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ABSTRACT 

Although we can now measure single-cell signaling responses with multivariate, high-throughput 

techniques our ability to interpret such measurements is still limited. Even interpretation of dose-

response based on single-cell data is not straightforward: signaling responses can differ significantly 

between cells, encompass multiple signaling effectors, and have dynamic character. Here, we use 

probabilistic modeling and information-theory to introduce fractional response analysis (FRA), 

which quantifies changes in fractions of cells with given response levels. FRA can be universally 

performed for heterogeneous, multivariate, and dynamic measurements and, as we demonstrate, 

uncovers otherwise hidden patterns in single-cell data. In particular, we show that fractional 

responses to type I interferon in human peripheral blood mononuclear cells are very similar across 

different cell types, despite significant differences in mean or median responses and degrees of cell-

to-cell heterogeneity. Further, we demonstrate that fractional responses to cytokines scale linearly 

with the log of the cytokine dose, which uncovers that cellular populations are sensitive to fold-

changes in the dose, as opposed to additive changes.  

Main text  

Many studies of signaling systems involve examining how the intensity of a stimulus, e.g., cytokine 

dose, translates into the activity of signaling effectors, e.g., transcription factors1–7. This is usually done 

by exposing cells to a range of doses and measuring responses either in bulk or at the single-cell level. 

Results of such experiments are then represented and interpreted in terms of dose-response curves. The 

standard dose-response curve depicts how the mean, median, or a characteristic of choice, changes 
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with the increasing dose, and provides a basic, first-order model of how a signaling system operates. 

Several aspects of cellular signaling are difficult to analyze using conventional approaches. For 

example, signaling responses can differ significantly between cells, encompass multiple signaling 

effectors, and are dynamic. First, outwardly very similar cells exposed to the same stimulus exhibit 

substantial cell-to-cell heterogeneity8–12. Therefore the same mean/median response can result from a 

small fraction of strongly responding cells or a significant fraction of weakly responding cells1,2,13. 

Second, the highly interconnected architecture typical for mammalian signaling usually results in a 

single stimulus activating several primary signaling effectors or downstream genes14–19. For example, 

effectors of type I interferons (IFNs) include six members of the signal transducer and activator of 

transcription family (STAT)20, which are activated with different sensitivities at different doses. 

Therefore, the description of dose-response in terms of an individual signaling effector is incomplete21. 

Third, live-cell imaging experiments demonstrated that the dose may not only alter the response at a 

single time-point but can control temporal profiles of signaling responses22,23. For instance, low doses 

of TNF-α may induce one peak of nuclear factor-κB (NF-κB) signaling activity, whereas higher doses 

may induce additional peaks7,24. Besides, the dose may control the onset, shut off, amplitude, or, in 

principle, any other characteristics of the responses25–28. Overall, conventional dose-response curves do 

not capture the inherent complexity of single-cell high-throughput data, and an alternative approach is 

required. We have used probabilistic modeling and information-theory to develop a different analytic 

framework, fractional response analysis (FRA), involving fractional cell counting, which is capable of 

deconvoluting the behavior of single cells. 

	
Results 

Conventional dose-response analysis does not capture complex data 

To demonstrate the need and utility of FRA we studied type I interferon signaling in human peripheral 

blood mononuclear cells (PBMCs), a system involving multiple signaling effectors, cell-to-cell 

heterogeneity, and several cell types. Dose-responses to the type I interferon variant IFN-α2a were 

analyzed via whole-cell tyrosine phosphorylation levels of effector proteins STAT1, STAT3, STAT4, 

STAT5, and STAT6 (pSTATs), using mass cytometry (CyTOF). Cells were collected from a healthy 

donor, and measurements were performed 15 minutes after IFN-α2a stimulation, the time of maximal 

response (Fig. S1). Along with signaling effectors, 26 phenotypic markers were measured to allow for 

identification of several cell types, including B-cells, CD4+ T-cells, CD8+ T-cells, natural killer (NK) 
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cells, and CD14+ monocytes29–31. Such data are typically analyzed using t-SNE plots to visualize 

multiple cell types and signaling effectors30,31 (Fig. 1A-B, Fig. S2). However, a single t-SNE plot 

represents responses in terms of one signaling effector only, and plots do not provide any quantitative 

information regarding the function of the signaling systems. 

Typically, to obtain quantitative characteristics of the dose-response, mean responses and response 

distributions of individual signaling effectors are plotted. Following this conventional strategy, mean 

levels of pSTATs in B-cells, CD4+ T-cells, CD8+ T-cells, NK cells, and CD14+ monocytes, are 

calculated (Fig. 1C, Fig. S3). Mean responses revealed that different STATs reached different maximal 

phosphorylation levels in different cell types, and response distributions indicated that the variability 

of responses can vary between cell types. Overall, however, analysis using conventional techniques 

(Fig. 1A-D), did not reveal any apparent pattern in functioning of the signaling system. The failure to 

observe regularities resulted largely from the complexity of the system and of the data. 

Fractional response curves  

To deconvolute single-cell dose-response data, we first introduced the fractional response curve (FRC) 

that quantifies fractions of cells that exhibit different responses to a change in dose, or any other 

experimental condition. To illustrate the concept, we considered a simple hypothetical example 

involving one signaling effector and three doses, although the approach extends to a general 

multivariate scenario. Response distributions to three doses, x1, x2, x3, which can be interpreted as 

control, intermediate and high dose, are shown in Fig. 2A. When dose 1 was considered alone, 

fractions of cells with all possible responses sum up to 1 (Fig. 2B). Therefore, we defined the value of 

the FRC for dose 1 to be 1, and write r(x1)= 1. We then asked what fraction of the cellular population 

exhibits different responses after the change from dose 1 to dose 2. The fraction of cells exhibiting 

different responses is equivalent to the overall increase in the frequency of responses (Fig. 2C, green 

region). The overall fractional increase, denoted as ∆r, is calculated as the area of the green region, and 

∆r = 0.31, represents the 31% of the cellular population exhibiting different responses due to dose 

increase. Therefore, we defined the value of the FRC for dose 2 to be the sum of the previous value 

and the fractional increment, r(x2)= r(x1) + ∆r = 1.31. When dose 3 was considered, the fraction of 

cells that exhibited different responses is again equivalent to the overall increase in the frequency of 

different responses, now compared to the two lower doses (Fig. 2D). As before, the overall increase, 

∆r, is equivalent to the area of the yellow region (Fig. 2D), with ∆r = 0.74, representing 74% of cells 
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stimulated with dose 3 exhibiting responses different to populations stimulated with lower doses. 

Again, the value of the FRC for dose 3 was defined as the sum of previous value and the fractional 

increment, r(x3)= r(x2) + ∆r = 2.05. Changes in the FRC show what fraction of cells exhibit different 

responses due to the dose increase (see Methods for a formal definition). Adding subsequent fractional 

increments, ∆r, leads to the value of FRC expressed in terms of the cumulative fraction of cells that 

exhibit different responses due to dose change. Besides, the sum of the dose-to-dose increments 

records the number of distinct response distributions that were experimentally observed, which 

provides the second interpretation of the FRC. Precisely, for dose 1 considered alone, a single response 

distribution was observed, r(x1)= 1. Dose 2 added 31% of a distinct distribution, and r(x2)= 1.31 (the 

gray area, Fig. 2D). Similarly, accounting for all three doses we had 2.05 distinct response 

distributions (the gray area, Fig. 2E). The number of distinct response distributions induced by 

changing dose quantifies the number of programmed responses of a cellular population, which appears 

to provide relevant, yet, so far, unexplored, quantitative characteristics of signaling systems (Fig. S4). 

The FRC has a rigorous mathematical interpretation in terms of Rényi information, which, broadly 

speaking, counts probability distributions corresponding to outputs of a communication system (see 

Supplementary Material, SM). The FRC can be calculated for any type of signaling data, i.e., arbitrary 

number of signaling effectors, time points of measurements, doses, or other experimentally varied 

parameter (see Methods). 

Fractional cell-to-cell heterogeneity   

The FRC quantifies fractions of cells that exhibit different responses due to dose change but does not 

quantify cell-to-cell heterogeneity: it does not show what fraction of cells exposed to one dose exhibits 

responses in the range characteristic for other doses. Therefore, within FRA, we propose to augment 

the FRC with quantification of the overlaps between distributions corresponding to different doses. We 

call a given response as typical for a given dose if it is most likely, i.e., most frequent, to arise for this 

specific dose compared to all other doses. In the hypothetical example, low responses are most likely, 

and therefore typical, for dose 1, intermediate responses are typical for dose 2, and high responses for 

dose 3 (Fig. 2F). We can then divide responses to a given dose into responses typical for any dose. For 

instance, for dose 2, 35% of cells have responses typical for dose 1, 54% typical for dose 2, and 11% 

typical for dose 3 (Fig. 2G). The results, presented as pie-charts, can be shown in a matrix as the 

fraction of cells stimulated with one dose (rows) that has responses typical for other doses (columns) 
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(Fig. 2H). This pie-chart partitioning can be plotted along the FRC (Fig. 2I) so that the fractional 

increments, ∆r, and fractional cell-to-cell heterogeneity are concisely presented. Quantification of the 

fractional cell-to-cell heterogeneity structure can be performed for any type of signaling data (see 

Methods and SM). 

Different types of PBMCs exhibit very similar logarithmic dose-responses 

FRA overcomes the shortcomings of conventional analytical approaches to dose-response data by 

accounting for cell-to-cell heterogeneity and multivariate data. To determine the kinds of biological 

information that can be uncovered, we performed FRA for IFN-α2a dose-responses in specific types of 

PBMCs, assuming that all five measured pSTATs jointly constitute a cell’s response. The FRC and 

fractional cell-to-cell heterogeneity (Fig. 3A,B) are very similar for all cell types. Counter to what 

might be expected intuitively, and despite the differences seen in the conventional analysis	(Fig. 1A-

D), the dose responses in different cell types follow the same logarithmic pattern, identifying a 

phenomenon that governs the behavior of cellular populations in our system.  

For all cell types the FRC is linear and increases at the same rate with respect to the log of the dose, 

which means that the fraction of cells showing different responses is proportional to the dose fold-

change, over a broad range of doses, i.e., from 0–2500 U/mL. The linear increase of the FRC 

demonstrates that the fraction of cells that exhibit different responses is very similar from 0–25 U/mL, 

from 25–250 U/mL, and from 250–2500 U/mL. For each subsequent dose change, ∆r ≈ 0.5 so that 

50% of cells have different responses. A given fold change in the dose induces a different response in 

the fixed fraction of cells, across a broad range of doses. Therefore, cellular populations are sensitive 

to fold-changes in the dose as opposed to additive changes.  

Formally, FRC scales as the log of the dose 

r(x)∝ log(x), (1) 

which given incremental approximation, ∆log(x) = log(x+∆x) − log(x) ≈ ∆x/x, implies fold-change 

sensitivity in the population 

 ∆r ∝ ∆x/x, (2) 

which in the studied system universally describes dose-responses in populations of different cell types.  
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The FRA, therefore, condenses the description of the complex system into a simple quantitative 

formula. Furthermore, FRA uncovered that the number of programmed response distributions, i.e. 

maximal value of FRC, and the fractional cell-to-cell heterogeneity structure are very similar for all 

cell types. This similarity indicates that the immune system may precisely control responses of 

fractions of cells rather than responses of individual cells. In multicellular organisms, a fraction of cells 

with a given response level is a biologically essential response variable. For example, the outcome of a 

viral infection in a tissue depends on the number of NK cells with given response levels and induced 

cytotoxic activity. Our analysis revealed that in the studied system the fraction of cells that have 

responses in a specific range is not only tightly controlled in the population of a given cell type but is 

controlled in the same way across different cell types, as opposed to responses of individual cells that 

are largely heterogeneous within one cell type and across cell types. The role for controlling the 

fractions of cells with specific responses can, in principle, be tested by perturbing cell-to-cell 

heterogeneity through genetic manipulation and observing the phenotypic effects on the performance 

of the immune system. 

Logarithmic dose responses are a general property of cytokine signaling 

To explore how generally applicable FRA is, we examined responses to cytokines IFN-γ, IL-10, and 

TNF-α4,27. As IFN-γ and IL-10 are implicated in macrophage phenotypic diversity32, we used the 

human monocyte cell line U937, differentiated into macrophage-like cells, and immunostaining to 

measure responses via nuclear levels of the key signaling effectors, phosphorylated STAT1 for IFN-γ, 

and phosphorylated STAT3 for IL-10 at 30 minutes after stimulation (Fig. 4A-B). Live confocal 

imaging and a murine embryonic fibroblasts cell line stably expressing fluorescent NF-κB complex4, a 

key TNF-α signaling effector, were used to measure TNF-α responses in individual cells over time 

(Fig. 4C). For IFN-γ, distributions of responses shifted gradually towards higher values as the dose 

increases, referred to as the graded response33–35. For IL-10 the distributions flattened over a broad 

region as the dose increases, reflecting the higher number of responding cells for high doses, with the 

dose having a limited impact on the level of the response, similar to a binary system2,35 where 

responses aggregate in "on" and "off" regions. On the other hand, TNF-α responses are given as time-

series, therefore, their characteristics cannot be directly observed. 

Despite qualitative differences in the responses, and type of data used, FRC increases nearly linearly 

with respect to the log of the dose for all three cytokines. Therefore, similarly to IFN-α2a in PBMCs, 
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IFN-γ, IL-10, and TNF-α responses are sensitive to fold-changes in the dose, as opposed to additive 

changes, suggesting that this mode of response may be a more universal biological pattern that 

describes cytokine signaling in cellular populations. The qualitative differences in the responses to 

IFN-γ and IL-10 cytokines are reflected in a higher rate of increase of the FRC and narrower bands 

around FRC for IFN-γ compared to IL-10. The faster increase of the FRC for IFN-γ reflects a higher 

fraction of cells that exhibit different responses as the dose increases (Fig. 4A,B). The broader bands 

for IL-10 correspond to the bigger overlaps between the response distributions corresponding to 

different doses. For TNF-α, the rate of the increase of FRC as well as width of the bands around FRC 

are more similar to IFN-γ than for IL-10, which could not be determined directly from time-series data. 

Further, the different maximal values of the FRC for different cytokines revealed that signaling 

systems differ in terms of the number of programmed response distributions. These properties of dose-

response are not captured by mean responses plotted for comparison as red line (Fig. 4D-F).  

Discussion 
Sensitivity to dose fold-changes in populations of cells resembles the empirical Weber-Fechner law 

that characterizes the performance of many psycho-physiological sensory systems. Minimal detectable 

stimulus change, ∆x, in the sense of weight, hearing, vision, and smell, has been observed to be of 

fold-type. Our analysis shows, therefore, that cellular populations follow the same pattern, originally 

observed at the macro-scale in experimental psychology and neuroscience, and also more recently in 

conventional analysis of some cellular signaling systems, including bacterial chemotaxis and TGF-β 

signaling12,36–38. Therefore, the way cellular populations respond to stimuli is quantitatively similar to 

the way we perceive differences in certain sensations (weight/light). Weber-Fechner law is a pattern 

that can arise from a range of different mechanisms39,40 with the underlying neural implementations 

still being discovered40,41. Here also, a mechanistic explanation of the fold-change sensitivity of 

cellular populations is not clear and remains to be determined.  

Overall, FRA delivers a concise representation of complex single-cell data, which is particularly 

relevant for high-throughput techniques, which are increasingly allowing the measurement of a high 

number of parameters per cell, generating vary large, high-dimensional datasets42. The high 

information content of multivariate, single-cell measurements makes biological discoveries more 

likely. On the other hand, however, insights may be difficult to extract due to data complexity. 

Therefore, making use of the increasing amount of single-cell high-throughput measurements requires 
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approaches that can extract relevant insights in spite of complexity. FRA, not being limited to cytokine 

signaling, proteomic data or dose responses, enables the systematic investigation of single-cell high-

throughput data in a wide range of situations, in which responses are measured in single-cells at any “-

omics” scale. Therefore, FRA should yield insights into the structure of signaling heterogeneity in 

immunology, developmental biology, cancer research, and diverse other fields in which response 

analysis in single-cells is of relevance. 
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Figures 

	
 
Figure 1. Dose-responses to IFN-α2a in PBMCs. 
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(A) t-SNE plots constructed based on phenotypic markers. Cell types are encoded by color and each dot 
represents a single cell. 
(B) t-SNE plots of whole-cell pSTATs levels 15 min after stimulation with two selected doses of IFN-α2a as 
well as in unstimulated cells. Positions of dots corresponding to single-cells are the same as in panel (A) 
allowing cell type identification. Color of each dot represents normalized (0 for minimum and 1 for maximum) 
mass cytometry signal. Analogous t-SNE plots for all considered doses are show in Fig. S2. 
(C) Mean pSTATs levels in five cell types as a function of dose calculated from mass cytometry signals of 
single cells. 
(D) Distributions of responses in five cell types after stimulation with different doses of IFN-α2a in terms of 
pSTAT1 (top row) and pSTAT5 (bottom row) as measured with mass cytometry. The shown probability density 
is proportional to the frequency of cells with given level of the pSTAT. Value of the probability density is 
proportional to the frequency of cells with given response levels. Distributions of other pSTATs are show in 
Fig. S3. Different doses correspond to different colors.  
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Figure 2. Fractional response analysis. 
(A) Hypothetical response distributions to three different doses encoded by colors. Distributions are represented 
as probability density, which is proportional to the frequency of cells with a given response level.  
(B-D) Quantification of the fraction of cells that exhibit different responses due to dose increase, ∆r, and 
constriction of FRC, for responses presented in (A). Each panel from B to D correspond to subsequent changes 
in dose. The color regions mark the overall increase in frequency due to considering the dose marked by the 
color. The area of the colored region quantifies ∆r. The value of the FRC for each dose is obtained by adding the 
increment, ∆r.  
(E) Quantification of the number of distinct distributions induced by the three considered doses. 
(F) Dose-typical responses for the response distributions of (A). 
(G) Dissection of the responses to dose 2 into responses typical to any of the three doses. The fraction of cells 
typical to a given dose is marked with the corresponding color. The surface area of each color quantifies the 
typical fraction. 
(H) The fractions of cells stimulated with one dose (rows) with responses typical to any of the doses (columns). 
(I) The FRC together with the bands representing cell-to-cell heterogeneity as quantified in (K). For each 
reference dose (x-axis), the fractions of cells stimulated with the reference dose that exhibit responses typical to 
other doses can be plotted in the form of color bands around the curve. The color encodes the dose a given 
fraction refers to. The height of the band marks the size of the fraction (y-axis). Fractions corresponding to 
doses higher than the reference dose are plotted above the curve, whereas to doses lower than the reference dose 
below the curve.	 	
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Figure 3. Different types of PBMCs exhibit highly similar dose-responses to IFN-α2a. 
(A) FRA of IFN-α2a responses. Here, levels of all pSTATs were assumed to jointly constitute cell’s response. 
Fig. S5 shows FRA for individual STATs. 
(B) Pie-charts of the cell-to-cell heterogeneity structure used to plot color bands in (A). Cell-to-cell 
heterogeneity is shown as pie-charts, in addition to (A), in order to clearly visualize similarity between the cell 
types. 
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Figure 4. IFN-γ, IL-10, and TNF-α exhibit logarithmic dose responses in cell lines. 
(A) Distributions of responses 30 min after stimulation with different doses of IFN-γ in terms of nuclear 
pSTAT1 as measured with confocal microscopy imaging and immunostaining in the U937 cell line. Responses 
are expressed as mean fluorescence of nuclear pixels. Selected doses are shown. See Fig. S6 for all doses. 
(B) The same as in (A) but for pSTAT3 after stimulation with IL-10. 
(C) Temporally resolved responses of individual murine embryonic fibroblasts to increasing concentrations of 
TNF-α. Each line corresponds to a single cell. Responses are expressed as the ratio of the nuclear-pixels 
fluorescence average to the cytoplasmic-pixels fluorescence average. Selected doses are shown in the panel. See 
Fig. S7 for all doses. Measurements were taken every 3 min in a murine embryonic fibroblast cell line stably 
expressing the p65 protein component of the NF-κB complex fused with the fluorescent dsRed protein. 
(D) FRA of IFN-γ responses. For comparison, the red line presents the mean response with y-axis on the right. 
The pie-chart of the plotted cell-to-cell heterogeneity structure is shown in Fig. S8. 
(E) Same as in (D) but for IL-10 responses. 
(F) FRA of the temporally resolved responses to TNF-α. The red line presents the mean response at the time of 
maximal response, i.e., at 18 min. 
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Methods 

Software implementation 

The methodology to perform and visualize FRA is provided as a user-friendly R-package available for 

download at http://github.com/sysbiosig/FRA. The package contains an installation guide and a brief 

user manual. 

Formal definition of the FRC 

Consider a series of doses x1,...,xi,...,xm and denote a single cell response as y. Depending on the 

context, y, may be a number or a vector, e.g. the level of one or more measured signaling effectors. 

Suppose that responses to a given dose, xi, are represented as the probability distribution, 

 𝑃 𝑌 𝑥! . (3) 

The FRC is then formally defined as 

(4) 

𝑟(𝑥!) = max
!!!!!

𝑃 𝑦 𝑥! 𝑑𝑦,
 

𝒴
 

where integration takes place over 𝒴 , the set of all possible responses, y. The integral quantifies the 

area under the curve (or under surface for multivariate data), with respect to y, defined as 

max!!!!! 𝑃 𝑦 𝑥! . For the calculations shown in Fig. 2 the integration corresponds to the calculation 

of the area of the gray regions in panels D-E. As explained in the SM, the FRC defined as above is 

closely related Rényi min-information capacity. 

Formal definition of typical fractions 

Having the responses represented in terms of the probability distribution, Eq. 3, we can define which 

responses, y, are typical to any of the doses. Precisely, we define the response, y, to be typical for dose 

xj if it is most likely to arise for this dose, which writes as 

(5) 
 𝑃 𝑦 𝑥! > 𝑃 𝑦 𝑥!  for all 𝑘 other than 𝑗. 

The above condition allows assigning any response, y, to a dose for which it is typical. Therefore, for a 

given dose, xi, we can identify what fraction of cells stimulated with this dose exhibits responses 
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typical to any dose, xj, for j from 1 to m. These fractions, denoted as vij, can be practically computed as 

explained below. 

Calculation of typical fractions 

The fractions of cells stimulated with dose i that have responses typical to dose j, vij, can be easily 

calculated from data regardless of the number of doses and the type of experimental measurements. 

We have that 

(6) 

vij=
number of cells stimulated with xi with responses typical for xj

number of cells stimulated with xi
. 

Calculation of typical fractions, vij, with the above formula requires the possibility to examine the 

condition P(y|xj) > P(y|xk) for any experimentally observed response, y. The distributions P(y|xj) can be 

reconstructed from data using a variety of probability density estimators43. The use of the available 

estimators, however, might be problematic for multivariate responses24,44. We therefore propose a 

more convenient strategy. We replace the condition P(y|xj) > P(y|xk) with an equivalent condition that 

is computationally much simpler to evaluate. Precisely, we propose to use the Bayes formula 

 (7) 

𝑃 𝑥! 𝑦 =
𝑃(𝑦|𝑥!)𝑃(𝑥!)
𝑃(𝑦|𝑥!)𝑃(𝑥!)!

!!!
. 

If we set the equiprobable prior distribution, i.e., P(xj)= 1/m, we have that P(y|xj) is proportional to 

P(xj|y) and the condition P(y|xj) > P(y|xk) is equivalent to 

𝑃 𝑥! 𝑦 > 𝑃 𝑥! 𝑦 .                           (8) 

The above strategy allows avoiding estimation of the response distributions, P(y|xj), from data. For 

continuous and multivariate variable y the estimation of P(xj|y) is generally simpler than estimation of 

P(y|xj)24,43. Precisely, an estimator 𝑃 𝑥!|𝑌 = 𝑦  of the distribution P(xj|y) can be built using a variety 

of Bayesian statistical learning methods. For simplicity and efficiency, here we propose to use logistic 

regression, which is known to work well in a range of applications43. In principle, however, other 

classifiers could also be considered. The logistic regression estimators of P(xj|Y = y) arise from a 

simplifying assumption that log-ratio of probabilities, P(xj|Y = y) and P(xm|Y = y) is linear. Precisely, 

(9) 
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log  
𝑃 𝑥! 𝑌 = 𝑦
𝑃 𝑥! 𝑌 = 𝑦  ≈ 𝛼! + 𝛽!!𝑦. 

The above formulation allows fitting the logistic regression equations to experimental data, i.e., finding 

values of the parameters, αj and βj that best represent the data. The fitted logistic regression model 

allows assigning cellular responses to typical doses based on condition given by Eq. 8. Formally, the 

fractions vij defined by Eq. 6 are calculated as 

(10) 

𝑣!" =
1
𝑛!

𝕀   ! !!|!!! !! !!|!!! :!!!  

!!

!!!

𝑦!! , 

 where ni is the number of cells measured for the dose xi, yl
i denotes response of the l-th cell, and 

𝕀   ! !!|!!! !! !!|!!! :!!!  (𝑦!!)  is equal 1 if 𝑃 𝑥!|𝑌 = 𝑦 > 𝑃 𝑥!|𝑌 = 𝑦  for any 𝑘 ≠ 𝑗  and 0 

otherwise. 

Computation of the FRC 

Calculation of the SCRC can be conveniently performed using the typical fractions, as defined above, 

rather than through integration of Eq. 4. Precisely, to calculate the FRC for the dose, xi, consider doses 

x1,...,xi in isolation from higher doses. Then, the sum of typical fractions v11,...,vii is equivalent to FRC 

for the dose xi 

(11) 

𝑟(𝑥!) = 𝑣!!

!

!!!

. 

 
The equivalency of the above equation and Eq. 4 is explained in the SM. 

Mass cytometry (CyTOF) 

PBMCs were isolated from the peripheral blood of healthy adult donors using Lymphoprep (Stemcell 

Technologies), according to the manufacturer’s instructions. Cells were washed in serum-free RPMI 

then resuspended at 107 cells/mL in serum-free RPMI containing 0.5 mM Cell-ID Cisplatin (Fluidigm) 

and incubated at 37°C for 5 min. Cells were washed with RPMI containing 10% (v/v) FCS (Sigma) 

and 2 mM L-Glutamine (R10), centrifuging at 300 x g for 5 min before being resuspended to 6 x 107 

cells/mL in R10 and rested at 37◦C for 15 min. 50 mL of cells (3 x 106 cells) were transferred to 15 mL 

falcon tubes for stimulation and antibody staining. Antibodies are listed in Supplementary Table 1. 
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Staining for CD14, CCR6, CD56, CD45RO, CD27, CCR7, CCR4 and CXCR3 was done before 

stimulation/fixation for 30 min in R10 at 37◦C. Cells were stimulated with 0, 25, 250, 2500 or 25000 

U/mL recombinant human IFN-α2a (PBL Assay Science, #11100-1) diluted in R10 for 15 min at 37◦C. 

After washing with 5 mL cold Maxpar PBS (Fluidigm), cells were fixed with 1 X Maxpar Fix I Buffer 

(Fluidigm) for 10 min at RT before being washed with 1.5 mL Maxpar Cell Staining Buffer (CSB, 

Fluidigm). All centrifugation steps after this point were at 800 x g for 5 min. Cells were barcoded 

using Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm), according to the manufacturer’s instructions, and 

washed twice with CSB before samples were pooled and counted. All further steps were performed on 

the pooled cells. Fc receptors were blocked using Fc Receptor Binding Inhibitor Antibody 

(eBioscience, #14-9161-73) diluted 1:10 in CSB for 10 min at RT. Surface antibody staining mixture 

was added directly to the blocking solution and incubated for 30 min at RT. Cells were washed twice 

with CSB, resuspended in ice-cold methanol and stored at -80◦C overnight. After washing twice with 

CSB, cells were stained with intracellular antibody staining mixture for 30 min at RT before two 

further washes in CSB. Cells were resuspended in 1.6% (v/v) formaldehyde (Pierce, #28906) diluted in 

Maxpar PBS and incubated for 10 min at RT. Cells were resuspended in 125 mM Cell-ID Intercalator 

(Fluidigm) diluted in Maxpar Fix and Perm Buffer (Fluidigm) and incubated overnight at 4◦C. 

Compensation beads (OneComp eBeads Compensation Beads, Invitrogen, #01-1111-42) stained with 

1 mL of each antibody were also prepared. The next day, cells and compensation beads were washed 

twice with CSB and twice with Maxpar water (Fluidigm), mixed with a 1:10 volume EQ Four Element 

Calibration Beads (Fluidigm) before acquisition on a Helios Mass Cytometer (Fluidigm) using the HT 

injector. Data were normalized, randomized and concatenated using CyTOF Software v6.7 (Fluidigm). 

Compensation and de-barcoding was performed using the CATALYST package45. Single, live, CD45+ 

cells were gated using Cytobank (Cytobank, Inc.) 

U937 cells 

U937 cells (CRL-1593.2, ATCC), a human monocyte cell line, were cultured under standard 

conditions at 37°C in a humidified atmosphere of 5% CO2/95% air in low glucose Roswell Park 

Memorial Institute 1640 (RPMI 1640, Corning, #10-040-CV) medium supplemented with 10% fetal 

bovine serum (FBS, ThermoFisher, #10500064) and 1% penicillin-streptomycin solution (P/S, 

ThermoFisher, #15140122). For macrophage differentiation U937 cells were suspended in medium 

with 20 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma Aldrich, #P1585) and plated in 96-well 

microplates with µClear®flat bottom (Greiner, #655090) in density 2x104 cells per well. After 24 h 
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medium with PMA was removed and fresh medium was added to cells. 72 h after seeding on 96-well 

microplates differentiated cells were incubated with recombinant human interferon gamma (IFN-γ, 

ThermoFisher, #PHC4031) at concentrations 0-10 ng/mL or recombinant human interleukin 10 (IL-10, 

PeproTech, #200-10) at concentrations 0-1000 ng/mL for 30 min. Afterwards, cells were fixed with 

3.7% paraformaldehyde (PFA, Sigma Aldrich, #P6148) for 10 min in room temperature, RT, then 

permeabilized with 90% ice-cold methanol (Sigma, #322415), for 30 min in -20°C, blocked with 5% 

bovine serum albumin (BSA, Merck, #821006) and 0.3% Triton X-100 (Sigma Aldrich, #T9284) for 1 

h in RT, and incubated with primary antibody - phospho-STAT1 (Tyr701) (pSTAT1, Cell Signaling, 

#9167) diluted 1:100 or phospho-STAT3 (Tyr705) (pSTAT3, Cell Signaling, #4113) diluted 1:200 in 

1% BSA with 0.3% Triton X-100 for 18 h in 4°C. Next day, cells were incubated with an appropriate 

secondary antibody - Alexa Fluor 488 (Life Technologies, #A-21206) or Alexa Fluor 555 (Life 

Technologies, #A-31570) diluted 1:500 in 1% BSA with 0.3% Triton X-100 for 1.5 h in RT and 

stained with 2 µg/mL 4’,6-diamidino-2-phenylindole (DAPI, Sigma Aldrich, #D9542) for 10 min in 

RT. The fluorescence signal was imaged and quantified using automated confocal microscope 

(Pathway 435, BD) and analyzed with CellProfiler and ImageJ. 

Murine immortalized fibroblasts 

Murine embryonic fibroblasts cell line, NIH/3T3 (CRL-1658, ATCC), expressing fluorescent fusion 

proteins relA-dsRed as wells H2B-GFP for nuclei identification were cultured in incubator under 

standard conditions at 37°C in a humidified atmosphere of 5% CO2/95% air. The cell line was kindly 

provided by prof. S. Tay and was previously used in several studies, including4,24. The cells were 

cultured in high glucose Dulbecco’s Modified Eagle’s Medium without phenol red (DMEM, 

ThermoFisher, #21063029) supplemented with 10% fetal bovine serum (FBS, ThermoFisher, 

#10500064) and 1% penicillin-streptomycin solution (P/S, ThermoFisher, 15140122). Approximately 

1.3 x 105 cells were plated on 35-mm confocal dish for imaging. After 48 h in the incubator, cells were 

transferred to environmental chamber in a microscope. At time 0 medium was removed from cells and 

recombinant mouse tumor necrosis factor alpha (TNF-α, Sigma-Aldrich, #T7539) was added at 

concentrations 0-100 ng/mL as 5-minute pulse. Live imaging was performed using a confocal 

microscope, Leica TCS SP5 X. During single experiment images have been captured every 3 minutes 

over 1 hour in two channels simultaneously at 9 different positions on the plate. Experiment has been 

repeated at least four times to test reproducibility and to allow for a sufficient number of observations. 

Nuclear and cytoplasmic fluorescence (pixel mean) was then quantified from microscopic images. The 
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response of each cell was then represented as the ratio of nuclear to cytoplasmic fluorescence in order 

to ensure robustness of measurements to changes in confocal plane over time. The data set is described 

in detail in24, where it was initially published. 
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Supplementary Materials Legends 
S1 Text. Supplementary information text contains expanded description of theoretical methods. 
S1 Figure. Time-course of responses to INF-α2a in PBMCs, corresponds to Fig. 1. 
S2 Figure. Dose-responses to IFN-α2a in PBMCs presented as t-SNE plots, corresponds to Fig. 1B. 
S3 Figure. Dose-responses to IFN-α2a in PBMCs shown as distributions of pSTATs, corresponds to 
Fig. 1D. 
S4 Figure. FRCs counts the number of distinct response distributions, corresponds to Fig. 2. 
S5 Figure. FRA of IFN-α2a responses plotted for individual STAT proteins, corresponds to Fig. 3. 
S6 Figure. IFN-γ, IL-10 response distributions, corresponds to Fig. 4A,B. 
S7 Figure. Temporally resolved responses to TNF-α, corresponds to Fig. 4C. 
S8 Figure. Pie-charts of the cell-to-cell heterogeneity structure used to plot color bands in Fig. 4D-F. 
S1 Table. Antibodies used for mass cytometry experiments. 
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Supplementary text (S1 Text) 
Interpretation in terms of information-theory 
The FRA is inspired by the mathematical theory of information, specifically the concepts of Rényi 

min-information46–49. Broadly speaking, one of the concerns of information theory is to quantify how 

much information about an input variable X is contained in an output variable Y. Typically, the input 

variable denotes signals (messages) that need to be decoded from the output variable50–52. To explain 

how the FRA relates to information theory, assume that doses, x1,...,xi, represent signals that need to be 

decoded from the cellular responses, y, by an external observer. If response distributions to each dose 

were completely distinct, each of the i doses could be decoded by the observer without error, as 

responses to each dose correspond to a different range. On the other hand, if distributions 

corresponding to different doses exhibited some overlap, a decoding strategy would be needed to 

translate a response back to the dose. It is well established in statistics, the best decoding strategy is the 

intuitive one: assign the signaling response to the dose for which it is most frequent50. Then, among 

cells stimulated with the dose xk, the faction that could be decoded correctly is the fraction that exhibits 

responses most frequent for xk, which in the paper is referred to as typical and quantified as vkk. It is 

shown in Fig. 2J for the three doses example. FRC, r(xi), as shown in Eq. 11 can be written as the sum 

of fractions of cells that can be decoded correctly  

(12) 

𝑟(𝑥!) = 𝑣!!

!

!!!

. 

 
The fact that r(xi) is the sum of fractions that can be decoded correctly implies that !

!
𝑟(𝑥!) is the 

probability that an observer would guess correctly the dose of a randomly selected cell among cells 

stimulated with any of the i doses. Therefore, the product of the of number of doses, i, and the 

probability of correct decoding !
!
𝑟(𝑥!), which equals r(xi), can be interpreted as the number of 

different doses that can be decoded correctly on average. 

The above intuitive reasoning, which provided the interpretation of r(xi) in terms of the number of 

different doses that can be decoded correctly on average by the observer, is formalized within 

information-theory by the Rényi min-information. Rényi min-information, similarly to Shannon’s 

information, allows to quantify how much information about a variable X is transferred to a variable Y, 
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Precisely, for a set of input signals x1,...,xi and output responses distributed as P(Y|xi) the information 

transferred from X to Y is quantified by Rényi min-information capacity, 𝐶min∗ , defined as46,48,49 

(13) 

𝐶min∗ = log! max
!!!!!

𝑃 𝑦 𝑥! 𝑑𝑦
 

𝒴
. 

 
𝐶min∗

 is expressed in bits of Rényi min-entropy46,48,49,51 and can be interpreted as the log2 of the number 

of different messages that can be transferred from X to Y in the sense of Rényi min-entropy. 

We have, therefore, that 

(14) 
𝐶min∗ = log!(𝑟 𝑥! )  
 
or equivalently 

(15)  
𝑟 𝑥! = 2!min∗  . 
 

Equivalency of Eq. 4 and Eq. 12 
Formally, the fraction of cells stimulated with the dose k that can be decoded correctly is the fraction 

of the probability density, P(y|xk), with highest values among all doses x1,...,xi, 

 

𝑣!! = 𝑃 𝑦 𝑥! 𝑑𝑦
 

𝒴!
. 

 
where 𝒴!  is the set of responses y typical for the dose k 

(14) 
𝒴! = {𝑦:𝑃(𝑦|𝑥!)  >  𝑃 𝑦 𝑥!  for 𝑙 ≠ 𝑘 from 1 to 𝑖 }. 

 

Therefore, the sum of fractions of cells that can be decoded correctly among doses x1,...,xi, gives the 

value of the FRC  

(15) 

𝑟(𝑥!) = max
!!!!!

𝑃 𝑦 𝑥! 𝑑𝑦
 

𝒴
= 𝑃 𝑦 𝑥! 𝑑𝑦

 

𝒴!

!

!!!

= 𝑣!!

!

!!!

, 

 
which demonstrates that definitions of FRC given by Eq. 4 and Eq. 12 are equivalent. 
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Supplementary Figures
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Supplementary Figure 1. Time-course of responses to IFN-α2a in PBMCs. Population mean response (y-axis) of each
cell type (columns) is shown in terms of whole cell levels of different pSTATs (rows), as measured with mass cytometry for
different time points (x-axis) after stimulation with the indicted dose (color).
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Supplementary Figure 2. Dose-responses to IFN-α2a in PBMCs presented as t-SNE plots. Figure corresponds to Fig.
1B, where responses to selected doses are presented. Here all doses are shown.
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Supplementary Figure 3. Dose-responses to IFN-α2a in PBMCs shown as distributions of pSTATs. Figure
corresponds to Fig. 1D, where distributions of pSTAT1 and pSTAT5 are presented. Here all pSTATs are shown.
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Supplementary Figure 4. FRC counts the number of distinct response distributions. Figure corresponds to Fig. 2.
(A) Distributions of responses in three hypothetical scenarios. Scenario I: completely overlapping responses; Scenario II: the
same as in Fig. 2, i.e., partly overlapping responses; Scenario III: completely distinct responses.
(B) Distributions of responses in three hypothetical scenarios. Scenario I: completely overlapping responses; Scenario II: the
same as in Fig. 2, i.e., partly overlapping responses; Scenario III: completely distinct responses.
(C) Pie-charts representing cell-to-cell heterogeneity structure in the three scenarios (columns).
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Supplementary Figure 5. FRA of IFN-α2a responses for individual STAT proteins. Figure corresponds to Fig. 3A,
where FRA were performed assuming that all pSTATs jointly constitute cell’s response. Here, each panel presents FRA for an
individual pSTAT (rows) for different cell types (columns). Data used to plot each panel is shown in the corresponding panel of
Supplementary Figure 3.
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Supplementary Figure 6. IFN-γ , IL-10 response distributions. Figure corresponds to Fig. 4A,B.
(A) Response distributions to IFN-γ as in Fig. 4A were response distributions to selected doses are shown.Here all doses are
shown.
(B) Same as in (A) but for IL-10, corresponds to Fig. 4B.
(C) Distributions of responses for different times after stimulation with 10 ng/mL of IFN-γ .
(D) Distributions of responses for different times after stimulation with 100 ng/mL of IL-10.
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Supplementary Figure 7. Temporally resolved responses to TNF-α .
Figure corresponds to Fig. 4C, where responses to selected doses are presented. Here all doses are shown.
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Supplementary Figure 8. Pie-charts of the cell-to-cell heterogeneity structure used to plot color bands in Fig. 4D-F.
(A) Cell-to-cell heterogeneity structure of IFN-γ responses, corresponds to Fig. 4D.
(B) Cell-to-cell heterogeneity structure of IL-10 responses, corresponds to Fig. 4E.
(C) Cell-to-cell heterogeneity structure of NF-κB responses, corresponds to Fig. 4F.
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Supplementary Table

Target Clone Metal	label Company	 Catalogue	number Location
CD14 TUK4 Qdot655 Thermo	Fisher Q10056 surface	(pre-fixation)
CD45 HI30 89Y Fluidigm 3089003B surface
CD11c Bu15 141Pr Biolegend 337221 surface
CD11b ICRF44 142Nd Biolegend 301337 surface
CD45RA HI100 143Nd Biolegend 304143 surface
HLA-DR L243 144Nd Biolegend 307651 surface
CD4 RPA-T4 145Nd Biolegend 300541 surface
CD19 HIB19 146Nd Biolegend 302247 surface
CD20 2H7 147Sm Biolegend 302343 surface
CCR6 G034E3 148Nd Biolegend 353427 surface	(pre-fixation)
CD56 NCAM16.2 149Sm Fluidigm 3149021B surface	(pre-fixation)

p-STAT5 47 150Nd Fluidigm 3150005A intracellular
CD45RO UCHL1 151Eu Biolegend 304239 surface	(pre-fixation)
CD27 O323 152Sm Biolegend 302839 surface	(pre-fixation)

p-STAT1 4a 153Eu Fluidigm 3153005A intracellular
CD1c L161 154Sm Biolegend 331502 surface
CD123 6H6 155Gd Biolegend 306027 surface
p-p38 D3F9 156Gd Fluidigm 3156002A intracellular
p-STAT3 4/P-Stat3 158Gd Fluidigm 3158005A intracellular

p-MAPKAPK2 27B7 159Tb Fluidigm 3159010A intracellular
CD3 UCHT1 160Gd Biolegend 300443 surface

DNGR1 8F9 161Dy Fluidigm 3161018B surface
IFNAR2 polyclonal 162Dy Abcam ab56070 surface
STAT1 246523 163Dy Bio-Techne MAB1490 intracellular
IFNAR1 EP899Y 164Dy Abcam ab213331 surface
CD161 HP-3G10 165Ho Biolegend 339919 surface

p-NFkBp65 K10x 166Er Fluidigm 3166006A intracellular
CCR7 G043H7 167Er Fluidigm	 3167009A surface	(pre-fixation)

p-STAT6 18/P-Stat6 168Er Fluidigm 3168012A intracellular
CD24 ML5 169Tm Fluidigm 3169004B surface
CD141 M80 170Er Biolegend 344102 surface

p-ERK1/2 D13.14.4E 171Yb Fluidigm 3171010A intracellular
CD38 HIT2 172Yb Fluidigm 3172007B surface
STAT3 124H6 173Yb Fluidigm 3173003A intracellular
p-STAT4 38/p-Stat4 174Yb Fluidigm 3174005A intracellular
CCR4 L291H4 175Lu Fluidigm 3175035A surface	(pre-fixation)
CXCR3 G025H7 176Yb Biolegend 353733 surface	(pre-fixation)
CD8 RPA-T8 198Pt Biolegend 301053 surface
CD16 3G8 209Bi Fluidigm 3209002B surface

Supplementary Table 1. Antibodies used for mass cytometry experiments.
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