 = 2. As another example, if cell types A and B are both on-

target for ligand word 2, addressing (A) and (A, B) would have a distinguishability of 0.4/0.1 = 4. 

Addressability (Figure 6, Methods: Addressability Metric of Ligand Words) quantifies the 

diversity of the addressing repertoire for a set of ligand words. We first measure the separation of 

two ligand words as the largest ratio of their resulting activation levels in any cell type. 

Addressability is then defined as the separation of the least separable pair of ligand words.  
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Figures 

 

 
 

Figure 1: Promiscuous ligand-receptor interactions in the BMP pathway may allow 

combinatorial addressing. 

(A) In a one-to-one ligand-receptor architecture, each ligand interacts exclusively with a single 

receptor (left), while in a promiscuous architecture, ligands interact with multiple receptor 

variants (right). 

(B) In this simplified schematic of the BMP pathway, ligands interact combinatorially with type 

I and type II receptors at the cell membrane to form signaling complexes, which then 

activate SMAD1/5/8 effector proteins. 

(C) Signaling pathways could enable different forms of addressing. In orthogonal addressing 

(left), different combinations of ligands each activate a distinct cell type. More generally, 

subset addressing (right) could allow activation of different groups of cell types by different 

ligand combinations. 
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Figure 2: Cell lines preferentially respond to different ligand combinations.  

(A) Responses of NAMRU mouse mammary gland (NMuMG) cells with siRNA knockdown 

(KD) of ACVR1 (left), NMuMG cells with siRNA knockdown of BMPR2 (center), or mouse 

embryonic stem cells (mESCs; right) were measured by flow cytometry of an integrated 

fluorescent protein reporter (Methods: Addressing of Cell Lines). Each cell line was 

exposed to a titration of BMP4 and BMP9. Responses are normalized relative to the 

baseline fluorescence with no added ligand for each cell line. 

(B) Superimposed responses from (A) reveal that low levels of both ligands (i) generate a 

basal response. BMP4 alone (ii) preferentially activates NMuMG ACVR1 KD, while BMP9 

alone (iii) predominantly activates NMuMG BMPR2 KD. BMP4 and BMP9 together (iv) 

activate all three cell types to similar levels. 
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Figure 3: A mathematical model of promiscuous ligand-receptor interactions allows 

systematic optimization of addressing capabilities. 

(A) A minimal model of the BMP signaling pathway includes ligand variants (𝐿𝑖; blue and 

green), which interact with type I receptors (𝐴𝑗; purple and pink), and type II receptors (𝐵𝑘; 

orange and yellow) to form a combinatorial set of trimeric signaling complexes (𝑇𝑖𝑗𝑘) with 

varying affinities (𝐾𝑖𝑗𝑘). Active signaling complexes phosphorylate the SMAD effector with 

varying efficiencies (𝑒𝑖𝑗𝑘). Equations describe the steady-state levels of each component 

and the total signal 𝑆 (Methods: One-Step Model for Promiscuous Interactions). 

(B) Optimization systematically identifies potential combinatorial addressing schemes in four 

steps. i. An orthogonal addressing scheme is specified as orthogonal activation by a set 

of desired ligand words (red circles). Discretization of ligand space (3×3 grid) enables 

enumeration of all such addressing schemes. ii. A given orthogonal addressing scheme 

can be translated into target response functions, in which each cell type is activated by 

exactly one ligand word (yellow) and not by others (blue). Responses to other ligand words 

(hatched) are unconstrained. iii. Least-squares optimization identifies a global set of 

affinity (𝐾𝑖𝑗𝑘) and efficiency (𝑒𝑖𝑗𝑘) parameters, along with a set of receptor expression 

levels for each cell type, which yield responses similar to the target functions. Upper and 

lower arrows represent affinity and activity parameters, respectively, for each receptor 

dimer complexed with each of the two ligands (blue and green arrows). Thin and thick 

arrows correspond to low and high values, respectively. iv. Responses can be simulated 

at higher resolution for visualization and further analysis. 

(C) After optimization, the crosstalk matrix represents the responses of each cell type at the 

selected ligand words (orthogonal channels). For orthogonal addressing, this matrix 

should ideally be diagonal, with each ligand word activating only its target cell type (orange 

border) with no off-target activation (blue border). 

(D) Best optimization results are shown for all 31 possible 3-channel orthogonal addressing 

schemes (Methods: Enumeration of Orthogonal Addressing Schemes). (Top) Distributions 

of on-target (orange) and off-target (blue) activation levels are plotted, representing all 

elements in the crosstalk matrix. Shaded regions span all activity values. (Bottom) The 

corresponding distinguishability value for each addressing scheme is shown, along with 

thresholds at 1 (grey region) and 1.5 (red line). Addressing schemes (x-axis) are shown 

in order of decreasing distinguishability. 

See also Figure S2. 
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Figure 4: Two ligand variants can independently address eight cell types with high 

specificity and robustness. 

(A) In the fly-like model with 2 type I and 2 type II receptor subunits, the pathway activities of 

each cell type in response to each ligand word are plotted for varying numbers of channels 

(x-axis), using the optimal parameters for each bandwidth. Shaded regions span full 

distribution of on-target (orange) and off-target (blue) activities, and lines indicate median 

values. 
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(B) Distinguishability values are plotted for each number of channels. The 5-channel system 

(red circle) reflects the highest bandwidth above the threshold of 1.5 (red line). 

(C) The crosstalk matrix shows the response of each cell type at each ligand word of interest 

for the 5-channel example circled in (B). Perfect orthogonal specificity would yield a 

diagonal matrix. 

(D) Robustness to receptor expression fluctuations was evaluated for the 5-channel system. 

Optimized receptor expression levels were perturbed in a correlated or uncorrelated way 

to represent, respectively, extrinsic or intrinsic noise, with a coefficient of variation (CV) of 

0.5. The resulting receiver operating characteristic (ROC) curves are plotted and 

compared to random (black dashed line). 

(E) The pathway activities for a mammalian-like model with 4 type I and 3 type II receptors 

are shown, as in (A). 

(F) Distinguishability values are plotted for the mammalian-like model from (E). The 8-channel 

system (red circle) reflects the highest bandwidth for a threshold of 1.5 and is further 

analyzed in (G-I). 

(G) The crosstalk matrix for the mammalian-like model is shown, as in (C). 

(H) ROC curves for the 8-channel example are shown, as in (D). 

(I) The full responses of each cell type are shown for the 8-channel system analyzed in (G-

H). Red circles correspond to the 8 ligand words, and cell types are spatially arranged 

according to the ligand word to which they preferentially respond. For example, the bottom 

right cell type (cell type F) is orthogonally activated by high levels of ligand 1 only, while 

the top right cell type (cell type H) would be activated by combining high levels of ligand 1 

and 2 together. The bottom left ligand word, with low levels of both ligands, is nonactivating 

and therefore omitted. 

See also Figure S3. 
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Figure 5: Promiscuous architecture enables diverse addressing repertoires.  

(A) For three different parameter sets, the responses of three cell types (magenta A, yellow 

B, and cyan C) to a titration of two ligands (blue and green teardrops) are shown (left). 

Unique rows reveal the subsets of cell types that can be activated across all ligand words 

(center). Addressable subsets can also be represented as a Venn diagram (right), where 

colored regions represent subsets that are activated by at least one ligand combination 

and grey regions represent subsets that cannot be addressed by any ligand combination. 

These subsets constitute the “addressing repertoire” of a system. Addressability can vary 

from purely orthogonal activation (top) to the four subsets shown in the experimental 

system of Figure 2 (middle) or all possible subsets (bottom). 

(B) We optimized parameters to achieve the fully addressable system of (A). Simulating the 
responses of the three cell types to each ligand word confirms that any of the seven 
possible subsets can be successfully addressed. 

(C) We generalized the optimization approach to identify parameters achieving each possible 

addressing repertoire of three cell types in a mammalian-like model with 4 type I and 3 

type II receptors. The optimal distinguishability value for each repertoire is plotted. Black 

circles correspond to addressing repertoires that can be achieved in a one-to-one 

architecture with two ligands. Purple squares require three or more ligands in a one-to-

one architecture, while orange stars indicate addressing repertoires that cannot be 

achieved in the one-to-one architecture (Methods: Addressing Repertoires). 
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Figure 6: Information theoretic analysis reveals design principles for combinatorial 

addressing. 

(A) Mutual information between a comprehensive library of ligand words (rows) and the 

corresponding activation pattern across a library of cell types (columns) can be computed 

across a systematic grid-based sampling of the biochemical parameters (𝐾, 𝑒)(matrices). 
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For each row, 1, 2, and 4 ligand symbols indicate low (100), medium (101.5), or high (103) 

concentrations of the indicated ligand. Similarly, 1 or 2 receptor symbols indicate low (0.1) 

or high (1) levels of the indicated receptor for each column. 

(B) The distribution of mutual information across biochemical parameters is shown. Dashed 

lines indicate the lowest (blue), median (cyan), and highest (green) values. High mutual 

information indicates that many distinct cell type combinations can be specifically activated 

by distinct ligand words. 

(C) The addressability values of activated subsets are shown for different numbers of 

channels. The addressability reflects the maximal fold difference in the response of at 

least one cell type when exposed to any two distinct ligand words (Methods: Addressability 

Metric of Ligand Words). Results are shown for three sets of biochemical parameters 

generating the lowest, median, and highest mutual information values. 

(D) The parameter set with the lowest mutual information is represented schematically (left), 

as in Figure 3Biii. For these parameters, the responses for the library of 16 cell types are 

shown as a 4×4 grid (center). In each response, the x- and y-axes represent logarithmic 

titrations of ligands 1 and 2, respectively. All show the same qualitative response of 

additive (“a”) behavior, differing only in their quantitative sensitivity. Schematically, 

overlaying four differing responses (highlighted in purple, cyan, red, and green) reveals 

that different ligand words largely address similar combinations of cell types (right), with 

relatively few distinct subsets represented. 

(E) For the parameter set with the highest mutual information (left), the cell types in the library 

show a variety of response patterns (center): ratiometric (“r”), additive (“a”), imbalance 

(“i”), and balance (“b”), matching the response archetypes (Figure S1) previously observed 

experimentally (Antebi et al., 2017). Schematically, overlaying four differing responses 

(purple, cyan, red, and green) reveals that different ligand words can address many 

distinct subsets of cell types (right). Note that complexes tend to have opposite values of 

affinity and activity parameters, as analyzed in (G-H). 

(F) Violin plots indicate the distribution of mutual information values for systems with different 

numbers of distinct individual cell response functions (archetypes). Note that greater 

archetype diversity enriches for high mutual information. 

(G) Anticorrelations of affinity and activity parameters for the same complex are associated 

with higher mutual information. We analyzed average properties across bins of 800 

parameter sets. To measure the correlation between affinity and activity of complexes, we 

represented low and high values as -1 and 1 and computed the dot product between 𝐾 

and 𝑒 vectors. The average correlation and mutual information across bins are plotted. 

(H) Parameter sets with high mutual information show anticorrelation in the activities of 

complexes with the same receptor but different ligands. Analysis was done as in (G). 

(I) We defined a fitness function 𝐹 that rewards parameter sets exhibiting the anticorrelations 

observed in (G-H). 
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(J) An evolutionary algorithm identifies parameter sets that maximize 𝐹. At each iteration, a 

random parameter value is flipped from low to high or vice versa. Changes that increase 

𝐹 are accepted. Changes that decrease 𝐹 are accepted with indicated probability (bottom), 

which depends on a selection pressure parameter 𝑠. This process is repeated iteratively 

(Methods: Evolutionary Algorithm as a Generative Model). 

(K) An evolutionary algorithm enriches for high mutual information. We ran the algorithm with 

𝑠 > 0 to favor anticorrelations or with 𝑠 = 0 to randomly sample parameters. For each 

case, we randomly initialized 2000 parameter sets and performed 200 iterations. We then 

evaluated the mutual information for the final value of the parameter set and visualized 

the resulting distributions. Random selection (𝑠 = 0, blue) led to a similar distribution of 

values as the systematically sampled parameter sets (cf. Figure 6B), while favoring 

anticorrelations (𝑠 > 0, green) resulted in an overall increase in mutual information. 

See also Figure S4. 
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Figure 7: Promiscuous ligand-receptor interactions allow flexible, high-bandwidth 

addressing. 

(A) Promiscuous ligand-receptor interactions enable orthogonal addressing, in which 

individual cell types can be specifically activated using combinations of only two different 

ligand variants (cf. Figures 4E-I). 

(B) Promiscuous ligand-receptor interactions enable subset addressing, in which different 

ligand words address diverse cell type combinations (cf. Figure 6E). 

(C) Notional schematic showing how two antiparallel morphogen gradients could address 

different cell types (black, dark grey, and light grey) in specific spatial regions. Yellow 

nuclei indicate activation. In this example, high levels of blue ligand activate the black cell 

type (left), the combination of both ligands (blue and green) activates the dark grey cell 

type (center), and high levels of green ligand activate the light grey cell type (right). 
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Supplemental Figures 

 

 
 

Figure S1: Promiscuous ligand-receptor interactions generate a repertoire of archetypal 

response functions. 

Four archetypal response functions — ratiometric, additive, imbalance, and balance — 

appeared in a more complex model of the BMP signaling pathway (Antebi et al., 2017). 

Here, we show that similar archetypes appear in the model used here (top), along with the 

model parameters that generate them (bottom). Parameter diagrams represent the affinity 

(top arrows) and activity (bottom arrows) parameters corresponding to each signaling 

complex. Arrow width indicates relative magnitude. Thin arrows correspond to values of 

0.1, while thick arrows represent values of 1. 

(A) In ratiometric responses, one ligand reduces the activity of the other, such that the overall 

response approximates the ratio of the two concentrations. Such responses can arise 

through competitive inhibition, where a second ligand binds the receptors that are needed 

to generate signaling activity but produces inactive signaling complexes. 

(B) Additive responses approximate the sum of the two ligand concentrations, as the ligands 

increase pathway activity either alone or together. Ligands that activate receptors 

equivalently can generate such responses. 

(C) In imbalance detection, the pathway is most active when there is a large imbalance in the 

levels of the two ligands. These responses can arise if, for instance, competition between 

two ligands favors complexes with low signaling activity. 

(D) Balance detection responses show most activity when both ligands are present 

simultaneously at a particular ratio. One mode for generating them is when ligand binding 

favors formation of high-activity signaling complexes. 
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Figure S2: Orthogonal addressing can arise from a variety of different response types. 

For the parameter sets represented in Figure 3D, the responses of each cell type are 

shown. Parameter sets are ordered by distinguishability, from best to worst. These 

responses illustrate that three-channel addressing can be achieved in a variety of ways, 

although common patterns do emerge (cf. schemes 1-2 and schemes 3-4). Different 

scales are used to focus on the strongest examples. 
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Figure S3: Orthogonal addressing schemes are robust to extrinsic noise in receptor 

expression levels. 

(A) The responses of each cell type in the 5-channel system analyzed in Figures 4C-D are 

shown. As in Figure 4I, ligand words corresponding to orthogonally activating channels 

are shown as red circles. Responses have been rearranged such that the response of a 

given cell type is shown in the relative position of its orthogonally activating ligand word. 

For example, the top left cell type is activated by high levels of ligand 2 only, while the 

bottom right cell type is orthogonally activated by high levels of ligand 1 only. 

(B) Top parameter sets from the fly-like model (2 type I and 2 type II receptor variants) of 

Figure S3A (left) and the mammalian-like system (4 type I and 3 type II receptor variants) 

of Figure 4I (right) were evaluated for addressability in the presence of noise. Receptor 

expression levels were perturbed with extrinsic (correlated, top) or intrinsic (uncorrelated, 

bottom) noise (Methods: Analysis of Robustness), and distinguishability values were 

computed with all other parameters held constant. For each condition, the results of 20 

perturbations are shown, along with the baseline value (red crosses). 
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Figure S4: Addressing properties vary across parameter sets. 

(A) The approach of Figures 6A-B was applied to an equivalent number of randomly 

generated parameter sets rather than a grid of parameter values. The resulting distribution 

of mutual information values is similar, indicating that the result is robust to the method of 

parameter sampling (cf. Figure 6B). 

(B) Parameters for 5 ligands, 2 type I, and 3 type II receptors were fitted to experimental 

measurements of BMP responses in multiple cell lines with differing receptor expression 

profiles (Klumpe et al., 2020) and analyzed for their addressing potential. Specifically, we 

computed the addressability for every pair of ligands using the same libraries of ligand 

combinations and cell types as in (A). Different pairs show varying levels of addressing 

potential, with some pairs (BMP4-BMP7, BMP4-BMP10, and BMP7-BMP10) exhibiting 

addressing of different cell type groups for every ligand combination and others (e.g. 

BMP7-BMP9) showing lower bandwidths. 
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Methods

Resource Availability

Further information and requests for resources and reagents should be directed to and will be
fulfilled by Michael B. Elowitz (melowitz@caltech.edu). The data and code generated during this
study are available at http://dx.doi.org/10.22002/D1.1692.

Experimental Model and Subject Details

Cell Lines

NAMRU mouse mammary gland (NMuMG) cells (female) were acquired from ATCC (CRL-1636).
Mouse embryonic stem cells (mESCs; E14Tg2a.4) were obtained from the laboratory of Bill Skarnes
and Peri Tate. Reporter cell lines were generated and cultured as in (Antebi et al., 2017). Briefly,
cells were cultured in a humidity-controlled chamber at 37◦C with 5% CO2. NMuMG cells were
cultured in DMEM supplemented with 10% FBS (Clontech #631367), 1 mM sodium pyruvate, 1
unit/ml penicillin, 1 µg/ml streptomycin, 2 mM L-glutamine, and 1× MEM nonessential amino
acids. mESCs were plated on tissue culture plates pre-coated with 0.1% gelatin and cultured
using DMEM supplemented with 15% FBS (Gibco #16141), 1 mM sodium pyruvate, 1 unit/ml
penicillin, 1 µg/ml streptomycin, 2 mM L-glutamine, 1× MEM nonessential amino acids, 55 mM
β-mercaptoethanol, and 1000 units/ml leukemia inhibitory factor (LIF).

Method Details

Addressing of Cell Lines

siRNA-Induced Knockdown

Cells were plated at 40% confluency in a single well of a 24-well plate with 30 µM total siRNA (Ther-
moFisher Silencer Select #4390771) and 3 µl RNAiMAX (Invitrogen). For every gene, we used
a pool of two distinct siRNAs (Acvr1, Lifetech #S61924 and #S61925; Bmpr2, Lifetech #S63047
and #S63048). Cells were passaged after 24 hours and were used for the specified experiments.

BMP Response and Flow Cytometry

Cells were plated at 40% confluency in 96-well plates and cultured under standard conditions for
12 hours. Media was then replaced and ligands were added at specified concentrations. 24 hours
after ligand addition, cells were prepared for flow cytometry by washing with PBS and lifting from
the plate using either trypsin (NMuMG) or Accutase (mESC) for 5 minutes at 37◦C. Protease
activity was quenched by resuspending the cells in HBSS with 2.5 mg/ml bovine serum albumin
(BSA). Cells were then filtered with a 40 mm mesh and analyzed by flow cytometry (MACSQuant
VYB, Miltenyi). Recombinant BMP ligands were acquired from R&D Systems (BMP4, #5020-BP;
BMP9, #5566-BP).

Single-cell flow cytometry data were analyzed as in (Antebi et al., 2017) by taking the population
median. For measured experimental responses (Figure 2), responses were measured by taking the
mean of at least 3 repeats. Relative activity represents fold change compared to response at lowest
concentrations of each ligand.
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One-Step Model for Promsicuous Interactions

Ligand-Receptor Interactions

Many signaling pathways demonstrate promiscuous interactions between multiple ligand and re-
ceptor variants, which can bind with varying affinities to form many distinct signaling complexes.
The BMP pathway represents a canonical example of such an architecture. Previously, we have
described a mathematical model that captures key features of this pathway and recapitulates ex-
perimentally observed responses (Antebi et al., 2017). Here, we develop a simplified version of the
model that captures equivalent behaviors at steady state while reducing the number of parameters
to be considered.

In the model, we describe binding of a ligand to a heterodimer of type I and type II receptors.
Specifically, we consider nL ligand variants, nA type I or A receptor variants, and nB type II or B
receptor variants, where ligand Li can interact with A receptor Aj and B receptor Bk to form the
heterotrimeric signaling complex Tijk. We assume that this process occurs as a one-step reaction
with an effective three-way interaction, with forward rate kfijk and reverse rate krijk . This reaction
can be summarized as follows:

Li +Aj +Bk
kfijk−−−⇀↽−−−
krijk

Tijk (1)

Differential Equations and Constraints

Letting Li denote the concentration of ligand in a volume V and Aj , Bk, and Tijk denote the
absolute numbers of receptors and complexes on the cell surface, we can then write the differential
equations that describe the dynamics of these reactions:

dLi
dt

=
1

V

nA∑
j=1

nB∑
k=1

(
−kfijkLiAjBk + krijkTijk

)
(2)

dAj
dt

=

nL∑
i=1

nB∑
k=1

(
−kfijkLiAjBk + krijkTijk

)
(3)

dBk
dt

=

nL∑
i=1

nA∑
j=1

(
−kfijkLiAjBk + krijkTijk

)
(4)

dTijk
dt

=

nL∑
i=1

nA∑
j=1

nB∑
k=1

(
kfijkLiAjBk − krijkTijk

)
(5)

Each complex Tijk phosphorylates the second messenger at some rate εijk to generate intracellular
signal S, which degrades at rate γ. The rate of change of the total signal is given by the following
differential equation:

dS

dt
=

nL∑
i=1

nA∑
j=1

nB∑
k=1

εijkTijk − γS (6)

We assume that the volume for the ligands is large, or V →∞. In this regime, there are significantly
more ligand molecules than receptors, as is the case for experimental conditions in which ligands
are dissolved in an excess of media. Under this assumption, ligand concentrations remain constant.
We further assume that production and consumption of the various molecular species are in steady
state. By conservation of mass, the total number of each type of molecule (alone or in complex
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with other species) must remain constant. Letting L0
i , A

0
j , and B0

k denote the initial values of the
respective species, we obtain the following constraints:

L0
i = Li (7)

A0
j = Aj +

nL∑
i=1

nB∑
k=1

Tijk (8)

B0
k = Bk +

nL∑
i=1

nA∑
j=1

Tijk (9)

Steady-State Equations

Since binding and unbinding of ligands and receptors occur on fast time scales relative to the
time scales of reporter detection, we focus on characterizing the behavior of this system at steady
state. Here, all time derivatives in eqs. (2) to (6) vanish. Defining affinities Kijk ≡ kfijk/krijk and
activities eijk ≡ εijk/γ, eqs. (5) and (6) can be solved as follows:

Tijk = KijkLiAjBk (10)

S =

nL∑
i=1

nA∑
j=1

nB∑
k=1

eijkTijk (11)

Together, eqs. (7) to (11) describe the behavior of the model at steady state.

L0
i = Li

A0
j = Aj +

nL∑
i=1

nB∑
k=1

Tijk

B0
k = Bk +

nL∑
i=1

nA∑
j=1

Tijk

Tijk = KijkLiAjBk

S =

nL∑
i=1

nA∑
j=1

nB∑
k=1

eijkTijk

We can solve this system of equations to find the values of Tijk at steady state, which we can then
use to compute the total signal S. From eqs. (8) and (9), the steady-state values of the receptors
are as follows:

Aj = A0
j −

nL∑
i=1

nB∑
k=1

Tijk (12)

Bk = B0
k −

nL∑
i=1

nA∑
j=1

Tijk (13)

Substituting into eq. (10), we have a system of nT = nLnAnB quadratic equations for Tijk:

Tijk = KijkLi

(
A0
j −

nL∑
i′=1

nB∑
k′=1

Ti′jk′

)B0
k −

nL∑
i′=1

nA∑
j′=1

Ti′j′k

 (14)
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The solutions for Tijk from this system of equations can then be substituted into eq. (11) to compute
the total signal S.

To solve the model efficiently, we used Equilibrium Toolkit (EQTK) (Bois, 2020), an optimized
Python-based numerical solver for biochemical reaction systems. EQTK casts the coupled equi-
librium problem as an unconstrained convex dual optimization problem and employs a globally
convergent trust region algorithm to solve it (Bois, 2020; Dirks et al., 2007). This method accel-
erated computation by 600-fold compared to standard nonlinear least-squares optimization used
previously (Antebi et al., 2017).

Comparison with Alternative Models

One-Step vs. Two-Step Model

We have previously considered a mathematical model that describes the promiscuous architecture
of the BMP pathway, which considers formation of the heterotrimeric complexes Tijk in a two-step
process (Antebi et al., 2017). Briefly, ligand Li and receptor Aj form an intermediate dimer Dij ,
which then binds to receptor Bk to form trimer Tijk. Again, we assume that the reactions are
reversible and follow first-order kinetics, with forward and reverse reaction rates kDfij and kDrij for

formation of the dimers and kTfijk and kTrijk for formation of the trimers. Defining KD
ij ≡ kDfij/k

D
rij

and KT
ijk ≡ kTfijk/k

T
rijk

, the steady-state solutions for Tijk in the two-step model, analogous to

eq. (14) in the one-step model, are as follows:

Tijk = KT
ijkK

D
ijLi

(
A0
j −

∑nL
i′=1

∑nB
k′=1 Ti′jk′

1 +
∑nL

i′=1K
D
i′jLi′

)B0
k −

nL∑
i′=1

nA∑
j′=1

Ti′j′k

 (15)

Comparing eq. (14) and eq. (15), the steady-state solutions for Tijk in the two-step model can be
mapped to the one-step model under the following parameter choice:

Kijk =
KT
ijkK

D
ij

1 +
∑nL

i′=1K
D
i′jLi′

(16)

Since S is defined by the values of Tijk and is given by eq. (11) in both the one-step and two-
step models, the steady-state behavior of the two-step model with any set of parameters can
also be represented in the one-step model. However, the number of parameters is reduced from
N two−step
p = nA + nB + nLnA + 2nLnAnB to None−step

p = nA + nB + 2nLnAnB. Thus, the one-step
model enables us to simplify the system while preserving all possible behaviors of Tijk and S at
steady state.

Trimeric vs. Hexameric Model

We have developed a simplified model in which a ligand binds to type I and type II receptor subunits
to form a trimeric signaling complex. However, the BMP signaling pathway is known to involve
hexameric signaling complexes, where a dimeric ligand interacts with two type I and two type II
receptors. This model captures reactions of the following form:

L1
i + L2

j +A1
k +A2

l +B1
m +B2

n

kfijklmn−−−−−⇀↽−−−−−
krijklmn

Hijklmn (17)

This model can essentially be reduced to a trimeric model by setting reaction rates to 0 for any
reaction with i 6= j, k 6= l, or m 6= n. As such, responses in the trimeric model represent a subset
of the functions that could be possible in the hexameric model.
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Optimization of Orthogonal Addressing Schemes

Given a target orthogonal addressing scheme of N channels, we optimized for parameters that would
yield matching responses. Specifically, we used constrained least-squares optimization for nLnAnB
affinity parameters Kijk, nLnAnB activity parameters eijk, and N (nA + nB) receptor expression
levels. We bounded affinity and efficiency parameters in [0, 1] and receptor levels in [0,∞). We
sought to minimize the residuals between the target responses and the simulated responses at the
N ligand words of interest. Since the simulated responses have arbitrary units, we normalized all
responses for a given parameter set. Specifically, we normalized by the maximum value in any
cell type over the full ligand titration, not only the ligand words of interest. This normalization
ensures that all cell types share a relatively similar level of activation and that the activation in
the orthogonal channels is distinguishable from activation by other ligand combinations.

As this optimization procedure is not guaranteed to converge to a global minimum, we optimized
repeatedly with different initial conditions. All parameters were chosen in a uniform random
distribution over [0, 1].

Distinguishability of Orthogonal Channels

We optimized parameters for each addressing scheme based on the squared error between the
targeted and simulated responses at each ligand word of interest. However, this error does not
necessarily guarantee specificity of addressing, where a given ligand combination should activate
only a single cell type and not the others. To quantify the performance of each system, we visualized
the distributions of on-target and off-target activation levels. We defined the distinguishability
as the fold difference between the minimum on-target and maximum off-target activities, which
measures the ability to differentiate between specific and nonspecific signals in the worst case.

Enumeration of Orthogonal Addressing Schemes

To analyze the possibility for orthogonal addressing, we used a discretized ligand concentration
space to enable a comprehensive screening. We reasoned that we could systematically test for all
possible orthogonal addressing schemes by selecting a subset of the possible ligand combinations to
be orthogonally activating and defining a set of targeted response functions accordingly. For a set
of N chosen ligand words, we enumerated N targeted response functions, where each ligand word
activates exactly one cell type and, conversely, each cell type is activated by exactly one ligand
word. Having discretized ligand concentrations to 3 levels, there were 32 = 9 possible ligand words.
Since the combination with all ligands at the lowest level is assumed to yield negligible activation
in any cell type, there can be 1 to 8 possible communication channels. Therefore, for each possible
number of channels N , we took all possible subsets and sought to achieve these addressing schemes.
There are

(
8
N

)
possible addressing schemes for a given bandwidth and 28 = 256 possible addressing

schemes overall. However, addressing schemes that are identical under changes in ligand labels
were removed, to give 144 total possibilities.

To evaluate the potential capacity of promiscuous ligand-receptor systems for orthogonal ad-
dressing, we sought to optimize progressively higher bandwidths. For N channels, we randomly
selected N ligand words as orthogonally activating inputs and sought to optimize parameters as
described above. We iterated this process with randomly chosen ligand words until parameters had
been identified generating distinguishability of at least 2. Once this criterion was met, we then
proceeded to optimize N + 1 channels, up to the limit of 8. We performed 10, 000 optimizations.

To more systematically test for the ability to achieve each addressing scheme, we also performed
a search over all schemes rather than considering only the resulting bandwidth. Specifically, we
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chose which addressing scheme to optimize based on both the lowest error E achieved and the
number of trials n attempted. Specifically, we optimized for the addressing scheme with maximal
value of E/n2 and repeated this process over 7, 200 trials (an average of 50 optimizations per
scheme) to ensure that all schemes would be tested adequately.

Analysis of Robustness

Biological systems are subject to noise. In particular, cellular systems show both extrinsic noise, or
correlated changes such as during cell growth or changes in expression machinery, and intrinsic noise,
or independent stochastic variation in each element. To assess whether the optimized parameters
are robust to noise in receptor expression levels, we evaluated whether on-target and off-target
signals could be correctly distinguished across many random perturbations, using the receiver
operating characteristic (ROC). Specifically, we computed the area under the ROC curve (AUC),
which represents the probability of successfully classifying on-target from off-target activations.
We considered both purely extrinsic and purely intrinsic noise. For a given coefficient of variation
(CV) ν (here, ν = 0.5), we simulated extrinsic noise by generating a scale factor s from a gamma
distribution with shape parameter 1/ν2 and scale parameter ν2 (giving a mean of 1 and a variance of
ν2) and multiplied all receptor levels by this scale factor. For intrinsic noise, we instead drew scale
factors i.i.d. for each receptor. With each form of noise, we generated 100 random perturbations,
simulated the resulting activity levels, and computed the corresponding ROC and AUC (Figures
4D,H). We also plotted the distinguishability values for 20 such perturbations (Figure S3B).

Addressing Repertoires

Enumeration of Addressing Repertoires

We next considered more general addressing systems, targeting not just activation of individual
cell types but also groups of cell types. Specifically, an addressing repertoire encompasses all
subsets of cell types that can be coactivated by a ligand word, across a complete titration of ligand
concentrations. For instance, titrating two ligand variants with three concentrations yields nine
ligand words, each of which activates some subset of the cell types considered. Every distinct group
of cell types constitutes an achievable channel. The set of channels resulting from the nine ligand
words considered constitutes the addressing repertoire for that set of parameters.

We focused on analyzing addressing repertoires for three cell types, denoted A, B, and C. With
three cell types, there are eight possible channels: one with no cell types activated, three with a
single cell type activated, three with two cell types activated, and one with all cell types activated.
Since the channel with no cell types activated is always achieved in the absence of any ligand, we
neglect this from further consideration. Each of the remaining seven channels may or may not
be present, for a total of up to 27 = 128 addressing repertoires. We discard repertoires that are
invariant with respect to relabeling of ligands as well as repertoires in which two cell types are
indistinguishable by any ligand combination (such that the addressing repertoire could be mapped
to one for two cell types). As discussed in more detail below, these simplifications leave us with 32
addressing repertoires of three cell types, corresponding to those shown in Figure 5C.

We first seek to eliminate repertoires that are invariant with respect to relabeling of ligands. The
subset with all three cell types activated, or “triple,” does not change when ligands are relabeled;
however, singles or doubles may. For example, the addressing repertoire consisting of “A” and
“BC” is equivalent to that comprising words “B” and “AC,” simply by swapping cell types A and
B. As such, we consider the unique ways to include singles or doubles. Consider each single with its
complementary double (for example, “A” with “BC”). There are 22 = 4 possible ways to include
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this pair in an addressing mode: both absent, only single present, only double present, and both
present. The three pairs can then have three distinct choices (4 combinations), two distinct choices
(4 · 3 = 12 combinations), or the same choice (4 combinations). There are then 4 + 12 + 4 = 20
ways to choose combinations of singles or doubles, and the triple may be either present or absent.
Thus, considering ligand relabeling reduces the total number of addressing repertoires to consider
to 40.

Note, however, that some of these repertoires may only represent two distinct cell types, rather
than three. For example, the addressing repertoire with channels “A” and “BC” indicates that cell
types B and C are indistinguishable across all ligand combinations and are therefore functionally
equivalent. Let B and C be indistinguishable, without loss of generality. The only possible channels
are then “A,” “BC,” and “ABC.” Thus, the 23 = 8 repertoires that only contain these channels
can be reduced to two distinct cell types and are therefore omitted from our analysis of addressing
three cell types. This correction yields our final set of 32 addressing repertoires.

Similar to a specific number of orthogonal channels, a given addressing repertoire can potentially
be implemented in many ways. In other words, many different sets of responses can generate the
same addressing repertoire. Unlike the orthogonal case, however, the responses for every ligand
combinations are relevant. Thus, enumerating the ways to achieve a given addressing repertoire
requires considering any possible response for every cell type.

Optimization of Addressing Repertoires

To generalize our optimization approach to analyze addressing repertoires, we first set out to define
what sets of responses could yield a given repertoire. Therefore, we started by enumerating all
possible binary response matrices for a single cell type. The number of possible responses then
reduces to the number of ways to choose “on” signals. Assuming that cells are always inactive for
the ligand combination where both ligands are present at low levels and ignoring the case where
the cell is entirely nonresponsive, there are 28 − 1 = 255 possible responses.

By considering all combinations of three responses from this set, we were able to map all address-
ing repertoires to the potential sets of three responses. Due to the large number of possibilities for
a given repertoire, we sought to prioritize sets of responses that were more likely to be achievable.
Therefore, we individually optimized each of the 255 responses and quantified the quality of each
response using the sum of squared distance to the target, after normalizing the simulated response
to have a maximum response of 1 (data not shown). We ranked sets of three responses based on
the sum of the scores of each response individually. Since parameter sets were individually opti-
mized, a response that can be achieved with high quality independently may not be possible in the
same biochemical parameter regime as another; however, this scoring should reduce consideration
of responses that are challenging to optimize individually, let alone together with others.

Having selected candidate sets of responses, we could then perform least-squares optimization
as done previously. We also complemented this optimization approach by reasoning that any
given set of responses matches some addressing repertoire, depending only on how the threshold
between “inactive” and “active” pathway response is defined. Therefore, we simulated a random
set of responses, chose the threshold that yielded the greatest distinguishability between the lowest
on-target and highest off-target responses, and associated those parameters with the resulting
addressing repertoire. We iteratively optimized for this distinguishability, stopping if the resulting
addressing repertoire was one for which a valid parameter set had not yet been identified.

To characterize the specificity of addressing different subsets of cell types, we generalized the
distinguishability metric defined above. Each ligand word activates a particular subset of cell
types; the corresponding response(s) of the cell type(s) would represent on-target signaling, while
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the response(s) of any other cell type(s) would represent off-target signaling. Therefore, as in the
case of orthogonal addressing, distinguishability can be calculated as the fold difference between
the minimum on-target activity and the maximum off-target activity.

Comparison with One-to-One Architecture

To understand how subset addressability in a promiscuous pathway compares with that in a one-
to-one architecture, note that all responses in a one-to-one pathway must be monotonic, meaning
that responses never decrease with added ligand. As such, a given cell’s response is maximal when
exposed to the ligand combination where all ligands are present at highest concentration. Therefore,
every cell type will be active in response to this ligand combination. (Otherwise, there would be no
response across the entire ligand titration, and there would be no “addressing.”) Consequently, the
subset “ABC” will always be addressable in the one-to-one architecture. Conversely, any repertoire
where “ABC” is absent cannot be achieved in the one-to-one architecture.

Additionally, a one-to-one architecture can only generate as many orthogonal channels as there
are ligand variants, due to the monotonicity of responses. Therefore, any addressing repertoire that
enables orthogonal addressing of three cell types cannot be achieved with only two ligands.

Computation of Mutual Information

Mathematical Framework

We use mutual information between ligand words and activation patterns across a library of cell
types to quantify the combinatorial addressing power of the ligand-receptor system. Mutual infor-
mation was initially developed to quantify the capacity of a noisy channel to transmit information,
or the extent to which distinct input messages can be resolved by the receiver after passing through
the channel. Here, we view the ligand words as input messages and the resulting activation pattern
across cell types as the received message. Then, the communication system’s capacity is determined
by the biochemical constants Kijk and eijk.

One significant benefit of using an information theoretic framework is that we do not need to
assume a particular set of ligand words and cell types and then optimize over them. Instead, we
can use extensive libraries of input ligand words and cell types; mutual information will reflect the
best subset of each with no penalty (or benefit) for redundancies. Thus, in our framework, mutual
information reflects a property of the biochemical constants K and e alone; ligand inputs and cell
types are implicitly assumed to be optimally chosen. (In information theoretic language, we do not
need to know optimal error-correcting codes to compute the capacity of a channel.)

Let c represent a library of nLW ligand words, where the ith input ci is a vector of nL ligand
concentrations. Given a library of nCT cell types, let a(c) represent the resulting activation profiles
of these cell types, or a set of nLW × nCT responses. Earlier sections have presented a way to
compute adeterm(c) deterministically by solving quadratic equations. Here, we assume that the
activation is probabilistic due to a Gaussian error bar of size σ around adeterm(c); the standard
deviation σ can represent molecular fluctuations upstream of SMAD (e.g., in receptor levels or
activity) that result in fluctuations of SMAD phosphorylation. Thus,

P (a|c) = N (adeterm(c), σ2). (18)

We compute mutual information MI(a, c) using the formula

MI(a, c) = H(a)−H(a|c) (19)
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The second term can be expressed as

H(a|c) =

nLW∑
i=1

p(ci)H(a|c = ci) (20)

Each H (a|c = ci) is the entropy of a nCT -dimensional Gaussian with covariance matrix Σ = σ2I,
where I is the identity matrix of size nCT . This entropy (in bits) is

H (a|c = ci) =
1

2
lg [det (2πeΣ)]

=
1

2
lg
[(

2πeσ2
)nCT ]

=
nCT

2
lg
[
2πeσ2

]
(21)

Assuming input probabilities are uniformly distributed, or p (ci) = 1
nLW

, this conditional entropy
is simply

H (a|c) =
nCT

2
lg
[
2πeσ2

]
(22)

Thus, this term is constant regardless of choice of biochemical parameters.
The entropy H(a) in eq. (19) is the entropy of P (a), which is a sum of Gaussians, one at each

of the activation patterns corresponding to each ligand input ci. This entropy is a measure of the
distinguishability of activation patterns a(ci) for different inputs ci; the entropy will be small if
the Gaussians are overlapping and large otherwise. Intuitively, this entropy is a measure of how
well-separated the activation patterns a for different ligand inputs are.

The problem of determining the entropy of a normalized sum of Gaussians (i.e., a Gaussian
mixture) in high dimensions is surprisingly involved; however, simple analyic approximations have
been developed in a recent advance (Kolchinsky and Tracey, 2017). We use the approximation to
the kernel density estimator presented therein for a sum of n Gaussians p(x) = 1

n

∑n
i=1 pi(x) in d

dimensions:

HKL (p (x)) =
d

2
−
∑
i

wi ln

∑
j

wjpj (µi)

 (23)

Here, pj is the jth Gaussian component (normalized to 1, individually), µi the mean of the ith
component, and wi the mixture weight of the ith component. In this case, we assume uniform
mixture weights, or wi = 1

nLW
for all i. Further, pj (µi) is

pj (µi) =
1√

(2π)nCT det Σ
e−

1
2

(µi−µj)TΣ−1(µi−µj) (24)

Thus, the mutual information can be evaluated by simply evaluating each Gaussian at the mean of
all other Gaussian components, or using the matrix Dij of distances between activation patterns
adeterm (ci) for different ligand inputs ci:

Dij = ‖adeterm(ci)− adeterm(cj)‖2 (25)

We can therefore simplify pj (µi) to

pj (µi) =
1√

(2πσ2)nCT
e−

Dij

2σ2 (26)
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Substituting into the approximation, we find an entropy (in nats) of

HKL =
nCT

2
−
nLW∑
i=1

1

nLW
ln

nLW∑
j=1

1

nLW
· 1√

(2πσ2)nCT
e−

Dij

2σ2


=
nCT

2
− 1

nLW

nLW∑
i=1

ln

 1

nLW
· 1√

(2πσ2)nCT

nLW∑
j=1

e−
Dij

2σ2


=
nCT

2
− 1

nLW

nLW∑
i=1

− lnnLW −
nCT

2
ln
[
2πσ2

]
+ ln

nLW∑
j=1

e−
Dij

2σ2


=
nCT

2
+ lnnLW +

nCT
2

ln
[
2πσ2

]
− 1

nLW

nLW∑
i=1

ln

nLW∑
j=1

e−
Dij

2σ2


= lnnLW +

nCT
2

ln
[
2πeσ2

]
− 1

nLW

nLW∑
i=1

ln

nLW∑
j=1

e−
Dij

2σ2

 (27)

We can convert this expression to bits by multiplying by lg 2 and combine with eq. (22) to estimate
mutual information. We note that these derivations omit a correction factor C = −nCT lg ∆a
arising from binning with bin width ∆a to make the entropy of a continuous distribution well
defined; however, as the same correction applies to both H (a) and H (a|c), these terms cancel out.
Our estimator of mutual information is therefore

MI(a, c) = H(a)−H(a|c)

= lg 2

lnnLW +
nCT

2
ln
[
2πeσ2

]
− 1

nLW

nLW∑
i=1

ln

nLW∑
j=1

e−
Dij

2σ2

− nCT
2

lg
[
2πeσ2

]

= lg nLW −
1

nLW

nLW∑
i=1

lg

nLW∑
j=1

e−
Dij

2σ2

 (28)

We use this expression to estimate mutual information in this paper. From the form, it is clear
that mutual information rewards large values of Dij , i.e., distinct activation patterns for different
ligand inputs.

The mutual information framework above can be naturally extended to scenarios not considered
here. For example, not all ligand inputs might be equally likely or of equal physiological signifi-
cance. In this case, the map of ligand inputs to activation profiles (i.e., the coding scheme) can
separate the activation patterns of more important ligand words at the expense of more similar
activation patterns for less important words. The mutual information framework can account for
such weighting of different inputs easily through unequal p(ci) above.

Finally, note that mutual information naturally rewards robustness, since mutual information
is higher when each activation pattern is realized over equally sized regions of input space. For
example, if an output a1 is only obtained for a sliver of ligand input space while another output
pattern a2 is realized over the rest of input space, mutual information will be lower than if both
outputs are realized over half of input space.
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Libraries of Ligand Words and Cell Types

To provide the broadest information-theoretic characterization, we first constructed comprehensive
libraries of ligand words, or input messages, and cell types, or receptor expression profiles. Each
ligand can independently take on three distinct concentrations sampled logarithmically over three
orders of magnitude, or 100 = 1, 101.5 ≈ 32, and 103 = 1000. This library of 32 = 9 words is
a representative sampling of all possible ligand inputs. Similarly, we constructed a library of cell
types by varying each receptor level independently over two distinct concentration levels [0.1, 1].
For a system with 2 type I receptor variants and 2 type II receptor variants, this library comprises
22+2 = 16 possible cell types.

Sampling of Biochemical Parameters

In our model, a promiscuous ligand-receptor system is defined by its interaction affinities K and sig-
naling activities e. To comprehensively sample all possible biochemical parameters, each parameter
was allowed to be either of [0.1, 1], giving a total of 216 = 65,536 qualitatively distinct parame-
ter sets. We then evaluated mutual information between the ligand words and the corresponding
cell type activation profiles for each possible choice of biochemical parameters K, e. The resulting
data characterize the combinatorial addressing power across a comprehensive set of promiscuous
ligand-receptor systems.

Random Sampling of Biochemical Parameters

To ensure that the lattice sampling procedure did not introduce any artifacts, we also repeated this
analysis for an identical number of randomly generated parameter sets. Specifically, we chose each
value independently and randomly with a log-uniform distribution over [10−1.5, 1]. The resulting
distribution of mutual information values is shown in Figure S4A.

Choice of Variance

Computing mutual information requires choosing the variance or Gaussian fluctuation σ for all
activation levels. For all results here, we choose σ2 = 0.5 after testing a range of values. Very large
or small choices of σ lead to the same value of mutual information for all biochemical parameters,
either low or high, respectively. Intermediate choices of σ discriminate between different K, e. While
the precise value of mutual information depends on σ, different choices of σ do not qualitatively
change the relative ordering of biochemical parameter sets.

Optimization of Mutual Information

These sampling procedures enable us to comprehensively analyze mutual information across pa-
rameter space. However, they are likely to miss extremes of mutual information. Therefore, we
chose 16 parameter sets from the lattice sampling with the highest starting mutual information and
further refined K, e to maximize mutual information using least-squares optimization.

Addressability Metric of Ligand Words

To determine which ligand words in the library activate distinct combinations of cell types in this
optimal limit, we define the overall addressability of all ligand words by evaluating all pairs. To
compare a pair of ligand words, we compute the ratio of activation levels for each cell type and take
the separation r as the largest such fold change (inverted if needed, such that r ≥ 1). If two ligand
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words have a separation of 5, then at least one cell type’s activation is different by a factor of at
least 5 in the two conditions. We extend this pairwise separation to a set of N ligand words by
forming a N ×N addressability matrix, where element (i, j) corresponds to the pairwise separation
of ligand words i and j. This matrix has 1s along the diagonal. We define the smallest off-diagonal
value, which represents the minimum pairwise separation between different ligand words, to be the
overall addressability of that set of N ligand words.

Analysis of Archetypal Responses

Response Classes

We next analyzed the responses generated by the full library of cell types for high-performing and
low-performing parameter sets. As expected, parameter sets giving rise to low mutual information
showed relatively little diversity in responses (Figure 6D). Parameter sets which generated high
mutual information showed distinct activation patterns among cell types (Figure 6E); furthermore,
these response types appeared qualitatively different and were similar to experimentally observed
patterns reported previously (Antebi et al., 2017). We therefore further analyzed the presence of
these archetypal responses across parameter sets.

Examples of these archetypes were generated by simulating responses to parameters reflecting
our understanding of the underlying design principles (Figure S1). These parameters are not
specifically tuned, with all affinity and activity values set to either 0.1 or 1 and all receptor levels
fixed at 10−1.5. Thus, they reflect qualitative differences rather than finely tuned quantitative
ones. Briefly, ratiometric responses feature reduction of activity of one ligand by the second, such
that the overall response approximates the ratio of the two concentrations. Competitive inhibition,
where the “denominator” competes for receptors needed to generate signaling activity but produces
inactive complexes, can produce such responses (Figure S1A). Additive responses approximate the
sum of the two ligand concentrations, as the ligands increase pathway activity either alone or
together, and are readily generated when both ligands activate receptors similarly (Figure S1B).
Imbalance detection responses, where cells respond maximally to imbalances in the levels of the
two ligands, can arise if, for instance, competition between two ligands favors complexes with
low signaling activity (Figure S1C). Conversely, balance detection responses, where cells respond
maximally when both ligands are present at a specific ratio, can be generated when ligand binding
favors formation of high-activity signaling complexes (Figure S1D).

Phenotypical Parameters

We characterized the spectrum of responses as described previously (Antebi et al., 2017). Briefly,
we use the relative ligand strength (RLS), which represents the ratio of activation produced by the
weaker ligand to that produced by the stronger ligand, and the ligand interference coefficient (LIC),
which measures the degree to which two ligands positively or negatively synergize. We computed
these values for each of the 16 responses of the cell type library for each set of biochemical parameters
and determined what response classes each fell into, adapting previously described criteria (Antebi
et al., 2017). Ratiometric responses were defined by RLS < 0.2, additive responses by RLS > 0.8
and |LIC| < 0.05, imbalance responses by RLS > 0.8 and LIC < −0.1, and balance responses by
RLS > 0.8 and LIC > 0.1. Responses outside these ranges were considered to be intermediate
variants and not classified as a specific archetype.
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Relationship with Mutual Information

Having identified the response classes represented for each set of biochemical parameters, we plotted
the distribution of mutual information values associated with a given number of response classes
(Figure 6F).

Analysis of Parameter Correlations

Based on observations from parameter sets with high mutual information, we computed two cor-
relation measures for the biochemical parameters. Since each parameter could only take on two
values, we transformed them to −1 and 1. In particular, we defined K ′ijk = −1 if Kijk = 0.1
(low) and K ′ijk = 1 if Kijk = 1 (high), with e′ijk defined analogously. (Equivalently, we defined
K ′ijk = 1 + 2 log10Kijk.) We computed HKe =

∑
i,j,k = K ′ijke

′
ijk to measure correlation between

binding and signaling efficiency for each signaling complex. We also computed Hee =
∑

j,k e
′
1jke

′
2jk,

measuring the correlation between activity of the two signaling complexes with the same receptor
dimer but different ligands.

We calculated these correlation metrics for each of the 65,536 parameter sets from systematic
lattice sampling. To investigate the relationship with mutual information, we sorted parameter sets
by mutual information, binned them (with a bin size of 800), and computed the mean correlation
and mutual information in each bin (Figures 6G-H).

Evolutionary Algorithm as a Generative Model

While the observed anticorrelations of K and e appear to be predictive of mutual information,
it is not clear if these relationships are sufficient to fully describe the criteria for high addressing
power and can thus serve as a design principle. Therefore, we developed a generative algorithm
that systematically evolves a given set of parameters K, e according to these principles and asked
whether favoring anticorrelations yields higher addressing power.

We first formed a fitness function F (K, e) = − (HKe +Hee), where HKe and Hee are as above.
Intuitively, a choice of K, e that has strong affinity-activity or activity-activity anticorrelations
would have high fitness. Our algorithm is then a simple “evolutionary” algorithm that performs
noisy gradient ascent in this fitness landscape. Starting with a given K, e, each iteration involves
choosing a random element of K, e and proposing a flip (changing it to high if currently low or vice
versa). We then compute the resulting change in fitness ∆F . If such a flip increases fitness (i.e.,
∆F > 0), we immediately implement it. If the proposed flip decreases fitness (i.e., ∆F < 0), we
accept it with a probability es∆F , where s represents the selection pressure. Such moves towards
lower fitness allow dynamics to escape local fitness maxima; the frequency of such moves towards
lower fitness is controlled by the selection pressure s (or, equivalently, temperature in Monte Carlo
algorithms). We repeat this process over many iterations and track the addressing power of the
K, e configuration at each step.

We first ran our algorithm on 2000 randomly initialized choices of K, e. We stop the algorithm
after 200 iterations and quantify the addressability of the resulting K, e using mutual informa-
tion. We then visualized the resulting distribution of mutual information values (Figure 6K). With
s = 0 (i.e., no selection for correlations) produces a wide histogram equivalent to random sampling
of parameter space; indeed, only a few parameter sets show significant addressing power. How-
ever, with s = 1 and therefore selection for parameter anticorrelations, the resulting histogram
is significantly shifted towards higher addressing power, despite starting from similar randomly
chosen initial conditions. (Longer runs of the evolutionary algorithm did not change the resulting
histograms, indicating equilibration within 200 iterations.)
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