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ABSTRACT 23 
 24 
A central theme that governs the functional design of biological networks is their ability to sustain 25 

stable function despite widespread parametric variability. Here, we investigated the impact of 26 

distinct forms of biological heterogeneities on the stability of a two-dimensional continuous 27 

attractor network (CAN) implicated in grid-patterned activity generation. We show that 28 

increasing degrees of biological heterogeneities progressively disrupted the emergence of grid-29 

patterned activity and resulted in progressively large perturbations in low-frequency neural 30 

activity. We postulated that targeted suppression of low-frequency perturbations could ameliorate 31 

heterogeneity-induced disruptions of grid-patterned activity. To test this, we introduced intrinsic 32 

resonance, a physiological mechanism to suppress low-frequency activity, either by adding an 33 

additional high-pass filter (phenomenological) or by incorporating a slow negative feedback loop 34 

(mechanistic) into our model neurons. Strikingly, CAN models with resonating neurons were 35 

resilient to the incorporation of heterogeneities and exhibited stable grid-patterned firing. We 36 

found CAN networks with mechanistic resonators to be more effective in targeted suppression of 37 

low-frequency activity, with the slow kinetics of the negative feedback loop essential in 38 

stabilizing these networks. As low-frequency perturbations (1/f noise) are pervasive across 39 

biological systems, our analyses suggest a universal role for mechanisms that suppress low-40 

frequency activity in stabilizing heterogeneous biological networks.  41 
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INTRODUCTION 45 

Stability of network function, defined as the network’s ability to elicit robust functional outcomes 46 

despite perturbations to or widespread variability in its constitutive components, is a central 47 

theme that governs the functional design of several biological networks. Biological systems 48 

exhibit ubiquitous parametric variability spanning different scales of organization, quantified 49 

through statistical heterogeneities in the underlying parameters. Strikingly, in spite of such large-50 

scale heterogeneities, outputs of biological networks are stable, and are precisely tuned to meet 51 

physiological demands. A central question that spans different scales of organization is on the 52 

ability of biological networks to achieve physiological stability in the face of ubiquitous 53 

parametric variability (Turrigiano and Nelson, 2000; Edelman and Gally, 2001; Maslov and 54 

Sneppen, 2002; Stelling et al., 2004; Marder and Goaillard, 2006; Barkai and Shilo, 2007; Kitano, 55 

2007; Félix and Barkoulas, 2015).  56 

Biological heterogeneities are known to play critical roles in governing stability of 57 

network function, through intricate and complex interactions among mechanisms underlying 58 

functional emergence (Edelman and Gally, 2001; Renart et al., 2003; Marder and Goaillard, 2006; 59 

Tikidji-Hamburyan et al., 2015; Mishra and Narayanan, 2019; Rathour and Narayanan, 2019). 60 

However, an overwhelming majority of theoretical and modeling frameworks lack the foundation 61 

to evaluate the impact of such heterogeneities on network output, as they employ unnatural 62 

homogeneous networks in assessing network function. The paucity of heterogeneous network 63 

frameworks is partly attributable to the enormous analytical or computational costs involved in 64 

assessing heterogeneous networks. In this study, we quantitatively address questions on the 65 

impact of distinct forms of biological heterogeneities on the functional stability of a two-66 

dimensional continuous attractor network (CAN), which has been implicated in the generation of 67 

patterned neuronal activity in grid cells of the medial entorhinal cortex (Burak and Fiete, 2009; 68 

Knierim and Zhang, 2012; Couey et al., 2013; Domnisoru et al., 2013; Schmidt-Hieber and 69 

Hausser, 2013; Yoon et al., 2013; Tukker et al., 2021). Although the continuous attractor 70 

framework has offered insights about information encoding across several neural circuits 71 

(Samsonovich and McNaughton, 1997; Seung et al., 2000; Renart et al., 2003; Wills et al., 2005; 72 

Burak and Fiete, 2009; Knierim and Zhang, 2012; Schmidt-Hieber and Hausser, 2013; Yoon et 73 

al., 2013; Kim et al., 2017), the fundamental question on the stability of 2-D CAN models in the 74 

presence of biological heterogeneities remains unexplored. Here, we systematically assessed the 75 

impact of biological heterogeneities on stability of emergent spatial representations in a 2-D CAN 76 

model, and unveiled a physiologically plausible neural mechanism that promotes stability despite 77 

the expression of heterogeneities.  78 
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We first developed an algorithm to generate virtual trajectories that closely mimicked 79 

animal traversals in an open arena, to provide better computational efficiency in terms of covering 80 

the entire arena within shorter time duration. We employed these virtual trajectories to drive a 81 

rate-based homogeneous CAN model that elicited grid-patterned neural activity (Burak and Fiete, 82 

2009), and systematically introduced different degrees of three distinct forms of biological 83 

heterogeneities. The three distinct forms of biological heterogeneities that we introduced, either 84 

individually or together, were in neuronal intrinsic properties, in afferent inputs carrying 85 

behavioral information and in local-circuit synaptic connectivity. We found that the incorporation 86 

of these different forms of biological heterogeneities disrupted the emergence of grid-patterned 87 

activity by introducing perturbations in neural activity, predominantly in low-frequency 88 

components. In the default model where neurons were integrators, grid-patterns and spatial 89 

information in neural activity were progressively lost with increasing degrees of biological 90 

heterogeneities, and were accompanied by progressive increases in low-frequency perturbations.  91 

As heterogeneity-induced perturbations to neural activity were predominantly in the lower 92 

frequencies, we postulated that suppressing low-frequency perturbations could ameliorate the 93 

disruptive impact of biological heterogeneities on grid-patterned activity. We recognized intrinsic 94 

neuronal resonance as an established biological mechanism that suppresses low-frequency 95 

components, effectuated by the expression of resonating conductances endowed with specific 96 

biophysical characteristics (Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). 97 

Consequently, we hypothesized that intrinsic neuronal resonance could stabilize the 98 

heterogeneous grid-cell network through suppression of low-frequency perturbations. To test this 99 

hypothesis, we developed two distinct strategies to introduce intrinsic resonance in our rate-based 100 

neuronal model to mimic the function of resonating conductances in biological neurons: (i) a 101 

phenomenological approach where an additional tunable high-pass filter was incorporated into 102 

single-neuron dynamics; and (ii) a mechanistic approach where resonance was realized through a 103 

slow negative feedback loop akin to the physiological mechanism behind neuronal intrinsic 104 

resonance (Hutcheon and Yarom, 2000). We confirmed that the emergence of grid-patterned 105 

activity was not affected by replacing all the integrator neurons in the homogeneous CAN model 106 

with theta-frequency resonators (either phenomenological or mechanistic). We systematically 107 

incorporated different forms of biological heterogeneities into the 2-D resonator CAN model and 108 

found that intrinsic neuronal resonance stabilized heterogeneous neural networks, through 109 

suppression of low-frequency components of neural activity. Although this stabilization was 110 

observed with both phenomenological and mechanistic resonator networks, the mechanistic 111 

resonator was extremely effective in suppressing low-frequency activity without introducing 112 
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spurious high-frequency components into neural activity. Importantly, we found that the slow 113 

kinetics of the negative feedback loop was essential in stabilizing CAN networks built with 114 

mechanistic resonators. 115 

Together, our study unveils an important role for intrinsic neuronal resonance in 116 

stabilizing network physiology through the suppression of heterogeneity-induced perturbations in 117 

low-frequency components of network activity. Our analyses suggest that intrinsic neuronal 118 

resonance constitutes a cellular-scale activity-dependent negative feedback mechanism, a specific 119 

instance of a well-established network motif that effectuates stability and suppresses perturbations 120 

across different networks (Savageau, 1974; Becskei and Serrano, 2000; Thattai and van 121 

Oudenaarden, 2001; Austin et al., 2006; Dublanche et al., 2006; Raj and van Oudenaarden, 2008; 122 

Lestas et al., 2010; Cheong et al., 2011; Voliotis et al., 2014). As the dominance of low-frequency 123 

perturbations is pervasive across biological networks (Hausdorff and Peng, 1996; Gilden, 2001; 124 

Gisiger, 2001; Ward, 2001; Buzsaki, 2006), we postulate that mechanisms that suppress low-125 

frequency components could be a generalized route to stabilize heterogeneous biological 126 

networks.   127 
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RESULTS  128 

The rate-based CAN model consisted of a 2D neural sheet (default size: 60×60=3600 neurons) 129 

with the default integrator neurons for eliciting grid cell activity was adopted from Burak and 130 

Fiete (Burak and Fiete, 2009). The sides of this neural sheet were connected, yielding a toroidal 131 

(or periodic) network configuration. Each neuron in the CAN model received two distinct sets of 132 

synaptic inputs, one from other neurons within the network and another feed-forward afferent 133 

input that was dependent on the velocity of the virtual animal. The movement of the virtual 134 

animal was modeled to occur in a circular 2D spatial arena (Figure 1A; Real trajectory), and was 135 

simulated employing recordings of rat movement (Hafting et al., 2005) to replicate earlier results 136 

(Burak and Fiete, 2009). However, the real trajectory spanned 590 s of real-world time and 137 

required considerable simulation time to sufficiently explore the entire arena, essential for 138 

computing high-resolution spatial activity maps. Consequently, the computational costs required 139 

for exploring the parametric space of the CAN model, with different forms of network 140 

heterogeneities in networks of different sizes and endowed with distinct kinds of neurons, were 141 

exorbitant. Therefore, we developed a virtual trajectory, mimicking smooth animal movement 142 

within the arena, but with sharp turns at the borders.  143 

Our analyses demonstrated the ability of virtual trajectories to cover the entire arena with 144 

lesser time (Figure 1A; Virtual trajectory), while not compromising on the accuracy of the spatial 145 

activity maps constructed from this trajectory in comparison to the maps obtained with the real 146 

trajectory (Figure 1B, Figure 1–figure supplement 1). Specifically, the correlation values between 147 

the spatial autocorrelation of rate maps of individual grid cells for real trajectory and that from the 148 

virtual trajectory at different rat runtimes (𝑇!"#) were high across all measured runtimes (Figure 149 

1B). These correlation values showed a saturating increase with increase in 𝑇!"#. As there was no 150 

substantial improvement in accuracy beyond 𝑇!"#= 100 s, we employed 𝑇!"#= 100 s for all 151 

simulations (compared to the 590 s of the real trajectory). Therefore, our virtual trajectory 152 

covered similar areas in ~6 times lesser duration (Figure 1A), which reduced the simulation 153 

duration by a factor of ~10 times when compared to the real rat trajectory, while yielding similar 154 

spatial activity maps (Figure 1B, Figure 1–figure supplement 1). Our algorithm also allowed us to 155 

generate fast virtual trajectories mimicking rat trajectories in open arenas of different shapes 156 

(Circle: Figure 1A; Square: Figure 2E). 157 

 158 
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Biologically prevalent network heterogeneities disrupted the emergence of grid cell activity 160 

in CAN models.  161 

The simulated CAN model (Figure 1) is an idealized homogeneous network of intrinsically 162 

identical neurons, endowed with precise local connectivity patterns and identical response 163 

properties for afferent inputs. Although this idealized CAN model provides an effective 164 

phenomenological framework to understand and simulate grid cell activity, the underlying 165 

network does not account for the ubiquitous biological heterogeneities that span neuronal intrinsic 166 

properties and synaptic connectivity patterns. Would the CAN model sustain grid-cell activity in a 167 

network endowed with different degrees of biological heterogeneities in neuronal intrinsic 168 

properties and strengths of afferent/local synaptic inputs?  169 

To address this, we systematically introduced three distinct forms of biological 170 

heterogeneities into the rate-based CAN model. We introduced intrinsic heterogeneity by 171 

randomizing the value of the neuronal integration time constant 𝜏 across neurons in the network. 172 

Within the rate-based framework employed here, randomization of 𝜏 reflected physiological 173 

heterogeneities in neuronal excitability properties, and larger spans of 𝜏 defined higher degrees of 174 

intrinsic heterogeneity (Figure 2-table supplement 1; Figure 2A). Afferent heterogeneity referred 175 

to heterogeneities in the coupling of afferent velocity inputs onto individual neurons. Different 176 

degrees of afferent heterogeneities were introduced by randomizing the velocity scaling factor (𝛼) 177 

in each neuron through uniform distributions of different ranges (Figure 2-table supplement 1; 178 

Figure 2B). Synaptic heterogeneity involved the local connectivity matrix, and was introduced as 179 

additive jitter to the default center-surround connectivity matrix. Synaptic jitter was 180 

independently sampled for each connection, from a uniform distribution whose differential span 181 

regulated the associated higher degree of heterogeneity (Figure 2-table supplement 1; Figure 2C). 182 

In homogeneous networks, 𝜏 (=10 ms), 𝛼 (=45) and 𝑊$% (center-shifted Mexican hat connectivity 183 

without jitter) were identical for all neurons in the network. We assessed four distinct sets of 184 

heterogeneous networks: three sets endowed with one of intrinsic, afferent and synaptic 185 

heterogeneities, and a fourth where all three forms of heterogeneities were co-expressed.  When 186 

all heterogeneities were present together, all three sets of parameters were set randomly with the 187 

degree of heterogeneity defining the bounds of the associated distribution (Figure 2-table 188 

supplement 1). 189 

We found that the incorporation of any of the three forms of heterogeneities into the CAN 190 

model resulted in the disruption of grid pattern formation, with the deleterious impact increasing 191 

with increasing degree of heterogeneity (Figure 2E, Figure 3). Quantitatively, we employed grid 192 
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score (Fyhn et al., 2004; Hafting et al., 2005) to measure the emergence of pattern formation in 193 

the CAN model activity, and found a reduction in grid score with increase in the degree of each 194 

form of heterogeneity (Figure 2F). We found a hierarchy in the disruptive impact of different 195 

types of heterogeneities, with synaptic heterogeneity producing the largest reduction to grid score, 196 

followed by afferent heterogeneity. Intrinsic heterogeneity was the least disruptive in the 197 

emergence of grid-cell activity, whereby a high degree of heterogeneity was required to hamper 198 

grid pattern formation (Figure 2E–F). Simultaneous progressive introduction of all three forms of 199 

heterogeneities at multiple degrees resulted in a similar progression of grid-pattern disruption 200 

(Figure 2E–F). The introduction of the highest degree of all heterogeneities into the CAN model 201 

resulted in a complete loss of patterned activity and a marked reduction in the grid score values of 202 

all neurons in the network (Figure 2E–F). We confirmed that these results were not artifacts of 203 

specific network initialization choices by observing similar grid score reductions in five 204 

additional trials with distinct initializations of CAN models endowed with all three forms of 205 

heterogeneities (Figure 3–figure supplement 1F). In addition, to rule out the possibility that these 206 

conclusions were specific to the choice of the virtual trajectory employed, we repeated our 207 

simulations and analyses with a different virtual trajectory (Figure 3–figure supplement 2A) and 208 

found similar reductions in grid score with increase in the degree of all heterogeneities (Figure 3–209 

figure supplement 2B). 210 

Detailed quantitative analysis of grid cell activity showed that the introduction of 211 

heterogeneities did not result in marked population-wide changes to broad measures such as 212 

average firing rate, mean size of grid fields and average grid spacing (Figure 3, Figure 3–figure 213 

supplement 1-2). Instead, the introduction of parametric heterogeneities resulted in a loss of 214 

spatial selectivity and disruption of patterned activity, reflected as progressive reductions in grid 215 

score, peak firing rate, information rate and sparsity (Figures 2-3, Figure 3–figure supplement 1-216 

2). Our results showed that in networks with intrinsic or afferent heterogeneities, grid score of 217 

individual neurons was not dependent on the actual value of the associated parameter (𝜏 or α, 218 

respectively), but was critically reliant on the degree of heterogeneity (Figure 3H). Specifically, 219 

for a given degree of intrinsic or afferent heterogeneity, the grid score value spanned similar 220 

ranges for the low or high value of the associated parameter; but grid score reduced with 221 

increased degree of heterogeneities. In addition, grid score of cells reduced with increase in local 222 

synaptic jitter, which increased with the degree of synaptic heterogeneity (Figure 3H).   223 

Thus far, our analyses involved a CAN model with a specific size (60×60). Would our 224 

results on heterogeneity-driven disruption of grid-patterned activity extend to CAN models of 225 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2020.12.10.419200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.419200


Page 9 of 54 
 

other sizes? To address this, we repeated our simulations with networks of size 40×40, 50×50, 226 

80×80 and 120×120, and introduced different degrees of all three forms of heterogeneities into 227 

the network. We found that the disruptive impact of heterogeneities on grid-patterned activity was 228 

consistent across all tested networks (Figure 3–figure supplement 3A), manifesting as a reduction 229 

in grid score with increased degree of heterogeneities (Figure 3–figure supplement 3B). Our 230 

results also showed that the disruptive impact of heterogeneities on grid-patterned activity 231 

increased with increase in network size. This size-dependence specifically manifested as a 232 

complete loss of spatially-selective firing patterns (Figure 3–figure supplement 3A) and the 233 

consistent drop in the grid score value to zero (i.e., %change = –100 in Figure 3–figure 234 

supplement 3B) across all neurons in the 120×120 network with high degree of heterogeneities. 235 

We also observed a progressive reduction in the average and the peak firing rates with increase in 236 

the degree of heterogeneities across all network sizes, although with a pronounced impact in 237 

networks with higher size (Figure 3–figure supplement 3C–D). 238 

Together, our results demonstrated that the introduction of physiologically relevant 239 

heterogeneities into the CAN model resulted in a marked disruption of grid-patterned activity. 240 

The disruption manifested as a loss in spatial selectivity in the activity of individual cells in the 241 

network, progressively linked to the degree of heterogeneity. Although all forms of 242 

heterogeneities resulted in disruption of patterned activity, there was differential sensitivity to 243 

different heterogeneities, with heterogeneity in local network connectivity playing a dominant 244 

role in hampering spatial selectivity and patterned activity. 245 

Incorporation of biological heterogeneities predominantly altered neural activity in low 246 

frequencies. 247 

How does the presence of heterogeneities affect activity patterns of neurons in the network as 248 

they respond to the movement of the virtual animal? A systematic way to explore patterns of 249 

neural activity is to assess the relative power of specific frequency components in neural activity. 250 

Therefore, we subjected the temporal outputs of individual neurons (across the entire period of the 251 

simulation) to spectral analysis and found neural activity to follow a typical response curve that 252 

was dominated by lower frequency components, with little power in the higher frequencies (e.g., 253 

Figure 4A, HN). This is to be expected as a consequence of the low-pass filtering inherent to the 254 

neuronal model, reflective of membrane filtering.  255 

We performed spectral analyses of temporal activity patterns of neurons from networks 256 

endowed with different forms of heterogeneities at various degrees (Figure 4). As biological 257 

heterogeneities were incorporated by reducing or increasing default parameter values (Figure 2-258 
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table supplement 1), there was considerable variability in how individual neurons responded to 259 

such heterogeneities (Figure 4). Specifically, when compared against the respective neuron in the 260 

homogeneous network, some neurons showed increases in activity magnitude at certain 261 

frequencies and others showed a reduction in magnitude (e.g., Figure 4A). To quantify this 262 

variability in neuronal responses, we first computed the difference between frequency-dependent 263 

activity profiles of individual neurons obtained in the presence of specific heterogeneities and of 264 

the same neuron in the homogeneous network (with identical initial conditions, and subjected to 265 

identical afferent inputs). We computed activity differences for all the 3600 neurons in the 266 

network, and plotted the variance of these differences as a function of frequency (e.g., Figure 4B). 267 

Strikingly, we found that the impact of introducing biological heterogeneities predominantly 268 

altered lower frequency components of neural activity, with little to no impact on higher 269 

frequencies. In addition, the variance in the deviation of neural activity from the homogenous 270 

network progressively increased with higher degrees of heterogeneities, with large deviations 271 

occurring in the lower frequencies (Figure 4). 272 

Together, these observations provided an important insight that the presence of 273 

physiologically relevant network heterogeneities predominantly affected lower frequency 274 

components of neural activity, with higher degrees of heterogeneity yielding larger variance in the 275 

deviation of low-frequency activity from the homogeneous network. 276 

Introducing intrinsic resonance in rate-based neurons: Phenomenological model 277 

Several cortical and hippocampal neuronal structures exhibit intrinsic resonance, which allows 278 

these structures to maximally respond to a specific input frequency, with neural response falling 279 

on either side of this resonance frequency (Hutcheon and Yarom, 2000; Narayanan and Johnston, 280 

2007, 2008; Das et al., 2017). More specifically, excitatory (Erchova et al., 2004; Giocomo et al., 281 

2007; Nolan et al., 2007; Garden et al., 2008; Pastoll et al., 2012) and inhibitory neurons (Boehlen 282 

et al., 2016) in the superficial layers of the medial entorhinal cortex manifest resonance in the 283 

theta frequency range (4–10 Hz). Therefore, the model of individual neurons in the CAN model 284 

as integrators of afferent activity is inconsistent with the resonating structure intrinsic to their 285 

physiological counterparts. Intrinsic resonance in neurons is mediated by the expression of slow 286 

restorative ion channels, such as the HCN or the M-type potassium, which mediate resonating 287 

conductances that suppress low-frequency inputs by virtue of their kinetics and voltage-dependent 288 

properties(Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008; Hu et al., 2009). As the 289 

incorporation of biological heterogeneities predominantly altered low-frequency neural activity 290 

(Figure 4), we hypothesized that the expression of intrinsic neuronal resonance (especially the 291 
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associated suppression of low-frequency components) could counteract the disruptive impact of 292 

biological heterogeneities on network activity, thereby stabilizing grid-like activity patterns. 293 

An essential requirement in testing this hypothesis was to introduce intrinsic resonance in 294 

the rate-based neuronal models in our network. To do this, we noted that the integrative properties 295 

of the integrator model neuron are mediated by the low-pass filtering kinetics associated with the 296 

parameter 𝜏. We confirmed the low-pass filter (LPF) characteristics of the integrator neurons by 297 

recording the response of individual neurons to a chirp stimulus (Figure 5A–B). As this provides 298 

an equivalent to the LPF associated with the membrane time constant, we needed a high-pass 299 

filter (HPF) to mimic resonating conductances that suppress low frequency activity in biological 300 

neurons. A simple approach to suppress low-frequency components is to introduce a 301 

differentiator, which we confirmed by passing a chirp stimulus through a differentiator (Figure 302 

5A, Figure 5C). We therefore passed the outcome of the integrator (endowed with LPF 303 

characteristics) through a first-order differentiator (HPF), with the postulate that the net transfer 304 

function would manifest resonance. We tested this by first subjecting a chirp stimulus to the 305 

integrator neuron dynamics, and feeding that output to the differentiator. We found that the net 306 

output expressed resonance, acting as a band-pass filter (Figure 5A, Figure 5C). 307 

Physiologically, tuning of intrinsic resonance to specific frequencies could be achieved by 308 

altering the characteristics of the high- or the low-pass filters (Hutcheon and Yarom, 2000; 309 

Narayanan and Johnston, 2008; Das et al., 2017; Mittal and Narayanan, 2018; Rathour and 310 

Narayanan, 2019). Matching this physiological tuning procedure, we tuned resonance frequency 311 

(𝑓&) in our rate-based resonator model by either changing 𝜏 that governs the LPF (Figures 5D–E) 312 

or by altering an exponent 𝜀 (equation 9) that regulated the slope of the HPF on the frequency 313 

axis (Figure 5F–G). We found 𝑓& to decrease with an increase in 𝜏 (Figure 5E) or a reduction in 𝜀 314 

(Figure 5G). In summary, we mimicked the biophysical mechanisms governing resonance in 315 

neural structures to develop a phenomenological methodology to introduce and tune intrinsic 316 

resonance, yielding a tunable band-pass filtering structure in rate-based model neurons. In this 317 

model, as resonance was introduced through a high-pass filter, a formulation that doesn’t follow 318 

the mechanistic basis of resonance in physiological systems, we refer this as a phenomenological 319 

model for resonating neurons.  320 

Homogeneous CAN models constructed with phenomenological resonator neurons exhibited 321 

stable grid-patterned neural activity. 322 

How does the expression of intrinsic resonance in individual neurons of CAN models alter their 323 

grid-patterned neural activity? How do grid patterns respond to changes in resonance frequency, 324 
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realized either by altering 𝜏 or 𝜀? To address these, we replaced all neurons in the homogeneous 325 

CAN model with theta-frequency resonators, and presented the network with the same virtual 326 

trajectory (Figure 2E). We found that CAN models with resonators were able to reliably and 327 

robustly produce grid-patterned neural activity, which were qualitatively (Figure 6A–B) and 328 

quantitatively (Figure 6C–F, Figure 6–figure supplement 1) similar to patterns produced by 329 

networks of integrator neurons across different values of 𝜏. Importantly, increase in 𝜏 markedly 330 

increased spacing between grid fields (Figure 6D) and their average size (Figure 6E), 331 

consequently reducing the number of grid fields within the arena (Figure 6F). It should be noted 332 

that the reduction in grid score with increased 𝜏 (Figure 6C) is merely a reflection of the reduction 333 

in the number of grid patterns within the arena, and not indicative of loss of grid-patterned 334 

activity. Although the average firing rates were tuned to be similar across the resonator and the 335 

integrator networks (Figure 6–figure supplement 1A), the peak-firing rate in the resonator network 336 

was significantly higher (Figure 6–figure supplement 1B). In addition, for both resonator and 337 

integrator networks, consistent with increases in grid-field size and spacing, there were marked 338 

increases in information rate (Figure 6–figure supplement 1C) and reductions in sparsity (Figure 339 

6–figure supplement 1D) with increase in 𝜏.  340 

Within our model framework, it is important to emphasize that although increasing 𝜏 341 

reduced 𝑓& in resonator neurons (Figure 5E, Figure 6B), the changes in grid spacing and size are 342 

not a result of change in 𝑓&, but a consequence of altered 𝜏. This inference follows from the 343 

observation that altering 𝜏 has qualitatively and quantitatively similar outcomes on grid spacing 344 

and size in both integrator and resonator networks (Figure 6). Further confirmation for the 345 

absence of a direct role for 𝑓& in regulating grid spacing or size (within our modeling framework) 346 

came from the invariance of grid spacing and size to change in 𝜀, which altered 𝑓& (Figure 7). 347 

Specifically, when we fixed 𝜏, and altered 𝜀 across resonator neurons in the homogeneous CAN 348 

model, 𝑓& of individual neurons changed (Figure 7A), but did not markedly change grid field 349 

patterns (Figure 7A), grid score, average grid spacing, mean size, number or sparsity of grid fields 350 

(Figure 7B). However, increasing 𝜀 decreased grid-field sizes, the average and the peak firing 351 

rates, consequently reducing the information rate in the activity pattern (Figure 7B). 352 

Together, these results demonstrated that homogeneous CAN models with 353 

phenomenological resonators reliably and robustly produce grid-patterned neural activity. In these 354 

models, the LPF regulated the size and spacing of the grid fields and the HPF governed the 355 

magnitude of activity and the suppression of low-frequency inputs. 356 

 357 
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Phenomenological resonators stabilized the emergence of grid-patterned activity in 358 

heterogeneous CAN models. 359 

Having incorporated intrinsic resonance into the CAN model, we were now equipped to directly 360 

test our hypothesis that the expression of intrinsic neuronal resonance could stabilize grid-like 361 

activity patterns in heterogeneous networks. We incorporated heterogeneities, retaining the same 362 

forms/degrees of heterogeneities (Figure 2-table supplement 1; Figure 2A–D) and the same virtual 363 

trajectory (Figure 2E), in a CAN model endowed with resonators to obtain the spatial activity 364 

maps for individual neurons (Figure 8A). Strikingly, we observed that the presence of resonating 365 

neurons in the CAN model stabilized grid-patterned activity in individual neurons, despite the 366 

introduction of the highest degrees of all forms of biological heterogeneities (Figure 8A). 367 

Importantly, outputs produced by the homogeneous CAN model manifested spatially precise 368 

circular grid fields, exhibiting regular triangular firing patterns across trials (e.g., Figure 1A), 369 

which constituted forms of precision that are not observed in electrophysiologically obtained grid-370 

field patterns (Fyhn et al., 2004; Hafting et al., 2005). However, that with the incorporation of 371 

biological heterogeneities in resonator neuron networks, the imprecise shapes and stable patterns 372 

of grid-patterned firing (e.g., Figure 8A) tend closer to those of biologically observed grid cells. 373 

Quantitatively, we computed grid-cell measurements across all the 3600 neurons in the network, 374 

and found that all quantitative measurements (Figure 8B–I, Figure 8–figure supplement 1), 375 

including the grid score (Figure 8B) and information rate (Figure 8H), were remarkably robust to 376 

the introduction of heterogeneities (cf. Figures 2–3 for CAN models with integrator neurons).  377 

To ensure that the robust emergence of stable grid-patterned activity in heterogeneous 378 

CAN models with resonator neurons was not an artifact of the specific network under 379 

consideration, we repeated our analyses with two additional sets of integrator-resonator 380 

comparisons (Figure 8–figure supplement 2). In these networks, we employed a baseline 𝜏 of 381 

either 14 ms (Figure 8–figure supplement 2A) or 8 ms (Figure 8–figure supplement 2B) instead of 382 

the 10 ms value employed in the default network (Figure 2, Figure 8). A pairwise comparison of 383 

all grid-cell measurements between networks with integrator vs. resonator neurons demonstrated 384 

that the resonator networks were resilient to the introduction of heterogeneities compared to 385 

integrator networks (Figure 8–figure supplement 2). 386 

Together, these results demonstrated that phenomenologically incorporating intrinsic 387 

resonance into neurons of the CAN model imparts resilience to the network, facilitating the robust 388 

emergence of stable grid-cell activity patterns, despite the expression of biological heterogeneities 389 

in neuronal and synaptic properties. 390 
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Mechanistic model of neuronal intrinsic resonance: Incorporating a slow activity-dependent 391 

negative feedback loop. 392 

In the previous sections, we had phenomenologically introduced intrinsic resonance in rate-based 393 

neurons, by incorporating an artificial high pass filter to the low pass filtering property of an 394 

integrator neuron. Physiologically, however, intrinsic resonance results from the presence of 395 

resonating conductances in the neural system, which introduce a slow activity-dependent negative 396 

feedback into the neuron. To elaborate, there are two requirements for any conductance to act as a 397 

resonating conductance (Hutcheon and Yarom, 2000). First, the current mediated by the 398 

conductance should actively suppress any changes in membrane voltage of neurons. In resonating 399 

conductances, this is implemented by the voltage-dependent gating properties of the ion channel 400 

mediating the resonating conductance whereby any change in membrane voltage (de)activates the 401 

channel in such a way that the channel current suppresses the change in membrane voltage. This 402 

constitutes an activity-dependent negative feedback loop. The second requirement for a 403 

resonating conductance is that it has to be slower compared to the membrane time constant. This 404 

requirement ensures that cutoff frequency of the lowpass filter (associated with the membrane 405 

time constant) is greater than that of the high pass filter (mediated by the resonating conductance). 406 

Together these two requirements mechanistically translate to a slow activity-dependent negative 407 

feedback loop, a standard network motif in biological systems for yielding damped oscillations 408 

and resonance (Alon, 2019). In intrinsically resonating neurons, resonance is achieved because 409 

the resonating conductance actively suppresses low frequency signals through this slow negative 410 

feedback loop, in conjunction with the suppression of higher frequency signals by the low pass 411 

filter mediated by the membrane time constant. Resonating conductances do not suppress high 412 

frequencies because they are slow and wouldn’t activate/deactivate with faster high-frequency 413 

signals (Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). 414 

 In the single-neuron integrator model employed in this study, the low-pass filter is 415 

implemented by the integration time constant τ. Inspired by the mechanisms behind the 416 

physiological emergence of neuronal intrinsic resonance, we mechanistically incorporated 417 

intrinsic resonance into this integrator neuronal model by introducing a slow negative feedback to 418 

the single neuron dynamics (Figure 9A). The dynamics of the coupled evolution of neuronal 419 

activity (𝑆) and the feedback state variable (𝑚) are provided in equations (11–13). A sigmoidal 420 

feedback kernel (𝑚') regulated the activity-dependence and the feedback time constant (τ() 421 

determined the kinetics of the negative feedback loop (Eq. 11–12). The response of this single-422 

neuronal model, endowed with the slow-negative feedback loop, to a pulse input manifested 423 
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typical sag associated with the expression of intrinsic resonance (Hutcheon and Yarom, 2000), 424 

owing to the slow evolution of the feedback state variable 𝑚 (Figure 9B–C). To directly test if the 425 

introduction of the slow negative feedback loop yielded a resonating neuronal model, we assessed 426 

single-neuron output to a chirp stimulus (Figure 9D), and found the manifestation of intrinsic 427 

resonance when the feedback loop was activated (Figure 9E). As this resonator neuron model 428 

involving a slow negative feedback loop was derived from the mechanistic origins of intrinsic 429 

neuronal resonance, we refer to this as the mechanistic resonator model.  430 

Resonance frequency in the mechanistic resonator model was tunable by altering the 431 

parameters associated with the feedback loop. Specifically, increasing the half-maximal activity 432 

of the feedback kernel (𝑆)/+) reduced resonance frequency within the tested range of values 433 

(Figure 9F), whereas increasing the slope of the feedback kernel (𝑘) enhanced 𝑓& initially, but 434 

reduced 𝑓& with further increases in 𝑘 (Figure 9G). Furthermore, enhancing the strength of the 435 

feedback (𝑔) increased 𝑓&, and is reminiscent of increased 𝑓& with increase in resonating 436 

conductance density (Narayanan and Johnston, 2008), the parameter that defines the strength of 437 

the negative feedback loop in intrinsic resonating neurons. An important requirement for the 438 

expression of resonance through the mechanistic route that we chose is that the feedback time 439 

constant (𝜏() has to be slower than the integration time constant (𝜏=10 ms). To test this in our 440 

model, we altered 𝜏( of the feedback loop while maintaining all other values to be constant 441 

(Figure 9I), and found that resonance did not manifest with low values of 𝜏(. With increase in 442 

𝜏(, there was an initial rapid increase in 𝑓&, which then reduced upon further increase in 𝜏( 443 

(Figure 9I). It may be noted that low values of 𝜏( translate to a fast negative feedback loop, thus 444 

emphasizing the need for a slow negative feedback loop for the expression of resonance. These 445 

observations are analogous to the dependence of resonance frequency in intrinsically resonating 446 

neurons on the activation time constant of the resonating conductance (Narayanan and Johnston, 447 

2008). Together, we have proposed a tunable mechanistic model for intrinsic resonance in rate-448 

based neurons through the incorporation of a slow negative feedback loop to the neuronal 449 

dynamics. 450 

Mechanistic resonators stabilized the emergence of grid-patterned activity in heterogeneous 451 

CAN models. 452 

How was grid patterned neural activity in a homogeneous CAN model affected with the 453 

expression of intrinsic neuronal resonance through a mechanistic framework? To address this, we 454 

replaced all the integrator neurons in the homogeneous CAN model (Figure 2E; homogeneous 455 

network) with mechanistic theta-frequency resonator neurons, while maintaining identical 456 
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connectivity patterns and velocity dependent inputs. We observed that neurons within this 457 

homogeneous CAN model built with mechanistic resonators were able to produce distinct grid-458 

patterned neural activity (Figure 10A). Sensitivity analyses showed that grid-field size and 459 

spacing were affected by the parameters associated with the slow negative, consequently affecting 460 

the grid score (Figure 10B) and other measurements associated with the grid-patterned activity 461 

(Figure 10-figure supplements 1–2). Within the tested ranges, the strength of feedback (𝑔) had 462 

limited effect on grid patterned neural activity, whereas the slope (𝑘) and half-maximal acivity 463 

(𝑆)/+) of the feedback kernel had strong impact on grid-field size and spacing (Figure 10). 464 

Although the grid fields were well-defined across all values of 𝑘 and 𝑆)/+, the grid scores were 465 

lower for some cases (e.g., 𝑘=0.5; 𝑆)/+=0.1 in Figure 10B) due to the smaller number of grid 466 

fields within the arena (Figure 10A). Importantly, the feedback time constant (𝜏() had very little 467 

impact on grid pattern neural activity (Figure 10A) and on all quantified measurements (Figure 468 

10B, Figure 10-figure supplements 1–2). Together, these analyses demonstrated that a 469 

homogenous CAN model built with mechanistic resonators yielded stable and robust grid pattern 470 

neural activity whose grid field size and spacing can be tuned by parameters of slow negative 471 

feedback that governed resonance. 472 

Next, we systematically incorporated the different degrees of heterogeneities into the 473 

CAN model with mechanistic resonator neurons to test if resonance could stabilize grid-patterned 474 

activity in the heterogeneous CAN models. We employed five degrees of all heterogeneities with 475 

the same virtual trajectory (Figure 2E) in a CAN model endowed with mechanistic resonators to 476 

compute the spatial activity maps for individual neurons (Figure 11A). As with the network built 477 

with phenomenological resonators (Figure 8), we observed stable and robust grid-like spatial 478 

maps emerge even with highest degree of heterogeneities in the CAN model with mechanistic 479 

resonator neurons (Figure 11). Furthermore, compared to homogeneous model, the grid pattern 480 

activity obtained by the heterogeneous CAN model closely mimics the grid cell activity, endowed 481 

with imprecise grid field shapes, observed in neurons in MEC region of the brain (Figure 11). 482 

Quantitatively, the grid score (Figure 11B), average spacing (Figure 11C), and mean grid field 483 

size (Figure 11G) were remarkably robust to the introduction of heterogeneities. However, the 484 

average (Figure 11E) and peak firing (Figure 11D) reduced with increase in degree of 485 

heterogeneities (Figure 11D) and consequently affected measurements that were dependent on 486 

firing rate (i.e., information rate and sparsity; Figure 11H–I). Together, these results demonstrate 487 

that intrinsic neuronal resonance, introduced either through phenomenological (Figure 8) or 488 
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through mechanistic (Figure 11) single-neuron models, yielded stable and robust grid-like pattern 489 

in heterogeneous CAN models. 490 

The grid-cell activity on a 2D plane represents a spatially repetitive periodic pattern. 491 

Consequently, a phase plane constructed from activity along the diagonal of the 2D plane on one 492 

axis (Figure 11-figure supplement 1A), and the spatial derivative of this activity on the other 493 

should provide a visual representation of the impact of heterogeneities and resonance on this 494 

periodic pattern of activity. To visualize the specific changes in the periodic orbits obtained with 495 

homogeneous and heterogeneous networks constructed with integrators or resonators, we plotted 496 

the diagonal activity profiles of 5 randomly picked neurons using the phase plane representation 497 

(Figure 11-figure supplement 1B). This visual representation confirmed that homogenous CAN 498 

models built of integrators or resonators yielded stable closed orbit trajectories, representing 499 

similarly robust grid-patterned periodic activity (Figure 11-figure supplement 1B). The disparate 500 

sizes of different orbits are merely a reflection of the intersection of the diagonal with a given 501 

grid-field. Specifically, if the grid fields were considered to be ideal circles, the orbital size is the 502 

largest if diagonal passes through the diameter, with orbital size reducing for any other chord. 503 

Upon introduction of heterogeneities, the phase-plane plots of diagonal activity profiles from the 504 

heterogeneous integrator network lacked closed orbits (Figure 11-figure supplement 1B). This is 505 

consistent with drastic reductions in grid score and information rate for these heterogeneous 506 

network models (Figures 2–3). In striking contrast, the phase-plane plots from the heterogeneous 507 

resonator network manifested closed orbits even with the highest degree of heterogeneities 508 

introduced, irrespective of whether resonance was introduced through a phenomenological or a 509 

mechanistic model (Figure 11-figure supplement 1B). Although these phase-plane trajectories 510 

were noisy compared to those from the homogeneous resonator network, the presence of closed 511 

orbits indicated the manifestation of spatial periodicity in these activity patterns (Figure 11-figure 512 

supplement 1B). These observations visually demonstrated that resonator neurons stabilized the 513 

heterogeneous network, and maintained spatial periodicity in grid-cell activity, irrespective of 514 

whether resonance was introduced through a phenomenological or a mechanistic model. 515 

The slow kinetics of the negative feedback loop in mechanistic resonators is a critical 516 

requirement for stabilizing heterogeneous CAN models. 517 

Our rationale behind the introduction of intrinsic resonance into the neuron was that it would 518 

suppress the low-frequency perturbations introduced by biological heterogeneities (Figure 4). 519 

Consequently, our hypothesis is that the targeted suppression of low-frequency components 520 

resulted in the stabilization of the CAN model. Two lines of evidence for this hypothesis were 521 
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that the suppression of low-frequency components through phenomenological (Figure 8) or 522 

through mechanistic (Figure 11) resonators resulted in stabilization of the heterogeneous CAN 523 

models. An advantage of recruiting a mechanistic model for introducing resonance is that 524 

sensitivity analyses on its parameters could provide valuable mechanistic insights about how such 525 

stabilization is achieved. With reference to specific hypothesis, the ability to tune resonance by 526 

altering the feedback time constant 𝜏( (Figure 9I), without altering the feedback kernel or the 527 

feedback strength, provides an efficient route to understand the mechanistic origins of the 528 

stabilization. Specifically, the value of 𝜏( (default value=75 ms) governs the slow kinetics of the 529 

feedback loop and is the source for the targeted suppression of low-frequency components. 530 

Reducing 𝜏( would imply a faster negative feedback loop, thereby suppressing even higher-531 

frequency components. As a further test of our hypothesis on the role of suppressing low-532 

frequency components in stabilizing the CAN network, we asked if mechanistic resonators with 533 

lower values of 𝜏( would be able to stabilize heterogeneous CAN models (Figure 12). If fast 534 

negative feedback loops (i.e., low values of 𝜏() were sufficient to stabilize heterogeneous CAN 535 

models, that would counter our hypothesis on the requirement of targeted suppression of low-536 

frequency components. To the contrary, we found that heterogeneous CAN networks with 537 

neurons endowed with fast negative feedback loops were incapable of stabilizing the grid cell 538 

network (Figure 12). With progressive increase in 𝜏(, the grid-patterned firing stabilized even for 539 

high degrees of heterogeneities (Figure 12B–C for low values of 𝜏(; Figure 11B for 𝜏(=75 ms), 540 

thus providing a direct additional line of evidence for our hypothesis on the need for targeted 541 

suppression of low-frequency components in stabilizing the network. We noted that the impact of 542 

altering 𝜏( was specifically related to stabilizing heterogeneous networks by suppressing 543 

heterogeneities-driven low-frequency perturbations, because altering 𝜏( did not alter grid-544 

patterned activity in homogeneous resonator networks (Figure 9A–B). Together, our results 545 

provide multiple lines of evidence that the slow kinetics of the negative feedback loop in single-546 

neuron dynamics (Figure 9A) mediates targeted suppression of low-frequency signals (Figure 9D–547 

E), thereby yielding intrinsic neuronal resonance (Figure 9I) and stabilizing grid-patterned 548 

activity in heterogeneous CAN models (Fig. 11–12).   549 

Resonating neurons suppressed the impact of biological heterogeneities on low-frequency 550 

components of neural activity. 551 

As detailed above, our hypothesis on a potential role for intrinsic neuronal resonance in 552 

stabilizing grid-patterned firing in heterogeneous CAN models was centered on the ability of 553 

resonators in specifically suppressing low-frequency components. Although our analyses 554 
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provided evidence for stabilization of grid-patterned firing with phenomenological (Figure 8) or 555 

mechanistic (Figure 11) resonators, did resonance specifically suppress the impact of biological 556 

heterogeneities of low-frequency components of neural activity? To assess this, we performed 557 

frequency-dependent analyses of neural activity in CAN models with phenomenological or 558 

mechanistic resonators (Figure 13, Figure 13-figure supplements 1–3) and compared them with 559 

integrator-based CAN models (Figure 4). First, we found that the variance in the deviations of 560 

neural activity in heterogeneous networks with reference to the respective homogeneous models 561 

were considerably lower with resonator neurons (both phenomenological and mechanistic 562 

models), compared to their integrator counterparts (Figure 13A–B, Figure 13D–E, Figure 13–563 

figure supplements 1–3). Second, comparing the relative power of neural activity across different 564 

octaves, we found that network with resonators suppressed lower frequencies (predominantly the 565 

0–2 Hz band) and enhanced power in the range of neuronal resonance frequencies, when 566 

compared with their integrator counterparts (Figure 13C, Figure 13F, Figure 13–figure 567 

supplements 1–3). This relative suppression of low-frequency power accompanied by the relative 568 

enhancement of high-frequency power was observed across all networks with resonator, either 569 

homogeneous (Figure 13-figure supplements 1–2) or heterogeneous with distinct forms of 570 

heterogeneities (Figure 13-figure supplement 3G–I). Importantly, given the slow activity-571 

dependent negative feedback loop involved in mechanistic resonators, the low-frequency 572 

suppression was found to be extremely effective across all degrees of heterogeneities (Figure 573 

13D–E) with minimal increases of power in high-frequency bands (Figure 13F) compared to their 574 

phenomenological counterparts (Figure 13A–C). The phenomenological resonators were built 575 

with a simple high-pass filter that isn’t endowed with activity-dependent filtering capabilities. In 576 

addition, the derivative-based implementation of the phenomenological resonator model yielded 577 

spurious high-frequency power, which was averted with the slow activity-dependent negative 578 

feedback loop incorporated into the mechanistic resonator model (Figure 13D–F).  579 

Together, our results demonstrated that biological heterogeneities predominantly altered 580 

low-frequency components of neural activity, and provide strong quantitative lines of evidence 581 

that intrinsic neuronal resonance plays a stabilizing role in heterogeneous networks by targeted 582 

suppression of low-frequency inputs, thereby counteracting the disruptive impact of biological 583 

heterogeneities on low-frequency components.  584 
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DISCUSSION  585 

The principal conclusion of this study is that intrinsic neuronal resonance stabilizes heterogeneous 586 

2D CAN models, by suppressing heterogeneity-induced perturbations in low-frequency 587 

components of neural activity. Our analyses provided the following lines of evidence in support 588 

of this conclusion: 589 

1. Neural-circuit heterogeneities destabilized grid-patterned activity generation in a 2D CAN 590 

model (Figures 2–3). 591 

2. Neural-circuit heterogeneities predominantly introduced perturbations in the low-frequency 592 

components of neural activity (Figure 4). 593 

3. Targeted suppression of low-frequency components through phenomenological (Figure 5C) or 594 

through mechanistic (Figure 9D) resonators resulted in stabilization of the heterogeneous 595 

CAN models (Figure 8 and Figure 11). Thus, stabilization was achieved irrespective of the 596 

means employed to suppress low-frequency components: an activity-independent suppression 597 

of low-frequencies (Figure 5) or an activity-dependent slow negative feedback loop (Figure 598 

9). 599 

4. Changing the feedback time constant 𝜏( in mechanistic resonators, without changes to neural 600 

gain or the feedback strength allowed us to control the specific range of frequencies that 601 

would be suppressed. Our analyses showed that a slow negative feedback loop, which results 602 

in targeted suppression of low-frequency components, was essential in stabilizing grid-603 

patterned activity (Figure 12). As the slow negative feedback loop and the resultant 604 

suppression of low frequencies mediates intrinsic neuronal resonance, these analyses provide 605 

important lines of evidence for the role of targeted suppression of low frequencies in 606 

stabilizing grid patterned activity. 607 

5. We demonstrate that the incorporation of phenomenological (Figure 13A–C) or mechanistic 608 

(Figure 13D–F) resonators specifically suppressed lower frequencies of activity in the 2D 609 

CAN model. 610 

A physiological role for intrinsic neuronal resonance in stabilizing heterogeneous neural 611 

networks. 612 

Intrinsic neuronal resonance is effectuated by the expression of resonating conductances, which 613 

are mediated by restorative channels endowed with activation time constants slower than the 614 

neuronal membrane time constant (Hutcheon and Yarom, 2000). The gating properties and the 615 
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kinetics of these ion channels allow them to suppress low-frequency activity with little to no 616 

impact on higher frequencies, yielding resonance in conjunction with the low-pass filter governed 617 

by the membrane time constant (Hutcheon and Yarom, 2000). This intrinsic form of neuronal 618 

resonance, mediated by ion channels that are intrinsic to the neural structure, is dependent on 619 

membrane voltage (Narayanan and Johnston, 2007, 2008; Hu et al., 2009), somato-dendritic 620 

recording location (Narayanan and Johnston, 2007, 2008; Hu et al., 2009), neuronal location 621 

along the dorso-ventral axis (Giocomo et al., 2007; Garden et al., 2008) and is regulated by 622 

activity-dependent plasticity (Brager and Johnston, 2007; Narayanan and Johnston, 2007). 623 

Resonating conductances have been implicated in providing frequency selectivity to specific 624 

range of frequencies under sub- and supra-threshold conditions (Hutcheon and Yarom, 2000; 625 

Narayanan and Johnston, 2007; Hu et al., 2009; Das and Narayanan, 2017; Das et al., 2017), in 626 

mediating membrane potential oscillations (Fransen et al., 2004; Mittal and Narayanan, 2018), in 627 

mediating coincidence detection through alteration to the class of neural excitability (Das and 628 

Narayanan, 2017; Das et al., 2017), in regulating spatio-temporal summation of synaptic inputs 629 

(Garden et al., 2008), in introducing phase leads in specific ranges of frequencies regulating 630 

temporal relationships of neural responses to oscillatory inputs (Narayanan and Johnston, 2008), 631 

in regulating local-field potentials and associated spike phases (Sinha and Narayanan, 2015; Ness 632 

et al., 2018), in mediating activity homeostasis through regulation of neural excitability (Brager 633 

and Johnston, 2007; Narayanan and Johnston, 2007; Honnuraiah and Narayanan, 2013), in 634 

altering synaptic plasticity profiles (Nolan et al., 2007; Narayanan and Johnston, 2010) and in 635 

regulating grid-cell scales (Giocomo et al., 2007; Giocomo et al., 2011b; Giocomo et al., 2011a; 636 

Pastoll et al., 2012).  637 

Our analyses provide an important additional role for intrinsic resonance in stabilizing 638 

heterogeneous neural network, through the suppression of heterogeneity-induced perturbation in 639 

low-frequency components. The 1/f characteristics associated with neural activity implies that the 640 

power in lower frequencies is higher (Buzsaki, 2006), and our analyses show that the 641 

incorporation of biological heterogeneities into networks disrupt their functional outcomes by 642 

introducing perturbations predominantly in the lower frequencies. We demonstrate that resonating 643 

conductances, through their ability to suppress low-frequency activity, are ideally placed to 644 

suppress such low-frequency perturbations thereby stabilizing activity patterns in the face of 645 

biological heterogeneities. As biological heterogeneities are ubiquitous, we postulate intrinsic 646 

neuronal resonance as a powerful mechanism that lends stability across different heterogeneous 647 

networks, through suppression of low-frequency perturbations introduced by the heterogeneities. 648 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2020.12.10.419200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.419200


Page 22 of 54 
 

A corollary to this postulate is that the specific resonance frequency of a given neural structure is 649 

a reflection of the need to suppress frequencies where the perturbations are introduced by specific 650 

forms and degree of biological heterogeneities expressed in the network where the structure 651 

resides.  652 

Within this framework, the dorso-ventral gradient in resonance frequencies in entorhinal 653 

stellate cells could be a reflection of the impact of specific forms of heterogeneities expressed 654 

along the dorso-ventral axis on specific frequency ranges, with resonance frequency being higher 655 

in regions where a larger suppression of low-frequency components is essential. Future 656 

electrophysiological and computational studies could specifically test this hypothesis by 657 

quantifying the different heterogeneities in these sub-regions, assessing their frequency-dependent 658 

impact on neural activity in individual neurons and their networks. More broadly, future studies 659 

could directly measure the impact of perturbing resonating conductances on network stability and 660 

low-frequency activity in different brain regions to test our predictions on the relationship among 661 

biological heterogeneities, intrinsic resonance and network stability. 662 

Slow negative feedback: Stability, noise suppression, and robustness. 663 

Our analyses demonstrated the efficacy of a slow negative feedback loop in stabilizing grid-664 

patterned activity in CAN models (Figures 11–12). From a broader perspective, negative 665 

feedback is a standard motif for establishing stabilization and robustness of dynamical systems 666 

spanning control engineering (Nyquist, 1932; Black, 1934; Bode, 1945; Bechhoefer, 2005; 667 

Åström and Murray, 2008) and biological networks (Barkai and Leibler, 1997; Weng et al., 1999; 668 

Hutcheon and Yarom, 2000; Bhalla et al., 2002; Milo et al., 2002; Shen-Orr et al., 2002; Tyson et 669 

al., 2003; Alon, 2007; Turrigiano, 2007; Novak and Tyson, 2008; Tyson and Novak, 2010). From 670 

the perspective of biological systems, the impact of negative feedback on stability, robustness, 671 

and homeostasis span multiple scales, from single molecules dynamics to effective functioning of 672 

entire ecosystem. Examples of the stabilizing roles of negative feedback at the organs level 673 

include baroreflex in blood pressure regulation (Sved, 2009), body temperature, blood glucose 674 

level, endocrine hormone secretion (Modell et al., 2015) and erythropoiesis (Koulnis et al., 2014). 675 

Cells are equipped with distinct receptors that can sense changes in temperature, pH, damage to 676 

cellular workhorse proteins or DNA, internal state of cells and accumulation of products (Tyson 677 

and Novak, 2010). Using functional motifs consisting combinations of positive and negative 678 

feedback loops often imparts stability to the biochemical reactions and signaling networks 679 

comprising these receptors, thus maintaining homeostasis (Alon, 2007). Specific examples for 680 

negative feedback in biochemical reactions and signaling networks include protein synthesis 681 
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(Goodwin, 1966), mitotic oscillators (Goldbeter, 1991), MAPK signaling pathways (Kholodenko, 682 

2000; Bhalla et al., 2002), cAMP production (Martiel and Goldbeter, 1987), adaptation in 683 

bacterial chemotaxis (Knox et al., 1986; Barkai and Leibler, 1997; Spiro et al., 1997; Yi et al., 684 

2000; Levchenko and Iglesias, 2002), and M/G1 module (G1/S and G2/M phases) of the cell 685 

cycle control system (Rupes, 2002).  686 

Importantly, with specific relevance to our hypothesis, negative feedback has been shown 687 

to reduce the effects of noise and enhance system stability with reference to internal and external 688 

perturbations because of the suppressive nature of this motif (Savageau, 1974; Becskei and 689 

Serrano, 2000; Thattai and van Oudenaarden, 2001; Austin et al., 2006; Dublanche et al., 2006; 690 

Raj and van Oudenaarden, 2008; Lestas et al., 2010; Cheong et al., 2011; Voliotis et al., 2014). In 691 

addition, negative feedback alleviates bottlenecks on information transfer (Cheong et al., 2011) 692 

Negative feedback has also been proposed as a mechanism for stable alignment of dose-response 693 

in the signaling system for mating pheromones in yeast, by adjusting the dose-response of 694 

downstream systems to match the dose-response of upper-level systems and simultaneously 695 

reducing the amplification of stochastic noise in the system (Yu et al., 2008). 696 

At the cellular scale, the dynamics of action potential, which is fundamental unit of 697 

information transfer in nervous system, is critically dependent on the negative feedback by 698 

delayed-rectifier potassium channels (Hodgkin and Huxley, 1952c, b, a). Resonating 699 

conductances (or phenomenological inductances) mediate slow negative feedback in sustaining 700 

sub-threshold membrane potential oscillations along with amplifying conductances that mediate a 701 

fast positive feedback loop (Cole and Baker, 1941; Mauro, 1961; Cole, 1968; Mauro et al., 1970; 702 

Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). A similar combination of positive 703 

and negative feedback loop involving synaptic connectivity has been suggested to modulate the 704 

neuronal oscillation frequency during sensory processing in neuronal circuit model of layer 2 and 705 

3 of sensory cortex (Lee et al., 2018). Further, positive and negative feedback signals play critical 706 

roles in the emergence of neuronal polarity (Takano et al., 2019). Activity-dependent negative 707 

feedback mechanisms control the density of ion channels and receptors based on the levels of 708 

neural activity, resulting in homeostatic activity regulation (Bienenstock et al., 1982; Turrigiano 709 

et al., 1994; Turrigiano et al., 1995; Turrigiano et al., 1998; Desai et al., 1999; Turrigiano, 2007; 710 

O'Leary et al., 2010; O'Leary and Wyllie, 2011; Honnuraiah and Narayanan, 2013; O'Leary et al., 711 

2014; Srikanth and Narayanan, 2015). Microglia have been shown to stabilize neuronal activity 712 

through a negative feedback loop that is dependent on extracellular ATP concentration, which is 713 

dependent on neural activity (Badimon et al., 2020). Models for neuronal networks have 714 
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successfully utilized the negative feedback loop for achieving transfer of decorrelated inputs of 715 

olfactory information in the paleocortex (Ambros-Ingerson et al., 1990), in the reduction of 716 

redundancy in information transfer in the visual pathway (Pece, 1992), in a model of the LGN 717 

inhibited by the V1 to achieve specificity (Murphy and Sillito, 1987), and in a model of 718 

cerebellum based on feedback motifs (D’Angelo et al., 2016). 719 

Finally, an important distinction between the phenomenological and the mechanistic 720 

resonators is that the former is activity-independent whereas the latter is activity-dependent in 721 

terms of their ability to suppress low-frequency signals. This distinction explains the differences 722 

between how these two resonators act on homogeneous and heterogeneous CAN networks, 723 

especially in terms of suppressing low-frequency power (Figure 13, Figure 13-figure supplements 724 

1–3). Together, the incorporation of resonance through a negative feedback loop allowed us to 725 

link our analyses to the well-established role of network motifs involving negative feedback loops 726 

in inducing stability and suppressing external/internal noise in engineering and biological 727 

systems. We envisage intrinsic neuronal resonance as a cellular-scale activity-dependent negative 728 

feedback mechanism, a specific instance of a well-established network motif that effectuates 729 

stability and suppresses perturbations across different networks. 730 

Future directions and considerations in model interpretation. 731 

Our analyses here employed a rate-based CAN model for the generation of grid-patterned 732 

activity. Rate-based models are inherently limited in their ability to assess temporal relationships 733 

between spike timings, which are important from the temporal coding perspective where spike 734 

timings with reference to extracellular oscillations have been shown to carry spatial information 735 

within grid fields (Hafting et al., 2008). Additionally, the CAN model is one of the several 736 

theoretical and computational frameworks that have been proposed for the emergence of grid cell 737 

activity patterns, and there are lines of experimental evidence that support aspects of these distinct 738 

models (Kropff and Treves, 2008; Burak and Fiete, 2009; Burgess and O'Keefe, 2011; Giocomo 739 

et al., 2011a; Navratilova et al., 2012; Couey et al., 2013; Domnisoru et al., 2013; Schmidt-Hieber 740 

and Hausser, 2013; Yoon et al., 2013; Schmidt-Hieber et al., 2017; Urdapilleta et al., 2017; Stella 741 

et al., 2020; Tukker et al., 2021). Within some of these frameworks, resonating conductances 742 

have been postulated to play specific roles, distinct from the one proposed in our study, in the 743 

emergence of grid-patterned activity and the regulation of their properties (Giocomo et al., 2007; 744 

Giocomo et al., 2011b; Giocomo et al., 2011a; Pastoll et al., 2012). Together, the use of the rate-745 

based CAN model has limitations in terms of assessing temporal relationships between 746 

oscillations and spike timings, and in deciphering the other potential roles of resonating 747 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2020.12.10.419200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.419200


Page 25 of 54 
 

conductances in grid-patterned firing. However, models that employ other theoretical frameworks 748 

do not explicitly incorporate the several heterogeneities in afferent, intrinsic and synaptic 749 

properties of biological networks, including those in the conductance and gating properties of 750 

resonating conductances. Future studies should therefore explore the role of resonating 751 

conductances in stabilizing conductance-based grid-cell networks that are endowed with all forms 752 

of biological heterogeneities. Such conductance-based analyses should also systematically assess 753 

the impact of resonating conductances, their kinetics and gating properties (including associated 754 

heterogeneities) in regulating temporal relationships of spike timings with theta-frequency 755 

oscillations spanning the different theoretical frameworks. 756 

A further direction for future studies could be the use of morphologically realistic 757 

conductance-based model neurons, which would enable the incorporation of the distinct ion-758 

channels and receptors distributed across the somato-dendritic arborization. Such models could 759 

assess the role of interactions among several somato-dendritic conductances, especially with 760 

resonating conductances, in regulating grid-patterned activity generation (Burgess and O'Keefe, 761 

2011; Giocomo et al., 2011a). In addition, computations performed by such a morphologically 762 

realistic conductance-based neuron are more complex than the simplification of neural 763 

computation as an integrator or a resonator (Schmidt-Hieber et al., 2017). For instance, owing to 764 

differential distribution of ionic conductances, different parts of the neurons could exhibit 765 

integrator- or resonator-like characteristics, with interactions among different compartments 766 

yielding the final outcome (Das and Narayanan, 2017; Das et al., 2017). The conclusions of our 767 

study emphasizing the importance of biological heterogeneities and resonating conductances in 768 

grid-cell models underline the need for heterogeneous morphologically realistic conductance-769 

based network models to systematically compare different theoretical frameworks for grid-cell 770 

emergence. Future studies should endeavor to build such complex heterogeneous networks, 771 

endowed with synaptic and channel noise, in systematically assessing the role of heterogeneities 772 

and specific ion-channel conductances in the emergence of grid-patterned neural activity across 773 

different theoretical frameworks. 774 

In summary, our analyses demonstrated that incorporation of different forms of biological 775 

heterogeneities disrupted network functions through perturbations that were predominantly in the 776 

lower frequency components. We showed that intrinsic neuronal resonance, a mechanism that 777 

suppressed low-frequency activity, stabilized network function. As biological heterogeneities are 778 

ubiquitous and as the dominance of low-frequency perturbations is pervasive across biological 779 

networks (Hausdorff and Peng, 1996; Gilden, 2001; Gisiger, 2001; Ward, 2001; Buzsaki, 2006), 780 
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we postulate that mechanisms that suppress low-frequency components could be a generalized 781 

route to stabilize heterogeneous biological networks. 782 

  783 
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METHODS 784 

Development of a virtual trajectory to reduce computational cost 785 

We developed the following algorithm to yield faster virtual trajectories in either a circular (2 m 786 

diameter) or a square (2 m × 2 m) arena: 787 

1. The starting location of the virtual animal was set at the center of the arena (𝑥,=1, 𝑦,=1). 788 

2. At each time step (=1 ms), two random numbers were picked, one denoting distance from 789 

a uniform distribution (𝑑- ∈ [0, 0.004]) and another yielding the angle of movement from 790 

another uniform distribution (𝐴- ∈ [−𝜋/36, 𝜋/36]). The angle of movement was 791 

restricted to within 𝜋/36 on either side to yield smooth movements within the spatial 792 

arena. The new coordinate of the animal was then updated as: 793 

𝑥- = 𝑥-.) + 𝑑- 	sin(𝐴-)     (1) 794 

𝑦- = 𝑦-.) + 𝑑-	cos(𝐴-)      (2) 795 

If the new location (𝑥-, 𝑦-) fell outside the arena, the 𝑑- and 𝐴- are repicked until (𝑥-, 𝑦-) 796 

were inside the bounds of the arena. 797 

3. To enable sharp turns near the boundaries of the arena, the 𝐴- random variable was picked 798 

from a uniform distribution of (𝐴- ∈ [0, 2𝜋]) instead of uniform distribution of (𝐴- ∈799 

[−𝜋/36, 𝜋/36]) if either 𝑥-.) or 𝑦-.) was close to arena boundaries. This enhanced range 800 

for 𝐴- closed to the boundaries ensured that there was enough deflection in the trajectory 801 

to mimic sharp turns in animal runs in open arena boundaries. 802 

The limited range of 𝐴- ∈ [−𝜋/36, 𝜋/36] in step 2 ensured that the head direction and velocity 803 

inputs to the neurons in the CAN model were not changing drastically at every time step of the 804 

simulation run, thereby stabilizing spatial activity. We found the virtual trajectories yielded by 805 

this algorithm to closely mimic animal runs in an open arena, with better control over simulation 806 

periods and better computational efficiency in terms of covering the entire arena within shorter 807 

time duration.  808 

Structure and dynamics of the continuous attractor network model with integrator neurons 809 

Each neuron in the network has a preferred direction 𝜃$ (assumed to receive input from specific 810 

head direction cells), which can take its value to be among 0, π/2, π and 3π/2 respectively 811 

depicting east, north, west and south. The network was divided into local blocks of four cells 812 

representing each of these four directions and local blocks were uniformly tiled to span the entire 813 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2020.12.10.419200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.419200


Page 28 of 54 
 

network. This organization translated to a scenario where one-fourth of the neurons in the 814 

network were endowed with inputs that had the same direction preference. Of the two sets of 815 

synaptic inputs to neurons in the network, intra-network inputs followed a Mexican-hat 816 

connectivity pattern. The recurrent weights matrix for Mexican-hat connectivity was achieved 817 

through the difference of Gaussian equation, given by (Burak and Fiete, 2009): 818 

𝑊$% = 𝑊,(𝒙$ − 𝒙% − 𝑙�̂�/%)      (3)	819 

𝑊,(𝒙) = 𝑎 exp(−𝛾|𝒙|+) − exp(−𝛽|𝒙|+)    (4) 820 

where 𝑊$% represented the synaptic weight from neuron 𝑗 (located at 𝒙%) to neuron 𝑖 (located at 821 

𝒙$), �̂�/% defined the unit vector pointing along the θj direction. This weight matrix was endowed 822 

with a center-shifted center-surround connectivity, and the parameter 𝑙 (default value: 2) defined 823 

the amount of shift along �̂�/%. In the difference of Gaussians formulation in equation 6, the 824 

parameter 𝑎 regulated the sign of the synaptic weights and was set to 1, defining an all-inhibitory 825 

network. The other parameters were γ = 1.1×β with β = 3/λ2, and λ (default value: 13) defining the 826 

periodicity of the lattice (Burak and Fiete, 2009). 827 

The second set of synaptic inputs to individual neurons, arriving as feed-forward inputs 828 

based on the velocity of the animal and the preferred direction of the neuron, was computed as: 829 

𝐵$ = 1 + 𝛼�̂�/% ∙ 𝒗      (5) 830 

where 𝛼 denotes a gain parameter for the velocity inputs (velocity scaling factor), 𝒗 represents the 831 

velocity vector derived from the trajectory of the virtual animal.  832 

The dynamics of the rate-based integrator neurons, driven by these two sets of inputs was 833 

then computed as:  834 

𝜏
𝑑𝑆$
𝑑𝑡 + 𝑆$ = 𝑓 Z[𝑊$%𝑆%

%

+ 𝐵$\ (6) 

where 𝑓 represented the neural transfer function, which was implemented as a simple rectification 835 

non-linearity, and 𝑆$(𝑡) denoted the activity of neuron 𝑖 at time point 𝑡. The default value of the 836 

integration time constant (τ) of neural response was 10 ms. CAN models were initialized with 837 

randomized values of 𝑆$ (𝑆$, 	 ∈ [0, 1]) for all neurons. For stable spontaneous pattern to emerge 838 

over the neural lattice, an initial constant feed-forward drive was provided by ensuring the 839 

velocity input was zero for the initial 100-ms period. The time step (dt) for numerical integration 840 

was 0.5 ms when we employed the real trajectory and 1 ms for simulations with virtual 841 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2020.12.10.419200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.419200


Page 29 of 54 
 

trajectories. We confirmed that the use of 1-ms time steps for virtual trajectories did not hamper 842 

accuracy of the outcomes. Activity patterns of all neurons were recorded for each time step. For 843 

visualization of the results, the spike threshold was set at 0.1 (a.u.). 844 

Incorporating biological heterogeneities into the CAN model 845 

We introduced intrinsic, afferent and synaptic forms of biological heterogeneities by 846 

independently randomizing the values of integration time constant (τ), velocity scaling factor (𝛼) 847 

and the connectivity matrix (𝑊$%), respectively, across neurons in the CAN model. Specifically, in 848 

the homogeneous CAN model, these parameters were set to a default value and were identical 849 

across all neurons in the network. However, in heterogeneous networks, each neuron in the 850 

network was assigned a different value for these parameters, each picked from respective uniform 851 

distributions (Figure 2-table supplement 1). We progressively expanded the ranges of the 852 

respective uniform distributions to progressively increase the degree of heterogeneity (Figure 2-853 

table supplement 1). We built CAN models with four different forms of heterogeneities: networks 854 

that were endowed with one of intrinsic, afferent and synaptic forms of heterogeneities, and 855 

networks that expressed all forms together. In networks that expressed only one form of 856 

heterogeneity, the other two parameters were set identical across all neurons. In networks 857 

expressing all forms of heterogeneities, all three parameters were randomized with the span of the 858 

uniform distribution for each parameter concurrently increasing with the degree of heterogeneity 859 

(Figure 2-table supplement 1). We simulated different trials of a CAN model by employing 860 

different sets of initial randomization of activity values (𝑆$,) for all the cells, while keeping all 861 

other model parameters (including the connectivity matrix, trajectory and the specific instance of 862 

heterogeneities) unchanged (Figure 3–figure supplement 1). 863 

Introducing resonance in rate-based neurons: Phenomenological model 864 

To assess the frequency-dependent response properties, we employed a chirp stimulus 𝑐),,(𝑡), 865 

defined a constant-amplitude sinusoidal input with its frequency linearly increasing as a function 866 

of time, spanning 0–100 Hz in 100 s. We fed 𝑐),,(𝑡) as the input to a rate-based model neuron 867 

and recorded the response of the neuron: 868 

𝜏
𝑑𝑠
𝑑𝑡 + 𝑠 = 𝑐),, (7) 

We computed the Fourier transform of the response	𝑠(𝑡) as 𝑆(𝑓) and employed the magnitude of 869 

𝑆(𝑓) to evaluate the frequency-dependent response properties of the neuron. Expectedly, the 870 

integrator neuron acted as a low-pass filter (Figure 5A–B). 871 
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A simple means to elicit resonance from the response of a low-pass system is to feed the 872 

output of the low-pass system to a high pass filter (HPF), and the interaction between these filters 873 

results in resonance (Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). We tested this 874 

employing the 𝑐),,(𝑡) stimulus, by using the low-pass response 𝑠(𝑡) to the chirp stimulus from 875 

equation 7: 876 

ℎ = 𝑠 `
𝑑𝑠
𝑑𝑡a

0

 (8) 

Here, ℎ(𝑡) represented the output of the resultant resonator neuron, 𝜀 defined an exponent that 877 

regulates the slope of the frequency-selective response properties of the high pass filter. When 878 

𝜀 = 0, ℎ(𝑡) trivially falls back to the low-pass response 𝑠(𝑡). The magnitude of the Fourier 879 

transform of ℎ(𝑡), 𝐻(𝑓) manifested resonance in response to the 𝑐),,(𝑡) stimulus (Figure 5A, 880 

Figure 5C). This model for achieving resonance in single neurons was referred to as a 881 

phenomenological resonator. 882 

Having confirmed that the incorporation of a high-pass filter would yield resonating 883 

dynamics, we employed this formulation to define the dynamics of a resonator neuron in the CAN 884 

model through the combination of the existing low-pass kinetics (equation 6) and the high-pass 885 

kinetics. Specifically, we obtained 𝑆$ for each neuron 𝑖 in the CAN model from equation 6, and 886 

redefined neural activity as the product of this 𝑆$ (from equation 6) and its derivative raised to an 887 

exponent: 888 

𝑆$ ∶= 𝑅𝑆$ e
12!
1-
f
0
      (9) 889 

where, R was a scaling factor for matching the response of resonator neurons with integrator 890 

neurons and 𝜀 defined the exponent of the high pass filter. Together, whereas the frequency-891 

dependent response of the integrator is controlled by integration time constant (𝜏), that of a 892 

resonator is dependent on 𝜏 of the integrator as well as the HPF exponent 𝜀 (Figures 5D–E).   893 

To simulate homogeneous CAN models with resonator neurons, all integrator neurons in 894 

the standard homogeneous model (equations 3–6) were replaced with resonator neurons. Intrinsic, 895 

synaptic and afferent heterogeneities are introduced as previously described (Figure 2-table 896 

supplement 1) to build heterogeneous CAN models with resonator neurons. The other processes, 897 

including initialization procedure of the resonator neuron network were identical to the integrator 898 

neuron network. In simulations where 𝜏 was changed from its base value of 10 ms, the span of 899 

uniform distributions that defined the five degrees of heterogeneities were appropriately rescaled 900 

and centered at the new value of 𝜏. For instance, when 𝜏 was set to 8 ms, the spans of the uniform 901 
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distribution for the first and the fifth degrees of heterogeneity were 6.4–9.6 ms (20% of the base 902 

value on either side), and 1–16 ms (100% of the base value on either side, with an absolute cutoff 903 

at 1 ms), respectively. 904 

Mechanistic model for introducing intrinsic resonance in rate-based neurons. 905 

Neuronal intrinsic resonance was achieved by incorporating a slow negative feedback to the 906 

single-neuronal dynamics of rate-based neurons (Figure 9A). We tested the emergence of intrinsic 907 

resonance using the 𝑐),,(𝑡) stimulus described earlier (equation 7; Figure 9D–E). The dynamics 908 

of mechanistic model of resonance as follows with the 𝑐),,(𝑡) stimulus: 909 

𝜏 12
1-
=–𝑆	– 𝑔	𝑚(𝑆) + 𝑐),,   (10) 910 

1(
1-
= (".(

3#
      (11) 911 

Here, 𝑆 governed neuronal activity, 𝑚 defined the feedback state variable, and 𝑔 (default value 912 

0.015) represented feedback strength. The slow kinetics of the negative feedback was controlled 913 

by the feedback time constant (𝜏() with default value of 75 ms. In order to manifest 914 

resonance,	𝜏( > 𝜏. The steady-state feedback kernel (𝑚') of the negative feedback is 915 

sigmoidally dependent on the output of the neuron (𝑆), with default value of the half-maximal 916 

activity (𝑆)/+) to be 0.3 and the slope (𝑘) to be 0.1: 917 

𝑚' = `1 + exp	 e2$/&.2
4

fa
.)

   (12) 918 

The magnitude of the Fourier transform of 𝑆(𝑡) in this system of differential equations, 𝑆(𝑓), was 919 

assessed for the expression of resonance in response to the 𝑐),,(𝑡) stimulus (Figure. 9D). This 920 

model for achieving resonance in single neurons was referred to as a mechanistic resonator. 921 

These resonating neurons were incorporated within the CAN framework to assess how 922 

neuronal intrinsic resonance achieved through mechanistic means affected the grid cell firing. The 923 

synaptic weight matrix (equation 4) as well as the velocity dependence (equation 5) associated 924 

with CAN model consisting of resonator neurons were identical to CAN model with integrator 925 

neurons, with the only difference in the single-neuronal dynamics: 926 

           (13) 927 

with 𝑚(𝑆$) evolving as per equation (11), implemented the activity-dependent slow negative 928 

feedback which is dependent on the current state (𝑆$) of the 𝑖56 neuron. 929 

 930 

𝜏
𝑑𝑆'
𝑑𝑡 =–𝑆' 	– 𝑔	𝑚(𝑆') + 𝑓./𝑊'(𝑆(

(

+ 𝐵'2 
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Quantitative analysis of grid cell activity 931 

To quantitative assess the impact of heterogeneities and the introduction of resonance into the 932 

CAN neurons, we employed standard measurements of grid-cell activity (Fyhn et al., 2004; 933 

Hafting et al., 2005). 934 

We divided the space of the open arena into 100×100 pixels to compute the rate maps of 935 

grid cell activity in the network. Activity spatial maps were constructed for each cell by taking the 936 

activity (𝑆$ for cell 𝑖) of the cell at each time stamp and synchronizing the index of corresponding 937 

(𝑥, 𝑦) location of the virtual animal in the open arena, for the entire duration of the simulation. 938 

Occupancy spatial maps were constructed by computing the probability (𝑝() of finding the rat in 939 

𝑚th pixel, employing the relative time spent by the animal in that pixel across the total simulation 940 

period. Spatial rate maps for each cell in the network were computed by normalizing their activity 941 

spatial maps by the occupancy spatial map for that run. Spatial rate maps were smoothened using 942 

a 2D-Gaussian kernel with standard deviation (𝜎) of 2 pixels (e.g., Figure 1A, panels in the 943 

bottom row for each value of 𝑇!"#). Average firing rate (𝜇) of grid cells was computed by 944 

summing the activity of all the pixels from rate map matrix and dividing this quantity by the total 945 

number of pixels in the rate map (N =10,000). Peak firing rate (𝜇789) of a neuron was defined as 946 

the highest activity value observed across all pixels of its spatial rate map. 947 

For estimation of grid fields, we first detected all local maxima in the 2D-smoothened 948 

version of the spatial rate maps of all neurons in the CAN model. Individual grid-firing fields 949 

were identified as contiguous regions around the local maxima, spatially spreading to a minimum 950 

of 20% activity relative to the activity at the location of the local maxima. The number of grid 951 

fields corresponding to each grid cell was calculated as the total number of local peaks detected in 952 

the spatial rate map of the cell. The mean size of the grid fields for a specific cell was estimated 953 

by calculating the ratio between the total number of pixels covered by all grid fields and the 954 

number of grid fields. The average grid-field spacing for individual grid cells was computed as 955 

the ratio of the sum of distances between the local peaks of all grid fields in the rate map to the 956 

total number of distance values. 957 

Grid score was computed by assessing rotational symmetry in the spatial rate map. 958 

Specifically, for each neuron in the CAN model, the spatial autocorrelation value, 𝑆𝐴𝐶:, was 959 

computed between its spatial rate map and the map rotated by 𝜑°, for different values of 𝜑	(30, 960 

60, 90, 120 or 150). These 𝑆𝐴𝐶: values were used for calculating the grid score for the given cell 961 

as: 962 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2020.12.10.419200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.419200


Page 33 of 54 
 

Grid	score = min(𝑆𝐴𝐶;,, 	𝑆𝐴𝐶)+,) − max(𝑆𝐴𝐶<,, 	𝑆𝐴𝐶=,, 𝑆𝐴𝐶)>,) (14) 963 

Spatial information rate (𝐼2) in bits per sec was calculated by: 964 

𝐼2 =[𝑝(	𝜇(	log+
𝜇(
𝜇

(

 (15) 

where 𝑝( defined the probability of finding the rat in 𝑚th pixel, 𝜇( represented the mean firing 965 

rate of the grid cell in the 𝑚th pixel and 𝜇 denoted the average firing rate of grid cell. Sparsity was 966 

computed as the ratio between the square mean rate and mean square rate: 967 

Sparsity = 	
𝜇+

∑ 𝑝$$ 𝜇$+
 (16) 

Quantitative analysis of grid cell temporal activity in the spectral domain. 968 

To understand the impact of network heterogeneities on spectral properties of grid cell 969 

activities under the CAN framework, we used the Fourier transform of the temporal activity of all 970 

the grid cells in a network. First, we assessed the difference in the magnitude spectra of temporal 971 

activity of the grid cells (n = 3600) in the homogeneous network compared to the corresponding 972 

grid cells in the heterogeneous networks (e.g., Figure 4A). Next, we normalized this difference in 973 

magnitude spectra for each grid cell with respect to the sum of their respective maximum 974 

magnitude for the homogeneous and the heterogeneous networks. Quantitatively, if 𝑆?@-(𝑓) and 975 

𝑆?A(A(𝑓) defined neuronal activity in spectral domain for a neuron in a heterogeneous network 976 

and for the same neuron in the corresponding homogeneous network, respectively, then the 977 

normalized difference was computed as: 978 

∆𝑆?@-.?A(A(𝑓) = 	
𝑆?@-(𝑓) − 𝑆?A(A(𝑓)

max|𝑆?@-(𝑓)} +	max|𝑆?A(A(𝑓)}
 (16) 

Note that this normalization was essential to account for potential differences in the maximum 979 

values of 𝑆?@-(𝑓) and 𝑆?A(A(𝑓). Finally, we computed the variance of this normalized difference 980 

(∆𝑆?@-.?A(A(𝑓)) across all the cells in the networks (e.g., Figure 4B).    981 

In addition to using these normalized differences for quantifying spectral signatures of 982 

neural activity, we performed octave analysis on the magnitude spectra of the temporal activity of 983 

the grid cells to confirm the impact of heterogeneities or resonating neurons on different 984 

frequency octaves. Specifically, we computed the percentage of area under the curve (AUC) for 985 

each octave (0–2 Hz, 2–4 Hz, 4–8 Hz, 8–16 Hz) from the magnitude spectra (Figure 13–figure 986 

supplement 1B-C). We performed a similar octave analysis on the variance of normalized 987 
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difference for networks endowed with integrator or resonator neurons (Figure 13B, Figure 13–988 

figure supplement 3D–F).  989 

Computational details 990 

Grid cell network simulations were performed in MATLAB 2018a (Mathworks Inc., USA) with a 991 

simulation step size of 1 ms, unless otherwise specified. All data analyses and plotting were 992 

performed using custom-written software within the IGOR Pro (Wavemetrics, USA) or 993 

MATLAB environments, and all statistical analyses were performed using the R statistical 994 

package (http://www.R-project.org/). To avoid false interpretations and to emphasize 995 

heterogeneities in simulation outcomes, the entire range of measurements are reported in figures 996 

rather than providing only the summary statistics (Rathour and Narayanan, 2019). 997 

  998 
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FIGURES 1286 

 1287 
Figure 1. A fast virtual trajectory developed for simulating rodent run in a two-dimensional  circular 1288 

arena elicits grid-cell activity in a continuous attractor network (CAN) model. (A) Panels within 1289 
rectangular box: simulation of a CAN model (60×60 neural network) using a 589 s-long real trajectory 1290 
from a rat (Hafting et al., 2005) yielded grid cell activity. Other panels: A virtual trajectory (see 1291 
Methods) was employed for simulating a CAN model (60×60 neural network) for different time points. 1292 
The emergent activity patterns for 9 different run times (Trun) of the virtual animal are shown to yield 1293 
grid cell activity. Top subpanels show color-coded neural activity through the trajectory, and bottom 1294 
subpanels represent a smoothened spatial profile of neuronal activity shown in the respective top 1295 
subpanels. (B) Pearson’s correlation coefficient between the spatial autocorrelation of rate maps using 1296 
the real trajectory and the spatial autocorrelation of rate maps from the virtual trajectory for the 9 1297 
different values of Trun, plotted for all neurons (n = 3600) in the network. 1298 
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 1299 
Figure 2. Biologically prevalent network heterogeneities disrupt the emergence of grid cell activity in 1300 

CAN models. (A) Intrinsic heterogeneity was introduced by setting the integration time constant (𝜏) of 1301 
each neuron to a random value picked from a uniform distribution, whose range was increased to 1302 
enhance the degree of intrinsic heterogeneity. The values of 𝜏 for the 3600 neurons in the 60×60 CAN 1303 
model are shown for 5 degrees of intrinsic heterogeneity. (B) Afferent heterogeneity was introduced by 1304 
setting the velocity-scaling factor (𝛼) of each neuron to a random value picked from a uniform 1305 
distribution, whose range was increased to enhance the degree of intrinsic heterogeneity. The values of 1306 
𝛼 for the 3600 neurons are shown for 5 degrees of afferent heterogeneity. (C) Synaptic heterogeneity 1307 
was introduced as an additive jitter to the intra-network Mexican hat connectivity matrix, with the 1308 
magnitude of additive jitter defining the degree of synaptic heterogeneity. Plotted are the root mean 1309 
square error (RMSE) values computed between the connectivity matrix of “no jitter” case and that for 1310 
different degrees of synaptic heterogeneities, across all synapses. (D) Illustration of a one-dimensional 1311 
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slice of synaptic strengths with different degrees of heterogeneity, depicted for Mexican-hat 1312 
connectivity of a given cell to 60 other cells in the network. (E) Top left, virtual trajectory employed to 1313 
obtain activity patterns of the CAN model. Top center, Example rate maps of grid cell activity in a 1314 
homogeneous CAN model. Top right, smoothed version of the rate map. Rows 2–4: smoothed version 1315 
of rate maps obtained from CAN models endowed with 5 different degrees (increasing left to right) of 1316 
disparate forms (Row 2: intrinsic; Row 3: afferent; Row 4: synaptic; and Row 5: all three heterogeneities 1317 
together) of heterogeneities. (F) Percentage change in the grid score of individual neurons (n=3600) in 1318 
networks endowed with the four forms and five degrees of heterogeneities, compared to the grid score 1319 
of respective neurons in the homogeneous network. 1320 
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 1322 

 1323 

 1324 

 1325 
 1326 

Figure 3. Quantification of the disruption in grid-cell activity induced by different forms of network 1327 
heterogeneities in the CAN model.  Grid cell activity of individual neurons in the network was 1328 
quantified by 8 different measurements, for CAN models endowed independently with intrinsic, 1329 
afferent or synaptic heterogeneities or a combination of all three heterogeneities. (A–G) Depicted are 1330 
percentage changes in each of average firing rate (A), peak firing rate (B), mean size (C), number (D), 1331 
average spacing (E), information rate (F) and sparsity (G) for individual neurons (n=3600) in networks 1332 
endowed with distinct forms of heterogeneities, compared to the grid score of respective neurons in the 1333 
homogeneous network. (H) Grid score of individual cells (n=3600) in the network plotted as functions 1334 
of integration time constant (𝜏), velocity modulation factor (𝛼) and root mean square error (RMSE) 1335 
between the connectivity matrices of the homogeneous and the heterogeneous CAN models. Different 1336 
colors specify different degrees of heterogeneity. The three plots with reference to 𝜏, 𝛼 and RMSE are 1337 
from networks endowed with intrinsic, afferent and synaptic heterogeneity, respectively. 1338 
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 1340 
Figure 4. Incorporation of biological heterogeneities predominantly altered neural activity in low 1341 

frequencies. (A–H) Left, Magnitude spectra of temporal activity patterns of five example neurons 1342 
residing in a homogeneous network (HN) or in networks with different forms and degrees of 1343 
heterogeneities. Right, Normalized variance of the differences between the magnitude spectra of 1344 
temporal activity of neurons in homogeneous vs. heterogeneous networks, across different forms and 1345 
degrees of heterogeneities, plotted as a function of frequency. 1346 
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 1348 
Figure 5. Incorporation of an additional high pass filter into neuronal dynamics introduces resonance in 1349 

individual rate-based neurons. (A) Responses of neurons with low-pass (integrator; blue), high-pass 1350 
(black) and band-pass (resonator; red) filtering structures to a chirp stimulus (top). Equations (7–8) 1351 
were employed for computing these responses. (B) Response magnitude of an integrator neuron (low-1352 
pass filter) as a function of input frequency, derived from response to the chirp stimulus. (C) Response 1353 
magnitude of a resonator neuron (band-pass filter; red) as a function of input frequency, derived from 1354 
response to the chirp stimulus, shown to emerge as a combination of low- (blue) and high-pass (black) 1355 
filters. 𝑓! represents resonance frequency. The response magnitudes in B–C were derived from 1356 
respective color-coded traces shown in panel A. (D–E) Tuning resonance frequency by altering the 1357 
low-pass filter characteristics. Response magnitudes of 3 different resonating neurons with identical 1358 
HPF exponent (𝜀=0.3), but with different integrator time constants (𝜏), plotted as functions of 1359 
frequency (D). Resonance frequency can be tuned by adjusting 𝜏 for different fixed values of 𝜀, with an 1360 
increase in	𝜏 yielding a reduction in 𝑓! (E). (F–G) Tuning resonance frequency by altering the high-1361 
pass filter characteristics. Response magnitudes of 3 different resonating neurons with identical 𝜏 (=10 1362 
ms), but with different values for 𝜀, plotted as functions of frequency (F). Resonance frequency can be 1363 
tuned by adjusting 𝜀 for different fixed values of 𝜏, with an increase in	𝜀 yielding an increase in 𝑓! (G).  1364 
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 1365 
Figure 6. Impact of neuronal resonance, introduced by altering low-pass filter characteristics, on grid-1366 

cell activity in a homogeneous CAN model. (A) Example rate maps of grid cell activity from a 1367 
homogeneous CAN model with integrator neurons modeled with different values for integration time 1368 
constants (𝜏). (B) Example rate maps of grid cell activity from a homogeneous CAN model with 1369 
resonator neurons modeled with different 𝜏 values. (C–D) Grid score (C), average spacing (D), mean 1370 
size (E) and number (F) of grid fields in the arena for all neurons (n=3600) in homogeneous CAN 1371 
models with integrator (blue) or resonator (red) neurons, modeled with different 𝜏 values. The HPF 1372 
exponent 𝜀 was set to 0.3 for all resonator neuronal models. 1373 
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 1375 

 1376 

 1377 

 1378 

 1379 

 1380 
Figure 7. Impact of neuronal resonance, introduced by altering high-pass filter characteristics, on grid-1381 

cell activity in a homogeneous CAN model. (A) Example rate maps of grid cell activity from a 1382 
homogeneous CAN model with integrator neurons (Column 1) or resonator neurons (Columns 2–6) 1383 
modeled with different values of the HPF exponent (𝜀). (B) Comparing 8 metrics of grid cell activity 1384 
for all the neurons (n=3600) in CAN models with integrator (blue) or resonator (green) neurons. CAN 1385 
models with resonator neurons were simulated for different 𝜀 values. 𝜏 = 10 ms for all networks 1386 
depicted in this figure. 1387 
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 1389 

 1390 

 1391 

 1392 

 1393 

 1394 
 1395 

Figure 8. Neuronal resonance stabilizes grid-cell activity in heterogeneous CAN models. (A) Example rate 1396 
maps of grid-cell activity in homogeneous (Top left) and heterogeneous CAN models, 1397 
endowed with resonating neurons, across different degrees of heterogeneities. (B–I) 1398 
Percentage changes in grid score (B), average spacing (C), peak firing rate (D), average firing 1399 
rate (E), number (F), mean size (G), information rate (H), and sparsity (I) of grid field for all 1400 
neurons (n=3600) in the heterogeneous CAN model, plotted for 5 degrees of heterogeneities 1401 
(D1–D5), compared with respective neurons in the homogeneous resonator network. All three 1402 
forms of heterogeneities were incorporated together into the network. 𝜀 =0.3 and 𝜏 = 10 ms for 1403 
all networks depicted in this figure. 1404 
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 1406 
 1407 

Figure 9. Incorporation of a slow negative feedback loop into single-neuron dynamics introduces tunable 1408 
resonance in rate-based neuronal models. (A) A mechanistic model of intrinsic resonance in individual 1409 
neurons using a slow negative feedback loop. (B) Temporal evolution of the output (𝑆) of an individual 1410 
neuron and the state variable related to the negative feedback (𝑚) in response for square pulse. (C) Phase-1411 
plane representation of the dynamics depicted in panel B. (D) Responses of neurons with low-pass 1412 
(integrator; blue) and band-pass (resonator; red) filtering structures to a chirp stimulus (top). The resonator 1413 
was implemented through the introduction of a slow negative feedback loop (in panel A). Equations (10–12) 1414 
were employed for computing these responses. (E) Response magnitude of an integrator neuron (low-pass 1415 
filter, blue) and resonator neuron (band-pass filter, red) as functions of input frequency, derived from their 1416 
respective responses to the chirp stimulus. 𝑓) represents resonance frequency. The response magnitudes in E 1417 
was derived from respective color-coded traces shown in panel D. (F–I) Tuning resonance frequency by 1418 
altering the parameters of the slow negative feedback loop. Resonance frequency, obtained from an 1419 
individual resonator neuron responding to a chirp stimulus, is plotted as functions of half maximal activity of 1420 
the feedback kernel, 𝑆*/+ (F), slope of the feedback kernel, 𝑘 (G), strength of negative feedback, 𝑔 (H) and 1421 
feedback time constant, 𝜏, (I). The insets in panels (F) and (G) depict the impact of altering 𝑆*/+ and 𝑘 on 1422 
the feedback kernel (𝑚-), respectively.  1423 
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 1424 
 1425 
 1426 
 1427 
 1428 

 1429 
 1430 

Figure 10. Impact of neuronal resonance, introduced by a slow negative feedback loop, on grid-cell 1431 
activity in a homogeneous CAN model. (A) Example rate maps of grid cell activity from a 1432 
homogeneous CAN model for different values of the feedback strength (𝑔) slope of the feedback kernel 1433 
(𝑘), feedback time constant (𝜏") and half maximal activity of the feedback kernel, S#/%. (B) Grid scores 1434 
for all the neurons in the homogeneous CAN model for different values of S#/%, 𝑘, 𝜏" and 𝑔 in 1435 
resonator neurons (green). Grid scores for homogeneous CAN models with integrator neurons (without 1436 
the negative feedback loop) are also shown (blue). Note that although pattern neural activity is 1437 
observed across all networks, the grid score is lower in some cases because of the large size and lower 1438 
numbers of grid fields within the arena with those parametric configurations. 1439 
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 1441 
 1442 
 1443 
 1444 
 1445 
 1446 

 1447 
 1448 

Figure 11. Resonating neurons, achieved through a slow negative feedback loop, stabilizes grid-cell 1449 
activity in heterogeneous CAN models. (A) Example rate maps of grid-cell activity in homogeneous 1450 
(top left) and heterogeneous CAN models, endowed with resonating neurons, across different degrees 1451 
of heterogeneities. (B–I) Percentage changes in grid score (B), average spacing (C), peak firing rate 1452 
(D), average firing rate (E), number (F), mean size (G), information rate (H), and sparsity (I) of grid 1453 
field for all neurons (n=3600) in the heterogeneous CAN model, plotted for 5 degrees of 1454 
heterogeneities (D1–D5). The percentage changes are computed with reference to respective neurons in 1455 
the homogeneous resonator network. All three forms of heterogeneities were incorporated together into 1456 
these networks.  1457 
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 1464 

 1465 

 1466 

 1467 

 1468 

 1469 

 1470 
 1471 
Figure 12. The slow kinetics of the negative feedback loop is a critical requirement for stabilizing 1472 

heterogeneous CAN models. (A) A mechanistic model of intrinsic resonance in individual neurons 1473 
using a slow negative feedback loop, with the feedback time constant (𝜏") defining the slow kinetics. 1474 
(B) Example rate maps of grid-cell activity in homogeneous (top left) and heterogeneous CAN models, 1475 
endowed with neurons built with different values of 𝜏", across different degrees of heterogeneities. (C) 1476 
Percentage changes in grid score for all neurons (n=3600) in the heterogeneous CAN model, endowed 1477 
with neurons built with different values of 𝜏", plotted for 5 degrees of heterogeneities (D1–D5). The 1478 
percentage changes are computed with reference to respective neurons in the homogeneous resonator 1479 
network. All three forms of heterogeneities were incorporated together into these networks. 1480 
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 1483 

 1484 
 1485 

Figure 13. Intrinsically resonating neurons suppressed heterogeneity-induced variability in low-1486 
frequency perturbations caused by the incorporation of biological heterogeneities. (A) Normalized 1487 
variance of the differences between the magnitude spectra of temporal activity in neurons of 1488 
homogeneous vs. heterogeneous networks, across different degrees of all three forms of heterogeneities 1489 
expressed together, plotted as a function of frequency. (B) Area under the curve (AUC) of the 1490 
normalized variance plots shown in Figure 4H (for the integrator network) and panel A (for the 1491 
phenomenological resonator network) showing the variance to be lower in resonator networks 1492 
compared to integrator networks. The inset shows the total AUC across all frequencies for the 1493 
integrator vs. the resonator networks as a function of the degree of heterogeneities. (C) Difference 1494 
between the normalized magnitude spectra of neural temporal activity patterns for integrator and 1495 
resonator neurons in CAN models. Solid lines depict the mean and shaded area depicts the standard 1496 
deviations, across all 3600 neurons. The resonator networks in panels (A–C) were built with 1497 
phenomenological resonators. (D–F) same as A–C but for the mechanistic model of intrinsic 1498 
resonance. All heterogeneities were simultaneously expressed for all the analyses presented in this 1499 
figure.  1500 
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