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Abstract8

Bayesian data analysis is increasingly used in ecology, but prior specification remains focused on choosing9

non-informative priors (e.g., flat or vague priors). One barrier to choosing more informative priors is that10

priors must be specified on model parameters (e.g., intercepts, slopes, sigmas), but prior knowledge often11

exists on the level of the response variable. This is particularly true for common models in ecology, like gen-12

eralized linear mixed models, which may have a link function and dozens of parameters, each of which needs13

a prior distribution. We suggest that this difficulty can be overcome by simulating from the prior predictive14

distribution and visualizing the results on the scale of the response variable. In doing so, some common15

choices for non-informative priors on parameters can easily be seen to produce biologically impossible values16

of response variables. Such implications of prior choices are difficult to foresee without visualization. We17

demonstrate a workflow for prior selection using simulation and visualization with two ecological examples18

(predator-prey body sizes and spider responses to food competition). This approach is not new, but its adop-19

tion by ecologists will help to better incorporate prior information in ecological models, thereby maximizing20

one of the benefits of Bayesian data analysis.21
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Introduction22

The distinguishing feature between Bayesian and non-Bayesian statistics is that Bayesian statistics treats23

unknown parameters as random variables governed by a probability distribution, while non-Bayesian statis-24

tics treats unknown parameters as fixed (Ellison and Dennis 2010, Hobbs and Hooten 2015). A common25

misconception is that only Bayesian statistics incorporates prior information. However, non-Bayesian meth-26

ods can and often do incorporate prior information, either informally in the choices of likelihoods and model27

structures, or formally as penalized likelihood or hierarchical modeling (Hobbs and Hooten 2015, Morris et28

al. 2015).29

While prior information is not unique to Bayesian models, it is required of them. For example, in a simple30

linear regression of the form y ∼ N(α+βx, σ), the intercept α, slope β, and error σ are unknown parameters31

that need a prior probability distribution. There are differing opinions and philosophies on the best practices32

for choosing priors (Lindley 1961, Edwards et al. 1963, Morris et al. 2015, Wolf et al. 2017, Lemoine 2019,33

Banner et al. 2020, Gelman et al. 2017). In ecology, a common practice is to assign so-called non-informative34

priors that effectively assign equal probability to all possible values using either uniform or diffuse normal35

priors with large variances (Lemoine 2019). These priors allow Bayesian inference to proceed (i.e. produce36

a posterior distribution), but with presumably limited influence of the priors (Gelman et al. 2013, Lemoine37

2019).38

Reasons for using non-informative priors are varied but are at least in part driven by a desire to avoid the39

appearance of subjectivity and/or a reliance on default settings in popular software (Gelman and Hennig 2017,40

Banner et al. 2020). There are several current arguments against this approach. First, “non-informative”41

is a misnomer. All priors influence the posterior distribution to some extent (Hobbs and Hooten 2015). As42

a result, a prior cannot just be assumed as non-informative based on default settings or a wide variance43

(Seaman III et al. 2012). Its implications for the model should be checked just like any other subjective44

assumption in data analysis, whether Bayesian or not (Banner et al. 2020, Gelman et al. 2017). Second,45

adhering to non-informative priors removes a major potential benefit of Bayesian analysis, which is to46

explicitly incorporate prior research and expertise into new science (Hobbs and Hooten 2015, Lemoine 2019,47

Rodhouse et al. 2019). Third, informative priors can help to reduce spurious conclusions due to errors48

in magnitude or sign of an effect by treating extreme values in the data skeptically (Gelman et al. 2012,49

Lemoine 2019). Finally, informative priors make computational algorithms like MCMC run more efficiently,50

which can save hours or days of computing time in complex models (Hobbs and Hooten 2015).51

However, while there are clear arguments for why ecologists should use more informative priors, it is often52

difficult to know how to use them. Even for seemingly simple and routine models, like logistic regression,53
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it can be difficult to understand a priori how priors affect the model, because they must be assigned in54

the context of likelihood with a linearizing link-function (Seaman III et al. 2012, Gelman et al. 2017).55

In other words, prior specification takes place on model parameters (e.g., slopes, intercepts, variances),56

but prior knowledge is often easier to assess on the model outcomes (Kadane et al. 1980, Bedrick et al.57

1996, Gabry et al. 2019). This is particularly true for the types of models that are commonly used in58

ecology, such as generalized linear mixed models with interactions, which may have dozens of parameters59

and hyperparameters, each of which require a prior probability distribution (Bedrick et al. 1996, McElreath60

2020).61

We suggest that ecologists can address this problem using simulation from the prior predictive distribution62

and visualizing the implications of the priors on either the expected mean of the data (e.g., simulate regression63

lines or group means) (Kadane et al. 1980, Bedrick et al. 1996) or by simulating individual data points64

(Gabry et al. 2019). In this paper, we demonstrate this approach using two case studies with ecological65

data. All data and code for these examples, as well as additional case studies, are available at: https:66

//github.com/jswesner/prior_predictive.67

Prior Predictive Simulation68

An attractive feature of the Bayesian approach is that the models are generative. This means that we69

can simulate potential data from the model so long as the parameters are assigned a proper probability70

distribution (Gelman et al. 2013). This feature is routinely used to check models and prior influence after71

fitting the data using the posterior predictive distribution (Lemoine 2019, Gelman et al. 2020), but it can72

also be used before seeing the data using the prior predictive distribution (Gabry et al. 2019). As an73

example, consider a simple linear regression:74

yi ∼ N(µi, σ) (1)

µi = α+ βxi (2)

α ∼ N(µα, σα) (3)

β ∼ N(µβ , σβ) (4)

σ ∼ Exponential(φ) (5)

(6)

where yi is the response variable on the ith row, normally distributed with an unknown mean µi and standard75
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deviation σ. We assume that the response variable is a linear function of the predictor variable xi using a76

linear equation with an intercept α and a slope β. The following parameters need priors: σ, α, β. The first77

step is to choose a probability distribution for each prior. We chose normal (i.e. Gaussian) distributions for78

α and β and an exponential distribution for σ. The normal distributions imply that the intercept or slope79

are continuous and can be positive or negative (Hobbs and Hooten 2015). The exponential distribution is a80

common prior for standard deviations because it generates only positive values and allows for occasionally81

large deviations. For standard deviations (or variances or precisions), there are a number of alternatives82

prior distributions available (Gelman and others 2006, Gelman et al. 2013, McElreath 2020).83

The challenge is to assign prior values to the mean and sd of each normal distribution and to φ of the84

exponential distribution before seeing the data yi. One way to do that is to use prior parameter estimates85

from previous studies (Rodhouse et al. 2019). For example, if previous studies found that the slope β was86

typically 1.2 with a standard deviation of 0.5 for σβ , then we could use β ∼ N(1.2, 0.5) as the prior for87

this parameter. Similarly, if other studies suggested that the residuals were described by an exponential88

distribution with a rate parameter φ of 0.34, then we could use that here.89

In our experience it is more common that the current study might differ slightly from previous studies, either90

in the experimental design, the spatial scale, the species used, or the inclusion of additional covariates. Those91

differences make it more difficult to use a posterior distribution of a parameter from one model as a prior92

distribution in another model. Simulation offers a practical approach here.93

The general workflow for prior predictive simulation is:94

1) Draw N values from different prior distributions. (e.g., αsim N(0, 100)), βsim N(0, 10)..., σ exp(0.1))95

2) For each draw, solve the equation for each i value of x. (e.g., µi = α+ βxi))96

3) Plot the result for either µi, yi, or another derived quantity. (e.g., yiÑ(µi, σ))97

4) Use our domain knowledge (or another expert’s) to assess whether the simulated values reflect prior98

knowledge.99

5) If simulated values do not reflect prior knowledge, change the prior distribution, likelihood, or both100

and repeat the simulation from step 1.101

6) If simulated values reflect prior knowledge, add the data and estimate the posterior distribution.102

This amounts to a prior predictive check to satisfy the expectation that “simulations from the full Bayesian103

model. . . should be plausible data sets” (Kennedy et al. 2019). The simulation and visualization steps (1-3)104

are critical, because simulated data sets are derived from the joint distribution of parameters. In other words,105

whether a model simulates plausible data data cannot be determined simply from looking at the individual106
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priors or model formula, because their interpretation depends on the units of measurement (e.g., a N(0,1)107

prior means different things if y is measure in µm versus km) and on the range of prior expected values. For108

step 5, it is important to emphasize that there is no precise definition for what “reflects prior knowledge”.109

The purpose of prior simulation is not to pre-determine an outcome, but instead to make explicit exactly110

how and why the priors were chosen. The importance of those priors on posterior inference should still be111

assessed, but that topic is beyond the scope of this paper. We demonstrate prior predictive simulation below112

with two motivating examples.113

Motivating Examples114

Example 1: Predator-Prey Body Sizes - Simple Linear Regression115

Data116

Understanding predator-prey interactions has long been a research interest of ecologists. Body size is related117

to a number of aspects that influence these interactions. For example, predators are often gape-limited,118

meaning that larger predators should be able to eat larger prey. The data set of (Brose et al. 2006)119

documents over 10,000 predator-prey interactions, including the mean mass of each.120

Model121

For this example, we examine the hypothesis that the mean prey body mass increases log-linearly with122

predator body mass using a simple linear model:123

log(yi) ∼ N(µi, σ) (7)

µi = α+ β log(xi) (8)

α ∼ Normal(0, σα) (9)

β ∼ Normal(0, σβ) (10)

σ ∼ Exponential(φ) (11)

where log(yi) is natural log transformed prey mass and log(xi) is natural log transformed predator mass.124

Priors125

For the α and β priors, we need to specify a mean and standard deviation. As a first guess, we assign a126

mean of 0 with a “non-informative” standard deviation of 1000 [N(0, 1000)]. The mean of 0 in a normal127

distribution implies that the intercept and slope have equal probability of being positive or negative. For128
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the standard deviation, a rule of thumb is to assume that reasonable values can be anywhere between ±129

twice the standard deviation (McElreath 2020). There is nothing special about this prior per se, but it was a130

common default setting in earlier Bayesian software to generate “flat” prior distributions (usually specified as131

a precision rather than a standard deviation) and appears regularly in the literature (McCarthy and Masters132

2005, Banner et al. 2020). Similarly, for the exponential distribution, smaller rates φ generate larger133

deviations, so we’ll specify an initial φ of 0.00001. We chose this initial value by plotting 100 simulations134

from the exponential function in R (R Core Team 2020) under varying values of φ [e.g., plot(rexp(100,135

0.00001)]. A value of 0.00001 generated an average deviance of ~1,000 with values up to ~5,000, indicating136

the possibility of producing extremely large values.137

After simulating from these initial priors, we specified successfully tighter priors (Table 1). We then simulated138

from the prior predictive distribution and compared those simulations to reference points representing prior139

knowledge (Mass of earth, a Blue Whale, a virus, and a Carbon-12 atom). The goal was to use these reference140

points to find a joint prior distribution that produced reasonable values of potential prey masses. We did141

this using two levels of the model (µi and yi). For µi, we simulated 100 means across each value of xi and142

plotted them as regression lines. For yi, we simulated a fake data set containing simulated values of log prey143

mass for each of the 13,085 values of log predator mass (xi) in the (Brose et al. 2006) data.144

Results145

Based on simulations from the prior predictive distribution, the weak “non-informative” priors make nonsense146

predictions (Figure 1a-c). In Figure 1a, all of the lines are impossibly steep, suggesting that predators could147

plausibly eat prey that are much larger than earth or much smaller than an atom. The seemingly stronger148

priors in Figure 1b suffer from the same problem, though the effect is less severe. The strongest priors149

(Figure 1c) produce more reasonable predictions, though they are still quite vague, with positive probability150

that large and small predators could eat prey that are orders of magnitude larger than an adult Blue Whale.151

The simulated fake data sets tell a similar story (Figure 1d-f), but with the added influence of sigma in the152

likelihood (Equation 6).153

We fit the model using the strongest prior set (Figure 2). As is typical of models with large amounts of data,154

the parameters (i.e. slope, intercept, and sigma) are similar regardless of the prior distribution (Figure 2).155

The intercept is -4.8 ± 0.04 (mean ± sd), the slope is 0.6 ± 0.01, and sigma is 3.7 ± 0.02.156

Regardless of the similarity in results, there are several benefits to choosing a stronger prior. First, it is157

difficult to justify the two weakest priors on biological grounds. They place large amounts of prior probability158

on impossible values. This can matter, for example, when priors need to be justified to a granting agency159
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or to reviewers. More critically, specification of priors can have conservation or legal implications, and the160

ability to justify priors with simulation helps to improve transparency (Crome et al. 1996, Banner et al.161

2020). Stronger priors also improve computational efficiency (McElreath 2020). We fit these models using162

the brms package (Burkner 2017). The models with stronger or strongest priors were up to 50% faster than163

the model with weak priors, taking 56 vs 28 seconds on a standard laptop (compilation time + warmup time164

+ sampling time). For more complex models that take longer to run, this improvement can save hours or165

days of computing time.166

Caveats167

In a real analysis, there are some other steps we could have taken to generate a more realistic prior distribution168

before fitting the model to data. First, we know from the literature that predators are generally larger than169

their prey by 2-3 orders of magnitude (Trebilco et al. 2013). Therefore, it would make sense to alter the170

prior mean of the intercept to a value below zero, perhaps using an average predator/prey mass comparison171

from the literature. That is apparent from the prior versus posterior comparison in Figure 2. Similarly, the172

fact that larger predators tend to eat larger prey is well-known, so the prior on the slope β could be changed173

to a positive mean. One option would be to restrict the slope to only positive values, but this would not174

reflect our prior knowledge that predator body size is still a noisy predictor of prey body size (e.g., whales175

and parasitoids have prey that are orders of magnitude smaller or larger than they are, respectively).176

Part of the uncertainty in prior selection can also be minimized by standardizing predictors (McElreath177

2020). This changes the scale of each predictor so that the interpretation of its associated parameter is in178

units of standard deviation. In other words, a value of 2.3 for β would indicate that y increases by 2.3179

for every standard deviation increase in x. Standardizing predictors can prevent problems that arise by180

mistaking cm for m or ha for acres. It also limits the expected prior values (e.g., N(0, 10) is extremely vague181

on a standardized predictor, but might be informative on a non-standardized predictor), but at the cost of182

less intuitive interpretation.183

Example 2: Spider Abundance - Generalized Linear Mixed Model184

Data185

This data set comes from (Warmbold and Wesner 2018), who studied how terrestrial spiders responded to186

different combinations of freshwater fish using fish enclosure cages in a backwater of the Missouri River,187

USA. The hypothesized mechanism was that fish would reduce the emergence of adult aquatic insects by188

eating the insects, causing a reduction in terrestrial spiders that feed on the adult forms of those insects.189

The original experiment contained six treatments. Here, we present a simplified version comparing spider190
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abundance above three treatments that contain either Smallmouth Buffalo (Ictiobus bubalus), Green Sunfish191

(Lepomis cyanellus), or a fishless control. Each treatment had four replicates for a total of 12 cages (each192

2.3 m2). The number of occupied spider webs above each cage were counted on four dates over the 29-day193

experiment.194

Model195

We fit a generalized linear mixed model with a Poisson likelihood, since the response variable (# webs) is a196

non-negative integer (i.e. number of spiders counted above a cage on each date). The predictor variables were197

date, treatment, and a date x treatment interaction. Since each replicate cage was sampled four times, we198

included a random intercept for cages. Describing the model as having two main effects and an interaction199

is deceptively simple. In reality, the model has 13 parameters that require a prior specification: 11 “fixed”200

effects that indicate all combinations of date x treatment, plus 1 intercept and a hyperprior φ on the intercept:201

yi ∼ Poisson(λi) (12)

log(λi) = α+ α[cage] + β1xtrti=fishless + β2xtrti=green + ...β11xtrti=green:datei=4 (13)

α ∼ Normal(0, σα) (14)

α[cage1−12] ∼ N(0, σcage) (15)

β1...11 ∼ Normal(0, σβ1...11) (16)

σcage ∼ Exponential(φ) (17)

where each yi is described by a Poisson distribution with mean λi. Because the likelihood is not normal,202

we specify a log link - log(λi) - so that the mean can be estimated as a linear function of predictors. This203

also ensures that the mean will be a positive number, preventing the model from predicting negative spider204

abundance. In this model, the intercept α represents the predicted log mean number of spiders in the205

treatment with Smallmouth Buffalo on the first sample date. The choice of reference treatment is arbitrary.206

Choosing Smallmouth Buffalo and the first date as the intercept is the default choice in R (R Core Team207

2020) because the treatment is coded first alphabetically (“buffalo”) and first numerically (“2015-06-08”).208

Priors209

As before, we simulated outcomes under three model scenarios, each with different priors (Table 1; Figure210

3a-c). Another complication in this model is the log-link, which changes the biological interpretation of211

the priors. With a log-link the individual model parameters are less intuitive than they would be under a212
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normal likelihood (Bedrick et al. 1996). Under a normal likelihood, a β1xtrti=fishless value of 1.5 would213

indicate that the fishless treatment on 2020-06-08 contains 1.5 more spiders on average than the Smallmouth214

Buffalo treatment on the same date. With a Poisson likelihood and log-link, the same value first needs to215

be exponentiated exp(1.5) = 4.5 and then interpreted as a multiplier. Thus, a value of 1.5 for the parameter216

indicates that the fishless treatment contains 4.5 times more spiders than the Smallmouth Buffalo treatment217

on the first sample date. A value of 10 results in 22,026 times more spiders. This is an example of the218

principle that the prior can only be understood in the context of the likelihood (Gelman et al. 2017).219

Results220

If all we knew was that spiders were counted above 2.32 m2 cages but we did not know anything else about221

the experiment (i.e. the ecosystem, the question, the spider taxa), then we could still use the prior predictive222

distribution to select more informative priors. The weakest priors place substantial probabilities on values223

of >100,000 spiders per cage on average (Figure 3a), and include a small number of predictions on the224

final sample date with more than 100 million spiders (Figure 3c). We looked up the range of spider masses225

(~0.0005 to 170 grams). If we assume our spiders are relatively small, say 0.01 grams, then 100 million226

spiders would equal 30 tons of spiders. This is approximately equal to the mass of ~6 adult hippopotamus’s227

(each ~4 tons).228

However, in this case we do have valuable prior information. In a previous study using the same cages in the229

same backwater, (Warmbold 2016) counted between 0 and 2 spiders per cage. The present experiment had230

a slightly different design, in which a small rope was added to the center of each cage to increase the area of231

attachment (Warmbold and Wesner 2018). If we assume that the rope will double the number of spiders that232

could colonize, then it seems reasonable to expect ~ 4 spiders per cage. There is obvious error associated233

with this, since the experiment was conducted in a different year and a different month. For that reason, we234

chose the moderate prior (Figure 3b,d) to use in the final model. It places most of the prior probability on235

values between ~1 to 100 spiders, but also allows for some extreme possibilities of >1000 spiders per cage236

(Figure 3d). The strongest priors also appear reasonable, placing most of the prior probability between ~1237

to 10 spiders, while allowing for up to ~100 spiders in extreme cases (Figure 3c,e).238

Figure 3 shows the results after fitting the model to data. Spider counts ranged from 0 to 5 spiders per cage239

(Figure 4a), resulting in mean spider densities of ~1 to 4 spiders among the date x treatment combinations240

(Figure 4a). Simulating from the prior and posterior predictive distributions shows the model predictions241

for the number of spiders we might expect at a new cage (i.e. a cage sampled from this site at another time).242

Before seeing the data, the model suggested reasonable probabilities of collecting 10 to >100 spiders. After243

seeing the data, the model suggests that finding ~10 or more spiders would be surprising (Figure 4b).244
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In addition to the computational and logical benefits of stronger priors as mentioned above, the stronger245

prior specifications in this model have a clear influence on the posterior (Figure S1). In particular, the246

stronger prior used in the model is more conservative, pulling the posterior means away from extreme high247

or low values. As such it acts to prevent overconfidence in large or small effect sizes (e.g., Type M errors)248

(Lemoine 2019). This skepticism of stronger priors is a benefit that is most apparent with small sample249

sizes, which are common in ecological studies.250

Caveats251

Each of the 11 β’s was assigned an independent prior. An alternative approach would be to assign β priors252

from a multivariate normal distribution (Hobbs and Hooten 2015). In addition, the likelihood assumes that253

the variance is equal to the mean. An alternative likelihood, such as a negative binomial, would allow us to254

model variances independently. Finally, the strongest priors we specified overwhelmed the small data set,255

pulling all treatments towards the same mean, regardless of the data (Figure S1). Whether that is a problem256

or not depends on how skeptical we are that the cages or treatments would have different numbers of spiders.257

Discussion258

Bayesian statistics is increasingly used by ecologists (Ellison 2004, McCarthy and Masters 2005, Hooten and259

Hobbs 2015, Touchon and McCoy 2016), yet the preponderance of studies continue to rely on diffuse and/or260

default priors (Lemoine 2019, Banner et al. 2020). Using two case studies with a linear regression and a261

generalized linear mixed model - two common types of models in ecology (Touchon and McCoy 2016) - we262

demonstrated how visualization on the scale of the outcome can improve our choices of priors on individual263

parameters in a Bayesian analysis. From our own experience teaching Bayesian statistics to graduate students264

(JSW) and the experiences of others (James et al. 2010, Gabry et al. 2019), we suspect that this approach265

will help to remove confusion or anxiety over choosing more informative priors by aligning the choices more266

closely to the domain expertise of the users (Bedrick et al. 1996, James et al. 2010).267

Choosing priors based on their implications on the outcome scale is not new. Kadane et al. (1980) described268

a similar approach with normal linear regressions to elicit prior information from experts, and (Bedrick et269

al. 1996) expanded it to generalized linear models. More recently, (Gabry et al. 2019) used it in a model270

with random effects to measure global air quality. (Kennedy et al. 2019) used a similar approach for models271

in cognitive science. A primary difference between the earlier and later uses of prior predictive simulation is272

the improvement in visualization techniques (Gabry et al. 2019), which makes it easier evaluate prior choices273

on a visual distribution of outcome measures, rather than only point estimates.274

Assessing and visualizing priors on the outcome scale of a model makes clear what many current Bayesian275
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approaches emphasize: it is almost never the case that we have absolutely zero prior information (Hobbs276

and Hooten 2015, Lemoine 2019, Banner et al. 2020). For example, it does not take expertise in ecology277

or in predator-prey interactions to know that predators cannot eat prey larger than earth, yet this type of278

impossible prior belief is exactly what many Bayesian models encode with non-informative priors. It does279

take ecological expertise to know whether it is more probable for predators to eat prey that are 2 times larger280

or 2 times smaller, or whether the log-linear model should have a different functional form (e.g., non-linear).281

Critiquing priors in this way would, we argue, lead to a much better use of Bayesian methods than current282

practices that focus on finding the least informative prior (Lemoine 2019, Banner et al. 2020). Even for283

models with more abstract outcomes than body size (e.g., gene methylation, stoichiometric ratios, pupation284

rates of a new insect species), it is almost always the case that ecologists have some sense of what reasonable285

measures might be. After all, it would be impossible to do any sort of study without first knowing what286

we will measure. Prior expectations of those measures come either from prior experience, the literature, or287

most often, both.288

Visualizing simulations from the prior predictive distribution represents one aspect of the overall Bayesian289

modeling workflow (Kennedy et al. 2019, Gelman et al. 2020, Schad et al. 2020, Gabry et al. 2019). Like any290

approach to data analysis, the Bayesian workflow involves iteratively checking assumptions and implications291

of our model, from data collection and model design to prior choices and model inference (Hooten and Hobbs292

2015, Gelman et al. 2020). Traditionally, the role of priors in this workflow has focused on choosing the least293

informative priors possible, leading to a large body of theoretical and applied literature on development of294

non-informative priors, such as Jeffrey’s, Horseshoe, or flat priors (Hobbs and Hooten 2015). When prior295

criticism is used, it is usually done after the model is fit with prior sensitivity analyses and/or plots of prior296

versus posterior parameters (Korner-Nievergelt et al. 2015). The approach we demonstrate does not obviate297

the need for these techniques in any sense. Rather, it adopts the approaches that are generally reserved for298

exploring the implications of the posterior distribution and applies them to the prior distribution. In doing299

so, it helps to lessen the impact of poor prior distributions later in the analysis workflow.300

In ecology, the most closely related application of the approach we describe is for eliciting prior information301

from a panel of experts (James et al. 2010). However, external elicitation is not practical for most ecological302

studies, because the data analyst is often also the domain expert (Ellison and Dennis 2010). In other words,303

most statistical analysis in ecology is done by people (such as us) that are trained in disciplines other than304

statistics (Touchon and McCoy 2016). As a result, Bayesian analysis in ecology has traditionally been limited305

to ecologists with advanced statistical and computing capabilities. This is in part because Bayesian analysis306

is not included by default in popular statistical software, such as R (R Core Team 2020), and also because307
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of the large computing time needed to run Bayesian models relative to frequentist or maximum likelihood308

approaches. Yet recent improvements in both the MCMC algorithms (Gelman et al. 2015) and the packages309

used to fit models appear likely to continue the trend of ecologists using Bayesian statistics. For example,310

with the brms package in R (Burkner 2017), this frequentist linear regression - lm(y \~ x, data = data)311

- becomes this Bayesian regression by changing two letters - brm(y \~ x, data = data). This represents312

the simplest of cases (priors can and should be specified in the brm() model), but demonstrates the ease313

with which fitting Bayesian models is now possible.314

An added benefit to choosing more informative priors is that it reduces the computational time needed315

to fit models, because it limits the parameter space that an MCMC algorithm needs to explore. In the316

relatively simple models we used here, the computational improvements are likely minimal. But ecologists317

are using increasingly sophisticated models (Touchon and McCoy 2016), for which the improvements in318

computational efficiency are likely to be important. An irony in this improvement is that it contradicts319

a common justification of using non-informative priors to “let the data speak for themselves”. In a model320

with such priors, much of the “speaking” is done by the priors in the sense of sampling parameter spaces321

that are incompatible with reasonable data. More importantly, as shown by the first analysis here and by322

(Gabry et al. 2019), non-informative priors on parameters can become informative for quantities of interest323

(e.g., average prey sizes that are larger than earth). To rearrange the statement, data can only speak for324

themselves if the microphone is properly tuned.325
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Tables404

Table 1: Priors used for the two models. Distributions are either normal with a mean and standard deviation
[N(mu, sigma)] or exponential [Exp(rate)].

Model 1: Predator-Prey Model 2: Spiders
Parameter Weak Strong Strongest Weak Strong Strongest
Alpha N(0,1000) N(0,10) N(0,1) N(0,10) N(0,1) N(0,0.1)
Beta(s) N(0,1000) N(0,10) N(0,1) N(0,10) N(0,1) N(0,0.1)
Sigma Exp(0.001) Exp(0.01) Exp(0.1)
Sigma_alpha Exp(0.1) Exp(1) Exp(2)
Sigma_cage Exp(0.1) Exp(1) Exp(2)
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Figures405

Figure 1: Prior predictive simulations showing the implications of the priors on predictions of log prey mass.
The top row (a-c) shows prior simulations of regression lines. The bottom row (d-f) shows prior predictive
simulation of one dataset.
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Figure 2: The fitted model showing the posterior distribution of the regression and raw data points from
Brose et al. 2006. The shaded lines in the background are prior predictions from the strongest priors.
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Figure 3: Prior predictive simulations showing the implications of the priors on spider densities above
mesocosm cages. Top row: Prior predictive distribution of the number of the mean number of spiders above
treatments with either Smallmouth Buffalo, no fish, or Green Sunfish. a) wide priors (σα/β = 10, φ = 0.1), b)
stronger priors (σα/β = 1, φ = 1, or c) the strongest priors (σα/β = 0.1, φ = 2). Bottom row: 500 simulations
from the prior predictive distribution of the total number of spiders expected for a new cage. Simulations
come from the same priors as described above as d) wide priors, e) stronger priors, and f) the strongest
priors. To improve visualation, the y-axis for a) is clipped at 0.001 and 1e9.
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Figure 4: Comparison of the prior and posterior distributions for a) mean number of spiders and b) the
conditional prediction of the number of spiders predicted for a new cage from each date x treatment com-
bination. Each violin plot in (a) shows either the prior (white) or posterior (color) distribution with dots
as raw data. Each dot in (b) is a simulation (n = 500) of the total number of spiders predicted for a single
new cage in each date x treatment combination. The prior is taken from the strong prior in Figure 4b. It is
clear that a large amount was learned from the data, as evidenced by the difference between the prior and
posterior distributions in both panels.
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Supplementary Information406

407

Figure S1. The influence of the prior distributions. Because of the small sample size (n = 4 replicates),408

the prior specifications affect the posterior. Compared to the weakest prior, the stronger prior is more409

conservative, pulling each mean towards the prior mean. The strongest prior (blue) essentially overcomes410

any information in the data. Gray dots are raw data.411
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