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Abstract 

Protein structure prediction has been greatly improved, but there are still a good portion of predicted models that do                   

not have very high quality. Protein model refinement is one of the methods that may further improve model quality.                   

Nevertheless, it is very challenging to refine a protein model towards better quality. Currently the most successful                 

refinement methods rely on extensive conformation sampling and thus, take hours or days to refine even a single                  

protein model. Here we propose a fast and effective method that may refine protein models with very limited                  

conformation sampling. Our method applies GNN (graph neural networks) to predict refined inter-atom distance              

probability distribution from an initial model and then rebuilds the model using the predicted distance as restraints. On                  

the CASP13 refinement targets our method may refine models with comparable quality as the two leading human                 

groups (Feig and Baker) and greatly outperforms the others. On the CASP14 refinement targets our method is only                  

second to Feig’s method, comparable to Baker’s method and much better than the others (who worsened instead of                  

improved model quality). Our method achieves this result by generating only 5 refined models for an initial model,                  

which can be done in ~15 minutes. Our study also shows that GNN performs much better than convolutional residual                   

neural networks for protein model refinement when conformation sampling is limited.  

 
Availability: The code will be released once the manuscript is published and available at http://raptorx.uchicago.edu  

Contact: jinboxu@gmail.com 
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Introduction 

High-accuracy protein structure prediction can facilitate the understanding of biological processes at the molecular              

level. In the past few years, protein structure prediction has been greatly improved, mainly due to the introduction of                   

deep convolutional residual networks (ResNet)1–4 and lately transformer-like networks implemented in AlphaFold2.            

However, a good percentage of predicted protein structural models still deviate from their native structures, which                

limits their value in downstream applications. To further improve model quality, much effort has been devoted into                 

developing model refinement methods5–7. The main goal is to refine an initial model towards its native structure and                  

then, to generate new models of higher quality. This is a very challenging task since the space of worse models is                     

much larger than that of better models. Many refined models submitted by CASP participants have worse quality                 

than their starting models5.  

A typical model refinement method employs side-chain repacking, energy minimization and constrained            

structure sampling8–11. Since the energy function is usually challenging to optimize, model quality may not be                

improved without large-scale conformational sampling. Currently, the most successful refinement methods use            

large-scale conformational sampling either through molecular dynamics (MD) simulations6 or fragment assembly7,12.            

For example, Feig group employs iterative MD simulation with flat-bottom harmonic restraints to sample              

conformations. A subset of sampled models are selected using Rosetta scoring function and averaged to build the                 

final refined model. Baker group7 uses local error estimation to guide conformational sampling by fragment               

assembly, and iteratively refines the models by recombining secondary structure segments and replacing torsional              

angles. The lowest-energy model in the last iteration is identified using Rosetta scoring function and then averaged                 

with its conformational neighbours to build the final refined model. GalaxyRefine212 developed by Seok group               

employs multiple conformation search strategies. Model error estimation can be used to constrain the sampling               

space and prevent degradation of the stable structure regions. DeepAccNet13 uses both 3D and 2D convolution                

networks to estimate residue-wise accuracy and inter-residue distance error, which are then converted into Rosetta               

restraints to guide conformational sampling. Although performing well on some proteins, these methods rely on               

extensive conformational sampling and thus, a lot of computing resources for even a single protein model 13,14. 

In this work we propose a new model refinement method GNNRefine that may quickly improve model quality                 

without extensive conformation sampling. GNNRefine represents an initial protein model as a graph and then               
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employs graph neural networks (GNN) to refine it. GNN has been used to predict protein model quality15,16, but not                   

to refine protein models. GNNRefine iteratively updates the node (residue-wise) and edge (residue-pair) features in               

the graph by multiple message-passing layers to capture the global structural information, from which it predicts                

inter-atom distance probability distribution. The predicted distance probability is converted into distance potential,             

which is then fed into PyRosetta17 FastRelax18 to produce refined models without extensive conformational              

sampling. Our experimental results show that on average GNNRefine may improve model quality, significantly              

outperforms those methods without using large-scale conformational sampling, and is slightly worse than Feig’s              

leading method that uses large-scale conformational sampling. Another advantage is that GNNRefine produces             

fewer degraded models than other methods. 

Results 

Overview of the method 

Figure 1A shows the flowchart of our method GNNRefine, which mainly includes three steps: 1) represent the initial                  

model as a graph and extract atom, residue, and geometric features from the initial model, 2) predict refined distance                   

for each edge in the graph using graph neural network (GNN), and 3) convert the predicted distance probability into                   

distance potential and feed it into PyRosetta17 FastRelax18 to produce refined models by side-chain packing and                

energy minimization. Meanwhile, the GNN-based distance prediction is the key factor affecting the refined model               

quality. As shown in Figure 1B, GNNRefine mainly consists of three modules: an atom embedding layer, multiple                 

message passing layers, and an output layer. The atom embedding layer is used to learn atom-level structure                 

information of one residue and the resultant atom embedding is concatenated with other residue features to form the                  

final feature of a residue. The protein graph is built on the residue feature (node) and bond or contact feature (edge)                     

between residue pairs (detailed in the Methods section). By going through multiple message passing layers, the node                 

and edge features are iteratively updated to capture global structural information. Finally, a linear layer and a                 

softmax function are used to predict distance probability distribution from the edge feature. 

The predicted distance probability is converted into distance potential which is then fed into PyRosetta               

FastRelax to build the refined model. Since we use a much smaller number of distance restraints (i.e., only consider                   

those residue pairs with distance no more than 10Å in the starting model) and directly refine the model without a lot                     
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of samplings, our method runs very fast. Tested on the CASP13 dataset, our method needs on average only 15                   

minutes to refine a single protein model when 10 CPUs are used to run FastRelax (to generate 50 refined models). In                     

contrast, Baker’s DeepAccNet needs more than 10 hours on 50 CPUs to refine a single model with 120 residues. 

 
Fig. 1. The GNNRefine method for protein model refinement. A. the flowchart of GNNRefine including feature                

extraction, refined distance prediction by GNN, and refined model building by FastRelax; B. the network               

architecture of GNNRefine. 

Evaluation metrics 

We evaluate quality improvement of the refined models over their starting models in terms of GDT-HA, GDT-TS                 

and lDDT. We also use “Degradation” to count how many refined models have quality worse than their initial                  

models by a given threshold (0, -1 and -2). Meanwhile, 0 denotes that a refined model has worse GDT-HA than its                     

starting model; -1 and -2 denote that a refined model’s GDT-HA is worse than its starting model by at least 1 and 2                       

units, respectively. 

Performance on the CASP13 refinement targets 

We compare our method with two leading human groups in the CASP13 refinement category5 (FEIGLAB and                

BAKER) and 5 server groups Seok-server, Bhattacharya-Server, YASARA, MUFold_server and 3DCNN. Their            
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refined models are available at the CASP official website. A human group has up to three weeks to refine one model                     

while a server group has at most three days. A human group may make use of any extra information. For example,                     

FEIGLAB selected refined models manually and BAKER group chose their sampling strategy based upon the model                

quality provided by the CASP organizers. Here we evaluate the quality of the first submitted models, as shown in                   

Table 1. Fig. 2 shows the box plot of the ΔGDT-HA distribution. Even if generating only 5 refined models for each                     

initial model, our GNNRefine has comparable performance as the two human groups and outperforms all the 5                 

servers in terms of quality improvement. Seok-server is the only server that obtained positive improvement on the                 

three metrics. Bhattacharya-Server and YASARA improved lDDT slightly, but degraded GDT-HA and GDT-TS.             

MUFold_server and 3DCNN degraded all the three metrics. Further, our method generates only 4 refined models                

with slightly worse quality than their initial models, but all the other methods including the two human groups                  

degraded many models. That is, it is very safe to use our method to refine models. Fig. 2 shows that the two human                       

groups have a larger variance than our method possibly because of extensive conformational sampling. That is, they                 

may be able to refine some models very well, but also likely to degrade some models a lot. In contrast, our method                      

has a smaller variance since we do not use extensive conformational sampling. 

Table 1. Performance on the CASP13 refinement targets 
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Type Methods1 GDT-HA GDT-TS lDDT2 
Degradation 

0 -1 -2 

 Starting 52.27 71.51 61.74       

Human 
FEIGLAB +4.04 +2.97 +2.48 8 6 4 

BAKER +3.35 +1.86 +3.73 7 6 6 

Server 

GNNRefine3 +3.90 +2.31 +3.33 4 0 0 

GNNRefine4 +3.83 +2.31 +3.19 3 1 0 

Seok-server +1.73 +0.89 +2.23 7 3 1 

Bhattacharya-Server -0.44 -0.37 +0.64 17 12 8 

YASARA -1.23 -1.57 +0.26 18 16 13 

MUFold_server -1.61 -2.33 -0.70 13 11 7 

3DCNN -11.47 -8.78 -6.92 22 22 22 



1. There are 28 targets in total. Seok-server and Bhattacharya-Server submitted refined models for all targets, YASARA submitted 27                   
models, MUFold_server submitted 26, and 3DCNN submitted 22. The average performance of each group is calculated on its                  
submitted models. 
2.  lDDT is re-scaled to the range of [0, 100]. 
3. In total 50 refined models are generated by GNNRefine for each refinement target. 
4. In total only 5 refined models are generated for each refinement target. 

 

Fig. 2. Box plot of the distribution of ΔGDT-HA values on the CASP13 refinement targets 

Performance on the CASP14 refinement targets 

We test our method on the 37 CASP14 refinement targets and compare it with two human groups FEIG and BAKER                    

and 4 server groups FEIG-S, Seok-server, Bhattacharya-Server and MUFold_server. It should be noted that we did                

not finish this work before CASP14, so our method was not blindly tested in CASP14. FEIG-S is a server group, but                     

it is not fully automated for some targets as mentioned in the CASP14 abstract19. Table 2 summarizes the                  

performance and Fig. 3 shows the box plot of the ΔGDT-HA distribution. The CASP14 models are much harder to                   

refine than CASP13 models. All the server groups except FEIG-S degraded the model quality in terms of GDT-HA,                  

GDT-TS and lDDT, and all including the two human groups degraded the quality of more than 10 models. This is                    

because some initial models are well-refined, especially the 14 AlphaFold2 models. If excluding the AlphaFold2               

models, the model quality improvement is comparable to CASP13 (Supplementary Table S1). Overall, on the               

CASP14 refinement targets, our method performs slightly worse than Feig’s methods, comparably to Baker’s              

method and better than the others. Our method degraded the least number of models. It is worth mentioning that                   

even generating only 5 refined models for an initial model, our method does not lose refinement accuracy. 
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GNNRefine has successfully refined five CASP targets (3 CASP13 targets and 2 CASP14 targets) with               

ΔGDT-HA ≥10. Fig. 4 shows 4 of them with publicly available experimental structures and indicates that our                 

method can refine the starting model at different secondary structure regions (helix, sheet and coil). 

Table 2. Performance on all CASP14 refinement targets 

1. In total 50 refined models are generated by GNNRefine for each refinement target. 
2. In total only 5 refined models are generated for each  refinement target. 

 

 

Fig. 3. Box plot of the distribution of ΔGDT-HA values on the CASP14 refinement targets 

7 

Type Methods GDT-HA GDT-TS lDDT 
Degradation 

0 -1 -2 

 Starting 54.12 72.65 65.98       

Human 
FEIG +2.01 +1.49 +1.13 14 12 9 

BAKER +1.13 -0.03 +0.90 17 15 13 

Server 

GNNRefine1 +0.80 +0.77 +0.67 14 10 6 

GNNRefine2 +0.84 +0.82 +0.50 17 9 7 

FEIG-S +1.59 +1.05 +1.16 15 14 11 

Seok-server -1.14 -1.32 -0.52 21 15 11 

Bhattacharya-Server -1.24 -0.68 -0.45 29 22 10 

MUFOLD -15.37 -17.91 -13.28 36 35 32 



 
Fig. 4. Successful refinement examples by GNNRefine for targets R0974s1, R0976-D2 and R0993s2 from CASP13,               

and R1082 from CASP14. Native structures, starting models, and refined models are shown in green, cyan, and                 

magenta, respectively. Incorrect regions in the starting models that were significantly refined are indicated with blue                

arrows. 

GNNRefine outperforms existing standalone software 

Here we compare our method with some publicly available software such as GalaxyRefine9 and ModRefiner8. We                

run GalaxyRefine locally by its default configuration. ModRefiner has a configurable parameter strength in [0, 100]                

to control the strength of restraints extracted from the starting model, with strength 0 meaning no restraints at all                   

while strength 100 indicating very tight restraints by the starting model. We run ModRefiner with three different                 

strength values: 0, 50 and 100. As a control, we also run PyRosetta FastRelax without using the distance restraints                   

predicted by GNNRefine. Table 3 shows the performance and running time on the CASP13 targets, our method                 

outperforms the other methods by all metrics.  
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Table 3. Performance of standalone software on the CASP13 refinement targets 

1. The average running time (CPU hour) needed to refine a single protein model. 
2. In total 50 refined models are generated by GNNRefine for each refinement target. 
3. The running time is 2.5 hours on a single CPU and reduced to 0.25 hours when running in parallel on 10 CPUs. 
4. In total only 5 refined models are generated for each refinement target. 

 

Performance on the CAMEO dataset and CASP13 FM dataset 

We further evaluate the performance of our method on two large datasets. The first consists of 208 starting models                   

for the CAMEO targets and the second consists of 4193 decoy models built by our in-house template-free modeling                  

method for the CASP13 FM targets. See Supplementary Table S2 and S4 for the performance on the CAMEO                  

targets and CASP13 FM targets. We also analyze the correlation between the quality of the starting model and the                   

improvement by GNNRefine on the CAMEO targets, as shown in Supplementary Figure S1 and Table S3. The                 

results show that our method performs better on high quality models, which means that our method has great                  

potential for high-accuracy model refinement.  

GNNRefine improves distance prediction 

To understand why GNNRefine works without extensive conformational sampling, we evaluate the distance             

predicted by GNNRefine in terms of top L contact precision and lDDT. For each residue pair, the predicted                  

probabilities of distance bellow 8Å are summed up as predicted contact probability. We select top L contacts in the                   

starting model by their respective Cβ-Cβ Euclidean distance ascendingly. To calculate the lDDT of the distance                

predicted by GNNRefine, for each residue pair we use the middle point of the bin with the highest predicted                   
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Methods GDT-HA GDT-TS lDDT 
Degradation 

Running Time1 

0 -1 -2 

Starting 52.27 71.51 61.74         

GNNRefine2 +3.90 +2.31 +3.33 4 0 0 ~2.5 (~0.253) 

GNNRefine4 +3.83 +2.31 +3.19 3 1 0 ~0.25 

GalaxyRefine +0.21 +0.05 +1.23 15 8 4 ~2.42 

ModRefiner-100 +0.16 +0.05 +0.73 13 3 0 ~0.38 

ModRefiner-50 -0.05 +0.04 +0.78 11 6 0 ~0.47 

ModRefiner-0 -0.70 -0.58 +0.99 17 12 2 ~0.58 

FastRelax -2.00 -1.96 +0.17 18 14 13 ~0.05 



probability as its real-valued distance prediction. We only consider the Cβ-Cβ pairs with predicted distances less than                 

20Å. Table 4 shows that the distance predicted by GNNRefine is better than the starting model in terms of both                    

contact precision and lDDT. 

Table 4. Comparison between predicted distances and distances in the starting model 

 

GNN outperforms ResNet for model refinement 

The convolutional residual neural network (ResNet) is widely used for protein contact and distance prediction.               

Baker group developed a ResNet-based method DeepAccNet for model refinement. To test the performance of               

DeepAccNet with limited conformational sampling, we feed the distance potential generated by DeepAccNet into              

PyRosetta FastRelax to build refined models, using exactly the same method as GNNRefine. We have also                

developed an in-house ResNet model (of 41 2D convolutional layers) to predict distance from initial models and test                  

if the distance predicted by it can be used to refine models or not. To compare the three methods fairly, we use only                       

one deep GNNRefine model to do refinement in this experiment. For each method, we generate 10 refined models                  

from each starting model and select the lowest-energy model as the final refined model. Table 5 shows that our                   

GNN method greatly outperforms our in-house ResNet method, which in turn is better than DeepAccNet. That is,                 

DeepAccNet is not able to refine models when extensive conformation sampling is not used, but our GNN method                  

works. The difference between our in-house ResNet and DeepAccNet lies in that our ResNet directly predicts                

distance distribution while DeepAccNet predicts the distribution of distance error. Table S5 shows that our GNN                

method indeed can predict distance with better accuracy than ResNet. 

The underlying reason that GNN works better than ResNet for model refinement is that GNN is able to                  

model the correlation of multiple residues more easily than ResNet. Most proteins have their radius of gyration                 
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Dataset Methods 
Top L Contact Precision (%) lDDT 

Medium+Long Long Medium+Long Long 

CASP13 
Starting 77.33 66.16 67.92 66.38 

GNNRefine 84.85 69.65 70.89 69.48 

CAMEO 
Starting 57.66 49.67 57.77 54.89 

GNNRefine 65.34 54.10 60.19 57.38 



proportional to the cube root of their length, so any two residues that are well separated along the primary sequence                    

can be connected by a path in the protein graph shorter than the cube root of the protein length. As such, the                      

correlation of multiple residues (spreading out in the distance matrix) can be modelled more effectively by (not so                  

deep a) GNN, but not by a ResNet. That is, ResNet is good for inferring the initial inter-residue relationship and                    

GNN is more suitable for refining it. 

Table 5. Performance of GNN-based and ResNet-based methods on the CASP13 refinement targets 

Ablation study 

To assess the contribution of individual factors to GNNRefine, we evaluate the GNNRefine models trained by                

different data and different features in Table 6. Supplementary Table S6 also shows the quality of predicted distance.                  

In summary, the large training data, the inter-residue orientation and the DSSP-derived features are the three most                 

important factors. The atom embedding on average does not provide useful information. Supplementary Table S7               

shows the performance of iterative refinements by 5 GNNRefine models on the CASP13 targets, which               

demonstrates that the GNNRefine models trained on different datasets are complementary to each other. We have                

also predicted the CαCα distance, the NO distance, the inter-residue orientation and used them as restraints to build                  

refined models, but did not observe significant improvement, as shown in Supplementary Table S8. 

Table 6. Performance of GNN with different features and training data on the CASP13 refinement targets 
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Methods GDT-HA GDT-TS lDDT 
Degradation 

0 -1 -2 

Starting 52.27 71.51 61.74       

GNNRefine +3.15 +1.96 +2.88 1 0 0 

2D ResNet (in-house) +0.49 +0.29 +0.91 8 4 1 

DeepAccNet (no 
conformation sampling) +0.07 -1.23 +0.51 11 8 6 

Features Training data GDT-HA GDT-TS lDDT 
Degradation 

0 -1 -2 

All features In-house +3.15 +1.96 +2.88 1 0 0 

All features DeepAccNet data +3.19 +1.75 +2.74 3 1 1 



Discussion 

This paper has presented a new method GNNRefine for protein model refinement. GNNRefine uses graph neural                

networks (GNN) to predict inter-residue distance distribution from an initial model and then feed the predicted                

distance information into PyRosetta FastRelax to build refined models. Since only limited conformation sampling is               

used, GNNRefine may refine models very quickly. Our study shows that even generating only 5 refined models                 

from an initial model (within ~15 minutes), GNNRefine can improve model quality almost as well as generating 50                  

refined models, and that GNNRefine can refine models as well as or better than some methods that use extensive                   

conformation sampling. When conformation sampling is limited, GNNRefine works much better than ResNet for              

protein model refinement, because GNN may predict refined distance better than ResNet from an initial model. In                 

our current implementation, GNNRefine does not make use of any sequence homologs. It will be interesting to                 

investigate if GNNRefine may be further improved when multiple sequence alignment is used as its input. It will                  

also be interesting to study if we can further improve GNNRefine by directly outputting atom coordinates from                 

GNN instead of applying FastRelax to generate refined models, just like what AlphaFold2 has done. 

Methods 

Datasets 

In-house training dataset. It includes the CASP7-12 models and the models built by RaptorX for the ~29000                 

CATH domains. The CASP7-12 models are downloaded from http://predictioncenter.org/download_area/. There is           

only a small number (<600) of protein targets in CASP7-12. To increase the coverage, we select 28863 CATH                  

domains (sequence identity <35%) released in March 201820, and build on average 13 template-based and               

template-free models for each domain using our in-house protein structure prediction software RaptorX. In total,               

there are 29455 proteins with 509443 models in this training set. About 5% of the proteins and their decoys are                    
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All features CASP models only +1.42 +0.92 +1.35 8 6 3 

no Orientation In-house +2.21 +1.28 +2.26 4 2 0 

no Dihedral&SS&RSA In-house +2.53 +1.67 +2.31 2 0 0 

no AtomEmb In-house +3.25 +2.03 +2.57 2 0 0 



randomly selected to form the validation set and the remaining decoys are used to form the training set. We generate                    

3 different training and validation splits and accordingly train three different GNNRefine models.  

DeepAccNet training dataset13. It contains 7992 proteins (retrieved from the PISCES server21 and deposited to               

PDB by May 1, 2018) with 1104080 decoy models in total. Compared with our in-house training dataset, this dataset                   

covers fewer protein targets (7992 v.s. 29455) but has many more decoy models for each target (~138 v.s. ~18). This                    

set has a larger percentage of high-quality models. See Supplementary Figure S2 for the model quality distribution                 

of these two datasets. We generate two different training and validation splits on this dataset and then train two                   

different GNN models.  

Test data. We use four test datasets to evaluate our method: the CASP13 refinement dataset, the CASP14                 

refinement dataset, the CAMEO dataset, and CASP13 FM dataset. The CASP13 refinement dataset includes 28               

starting models in the CASP13 model refinement category5, excluding R0979 since it is an oligomeric target with                 

three domains while our method is trained on individual domains. The CASP14 refinement dataset includes 37                

starting models. The description of the CAMEO dataset and the CASP13 FM targets and their results are available at                   

the Supplemental File. Note that all the training targets were released before May 1, 2018 and all the test targets                    

were released after this date and thus, there is no overlap between our training and test datasets. The detailed                   

information of our data is shown in the Supplementary Table S9. 

Feature extraction and graph definition 

From a protein model, we derive two types of features: residue feature and residue pair feature. The residue feature                   

includes sequential and structural properties of a residue: 1) one-hot encoding of the residue (i.e., a binary vector of                   

21 entries indicating its amino acid type); 2) the relative position of the residue in its sequence calculated as i/L                    

(where i is the residue index and L is the sequence length); 3) dihedral angle (in radian), secondary structure                   

(3-state), and relative solvent accessibility calculated by DSSP22; 4) one-hot encoding and relative coordinates of               

heavy atoms in the residue. The one-hot encoding is a four-dimensional vector representing four atom types (C, N,                  

O and S) and the relative coordinate is a three-dimensional vector defined as: , where             x , , )( − xα y − yα z − zα   x, , )( y z  

is a heavy atom’s coordinate and  is the Cα atom’s coordinate.x , , )( α yα zα   

The residue pair feature is derived for a pair of residues with Euclidean distance less than 10Å, including: 1)                   

spatial distances of three atom pairs (CαCα, CβCβ and NO) scaled by 0.1; 2) three types of inter-residue orientation                   
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(ω, θ dihedrals and φ angle) defined in trRosetta4; 3) the sequential separation of the two residues (i.e. the absolute                    

difference between the two residue indices), which is discretized into 9 bins ([1, 2, 3, 4, 5, 6-10, 11-15, 16-20, >20])                     

and represented by one-hot encoding. All these features are summarized in Supplementary Table S10. 

We represent an initial protein model as a graph, in which one node represents a residue and one edge                   

represents a chemical bond or a contact between two residues. We say there is a contact between two residues if                    

their Cβ Euclidean distance is no more than 10Å. It should be noted that this protein graph is equivariant (or                    

symmetric) with respect to rotation and translation of atomic coordinates in the 3D space23. 

GNNRefine architecture and training 

Our GNN model contains an atom embedding layer, 10 message passing layers, and an output layer. The dimensions                  

of the atom embedding, edge feature and node feature are all 256. As shown in Figure 5A, the atom embedding layer                     

is used to extract the local structure information for each residue. Its input is the one-hot encoding of an amino acid                     

and the relative coordinates of heavy atoms in the residue, and its output is the atom embedding with a fixed                    

dimension. The atom embedding is concatenated with other residue features to form the input feature of one residue                  

(i.e. node feature in the graph). Each message passing layer consists of a message block for edges and a reduce block                     

for nodes. The message block for edges updates edge features and obtains edge attention values (Figure 5B) and the                   

reduce block for nodes updates node features (Figure 5C).  

For each edge, the inputs of its message block are the features of the two nodes connected by the edge and the                      

edge feature itself. All these features go through an instance norm layer, a linear layer, and a LeakyReLU layer to                    

generate an intermediate edge feature, which then goes through an LSTM cell to obtain the new edge feature. For                   

each LSTM cell, its input is the intermediate edge feature, its hidden state is the output of its preceding LSTM cell,                     

and its cell state is updated from its preceding LSTM cell (the cell state of the first LSTM cell is initialized to 0).                       

The LSTM cell may help to capture the long-term dependency across layers, which enables us to build a deeper                   

GNN24. The new edge feature also goes through a linear attention layer to obtain the attention value of the edge. For                     

each node, the inputs of its reduce block are the reduced edge feature and the node feature. The reduced edge feature                     

is a linear combination of all edge features weighted by their respective attention values. Similar to an edge block,                   

the features go through an instance norm layer, a linear layer, and a ReLU layer to generate an intermediate node                    
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feature, and then the intermediate node feature together with the initial node feature and its preceding LSTM cell                  

state pass through an LSTM cell to obtain the new node feature and new cell state.  

The output layer uses a linear layer and a softmax function to estimate the distance probability distribution                 

based on the edge feature. The distance probability distribution is a 37-dimensional vector with 36 bins representing                 

the distances from 2 to 20 Å (0.5Å each) and one bin indicating the distance >20Å, as presented in trRosetta4. To                     

evaluate the refined model quality, we train a GNN-based quality assessment model which uses the node feature to                  

predict the global lDDT and residue-wise lDDT simultaneously. 

 

Fig. 5. Detailed architectures of the atom embedding module and message passing blocks for edges and nodes. A.                  

The atom embedding module; B. The message block for edges; C. The reduce block for nodes. 

To fit the deep model to a GPU with limited memory, when a protein has more than 400 residues, a                    

sub-structure of 400 consecutive residues is randomly sampled. We implement GNNRefine with DGL25 for              

PyTorch26 and train it using the Adam optimizer with parameters: β1=0.9 and β2=0.999. We set the initial learning                  
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rate to 0.0001 and divide it by 2 every 5 epochs. One minibatch has 16 protein models. We use the cross-entropy                     

loss to train GNNRefine at most 15 epochs and select the model with the minimum loss on the validation data as our                      

final model. 

Building refined models 

Building a refined full-atom model by FastRelax18 consists of the following steps: 1) use the initial model to                  

initialize the pose in PyRosetta; 2) convert the predicted distance probability distribution into distance potential               

using the DFIRE27 reference state and then add it onto the pose as restraints; 3) conduct full-atom relaxation,                  

side-chain packaging and gradient-based energy minimization with the built-in ref2015 28 scoring function. The              

GNN model training and the FastRelax energy minimization may be trapped into local minima. To deal with this,                  

we train 5 GNN models using five different training and validation data splits. Then we generate 10 refined models                   

from an initial model using distance predicted by one GNN model and keep the lowest-energy one. We continue to                   

refine this lowest-energy model using another GNN model until all 5 GNN models are applied. That is, in total we                    

generate only 50 refined models and there are 5 lowest-energy refined models, which are then ranked by a                  

GNN-based global model quality assessment (QA) method. This QA method is trained to predict global and local                 

lDDT by the same set of data used to train GNNRefine. We also tested the strategy of generating only 1 refined                     

model from an initial model by each of the 5 GNNRefine models sequentially. It turns out that this strategy has                    

refinement accuracy almost as well as generating 10 refined models from an initial model by a single GNNRefine                  

model. 
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