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1 Abstract

Unsupervised clustering to identify distinct cell types is a crucial step in the analysis of scRNA-seq
data. Current clustering methods are dependent on a number of parameters whose effect on the
resulting solution’s accuracy and reproducibility are poorly understood. The adjustment of clus-
tering parameters is therefore ad-hoc, with most users deviating minimally from default settings.
constclust is a novel meta-clustering method based on the idea that if the data contains distinct
populations which a clustering method can identify, meaningful clusters should be robust to small
changes in the parameters used to derive them. By reconciling solutions from a clustering method
over multiple parameters, we can identify locally robust clusters of cells and their corresponding
regions of parameter space. Rather than assigning cells to a single partition of the data set, this
approach allows for discovery of discrete groups of cells which can correspond to the multiple levels
of cellular identity. Additionally constclust requires significantly fewer computational resources
than current consensus clustering methods for scRNA-seq data. We demonstrate the utility, accu-
racy, and performance of constclust as part of the analysis workflow. constclust is available at
https://github.com/ivirshup/constclust1.

2 Introduction

Single cell RNA sequencing (scRNA-seq) provides a snapshot of one of the fundamental units of
biology: the cell itself. The molecular scale of scRNA-seq promises to unlock new dimensions to
the developmental or anatomical cell catalogue - that of cell type specificity within a tissue. This
improved resolution of cellular states may encompass the identification of new discrete cell types,
or alternatively illustrate a spectrum of phenotypes spanning cellular responses to environmental,
circadian or other molecular cues. One of the things that we aim to do with this new view is
enumerate and catalogue all of the of cells found within an organism.

A catalogue of all cell types and cell states assumes that cells sharing molecular attributes will
also share other attributes, such as lineage or function. This is a reasonable assumption evidenced

1<https://github.com/ivirshup/constclust>
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by decades of cell profiling - from antibody-based methods for classifying cell types, to transcriptome
profiling of cell populations [1]. Traditionally, molecular profiling of groups of cells relies on prior
identification of the classes of cell being introduced into the comparison. In contrast scRNAseq relies
on unsupervised clustering methods to identify discrete cell groups. Unsupervised clustering meth-
ods aim to partition cells on their expression profiles [2]. Further analyses such as the identification
of unique marker genes or expression of pathways, rely on an accurate clustering, and classifica-
tion of cluster members, so it’s critical that this part of the analysis is rigorous and reproducible.
Unfortunately, most clustering methods are neither.

Despite being a popular and important part of many analyses of scRNA-seq data, the best
practice for partitioning of transcriptomes into cell types is far from settled. In fact, despite most
popular clustering methods producing a flat clustering (e.g. where each sample is assigned to one
partition of the data set), there is broad recognition that we’re failing to capture the true structure
of the data. We view cells types as being both continuous and multilevel: we can classify cells
as part of a developmental hierarchy or as their resulting cell state, which may not have complete
correspondence with each other. A well studied example of this is the myeloid lineage, where
monocytes and macrophages can arise from different ontogeny but share functional characteristics
[3]. This ability to find multilevel structure in single cell datasets described as an overarching theme
of a set of grand challenges in the field [4].

While methods that group cells into a single flat partitioning cannot capture multiple levels
of structure within a single solution, there have been a few attempts to address this by varying
the hyper-parameters used (e.g. parameters the user chooses). For example, clustree lets a user
visualize the relationships between clustering solutions as a hyper-parameter varies [5]. Similarly
in the trajectory method PAGA, clusterings from different levels of resolution are used to model
the data set at different levels of granularity [6]. These methods provide ways to interrogate the
multilevel structure of the data through parameter choice. However, the responsibility is still on the
user to assess the quality of the representation.

One of the most popular clustering methods for scRNA-seq is modularity maximization based
community detection on nearest neighbor graph of the measured transcriptomes. This finds clusters
of cells withing the neighbor graph by finding groups of cells which have more edges connecting
them than would be expected under a null model [7]. While a variety of implementations are used
with single cell data the method is often referred to as ”Seurat” clustering in the literature [8] [9].
In comparisons of methods for unsupervised clustering of scRNA-seq data this method is frequently
highly ranked for both speed and accuracy [10] [11]. Despite this, results can be unstable under
small changes in parameter values Fig. 1. An important parameter for this class of method is the
resolution parameter (γ) – varied by both PAGA and clustree. A systematic way to choose the
value of γ has yet to be addressed in the single cell literature, although it has been studied in the
community detection literature.

Community detection is the problem of finding groups of highly connected nodes within a net-
work. One of the most widely used approaches from this field is modularity optimization. Modularity
is a measure of how interconnected each group is when compared to a null model, where connectiv-
ity is randomly distributed. A partitioning of the graph is optimized until a local maximum of the
modularity is found [12]. A noted weakness of this approach is its inability to detect communities
of varying size [13] [14]. This problem, termed the resolution limit, is caused by small communities
being merged and large ones split. This is of consequence to scRNA-seq analysis, as cell types vary
in abundance by orders of magnitude [15].

Multi-resolution measures of modular structure, parameterized by the resolution parameter γ,
were introduced to control the sizes of the partitions identified [7]. While these quality functions
give control of the sizes of the partitions to the analyst, they aren’t able to find large and small
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communities in the same solution [16]. This raises the question of how the parameter is selected,
and what can be learned from the structure at different scales. One approach is through stability
of the solution – where a good parameterization produces consistent partitioning solutions for small
changes in the parameter [17] [18]. By scanning a range of parameters, these methods can find
partitionings of the network at multiple scales, but can only identify global solutions. This precludes
the identification of groups which are only stable when other areas of the graph are not, and can
only be found by individual assessment. We would expect these groups when dealing with complex
community structure, like those found in large single cell or other biological data sets. For example
[19] uses a scan of the resolution parameter to describe modules within protein-protein interaction
networks at different scales. This method looks at how modules of protein change with resolution,
but do not use stability to identify discrete modules. Within the single cell literature, the clustree

tool ([5]) provides visualizations of how cluster identity changes as parameters vary, which can allow
subjective identification of stable groups. By viewing how clustering solutions change along a range
of parameters, stably identified ones can be identified as regions of the tree with few edges.

While these methods demonstrate how varying a single parameter of a clustering method can
be used to examine the structure of a data set, scRNA-seq analysis pipelines frequently have many
parameters. Approaches to find robust clusters under uncertainty of multiple parameters generally
falls under the area of consensus clustering. Consensus based methods have been used for scRNA-seq
by SC3 [20] and RSEC [21]. In each of these methods, a data set is clustered many times and single
partitioning which best fits with each of the solutions is generated. The approaches don’t model
the effects of individual parameters on the resulting clustering, and so don’t allow for identification
of multilevel solutions based on parameter choice. Here, we propose to formalize and extend these
operations by automatically detecting the clusters which are consistently found within contiguous
regions of parameter space.

3 Methods

3.1 Overview

Our underlying assumption is that a true cluster of samples should be robust to parameterization of
the clustering algorithm [22]. Previous techniques, like tight clustering [23], have used this intuition
to iteratively find individual stable clusters, but can only find a single level of structure in the data.
Traag et. al.[18] finds stable global solutions when a single parameters is varied. However, typical
processing of scRNA-seq leading up to unsupervised clustering involves many parameters [24]. In
addition, we expect multiple clusters at different resolutions would reflect the biology better than
a single global solution. constclust implements a novel approach to identifying and prioritizing
clusters to address these issues.

First, the parameter space of the clustering method is explored in a grid-search like strategy, Fig.
2 (a). The parameters being varied must have an ordered relationship or be equivalent to random
restarts. This is necessary so we can have locality in parameter space: we need to be able to say
which settings are close to each other to have any expectation about their effect.

Clusters which are found over a wide range of parameters are likely of high quality. We return
the set of unique (within a similarity cutoff) clusters identified ranked by the size of the parameter
space they were found in. This creates a prioritized list of clusters for the cells, in contrast with the
more common flat partitioning result. We believe this more closely with our concept of cell-types or
communities, since we don’t assume there is a single set of disjoint labels which cover all samples.
Rather, the samples are classified with a set of labels which can be hierarchical or overlapping.
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Figure 1: Varying clustering hyperparameters demonstrates common clustering chal-
lenges. (a) Four different clustering solutions of peripheral blood mononuclear cells (PBMCs)
generated near default settings using the ‘leiden‘ algorithm as used by Scanpy. Clockwise from top
left, parameters are: 15 neighbors – resolution of 1, 30 neighbors – resolution of 1, 30 neighbors –
resolution of 1.2, and 15 neighbors – resolution of 1.2. (b) highlights a subset of the data set with
highly variable cluster membership.
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Figure 2: An overview of the constclust method. (a) Preprocessed data (the feature space
which clustering will performed on) is partitioned across a range of parameters, (b) using a grid-
search like sampling strategy. (c) A similarity graph of the identified clusters is then built, where
edges are the Jaccard index of clusters from neighboring partitionings. Low weight edges are pruned
from the graph and the remaining connected components are collected. These components corre-
spond to a consistently found cluster. (d) As each node within the component is a cluster found
from a run of the clustering method, the parameter region it was identified in can be derived.
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Additionally there is no promise every (or any) individual sample is assigned to a stable solution,
as can be expected in data with continuous states.

3.2 Implementation

3.2.1 Generating clusters

The input of constclust comprises of the data set (expression matrix) and a clustering method.
It then performs clustering on the data set across a range of hyperparameters in a grid-search like
strategy. Each clustering solution specifies an assignment of each sample to a cluster. While any
clustering method and set of parameters could be used, constclust comes with a convenience method
for efficiently generating modularity based clustering based on the typical scanpy workflow [8].
Modularity based clustering was chosen due to it’s performance within the field [11], that there is
pre-existing literature for connected approaches, and since it is quick to run.

In the default implementation, the weighted graph of nearest neighbors is computed using UMAP
[25] on the top 50 components of a PCA of the data set. This graph is then partitioned using the
Leiden optimization algorithm [26] using Reichardt and Bornholdt’s Potts model [27] as the quality
function. The parameters varied are the number of neighbors used to construct the graph and the
resolution metric for the quality function. We consider these to be ordered parameters, since we
can say 45 neighbors is closer to 30 neighbors than 60 neighbors is. Because of this we have can
have steps in these sets of parameters. For example, given the resolutions [0.5, 0.6, 0.7], the
resolution 0.6 is one step from 0.5 and 0.7, while 0.5 is two steps from 0.7. Partitions separated
by one step in the ordered parameter grid are called ’neighbors’ in parameter space.

For robustness of results, the data set is clustered multiple times with each of these ordered
parameters using different random seeds to initialize neighbor finding. Random seeds are considered
an unordered parameter, as we don’t expect solutions from setting a seed to 5 to be any more
similar to those generated with seed 3 than those generated with seed 1. This reflects a noise-based
approach to resampling the partitionings, as opposed to a bootstrap approach (as used by [21] [28]).

3.2.2 Comparing clusters

Cluster-wise comparisons are made between neighboring partitionings. An undirected weighted
graph is built from these comparisons, G(n, e) where nodes n are individual clusters and edges e
is weighted by Jaccard similarity of the clusters. Two clusters which contain identical groups of
samples will be connected by an edge of weight one, while clusters with no overlap will have an edge
of weight zero (equivalent to no edge) [29].

3.2.3 Resolving stable clusters (ranked list)

The edge weight distribution of the resulting graph is bimodal (supplementary), with a large number
of high weight edges and near zero edges. This suggests a consistent core set of clusters. To find
those, allowing for some fluctuation in identity, we remove low weight edges using a user specified
cutoff and identify the remaining connected components of the graph. From the components of this
graph we can find the range of parameterizations for which any one consistently found cluster could
be identified, and how the samples within it change.

Each of the components represents a set of cells which were consistently clustered together over
a contiguous region of parameter space. While selecting components to use in downstream analysis
is now up to the user, constclust provides tools for identifying components to use in downstream
analysis. For visualization, a view of where the samples sit in a reduced dimension plot, and the
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region of parameter space can be visualized (Fig. 2 (d)). As cells can exist in multiple components,
hierarchies of components which share samples can be inferred. This structure is presented to the
user as a tree where each component is a node, and any larger component it’s cells also are found in
is that node parent. Users can visualize the component and see some summary statistics via hover
over on these plots (Fig. 5).

3.3 Data processing

3.3.1 Simulated data

Simulated data sets were generated using splatter [30] with default parameters. For the clusters
of equal sizes, the data set consisted of 5000 samples with four true clusters of equal size. When
varying cluster sizes 10,000 samples were generated, with four true clusters with group probabilities
of: .9, .09, .009 and .001.

3.3.2 PBMC dataset 10x

Aligned PBMC expression data was retrieved from 10x genomics https://support.10xgenomics.
com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3, initially consisting of 11,679
cells annotated to 33,538 genes. This data set has been preprocessed and filtered for doublets (9,936
cells left after preprocessing) before having the constclust workflow run with it. For this data set
1800 separate clusterings were generated and resolved into components which showed up in at least
a hundred solutions.

3.3.3 Resampling

To assess the robustness of components identified with constclust the data set was subsampled and
the results compared with the full run.

Sample frequency vectors were calculated by counting (for all cells) how many times each showed
up in a component across all of it’s clusterings. These were normalized by total number of clusterings
in a component – so a cell which showed up in every clustering would have value 1, and a cell which
showed up in no clusterings would have value 0. To find the nearest solution in one of the resampled
data sets, each cell weighting vector was subset to have only the cells present in each data set, and
pairwise cosine distances between the components of each data set calculated.

3.4 Metrics

3.4.1 Geary’s C

Geary’s C is a method for determining local auto-correlation in networks [31]. This metric measures,
for some value on each node of a graph: are those values correlated with that node’s neighbors’ value.

This computed as:

C =
(N − 1)

∑
i,j wi,j(xi − xj)

2

2W
∑

i(xi − x̄)2

Where N is the total number of nodes, wi,j is the weight of the edge between nodes i and j, xi
is the value at node i, and x̄ is the mean value of x, and W =

∑
wi,j .

This method is typically used in spatial contexts, to determine if a measure is correlated with
it’s location [32]. It has also been used in scRNA-seq analysis to determine whether a feature was
correlated with transcriptome similarity in the VISION tool [33].
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3.5 Code and data availability

constclust is available on pip (pip install constclust). Source code is hosted at https:

//github.com/ivirshup/constclust. while documentation and tutorials are available at https:

//constclust.readthedocs.io. Supplementary information and code to reproduce the analyses
used in this manuscript are available as Jupyter notebooks at https://github.com/wellslab/

constclust_supp along with instructions for retrieving the data.

4 Results

4.1 Planted clusters are clearly identified

To demonstrate some of the basic concepts behind constclust, we’ve applied it to simulated
data. First, it’s run on a data set with four groups with even sizes (Fig. 3). Unsurprisingly, these
are easily identifiable by constclust, as they can be easily identified by the underlying clustering
algorithm. For the majority of the parameterizations tested, the correct underlying representation
can be found exactly. While constclust finds labels which match ground truth, so does running
the underlying clustering method with default parameters. This demonstrates the true solution is
robustly found while false solutions are clearly separated.

4.2 constclust can detect planted clusters of vastly different scales

As cell types occur at widely varying frequencies, constclust was next tested against a data set whose
underlying groups varied across four orders of magnitude (Fig. 4). This simulation is a more realistic
depiction of cell type frequency. Notably, there was no one clustering solution which correctly groups
both the smallest and largest planted cell types together. Instability of solutions when no stable
community can be found follows from expectations from the community detection literature.

4.3 constclust reveals multilevel structure in single cell data sets

Instead of having a single complete labelling for a data set, constclust generates a collection of
labels (clusters), each of which apply to a subset of the samples. This re-frames the problem from
partitioning a data-set with a single cover, to finding a set of computationally robust labels which
represent real biological signal. One key features of this structure is that individual samples can be
assigned more than one label. We demonstrate this on a data set of ten thousand PBMCs from 10x
genomics. We use this structure to assign cell labels at a high level of lineage (Fig. 5 (a)) as well
more specific functional categories (Fig. 5 (b)). Using the set of stable components found in this
data set, we were able to create an interpretable labelling of the samples.

To create the kind of flat labeling seen in Fig. 5, 23 components out of a broader set of stable
solutions were selected. This is a reduced view of the signal we were able to identify, and required
manual curation to collate. A hierarchical view can be built from stable components based on the
overlap of their samples. In the PBMC data set we can find three levels of identity for CD8+ Memory
T-cells. At a high level, we can see the broader T-cell population (component 15), followed by naive
T-cells (component 30) (CCR7+, CCL5-), finally resulting in naive CD8+ T-cells (component 8)
(CD8+, CCR7+, CCL5-) (Fig. 5 (c)). This provides an intuitive interface for users to explore the
structure of their data-set at multiple scales of resolution by ”drilling down” from broad to specific
communities.

There are a few key differences between the approximate hierarchy shown here and those created
by more strictly hierarchical or agglomerative methods (like those used by clusterExperiment [21]
or dendrosplit [34]). As each component has can be identified independently of the others, there
is no restriction that components must be strict subsets or supersets of other components. This
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A B

Figure 3: Results of constclust on a simulated data set of 5000 cells with four equally
sized clusters. This data set was generated with Splatter, and was then clustered 480 times varying
number of neighbors, resolution, and with four random initializations per parameterization. The
correct assignments of cells to cluster show up in the top four components (a) found by constclust.
(b) These components showed up in a minimum of 284 solutions. These components clearly stand
out from the other solutions found by both their size and frequency of occurrence, e.g. the four
selected components are in the top right. The next most common clustering solution showed up in
84 solutions and contained only 8 cells. Notably, a solution containing all of the correct groupings
would show up in both the standard parameterization, as well as a number of other solutions. All
that is gained here by using constclust is a greater confidence in the solution from the clustering
algorithm.
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Truth Default settings

A B

C

Figure 4: Results of constclust on a simulated dataset with clusters of varying sizes. The
dataset here consisted of 10,000 simulated cells, and has four planted clusters which vary in size
across orders of magnitude. (a) shows the top four components, and the range of corresponding
parameters. These components match the planted clusters with an ARI (adjusted rand index) of
0.999. (b) Similarly to the evenly sized clusters, components corresponding to true clusters were
distinctively more common. (c) Notably, there is no single solution which contains each of the correct
labellings. As expected from the community detection literature, the largest cluster randomly splits
at resolutions where the smallest cluster can be detected.
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also means that there does not have to be a set of components which contains each sample exactly
once, a restriction of common clustering methods like K-means or modularity minimization. When
selecting the sets of components for a flat labelling there will be cells left unlabelled if they didn’t
clearly fit into a discrete group.

4.4 constclust robustly identifies discrete groups of samples

To assess the quality of the components identified by constclust, we used three methods. The first
is the intuitive metric of ranking components of samples by the number of clustering solutions they
are found in. Highly ranked components were found in more clustering solutions. Here we show
that these highly ranked components are picking up true signal in the data through a re-sampling
experiment and measuring their autocorrelation on a graph representation of the data set.

If we are able to identify true sub-communities of cells in a data set, we would not expect those
communities to change if only a subset of the data is measured. To show this, constclust was run
280 times on subsets of the previously used PBMC data set (Fig. 6). The subsampled results were
searched for their closest matching component from the original set. This forms a clearly bi-modal
distribution of distances where the more highly ranked components are consistently matched. High
ranking components were consistently found between runs. However, due to decrease in data set
size, top ranked components in the full data set with small cluster sizes were often dropped in the
subsampled data sets. While some lowly ranked components (126, 137, 142, 143, 151, 182) from the
original assignment appear to have good matches in the permuted data-sets. In most comparisons,
there was a better match at a lower rank (supp.).

To assess whether identified components are real signal in the data, we used the Geary’s C metric
to measure how well a component explained variance in a nearest neighbor representation for the
data set. Previously, this metric has been used by VISION [33] to find pathways which are spatially
discriminating in a latent space. Here, we expect samples from the same community to be near to
each other. That is, we expect the sample labels for a cell in the KNN graph to be correlated with
their neighbor’s labels, and given a low value of Geary’s C. This is very useful for discriminating
between signal and noise in our data sets, as noise should be randomly distributed. And indeed this
is what we see Fig. 6 (c) there is a bimodal distribution of these values.

4.5 Computational Efficiency

Compared to other consensus clustering frameworks for scRNA-seq, constclust is highly performant
(Table 1). This is due to the use of a fast clustering algorithm and an embarrassingly parallel
formulation which allows near-linear scaling with available cores. Work to improve this performance
is ongoing, with an aim at reducing time spent distributing the data. Another source of increased
performance is that constclust does not compute a dense coincidence matrix like SC3 and RSEC,
resulting in memory use of O(cells × partitionings) as opposed to O(cells2). The performance
advantages these approaches provide is clear when compared with other methods. For a data set of
12 thousand cells, constclust could generate and reconcile 4,500 partitionings in less than half the
time SC3 (running on a subset of the data, and classifying the rest with an SVM) takes.

5 Discussion

The ability to identify cell types and states from single cell high-throughput assays depends on
identifying meaningful clusters of cells with unsupervised methods. That is, the classification of cells
by scRNAseq markers, or identification of new cell phenotypes relies first on accurate groupings of
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Component 15
# Solutions: 278
# Cells: 4412
Resolution range: 
 0.01-0.08
N-neighbor range: 
 10-190

Component 30
# Solutions: 158
# Cells: 1343
Resolution range:
  0.35-1.42
N-neighbor range:
  10-190

Component 8
# Solutions: 360
# Cells: 288
Resolution range: 
 0.70-11.94
N-neighbor range: 
 10-190

30

8

15

Figure 5: Multilevel structure identified by constclust. A high and low level clustering are
shown in a and b respectively. The high level clusters define high level populations of monocytes,
natural killer cells, B-cells and T-cells. More fine grained populations (e.g. cytotoxic vs non t-cells)
can be found by looking at the smaller components. c shows a hierarchy of clusters found in the
leukocyte population. Each cluster here was identified in at least 10% of solutions 1440 solutions
total. In the hierarchy, a component is considered the child of another component if it is smaller
and contains a subset of the cells. On the right we show which groupings of cells were identified
by plotting and the range of parameters they were identified for. This visualization is available as
an interactive plot in the constclust package. Though components were not manually curated, each
here shows at minimum 273 differentially expressed genes (P < 0.5 Mann Whitney U test with BH
adjustment) when compared against the rest of the data set.
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A

B

C

Figure 6: Highly ranked components are consistently found in resampling experiments.
To assess the stability of the components and their rank, a re-sampling experiment was performed.
The component finding pipeline was run again on 280 randomly selected subsets, each 1/2 the
original data sets size, of the PBMC data set. The cosine distance of cell frequencies for each pair
of components between the top 200 ranked components in each the resampled and original set. (A)
shows the distribution of the minimum distance to each components closest match (y-axis) by the
components rank in the subsampled clustering (x-axis). Components are also accurately identifying
discrete communities in a KNN representation of a data set. (C) For the PBMC data, Geary’s C (y-
axis) was calculated for the cell frequencies of each component and plotted against that components
rank (x-axis).
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constclust SC3 (SVM mode) RSEC

Time 2.5 hr 6.8 hrs ? (>36 hrs)
# of partitionings 4500 150 ?

Table 1: Run times and number of clusters generated for consensus clustering methods designed for
scRNA-seq data. All results are based on a 12 thousand cell data set using on 10X’s v2 chemistry.
SC3 [20] was run with its default parameters, meaning it ran its standard algorithm on five thousand
cells, then classified the rest using an SVM. RSEC [21] was run with default parameters, and had
it’s process killed after running for 36 hours.

those cells. Increasingly we see that complex biology can’t be captured in a single ’flat’ clustering
solution, but requires analysts to navigate hierarchies captured within the data. ’constclust’ provides
a new way to approach the problem of finding the right clustering solution.

constclust was developed to address the issues of parameter choice and class imbalance when
clustering single cell data. By aggregating clustering solutions using locality in parameter space we
find clusters that are consistently identified. In data sets with planted communities, constclust
specifically found ground truth labels with high accuracy by evaluating their stability over a range of
clustering parameters. Additionally, constclust could find planted communities even when they vary
by orders of magnitude and could not be captured by one set of hyperparameters. When applied to
real-world data, known cell hierarchies and types were readily identified. Finally, approaching the
method by looking for local instead of global stability allows for significant reductions in compute
time and memory usage over other consensus approaches.

The observation that ’flat’ clustering solutions don’t typically capture biological complexity is
a known issue in the field [6] [4]. Most popular clustering methods only find flat clusterings of the
data set. This does not fit with the goal of finding cell types and cell states present, possibly across
biological hierarchies.

Parameter choice is increasingly recognized for the huge effect on the results of unsupervised
clustering for single cell data, however selecting these values is still an open question [35] [5] [36].
Recent approaches to find robust clusterings like those from [28] [37] look across many clusterings
generated with different hyperparameters, but only provide tools for evaluating the paritionings as a
whole. As we show with simulated data, some planted communities cannot be detected with a single
choice of hyper parameters. By looking at the literature from the fields of community detection, we
take a different view based on the idea that clustering algorithms may not be able to find a good
solution for all samples in the data set at once. Using this view, we look only for individual stable
clusters – which fits much better with the multilevel structure of cell populations.

The idea of finding a better clustering solution by combining the results of many individual
solutions from different parameterizations is not new. A typical consensus clustering approach (like
those used by [20] or [21]) of looking at the space of generated cluster solution and determining a
likely single true clustering. These consensus clustering methods are asking if a common or average
single clustering solution can be found from a set of input solutions [38]. While constclust similarly
uses information from multiple clustering solutions to generate a consensus categorization, it asks
a different question. Instead we look at the space of generated clusters and try to filter out the
unstable ones by asking ”am I as similar to my neighbors as they are to theirs”.

constclust stems from the same intuition that Evidence Accumulation Clustering (EAC) is
based on. In EAC, each clustering solution is considered an independent piece of evidence about the
natural partitions present in the data. If two samples are put in the same cluster, this is evidence
those samples truly are part of the same group [39]. In constclust, we extend this. First we
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recognize that if the set of clusterings to be ensembled are generated by varying parameters, the
solutions are actually dependent on those parameters. Additionally we do not look for evidence that
two sample sit in the same cluster, instead we are looking for evidence that the entire cluster is a
true grouping of the data.

A similarity can be drawn here to density based clustering or outlier detection. These methods
take local context into account when comparing objects [32] – though the definition of context may
vary. For example, when we make a KNN representation of our data the context is the K most
similar samples in our data set. In constclust we use two kinds of context for each cluster, (1)
the surrounding parameter space and (2) clusters with a shared set of cells. From this definition of
locality, we can ask which clusters are like each other within a certain context. A random grouping
of samples should be an outlier, since it isn’t like any other sample within this context. In this way,
the problem is outlier detection, similar to methods like HDBSCAN [40]. Once we’ve identified the
stable solutions with the clustering space, we have identified our components.

5.1 Considerations for evaluation

One of the key features of constclust is that it returns a set of labels. This contrasts with methods
which return either flat or hierarchical solutions. The shortcomings with flat solutions have been
extensively discussed and recognized within both clustering and single cell analysis [4] literature.
However, returning a different kind of structure makes comparison difficult.

While metrics like Adjusted Rand Index (ARI) or cluster silhouette are commonly used when
assessing performance of clustering method for scRNA-seq, they can’t be used here. Both ARI and
silhouette require a single complete labelling of the data. In addition, ARI requires a ground truth
labelling for the data to compare against. This is problematic here constclust does not generate
flat labellings and since multilevel labellings of data sets are rare. We suggest the intuitive quality
metric of simply ranking components of samples by the number of clustering solutions they are
found in. This approach is validated by results showing highly ranked components are picking up
true signal in the data through a re-sampling experiment and measuring their autocorrelation on a
graph representation of the data set.

Unlike other multilevel methods like TooManyCells [41] and HDBSCAN [40], constclust has no
restriction of strict hierarchical structure being found in the data. In hierarchical models, the samples
which can be found in a partition are dependent on other partitions in the data set. They must be
complete subsets or super sets. This is an important feature, since we don’t expect biology to behave
like this. For example, when attempting to perform a cross species data integration, what is the
hierarchy to be used? When macrophages can be derived from different lineages, which hierarchies
should they sit in [3]? If a hierarchical structure is assumed, these kinds of relationships are difficult
to model.

Assessment of non-flat or non-hierarchical clustering methods is an open topic for scRNA-seq
analysis. Since the problem is foundational to the goal of cell-type discover, it’s critical this be ad-
dressed. Recent work to this end include new metrics for evaluating hierarchical clustering solutions
[42]. The development of gold standard data sets with multilevel annotations, and further methods
for evaluating multilevel solutions is an important direction for the field.

5.2 Limitations

There remain a number of limitations with constclust, and challenges for the field more generally.
While multiple levels of structure can be found, there’s no particular reason these must correlate

with a biologically distinct group of cells. This can only be confirmed through downstream analysis
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using outside knowledge. Of course applies to any unsupervised clustering method using scRNA-seq
data, since the mapping from transcriptome to cell type is by no means resolved. However, this does
not fit the structure given by other analysis tools.

All analyses in this manuscript rely on cutoffs, for determining which components are worth
investigating further. While future work could expand into better prioritization of components, this
is alleviated by some tooling. For example, for the classical monocytes from the PBMC dataset the
next stable solutions (occurring in at least 100 clustering solutions) which can be identified from
that group of cells have a maximum of 7 cells (compared to the 2500 monocytes) and show no
differentially expressed genes below a p ≤ 0.05 cutoff in a pairwise comparison using a Wilcoxon
test.

Nor do we completely relieve the analyst of the burden of parameter selection. While schemes
for automatic exploration of parameters could be defined, this would be dependent on the clustering
method and parameter. Additionally if we know what a good parameter space was for our clustering,
then this method probably wouldn’t be needed. What ’constclust’ does provide is a straight forward
way to scan across parameters, and identify stable clusters at different data scales, to allow a user
to find subgroupings of cells that might otherwise be hidden in a single global ’best fit’ solution.
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4. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biology 21
(2020).

5. Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple
resolutions. Gigascience 7 (2018).

6. Wolf, F. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through
a topology preserving map of single cells. Genome Biol 20, 59 (2019).

7. Levine, J. H. et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells
that Correlate with Prognosis. Cell 162, 184–197 (2015).

8. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data
analysis. Genome biology 19, 15 (2018).

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.417105doi: bioRxiv preprint 

https://www.nhmrc.gov.au
https://biomedicalsciences.unimelb.edu.au/departments/anatomy-and-neuroscience/engage/cscs
https://biomedicalsciences.unimelb.edu.au/departments/anatomy-and-neuroscience/engage/cscs
https://doi.org/10.1101/2020.12.08.417105
http://creativecommons.org/licenses/by-nc/4.0/


9. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcrip-
tomic data across different conditions, technologies, and species. Nature Biotechnology 48, 1070
(2018).
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