
Fast and effective protein model refinement by deep

graph neural networks

Xiaoyang Jing1, Jinbo Xu1,*

1Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

*To whom correspondence should be addressed.

Abstract

Protein structure prediction has been greatly improved, but there are still a good portion of predicted models that do

not have very high quality. Protein model refinement is one of the methods that may further improve model quality.

Nevertheless, it is very challenging to refine a protein model towards better quality. Currently the most successful

refinement methods rely on extensive conformation sampling and thus, take hours or days to refine even a single

protein model. Here we propose a fast and effective method that may refine protein models with very limited

conformation sampling. Our method applies GNN (graph neural networks) to predict refined inter-atom distance

probability distribution from an initial model and then rebuilds the model using the predicted distance as restraints. On

the CASP13 refinement targets our method may refine models with comparable quality as the two leading human

groups (Feig and Baker) and greatly outperforms the others. On the CASP14 refinement targets our method is only

second to Feig’s method, comparable to Baker’s method and much better than the others (who worsened instead of

improved model quality). Our method achieves this result by generating only 5 refined models for an initial model,

which can be done in ~15 minutes. Our study also shows that GNN performs much better than convolutional residual

neural networks for protein model refinement when conformation sampling is limited.

Availability: The code will be released once the manuscript is published and available at http://raptorx.uchicago.edu

Contact: jinboxu@gmail.com

1

http://raptorx.uchicago.edu/

Introduction

High-accuracy protein structure prediction can facilitate the understanding of biological processes at the molecular

level. In the past few years, protein structure prediction has been greatly improved, mainly due to the introduction of

deep convolutional residual networks (ResNet)1–4 and lately transformer-like networks implemented in AlphaFold2.

However, a good percentage of predicted protein structural models still deviate from their native structures, which

limits their value in downstream applications. To further improve model quality, much effort has been devoted into

developing model refinement methods5–7. The main goal is to refine an initial model towards its native structure and

then, to generate new models of higher quality. This is a very challenging task since the space of worse models is

much larger than that of better models. Many refined models submitted by CASP participants have worse quality

than their starting models5.

A typical model refinement method employs side-chain repacking, energy minimization and constrained

structure sampling8–11. Since the energy function is usually challenging to optimize, model quality may not be

improved without large-scale conformational sampling. Currently, the most successful refinement methods use

large-scale conformational sampling either through molecular dynamics (MD) simulations6 or fragment assembly7,12.

For example, Feig group employs iterative MD simulation with flat-bottom harmonic restraints to sample

conformations. A subset of sampled models are selected using Rosetta scoring function and averaged to build the

final refined model. Baker group7 uses local error estimation to guide conformational sampling by fragment

assembly, and iteratively refines the models by recombining secondary structure segments and replacing torsional

angles. The lowest-energy model in the last iteration is identified using Rosetta scoring function and then averaged

with its conformational neighbours to build the final refined model. GalaxyRefine212 developed by Seok group

employs multiple conformation search strategies. Model error estimation can be used to constrain the sampling

space and prevent degradation of the stable structure regions. DeepAccNet13 uses both 3D and 2D convolution

networks to estimate residue-wise accuracy and inter-residue distance error, which are then converted into Rosetta

restraints to guide conformational sampling. Although performing well on some proteins, these methods rely on

extensive conformational sampling and thus, a lot of computing resources for even a single protein model 13,14.

In this work we propose a new model refinement method GNNRefine that may quickly improve model quality

without extensive conformation sampling. GNNRefine represents an initial protein model as a graph and then

2

employs graph neural networks (GNN) to refine it. GNN has been used to predict protein model quality15,16, but not

to refine protein models. GNNRefine iteratively updates the node (residue-wise) and edge (residue-pair) features in

the graph by multiple message-passing layers to capture the global structural information, from which it predicts

inter-atom distance probability distribution. The predicted distance probability is converted into distance potential,

which is then fed into PyRosetta17 FastRelax18 to produce refined models without extensive conformational

sampling. Our experimental results show that on average GNNRefine may improve model quality, significantly

outperforms those methods without using large-scale conformational sampling, and is slightly worse than Feig’s

leading method that uses large-scale conformational sampling. Another advantage is that GNNRefine produces

fewer degraded models than other methods.

Results

Overview of the method

Figure 1A shows the flowchart of our method GNNRefine, which mainly includes three steps: 1) represent the initial

model as a graph and extract atom, residue, and geometric features from the initial model, 2) predict refined distance

for each edge in the graph using graph neural network (GNN), and 3) convert the predicted distance probability into

distance potential and feed it into PyRosetta17 FastRelax18 to produce refined models by side-chain packing and

energy minimization. Meanwhile, the GNN-based distance prediction is the key factor affecting the refined model

quality. As shown in Figure 1B, GNNRefine mainly consists of three modules: an atom embedding layer, multiple

message passing layers, and an output layer. The atom embedding layer is used to learn atom-level structure

information of one residue and the resultant atom embedding is concatenated with other residue features to form the

final feature of a residue. The protein graph is built on the residue feature (node) and bond or contact feature (edge)

between residue pairs (detailed in the Methods section). By going through multiple message passing layers, the node

and edge features are iteratively updated to capture global structural information. Finally, a linear layer and a

softmax function are used to predict distance probability distribution from the edge feature.

The predicted distance probability is converted into distance potential which is then fed into PyRosetta

FastRelax to build the refined model. Since we use a much smaller number of distance restraints (i.e., only consider

those residue pairs with distance no more than 10Å in the starting model) and directly refine the model without a lot

3

of samplings, our method runs very fast. Tested on the CASP13 dataset, our method needs on average only 15

minutes to refine a single protein model when 10 CPUs are used to run FastRelax (to generate 50 refined models). In

contrast, Baker’s DeepAccNet needs more than 10 hours on 50 CPUs to refine a single model with 120 residues.

Fig. 1. The GNNRefine method for protein model refinement. A. the flowchart of GNNRefine including feature

extraction, refined distance prediction by GNN, and refined model building by FastRelax; B. the network

architecture of GNNRefine.

Evaluation metrics

We evaluate quality improvement of the refined models over their starting models in terms of GDT-HA, GDT-TS

and lDDT. We also use “Degradation” to count how many refined models have quality worse than their initial

models by a given threshold (0, -1 and -2). Meanwhile, 0 denotes that a refined model has worse GDT-HA than its

starting model; -1 and -2 denote that a refined model’s GDT-HA is worse than its starting model by at least 1 and 2

units, respectively.

Performance on the CASP13 refinement targets

We compare our method with two leading human groups in the CASP13 refinement category5 (FEIGLAB and

BAKER) and 5 server groups Seok-server, Bhattacharya-Server, YASARA, MUFold_server and 3DCNN. Their

4

refined models are available at the CASP official website. A human group has up to three weeks to refine one model

while a server group has at most three days. A human group may make use of any extra information. For example,

FEIGLAB selected refined models manually and BAKER group chose their sampling strategy based upon the model

quality provided by the CASP organizers. Here we evaluate the quality of the first submitted models, as shown in

Table 1. Fig. 2 shows the box plot of the ΔGDT-HA distribution. Even if generating only 5 refined models for each

initial model, our GNNRefine has comparable performance as the two human groups and outperforms all the 5

servers in terms of quality improvement. Seok-server is the only server that obtained positive improvement on the

three metrics. Bhattacharya-Server and YASARA improved lDDT slightly, but degraded GDT-HA and GDT-TS.

MUFold_server and 3DCNN degraded all the three metrics. Further, our method generates only 4 refined models

with slightly worse quality than their initial models, but all the other methods including the two human groups

degraded many models. That is, it is very safe to use our method to refine models. Fig. 2 shows that the two human

groups have a larger variance than our method possibly because of extensive conformational sampling. That is, they

may be able to refine some models very well, but also likely to degrade some models a lot. In contrast, our method

has a smaller variance since we do not use extensive conformational sampling.

Table 1. Performance on the CASP13 refinement targets

5

Type Methods1 GDT-HA GDT-TS lDDT2
Degradation

0 -1 -2

 Starting 52.27 71.51 61.74

Human
FEIGLAB +4.04 +2.97 +2.48 8 6 4

BAKER +3.35 +1.86 +3.73 7 6 6

Server

GNNRefine3 +3.90 +2.31 +3.33 4 0 0

GNNRefine4 +3.83 +2.31 +3.19 3 1 0

Seok-server +1.73 +0.89 +2.23 7 3 1

Bhattacharya-Server -0.44 -0.37 +0.64 17 12 8

YASARA -1.23 -1.57 +0.26 18 16 13

MUFold_server -1.61 -2.33 -0.70 13 11 7

3DCNN -11.47 -8.78 -6.92 22 22 22

1. There are 28 targets in total. Seok-server and Bhattacharya-Server submitted refined models for all targets, YASARA submitted 27
models, MUFold_server submitted 26, and 3DCNN submitted 22. The average performance of each group is calculated on its
submitted models.
2. lDDT is re-scaled to the range of [0, 100].
3. In total 50 refined models are generated by GNNRefine for each refinement target.
4. In total only 5 refined models are generated for each refinement target.

Fig. 2. Box plot of the distribution of ΔGDT-HA values on the CASP13 refinement targets

Performance on the CASP14 refinement targets

We test our method on the 37 CASP14 refinement targets and compare it with two human groups FEIG and BAKER

and 4 server groups FEIG-S, Seok-server, Bhattacharya-Server and MUFold_server. It should be noted that we did

not finish this work before CASP14, so our method was not blindly tested in CASP14. FEIG-S is a server group, but

it is not fully automated for some targets as mentioned in the CASP14 abstract19. Table 2 summarizes the

performance and Fig. 3 shows the box plot of the ΔGDT-HA distribution. The CASP14 models are much harder to

refine than CASP13 models. All the server groups except FEIG-S degraded the model quality in terms of GDT-HA,

GDT-TS and lDDT, and all including the two human groups degraded the quality of more than 10 models. This is

because some initial models are well-refined, especially the 14 AlphaFold2 models. If excluding the AlphaFold2

models, the model quality improvement is comparable to CASP13 (Supplementary Table S1). Overall, on the

CASP14 refinement targets, our method performs slightly worse than Feig’s methods, comparably to Baker’s

method and better than the others. Our method degraded the least number of models. It is worth mentioning that

even generating only 5 refined models for an initial model, our method does not lose refinement accuracy.

6

GNNRefine has successfully refined five CASP targets (3 CASP13 targets and 2 CASP14 targets) with

ΔGDT-HA ≥10. Fig. 4 shows 4 of them with publicly available experimental structures and indicates that our

method can refine the starting model at different secondary structure regions (helix, sheet and coil).

Table 2. Performance on all CASP14 refinement targets

1. In total 50 refined models are generated by GNNRefine for each refinement target.
2. In total only 5 refined models are generated for each refinement target.

Fig. 3. Box plot of the distribution of ΔGDT-HA values on the CASP14 refinement targets

7

Type Methods GDT-HA GDT-TS lDDT
Degradation

0 -1 -2

 Starting 54.12 72.65 65.98

Human
FEIG +2.01 +1.49 +1.13 14 12 9

BAKER +1.13 -0.03 +0.90 17 15 13

Server

GNNRefine1 +0.80 +0.77 +0.67 14 10 6

GNNRefine2 +0.84 +0.82 +0.50 17 9 7

FEIG-S +1.59 +1.05 +1.16 15 14 11

Seok-server -1.14 -1.32 -0.52 21 15 11

Bhattacharya-Server -1.24 -0.68 -0.45 29 22 10

MUFOLD -15.37 -17.91 -13.28 36 35 32

Fig. 4. Successful refinement examples by GNNRefine for targets R0974s1, R0976-D2 and R0993s2 from CASP13,

and R1082 from CASP14. Native structures, starting models, and refined models are shown in green, cyan, and

magenta, respectively. Incorrect regions in the starting models that were significantly refined are indicated with blue

arrows.

GNNRefine outperforms existing standalone software

Here we compare our method with some publicly available software such as GalaxyRefine9 and ModRefiner8. We

run GalaxyRefine locally by its default configuration. ModRefiner has a configurable parameter strength in [0, 100]

to control the strength of restraints extracted from the starting model, with strength 0 meaning no restraints at all

while strength 100 indicating very tight restraints by the starting model. We run ModRefiner with three different

strength values: 0, 50 and 100. As a control, we also run PyRosetta FastRelax without using the distance restraints

predicted by GNNRefine. Table 3 shows the performance and running time on the CASP13 targets, our method

outperforms the other methods by all metrics.

8

Table 3. Performance of standalone software on the CASP13 refinement targets

1. The average running time (CPU hour) needed to refine a single protein model.
2. In total 50 refined models are generated by GNNRefine for each refinement target.
3. The running time is 2.5 hours on a single CPU and reduced to 0.25 hours when running in parallel on 10 CPUs.
4. In total only 5 refined models are generated for each refinement target.

Performance on the CAMEO dataset and CASP13 FM dataset

We further evaluate the performance of our method on two large datasets. The first consists of 208 starting models

for the CAMEO targets and the second consists of 4193 decoy models built by our in-house template-free modeling

method for the CASP13 FM targets. See Supplementary Table S2 and S4 for the performance on the CAMEO

targets and CASP13 FM targets. We also analyze the correlation between the quality of the starting model and the

improvement by GNNRefine on the CAMEO targets, as shown in Supplementary Figure S1 and Table S3. The

results show that our method performs better on high quality models, which means that our method has great

potential for high-accuracy model refinement.

GNNRefine improves distance prediction

To understand why GNNRefine works without extensive conformational sampling, we evaluate the distance

predicted by GNNRefine in terms of top L contact precision and lDDT. For each residue pair, the predicted

probabilities of distance bellow 8Å are summed up as predicted contact probability. We select top L contacts in the

starting model by their respective Cβ-Cβ Euclidean distance ascendingly. To calculate the lDDT of the distance

predicted by GNNRefine, for each residue pair we use the middle point of the bin with the highest predicted

9

Methods GDT-HA GDT-TS lDDT
Degradation

Running Time1

0 -1 -2

Starting 52.27 71.51 61.74

GNNRefine2 +3.90 +2.31 +3.33 4 0 0 ~2.5 (~0.253)

GNNRefine4 +3.83 +2.31 +3.19 3 1 0 ~0.25

GalaxyRefine +0.21 +0.05 +1.23 15 8 4 ~2.42

ModRefiner-100 +0.16 +0.05 +0.73 13 3 0 ~0.38

ModRefiner-50 -0.05 +0.04 +0.78 11 6 0 ~0.47

ModRefiner-0 -0.70 -0.58 +0.99 17 12 2 ~0.58

FastRelax -2.00 -1.96 +0.17 18 14 13 ~0.05

probability as its real-valued distance prediction. We only consider the Cβ-Cβ pairs with predicted distances less than

20Å. Table 4 shows that the distance predicted by GNNRefine is better than the starting model in terms of both

contact precision and lDDT.

Table 4. Comparison between predicted distances and distances in the starting model

GNN outperforms ResNet for model refinement

The convolutional residual neural network (ResNet) is widely used for protein contact and distance prediction.

Baker group developed a ResNet-based method DeepAccNet for model refinement. To test the performance of

DeepAccNet with limited conformational sampling, we feed the distance potential generated by DeepAccNet into

PyRosetta FastRelax to build refined models, using exactly the same method as GNNRefine. We have also

developed an in-house ResNet model (of 41 2D convolutional layers) to predict distance from initial models and test

if the distance predicted by it can be used to refine models or not. To compare the three methods fairly, we use only

one deep GNNRefine model to do refinement in this experiment. For each method, we generate 10 refined models

from each starting model and select the lowest-energy model as the final refined model. Table 5 shows that our

GNN method greatly outperforms our in-house ResNet method, which in turn is better than DeepAccNet. That is,

DeepAccNet is not able to refine models when extensive conformation sampling is not used, but our GNN method

works. The difference between our in-house ResNet and DeepAccNet lies in that our ResNet directly predicts

distance distribution while DeepAccNet predicts the distribution of distance error. Table S5 shows that our GNN

method indeed can predict distance with better accuracy than ResNet.

The underlying reason that GNN works better than ResNet for model refinement is that GNN is able to

model the correlation of multiple residues more easily than ResNet. Most proteins have their radius of gyration

10

Dataset Methods
Top L Contact Precision (%) lDDT

Medium+Long Long Medium+Long Long

CASP13
Starting 77.33 66.16 67.92 66.38

GNNRefine 84.85 69.65 70.89 69.48

CAMEO
Starting 57.66 49.67 57.77 54.89

GNNRefine 65.34 54.10 60.19 57.38

proportional to the cube root of their length, so any two residues that are well separated along the primary sequence

can be connected by a path in the protein graph shorter than the cube root of the protein length. As such, the

correlation of multiple residues (spreading out in the distance matrix) can be modelled more effectively by (not so

deep a) GNN, but not by a ResNet. That is, ResNet is good for inferring the initial inter-residue relationship and

GNN is more suitable for refining it.

Table 5. Performance of GNN-based and ResNet-based methods on the CASP13 refinement targets

Ablation study

To assess the contribution of individual factors to GNNRefine, we evaluate the GNNRefine models trained by

different data and different features in Table 6. Supplementary Table S6 also shows the quality of predicted distance.

In summary, the large training data, the inter-residue orientation and the DSSP-derived features are the three most

important factors. The atom embedding on average does not provide useful information. Supplementary Table S7

shows the performance of iterative refinements by 5 GNNRefine models on the CASP13 targets, which

demonstrates that the GNNRefine models trained on different datasets are complementary to each other. We have

also predicted the CαCα distance, the NO distance, the inter-residue orientation and used them as restraints to build

refined models, but did not observe significant improvement, as shown in Supplementary Table S8.

Table 6. Performance of GNN with different features and training data on the CASP13 refinement targets

11

Methods GDT-HA GDT-TS lDDT
Degradation

0 -1 -2

Starting 52.27 71.51 61.74

GNNRefine +3.15 +1.96 +2.88 1 0 0

2D ResNet (in-house) +0.49 +0.29 +0.91 8 4 1

DeepAccNet (no
conformation sampling) +0.07 -1.23 +0.51 11 8 6

Features Training data GDT-HA GDT-TS lDDT
Degradation

0 -1 -2

All features In-house +3.15 +1.96 +2.88 1 0 0

All features DeepAccNet data +3.19 +1.75 +2.74 3 1 1

Discussion

This paper has presented a new method GNNRefine for protein model refinement. GNNRefine uses graph neural

networks (GNN) to predict inter-residue distance distribution from an initial model and then feed the predicted

distance information into PyRosetta FastRelax to build refined models. Since only limited conformation sampling is

used, GNNRefine may refine models very quickly. Our study shows that even generating only 5 refined models

from an initial model (within ~15 minutes), GNNRefine can improve model quality almost as well as generating 50

refined models, and that GNNRefine can refine models as well as or better than some methods that use extensive

conformation sampling. When conformation sampling is limited, GNNRefine works much better than ResNet for

protein model refinement, because GNN may predict refined distance better than ResNet from an initial model. In

our current implementation, GNNRefine does not make use of any sequence homologs. It will be interesting to

investigate if GNNRefine may be further improved when multiple sequence alignment is used as its input. It will

also be interesting to study if we can further improve GNNRefine by directly outputting atom coordinates from

GNN instead of applying FastRelax to generate refined models, just like what AlphaFold2 has done.

Methods

Datasets

In-house training dataset. It includes the CASP7-12 models and the models built by RaptorX for the ~29000

CATH domains. The CASP7-12 models are downloaded from http://predictioncenter.org/download_area/. There is

only a small number (<600) of protein targets in CASP7-12. To increase the coverage, we select 28863 CATH

domains (sequence identity <35%) released in March 201820, and build on average 13 template-based and

template-free models for each domain using our in-house protein structure prediction software RaptorX. In total,

there are 29455 proteins with 509443 models in this training set. About 5% of the proteins and their decoys are

12

All features CASP models only +1.42 +0.92 +1.35 8 6 3

no Orientation In-house +2.21 +1.28 +2.26 4 2 0

no Dihedral&SS&RSA In-house +2.53 +1.67 +2.31 2 0 0

no AtomEmb In-house +3.25 +2.03 +2.57 2 0 0

randomly selected to form the validation set and the remaining decoys are used to form the training set. We generate

3 different training and validation splits and accordingly train three different GNNRefine models.

DeepAccNet training dataset13. It contains 7992 proteins (retrieved from the PISCES server21 and deposited to

PDB by May 1, 2018) with 1104080 decoy models in total. Compared with our in-house training dataset, this dataset

covers fewer protein targets (7992 v.s. 29455) but has many more decoy models for each target (~138 v.s. ~18). This

set has a larger percentage of high-quality models. See Supplementary Figure S2 for the model quality distribution

of these two datasets. We generate two different training and validation splits on this dataset and then train two

different GNN models.

Test data. We use four test datasets to evaluate our method: the CASP13 refinement dataset, the CASP14

refinement dataset, the CAMEO dataset, and CASP13 FM dataset. The CASP13 refinement dataset includes 28

starting models in the CASP13 model refinement category5, excluding R0979 since it is an oligomeric target with

three domains while our method is trained on individual domains. The CASP14 refinement dataset includes 37

starting models. The description of the CAMEO dataset and the CASP13 FM targets and their results are available at

the Supplemental File. Note that all the training targets were released before May 1, 2018 and all the test targets

were released after this date and thus, there is no overlap between our training and test datasets. The detailed

information of our data is shown in the Supplementary Table S9.

Feature extraction and graph definition

From a protein model, we derive two types of features: residue feature and residue pair feature. The residue feature

includes sequential and structural properties of a residue: 1) one-hot encoding of the residue (i.e., a binary vector of

21 entries indicating its amino acid type); 2) the relative position of the residue in its sequence calculated as i/L

(where i is the residue index and L is the sequence length); 3) dihedral angle (in radian), secondary structure

(3-state), and relative solvent accessibility calculated by DSSP22; 4) one-hot encoding and relative coordinates of

heavy atoms in the residue. The one-hot encoding is a four-dimensional vector representing four atom types (C, N,

O and S) and the relative coordinate is a three-dimensional vector defined as: , where x , ,)(− xα y − yα z − zα x, ,)(y z

is a heavy atom’s coordinate and is the Cα atom’s coordinate.x , ,)(α yα zα

The residue pair feature is derived for a pair of residues with Euclidean distance less than 10Å, including: 1)

spatial distances of three atom pairs (CαCα, CβCβ and NO) scaled by 0.1; 2) three types of inter-residue orientation

13

(ω, θ dihedrals and φ angle) defined in trRosetta4; 3) the sequential separation of the two residues (i.e. the absolute

difference between the two residue indices), which is discretized into 9 bins ([1, 2, 3, 4, 5, 6-10, 11-15, 16-20, >20])

and represented by one-hot encoding. All these features are summarized in Supplementary Table S10.

We represent an initial protein model as a graph, in which one node represents a residue and one edge

represents a chemical bond or a contact between two residues. We say there is a contact between two residues if

their Cβ Euclidean distance is no more than 10Å. It should be noted that this protein graph is equivariant (or

symmetric) with respect to rotation and translation of atomic coordinates in the 3D space23.

GNNRefine architecture and training

Our GNN model contains an atom embedding layer, 10 message passing layers, and an output layer. The dimensions

of the atom embedding, edge feature and node feature are all 256. As shown in Figure 5A, the atom embedding layer

is used to extract the local structure information for each residue. Its input is the one-hot encoding of an amino acid

and the relative coordinates of heavy atoms in the residue, and its output is the atom embedding with a fixed

dimension. The atom embedding is concatenated with other residue features to form the input feature of one residue

(i.e. node feature in the graph). Each message passing layer consists of a message block for edges and a reduce block

for nodes. The message block for edges updates edge features and obtains edge attention values (Figure 5B) and the

reduce block for nodes updates node features (Figure 5C).

For each edge, the inputs of its message block are the features of the two nodes connected by the edge and the

edge feature itself. All these features go through an instance norm layer, a linear layer, and a LeakyReLU layer to

generate an intermediate edge feature, which then goes through an LSTM cell to obtain the new edge feature. For

each LSTM cell, its input is the intermediate edge feature, its hidden state is the output of its preceding LSTM cell,

and its cell state is updated from its preceding LSTM cell (the cell state of the first LSTM cell is initialized to 0).

The LSTM cell may help to capture the long-term dependency across layers, which enables us to build a deeper

GNN24. The new edge feature also goes through a linear attention layer to obtain the attention value of the edge. For

each node, the inputs of its reduce block are the reduced edge feature and the node feature. The reduced edge feature

is a linear combination of all edge features weighted by their respective attention values. Similar to an edge block,

the features go through an instance norm layer, a linear layer, and a ReLU layer to generate an intermediate node

14

feature, and then the intermediate node feature together with the initial node feature and its preceding LSTM cell

state pass through an LSTM cell to obtain the new node feature and new cell state.

The output layer uses a linear layer and a softmax function to estimate the distance probability distribution

based on the edge feature. The distance probability distribution is a 37-dimensional vector with 36 bins representing

the distances from 2 to 20 Å (0.5Å each) and one bin indicating the distance >20Å, as presented in trRosetta4. To

evaluate the refined model quality, we train a GNN-based quality assessment model which uses the node feature to

predict the global lDDT and residue-wise lDDT simultaneously.

Fig. 5. Detailed architectures of the atom embedding module and message passing blocks for edges and nodes. A.

The atom embedding module; B. The message block for edges; C. The reduce block for nodes.

To fit the deep model to a GPU with limited memory, when a protein has more than 400 residues, a

sub-structure of 400 consecutive residues is randomly sampled. We implement GNNRefine with DGL25 for

PyTorch26 and train it using the Adam optimizer with parameters: β1=0.9 and β2=0.999. We set the initial learning

15

rate to 0.0001 and divide it by 2 every 5 epochs. One minibatch has 16 protein models. We use the cross-entropy

loss to train GNNRefine at most 15 epochs and select the model with the minimum loss on the validation data as our

final model.

Building refined models

Building a refined full-atom model by FastRelax18 consists of the following steps: 1) use the initial model to

initialize the pose in PyRosetta; 2) convert the predicted distance probability distribution into distance potential

using the DFIRE27 reference state and then add it onto the pose as restraints; 3) conduct full-atom relaxation,

side-chain packaging and gradient-based energy minimization with the built-in ref2015 28 scoring function. The

GNN model training and the FastRelax energy minimization may be trapped into local minima. To deal with this,

we train 5 GNN models using five different training and validation data splits. Then we generate 10 refined models

from an initial model using distance predicted by one GNN model and keep the lowest-energy one. We continue to

refine this lowest-energy model using another GNN model until all 5 GNN models are applied. That is, in total we

generate only 50 refined models and there are 5 lowest-energy refined models, which are then ranked by a

GNN-based global model quality assessment (QA) method. This QA method is trained to predict global and local

lDDT by the same set of data used to train GNNRefine. We also tested the strategy of generating only 1 refined

model from an initial model by each of the 5 GNNRefine models sequentially. It turns out that this strategy has

refinement accuracy almost as well as generating 10 refined models from an initial model by a single GNNRefine

model.

Acknowledgements

The authors are grateful to Prof. David Baker’s team including Hahnbeom Park who provided us the DeepAccNet

training data. This work is supported by National Institutes of Health grant R01GM089753 to J.X. and National

Science Foundation grant DBI1564955 to J.X. The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

16

Author contributions

X.J. conceived the research, developed the GNNRefine, and carried out the benchmarking experiments. J.X. built

the in-house training data and guided the research. X.J. and J.X. analyzed the results and wrote the manuscript.

Competing interests

The authors declare no competing interests.

References
1. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate De Novo Prediction of Protein

Contact Map by Ultra-Deep Learning Model. PLOS Computational Biology 13, e1005324

(2017).

2. Xu, J. Distance-based protein folding powered by deep learning. PNAS 116, 16856–16865

(2019).

3. Senior, A. W. et al. Improved protein structure prediction using potentials from deep

learning. Nature 577, 706–710 (2020).

4. Yang, J. et al. Improved protein structure prediction using predicted interresidue

orientations. PNAS 117, 1496–1503 (2020).

5. Read, R. J., Sammito, M. D., Kryshtafovych, A. & Croll, T. I. Evaluation of model refinement

in CASP13. Proteins: Structure, Function, and Bioinformatics 87, 1249–1262 (2019).

6. Heo, L., Arbour, C. F. & Feig, M. Driven to near-experimental accuracy by refinement via

molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics 87,

1263–1275 (2019).

7. Park, H. et al. High-accuracy refinement using Rosetta in CASP13. Proteins: Structure,

Function, and Bioinformatics 87, 1276–1282 (2019).

8. Xu, D. & Zhang, Y. Improving the Physical Realism and Structural Accuracy of Protein

17

Models by a Two-Step Atomic-Level Energy Minimization. Biophysical Journal 101,

2525–2534 (2011).

9. Heo, L., Park, H. & Seok, C. GalaxyRefine: protein structure refinement driven by side-chain

repacking. Nucleic Acids Res 41, W384–W388 (2013).

10. Bhattacharya, D., Nowotny, J., Cao, R. & Cheng, J. 3Drefine: an interactive web server for

efficient protein structure refinement. Nucleic Acids Res 44, W406–W409 (2016).

11. Bhattacharya, D. refineD: improved protein structure refinement using machine learning

based restrained relaxation. Bioinformatics 35, 3320–3328 (2019).

12. Lee, G. R., Won, J., Heo, L. & Seok, C. GalaxyRefine2: simultaneous refinement of

inaccurate local regions and overall protein structure. Nucleic Acids Res 47, W451–W455

(2019).

13. Hiranuma, N. et al. Improved protein structure refinement guided by deep learning based

accuracy estimation. bioRxiv 2020.07.17.209643 (2020) doi:10.1101/2020.07.17.209643.

14. Mirjalili, V., Noyes, K. & Feig, M. Physics-based protein structure refinement through

multiple molecular dynamics trajectories and structure averaging. Proteins: Structure,

Function, and Bioinformatics 82, 196–207 (2014).

15. Sanyal, S., Anishchenko, I., Dagar, A., Baker, D. & Talukdar, P. ProteinGCN: Protein model

quality assessment using Graph Convolutional Networks. bioRxiv 2020.04.06.028266

(2020) doi:10.1101/2020.04.06.028266.

16. Baldassarre, F., Hurtado, D. M., Elofsson, A. & Azizpour, H. GraphQA: Protein Model

Quality Assessment using Graph Convolutional Networks. Bioinformatics btaa714 (2020)

doi:10.1093/bioinformatics/btaa714.

17. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691

(2010).

18. Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation of backbone

18

bond geometry improves protein energy landscape modeling. Protein Sci 23, 47–55 (2014).

19. Critical assessment of techniques for protein structure prediction Fourteenth round -

Abstract book. https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf (2020).

20. Dawson, N. L. et al. CATH: an expanded resource to predict protein function through

structure and sequence. Nucleic Acids Res 45, D289–D295 (2017).

21. Wang, G. & Dunbrack, R. L. PISCES: a protein sequence culling server. Bioinformatics 19,

1589–1591 (2003).

22. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of

hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

23. Thomas, N. et al. Tensor field networks: Rotation- and translation-equivariant neural

networks for 3D point clouds. arXiv:1802.08219 [cs] (2018).

24. Huang, B. & Carley, K. M. Residual or Gate? Towards Deeper Graph Neural Networks for

Inductive Graph Representation Learning. arXiv:1904.08035 [cs, stat] (2019).

25. Wang, M. et al. Deep Graph Library: A Graph-Centric, Highly-Performant Package for

Graph Neural Networks. arXiv:1909.01315 [cs, stat] (2020).

26. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. in

Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 8026–8037

(Curran Associates, Inc., 2019).

27. Zhou, H. & Zhou, Y. Distance-scaled, finite ideal-gas reference state improves

structure-derived potentials of mean force for structure selection and stability prediction.

Protein Science 11, 2714–2726 (2002).

28. Park, H. et al. Simultaneous Optimization of Biomolecular Energy Functions on Features

from Small Molecules and Macromolecules. J. Chem. Theory Comput. 12, 6201–6212

(2016).

19

