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ABSTRACT 
 

Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass 
spectrometry. Main advantages include greater reproducibility, sensitivity and dynamic range 
compared to data-dependent acquisition (DDA). However, data analysis is complex and often 
requires expert knowledge when dealing with large-scale data sets. Here we present 
DIAproteomics a multi-functional, automated high-throughput pipeline implemented in Nextflow 
that allows to easily process proteomics and peptidomics DIA datasets on diverse compute 
infrastructures. Central components are well-established tools such as the OpenSwathWorkflow 
for DIA spectral library search and PyProphet for false discovery rate assessment. In addition, it 
provides options to generate spectral libraries from existing DDA data and carry out retention time 
and chromatogram alignment. The output includes annotated tables and diagnostic visualizations 
from statistical post-processing and computation of fold-changes across pairwise conditions, 
predefined in an experimental design. DIAproteomics is open-source software and available under 
a permissive license to the scientific community at https://www.openms.de/diaproteomics/. 
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INTRODUCTION 
 

Recently, data-independent acquisition (DIA) using sequential windowed acquisition of all 
theoretical fragment ion mass spectra (SWATH-MS)1 has attracted much attention in the field of 
proteomics due to its ability to overcome shortcomings of the classical data-dependent (DDA) 
strategy.2–6 Because of its outstanding performance in reproducibility and quantification, DIA is 
likely to become the state-of-the-art technology in clinical mass spectrometry (MS).7 In addition, 
recent tailored applications of DIA have enabled new approaches for the chemoproteomic 
screening of drug targets.8 The main advantages are its capacity to (1) acquire fragment spectra in 
a reproducible grid-based fashion over the entire mass and retention time range, (2) sample 
fragment spectra for nearly all precursor ions present in a sample, and (3) enable to trace elution 
profiles of fragments and integrate their quantities at a greater dynamic range.9 Yet, this comes at 
the cost of increased complexity of the acquired mass spectra, due to simultaneous fragmentation 
of multiple precursor ions, which requires appropriate methods for spectra identification.10 
Nonetheless, DIA has the promising potential to achieve a greater identification rate and 
quantification range, higher reproducibility, and fewer missing values than DDA. 

A key step to process DIA data is the generation of high-quality spectral libraries to identify the 
complex DIA spectra with higher sensitivity.11 These spectral libraries can be derived from 
previously acquired DDA measurements by selectively annotating and storing peak intensities and 
other properties from confident peptide spectrum matches across multiple samples. Public 
repositories such as PRIDE12, the PeptideAtlas Project13, the SWATHAtlas14 or the 
SysteMHCAtlas15 provide collections of aggregated spectral libraries from large DDA datasets 
such as the human proteome or spectral libraries of other species or specific contexts.16 
Alternatively, recently developed in silico methods that utilize advanced machine learning 
strategies to predict peptide fragment intensities can be applied.17–20 However, the library should 
match the settings of instrument and acquisition method to which the respective DIA experiment 
will be compared to, as different instruments, ionization methods, and corresponding parameters 
such as collision energies produce vastly different fragment spectra patterns. Finally, as an 
additional alternative, library free approaches for the deconvolution of DIA data have been 
proposed to overcome the limitations and dependencies of spectral libraries.10 
 
With increasing amounts of MS measurements recorded in both DDA and DIA acquisition mode 
deposited in publicly available data repositories12, there is a need for automated high-throughput 
data analysis pipelines. As the parametrization of DIA search algorithms and the choice of a 
spectral library can strongly influence the analysis results, flexible and scalable software solutions 
for high-performance computing systems are required to provide ways to efficiently reprocess and 
compare analysis results using large amounts of existing data. This includes the automated 
generation of spectral libraries from available DDA measurements and the alignment of their 
transition retention times into the same space. Previously, multiple different software solutions 
have been applied to process large-scale DIA data21–24, however, their application often requires 
expert-knowledge and a combination of several post-processing procedures or manual interaction 
at various analysis steps. 
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We address this gap in available software solutions by introducing DIAproteomics, a versatile, 
high-throughput analysis pipeline for DIA proteomics and peptidomics MS measurements. It 
achieves a high degree of automation and scalability from single users to large high-performance 
computing (HPC) environments, by integrating well-established tools such as the 
OpenSwathWorkflow22 for DIA library search, provided through the OpenMS software toolbox 
for computational mass spectrometry25,26. The false discovery rate (FDR) is estimated by the 
PyProphet algorithm27, followed by chromatogram alignment as a post-processing step using the 
DIAlignR software28. Moreover, it provides the option to use it either by specifying a particular 
existing spectral library and retention time standards or by generating the spectral library and 
selecting suitable pseudo-iRTs from existing DDA measurements and search results. Ultimately, 
statistical post-processing provided through MSstats29 ensures reliable analysis results. 
 
DIAproteomics is containerized and implemented using the workflow language Nextflow30, 
leveraging the capabilities of the powerful Nextflow execution engine to seamlessly run on single 
desktop computers and scale up to large-scale HPC or cloud environments. As part of the nf-core 
repository for reproducible bioinformatics workflows31 it adheres to the corresponding strict 
standards. Ultimately, a browser-based user interface accompanies the workflow and allows easy-
to-use parametrization and execution. 
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.415844doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415844
http://creativecommons.org/licenses/by/4.0/


METHODS 
 

Pipeline architecture 

DIAproteomics is an automated analysis pipeline that can be broadly partitioned into the following 
parts: Optional spectral library and iRT generation from provided DDA data, optional spectral 
library merging and RT alignment, DIA library search, false discovery rate (FDR) estimation, MS2 
chromatogram alignment across runs, and output summarization (Figure 1). Each of these parts 
involves one or more required or optional steps within the workflow (Supplementary Information 
Table S1 and Figure S1). An experimental design needs to be provided in the form of an input 
sample sheet specifying DDA and DIA samples, libraries or iRT standards that should be co-
processed in one batch. 

Spectral library generation: In a first, optional step provided DDA raw MS measurements 
(Thermo Raw vendor format) are converted to the open, XML-based mzML format32. Next, the 
library is generated using EasyPQP (available at https://github.com/grosenberger/easypqp) which 
matches the provided search results (for example in pepXML format) and the corresponding DDA 
raw measurements to annotate and store peptide transitions and their properties in a tab-separated 
table33. The library is transformed into an assay containing a specified number of transitions of b- 
and y-ions falling into a custom mass-to-charge range. Subsequently, decoy transitions that can be 
generated by OpenMS in multiple ways such as reversed or shuffled are added to the library. 
Finally, the generated library will be exported in the peptide query parameter (pqp) sqlite-based 
data format. Optionally, all steps of the library and decoy generation can be skipped, and an 
existing library can be used instead. 

Pseudo iRT generation: If specified, a given number of highly confident peptide identifications 
spanning the entire RT range will be selected and exported to serve as iRT standards in the DIA 
library search step. This is important, for example, if no iRT standard kit was spiked into the 
samples before the DIA measurements. Selected iRTs will be exported in the peptide query 
parameter (pqp) sqlite-based data format. However, if provided, a set of user-defined iRTs can be 
used instead. 

Spectral library merging: If multiple libraries per sample are provided, for example when 
stemming from a set of technical replicates, the libraries can be optionally merged and will then 
undergo a linear RT alignment onto the same reference. When merging is enabled, the best scoring 
peptide identification is kept in the library omitting a lower scoring duplicate. 
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Figure 1: Simplified scheme of the DIAproteomics workflow. The input to the pipeline can be either spectral libraries 
and iRTs generated and combined from DDA raw data (optional, in gray) or otherwise an existing spectral library 
and internal retention time standards (iRTs). Next, targeted extraction is performed by searching the DIA-SWATH 
MS raw files with the spectral library using the OpenSwathWorkflow. The false discovery rate (FDR) is assessed 
applying PyProphet subsequently. Next, chromatograms are aligned using the DIAlignR software. Finally, the output 
is statistically post-processed with MSstats and visualized. 
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Spectral library RT alignment: When RT alignment is enabled, the multiple input spectral libraries 
will be pairwise aligned onto the same reference. This is achieved by computing a minimum 
spanning tree connecting all provided libraries by shared peptide overlap. (Supplementary 
Information Figure S3) Hence the library having the highest overlap in shared peptides with all 
other libraries will be the central reference for the other libraries. Importantly, this strategy is also 
applicable when aligning very distant libraries onto the same reference that share no consensus 
peptide identifications among all libraries.34 However, it requires peptides to be shared between 
all pairs of libraries, resulting in a connected tree. 

DIA spectral library search: In a first, optional step provided DIA raw MS measurements (Thermo 
RAW vendor format) may be converted to the mzML XML-based format. Next, DIA library 
search is carried out using the OpenSwathWorkflow, implemented within the OpenMS toolbox. 
The spectral library and iRT standards are used to search all input DIA raw measurements 
individually with a customizable parametrization. The swath windows can be determined from the 
data. Finally, extracted ion chromatograms (XICs) of the searched peptide transitions (mzML) are 
exported and the output features and transition properties are stored in OpenSwathWorkflow files 
(osw).  

False discovery rate estimation: The OpenSwathWorkflow output files (osw) are merged sample-
wise as defined in the experimental design (sample sheet). The merged file is then scored using 
the PyProphet target-decoy FDR estimation procedure. Finally, the level of confidence such as 
local transition- or global peptide or protein level-based can be defined.27 The PyProphet scoring 
results will then be exported as a tab-separated table per DIA MS run and the results will be 
visualized in a pdf report. 

MS2 chromatogram alignment: As the last processing step, the extracted and scored MS2 
chromatograms will be aligned using the DIAlignR software. This involves matching 
chromatograms between runs that can be aligned and integrating their transition areas. The sum of 
the integrated areas per peptide will be reported as peptide quantities in a TSV file. For this 
procedure, DIAlignR provides several FDR estimates that can be customized within the workflow 
to define cut-offs for transitions that should be excluded from matching between runs.28,35 

Output summarization: The output is summarized in a pairwise manner on peptide or protein level 
using the MSstats post-processing software29. In addition, it is possible to export a number of 
diagnostic plots illustrating peptide and protein identification results, their quantities and 
properties. 

 

Implementation 

The DIAproteomics pipeline is implemented in the Nextflow workflow programming language30, 
based on the nf-core community template for reproducible bioinformatics workflows31. Support 
for multiple functionalities is provided such as for various container systems (e.g., docker, 
singularity, podman), environment management platforms (e.g. Conda), the user interface and 
support for the execution on high-performance computing systems such as google cloud or amazon 
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web services. Each step of the workflow is executed as an independent process allowing efficient, 
parallel processing of large amounts of data. 

Most of the inner functions and the file format handling is provided through the OpenMS v.2.5.0 
toolbox for computational mass spectrometry26. Specifically, this includes the handling of spectral 
libraries, assay and decoy generation and the implementation of the OpenSwathWorkflow22. 
Spectral library generation from DDA data is carried out by EasyPQP v.0.1.7. A customized 
python v.3 script is executed to merge multiple libraries and compute the minimum spanning tree 
for RT alignment using the module NetworkX v.2.436. False discovery rate estimation on merged 
OpenSwathWorkflow22 output files is achieved using functionalities of PyProphet v.2.1.427, MS2 
chromatogram alignment and integration of peptide quantities is achieved using the 
‘alignTargetedRuns’ function of the DIAlignR software 1.2.028. The ‘groupComparison’ function 
using ‘highQuality’ feature subsets within MSstats v. 3.20.129 is carried out to compute protein 
level statistics and pairwise comparisons of protein fold-changes and significance across 
conditions. Finally, output visualizations are created using the R software libraries gplots and 
ggplot2. 

 

Parametrization 

The DIAproteomics workflow is highly flexible and each execution step provides various 
parameters that can be customized for specific instrumental and experimental settings. An 
overview over available parameters and a short description is provided at https://nf-
co.re/diaproteomics. The default parametrization has been benchmarked multiple times in the 
past23,37. It involves spectral library assay generation with the six most intense b- and y-ion 
transitions falling into the precursor mass range of 400 to 1200 m/z and a fragment mass range of 
350 to 2000 m/z. The default setting for decoy transition generation is shuffling. The extraction of 
MS1 precursor and MS2 fragment transitions is carried out using a mass extraction window of 10 
and 30 ppm respectively and an RT extraction window of 600 seconds for the targeted extraction 
of the OpenSwathWorkflow. The false discovery rate estimation is performed on global protein 
level involving an LDA based target-decoy separation. The MS2 chromatogram alignment 
requires transitions to satisfy several FDR thresholds. For global alignment, high quality peaks are 
selected with globalAlignmentFdr (set to 0.01) cutoff. A peak will only be matched across runs if 
at least one run has estimated FDR is below of 0.01 (UnalignedFDR). It will then be compared to 
matching peaks in other runs below a higher maximum FDR threshold of 0.05 (MaxQueryFDR).  
This is an advantage over common strategies used in DDA to allow matching between runs, since 
no FDR cut-off can be set for these approaches. 

 

Reanalysis of publicly available data sets 
 
A concise benchmark on the publicly available multi-center benchmark study data set by Navarro 
et al23 (PRIDE PXD002952) was carried out using a Human, E. coli and Yeast mixture HYE124. 
The TripleToF 6600 and 64 variable swath window instrument setting was chosen applying the 
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default parametrization of DIAproteomic v1.1.0, adjusting the precursor and fragment mass 
tolerances to 50 and 30 ppm respectively. SCIEX wiff files were converted to mzML using the 
proteowizard msconvert software. Converted mzML files were further centroided on both MS 
levels using the OpenMS tool PeakPickerHiRes v.2.5.0. 
 
Ultimately, to ensure the capability of the DIAproteomics pipeline v1.1.0 to process publicly 
available proteomics data sets, several HeLa cell line Thermo orbitrap high resolution MS runs 
from the PRIDE project PXD00317938 were reanalyzed using the default settings. The procedure 
was automated and integrated as a continuous integration full size test on Amazon web services 
(AWS) that can be actively run to verify the pipeline’s functionality. 
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RESULTS AND DISCUSSION 
 
 
DIAproteomics facilitates the analysis of large-scale DIA-SWATH MS measurements 
 
DIAproteomics is a versatile analysis pipeline for processing of large-scale proteomics and 
peptidomics DIA-SWATH mass spectrometry runs. As its implementation is based on the nf-core 
template for reproducible bioinformatics workflows, DIAproteomics provides a web-based 
browser interface that can be customized. It allows to get an overview and adjust the available 
parameters grouped into several categories and documenting their functions in short to longer 
expandable descriptions. Several sample sheets that annotate batch identifiers and conditions to 
each sample as defined by the experimental design serve as input to the pipeline. (Figure 2) 
 
Whenever possible each step of the pipeline is executed and submitted individually for processing 
by the computing infrastructure. In this way, the processing of multiple large batches of files can 
be efficiently parallelized. On the other hand, if steps allow to combine multiple files, the workflow 
groups the files according to the experimental design and co-processes them. This occurs for 
instance when merging and aligning multiple spectral libraries or when carrying out a global FDR 
estimation on merged DIA search results. 
 

 
Figure 2: Input / output options as available through the nf-core provided user-interface. Spreadsheets serve as input 
to the pipeline defining the experimental design of raw files, spectral libraries and their corresponding conditions and 
batch identifiers (BatchID). Upon submission of the job MS runs are grouped by their BatchID and coprocessed. 
 
Depending on how the parameters were set within the major categories, the input and output files 
may vary. Most importantly, it can be defined whether one or multiple existing spectral libraries 
should be used or whether the spectral libraries should be generated from matching DDA raw files 
and peptide identification results. (Figure 3) Yet, many more settings for each of the parameter 
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categories are available and can be tailored to specific problem settings and MS instrument 
requirements. 
 

 
Figure 3: (Optional) Generation of spectral libraries from DDA raw data as it can be defined through the nf-core 
provided user-interface. A spreadsheet annotates DDA raw files, corresponding peptide identification results and 
their batch identifiers (BatchID). If specified, multiple spectral libraries from several MS runs of the same batch will 
be merged upon submission of the job. 
 
 
Statistical post-processing and diagnostic output visualization 
 
The output of the DIAproteomics pipeline is by default a set of tables as well as illustrations 
summarizing peptide or protein amount and quantities and scoring results. Moreover, important 
intermediate results such as the generated libraries, the output of the DIA spectral library search, 
and XICs are reported. Most importantly, the detailed target-decoy score distribution results and 
their visualizations as exported from PyProphet are deposited in the output directory. The MSstats 
post-processing software is run on the determined peptide or protein quantities. This results in the 
statistically sound estimation of pairwise fold changes and their significance across the conditions 
defined in the experimental design that are as well visualized in comparative plots such as a 
Volcano visualization. In addition, more diagnostic plots can be generated listing the number of 
peptides and proteins identified, their properties such as the charge distribution, RT deviation 
between the spectral library and DIA measurement to assess the performance of the iRT alignment 
(Figure 4). Finally, if specified a heatmap of peptide quantities and missing values across all DIA 
MS runs is exported. 
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Figure 4: Several diagnostic visualizations of the DIAproteomics output can be generated. The results of reprocessing 
of the publicly available dataset PRIDE-PXD003179 are shown here as an example. A) Peptide and protein 
identification counts. B) Volcano plot of differentially regulated proteins (red up, blue down) proteins across 
conditions. C) Deviation of Spectral library and MS run in retention time (RT) over the entire RT range. D) Target 
and decoy d-score distribution as computed by PyProphet to assess the false discovery rate (FDR).  
 
Finally, quantification performance of the DIAproteomics was additionally compared to the results 
of a multi-center benchmark study. 23 As a result we were able to reproduce the log-fold changes 
of the used human, E. coli and yeast mixture at defined ratios. (Supporting Information Figure S2) 
 
 
Run time considerations 
 
The runtime of the DIAproteomics workflow depends on its parametrization. For example, if 
spectral library generation from DDA data is chosen and the number of samples and batches that 
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are analyzed in one submission. We assessed the computational runtime and required resources 
making use of Amazon web services (AWS) cloud infrastructure and the German network for 
bioinformatics infrastructure (de.NBI) cloud HPC node with 28 cores and 64 GB. The analysis of 
six DIA-SWATH MS runs applying a library and pseudo iRTs generated from three DDA MS 
runs was carried out in approximately 2h and 10min using AWS. (Figure 5)  
 

 
Figure 5: Detailed overview on run times and memory usage of all integrated steps of the DIAproteomics pipeline 
when processing the PRIDE dataset PXD003179 on the Amazon webservice cloud infrastructure.  
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chromatogram_indexing (6)

dia_search_output_merging (1)

global_false_discovery_rate_estimation (1)

export_of_scoring_results (1)

chromatogram_alignment (1)

output_visualization (1)

reformatting (1)

statistical_post_processing (1)

Created with Next�ow -- http://next�ow.io
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CONCLUSION 
 
In this work we present DIAproteomics, a flexible computational workflow to automatically 
process large scale DIA-SWATH MS based proteomics and peptidomics studies on diverse 
computational systems. It combines all steps including the optional generation of spectral libraries 
from DDA data and the essential DIA library search, FDR estimation and chromatogram 
alignment. Implementation and sharing the workflow as part of the nf-core initiative for 
reproducible bioinformatics research provides an easy-to-use user interface as well as 
reproducible, well tested analysis. The DIAproteomics pipeline is provided for free to the science 
community, with the purpose to enable easier access, as well as automated and reproducible 
analysis of DIA-SWATH MS based proteome research.  
 
ASSOCIATED CONTENT 
 
The workflow is freely available under an open-source license as Nextflow implementation in 
the nf-core bioinformatics workflow repository: https://www.openms.de/diaproteomics/. 
Moreover, a detailed documentation regarding parameters and pipeline output can be found at: 
https://nf-co.re/diaproteomics 
 
Supporting Information Available: 
 
Supporting Material Table S1. Details on all steps in the Nextflow workflow implementation 
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libraries 
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