ABSTRACT
In higher plants, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis thaliana, among the tonoplastic transporters, SWEET16 and SWEET17 have been previously localized in the vascular system. Here, using a reverse genetic approach, we propose that sugar exchanges at the tonoplast, mediated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the expression of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by FTIR in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development is partially dependent on the exchange of hexoses at the tonoplast of xylem-forming cells.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
One-sentence summary: A control of cytosolic sugar availability, mediated by SWEET16 and SWEET17, is required to sustain xylem development and secondary cell wall formation.
Funding information: This work has benefited from the support of IJPB’s Plant Observatory technological platforms and from a French State grant (Saclay Plant Sciences, reference ANR-17-EUR-0007, EUR SPS-GSR) managed by the French National Research Agency under an Investments for the Future program (reference ANR-11-IDEX-0003-02) through PhD funding to E.A.
Manuscript title updated