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Abstract 21 

Percepts are naturally grouped into meaningful categories to process continuous stimulus 22 

variations in the environment. Theories of category acquisition have existed for decades, but how 23 

they arise in the brain due to learning is not well understood. Here, advanced computational 24 

modeling techniques borrowed from educational data mining and cognitive psychology were 25 

used to trace the development of auditory categories within a short-term training session. 26 

Nonmusicians were rapidly trained for 20 min on musical interval identification (i.e., minor and 27 

major 3rd interval dyads) while their brain activity was recorded via EEG. Categorization 28 

performance and neural responses were then assessed for the trained (3rds) and novel untrained 29 

(major/minor 6ths) continua. Computational modeling was used to predict behavioral 30 

identification responses and whether the inclusion of single-trial features of the neural data could 31 

predict successful learning performance. Model results revealed meaningful brain-behavior 32 

relationships in auditory category learning detectible on the single-trial level; smaller P2 33 

amplitudes were associated with a greater probability of correct interval categorization after 34 

learning. These findings highlight the nuanced dynamics of brain-behavior coupling that help 35 

explain the temporal emergence of auditory categorical learning in the brain. 36 

 37 

Keywords: computational modeling, categorical perception (CP), auditory learning, EEG  38 
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I. INTRODUCTION 39 

 To make sense of the environment, percepts are naturally grouped into meaningful 40 

categories, a phenomenon known as categorical perception (CP; Harnad, 1987). Category 41 

acquisition is generally believed to involve both innate and learned components (Rosen and 42 

Howell, 1987). While long-term plasticity in auditory categorization is well documented (e.g., 43 

musical training: Zatorre and Halpern, 1979; language experience: Kuhl, 1991; Kuhl et al., 44 

1992), how categories develop through short-term learning is less understood.  45 

 Behaviorally, musical interval identification improves with training (Pavlik Jr et al., 46 

2013; Little et al., 2019) as do behavioral thresholds after pitch discrimination training 47 

(Carcagno and Plack, 2011). Even nonmusicians can improve in musical interval identification 48 

(Pavlik Jr et al., 2013; Little et al., 2019) and discrimination (Burns and Ward, 1978), suggesting 49 

that learning, rather than music experience per se, promotes the successful labeling of musical 50 

sounds. Similarly, short-term training on non-native phonetic contrasts leads to behavioral and 51 

neural improvements in speech identification and discrimination after learning (Pisoni et al., 52 

1982; Lively et al., 1993; Kraus et al., 1995; Tremblay et al., 2001; Myers and Swan, 2012; 53 

Swan and Myers, 2013). Category learning is thought to distort the stimulus representational 54 

space, such that auditory cortical maps emphasize differences between categories and become 55 

more insensitive to within-category differences (Guenther et al., 1999; Guenther et al., 2004; 56 

e.g., see Fig. 1 in Bidelman et al., 2020). 57 

 Event-related potentials (ERPs) have been instrumental in shedding light on the neural 58 

mechanisms and time course of categorization processes. M/EEG studies have demonstrated that 59 

speech categories begin to emerge around N1 (~100 ms post-stimulus onset) and are fully 60 

formed by P2 (~ 150-200 ms) (Bidelman et al., 2013b; Ross et al., 2013; Bidelman et al., 2014; 61 
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Bidelman and Alain, 2015; Alho et al., 2016; Bidelman and Walker, 2017; 2019; Mankel et al., 62 

2020). Source localization studies have invoked a distributed frontotemporal network involved in 63 

speech categorization, including key brain regions such as the left primary auditory cortex 64 

(PAC), superior temporal gyrus (STG), and inferior frontal gyrus (IFG) (Binder et al., 2004; 65 

Golestani and Zatorre, 2004; Liebenthal et al., 2005; Desai et al., 2008; Myers et al., 2009; 66 

Chang et al., 2010; Liebenthal et al., 2010; Lee et al., 2012; Myers and Swan, 2012; Alho et al., 67 

2016; Bouton et al., 2018; Bidelman and Walker, 2019; Mankel et al., 2020). The neural 68 

underpinnings of music categorization have been less studied, but results suggest a similar (albeit 69 

right hemisphere biased) network involving the right STG/STS (Klein and Zatorre, 2011; 2015; 70 

Bidelman and Walker, 2019; Mankel et al., 2020). Several studies have also reported experience-71 

dependent changes in CP at behavioral and neural levels associated with music training 72 

(Bidelman et al., 2014; Bidelman and Alain, 2015; Wu et al., 2015; Bidelman and Walker, 2017; 73 

2019) and tone language expertise (Bidelman and Lee, 2015), underscoring the role of long-term 74 

auditory experience in categorization processes. 75 

Short-term learning-related changes in nonnative phonetic perception have been 76 

associated with changes in P2 (and magnetic P2m) as well as late slow activity (~250-400 ms) of 77 

the ERPs (Tremblay et al., 2001; Alain et al., 2010; Ben-David et al., 2011; Carcagno and Plack, 78 

2011; Ross et al., 2013). Some report decreased or more efficient P2 responses after training 79 

(Golestani and Zatorre, 2004; Alain et al., 2010; Ben-David et al., 2011) while others show 80 

robust increases in amplitudes (Draganova et al., 2009; Tong et al., 2009; Ross et al., 2013). 81 

Rapid changes in both temporal (e.g., STG) and frontal (e.g., IFG) brain areas have also been 82 

observed following short-term auditory discrimination training (de Souza et al., 2013), 83 

nonspeech categorization training (Guenther et al., 2004), task-related improvements in 84 
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concurrent speech segregation (Alain et al., 2007; Du et al., 2015), and tone language learning 85 

(Lee et al., 2017). Collectively, the extant literature indicates that successful short-term auditory 86 

category learning is accompanied by neurophysiological changes around the time frame of P2 87 

(i.e., within 150-250 ms). 88 

 Much of the existing neuroscience and psychological research on auditory categorization 89 

have focused on characterizing averaged outcomes rather than modeling or making predictions 90 

about single event data (Yarkoni and Westfall, 2017). While averaging trial data reduces noise, it 91 

may wash out underlying patterns in the data, particularly those related to individual differences 92 

and the temporal dynamics of performance. Computational modeling has been used in various 93 

areas of cognitive psychology, educational data mining, and intelligent tutoring systems to trace 94 

knowledge development, model underlying learning behavior mathematically, and predict and 95 

optimize human learning performance (Pavlik Jr. and Anderson, 2008; Khajah et al., 2014). The 96 

generalized knowledge tracing (GKT) framework assumes that learning can be quantified in 97 

terms of knowledge components that depict learning difficulty for a particular item or skill via 98 

logistic regression models, typically with binary outcomes such as accuracy on a particular test 99 

item (Spada and McGaw, 1985; Pavlik Jr et al., 2020). The GKT framework allows 100 

implementation of models such as the additive factors model (AFM; Cen et al., 2006) and 101 

performance factors analysis model (PFA; Pavlik Jr et al., 2009). Both of these learning models 102 

factor the quantity of knowledge or prior training with a knowledge component by scaling the 103 

effect of the number of prior practice trials for a particular item as an individual parameter 104 

(AFM) or fitting separate parameters for success and failure of prior practices (PFA). Nonlinear 105 

features, such as recency-weighted successes and/or failures (Gong et al., 2011; Galyardt and 106 

Goldin, 2015) or the natural log of the successful to failure trials ratio (Pavlik Jr et al., 2020), 107 
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might also add further explanatory power to GKT models. Because such models predict single 108 

responses in a task, they are capable of representing an individual’s knowledge acquisition and 109 

learning rate, provided there is enough data for reliable parameter estimates (Liu and Koedinger, 110 

2017; Pavlik Jr et al., 2020). 111 

 In this study, we were interested in characterizing the short-term neuroplasticity that 112 

manifests during rapid auditory category learning. Adopting aspects of the GKT framework for a 113 

novel view into category acquisition, we modeled rapid auditory category learning to trace the 114 

development of musical interval categories at brain and behavioral levels. Listeners were trained 115 

to identify musical intervals as they are not overlearned (cf. speech) and thus represent relatively 116 

novel stimuli that do not carry categorical labels for nonmusicians (Burns and Ward, 1978; 117 

Zatorre and Halpern, 1979; Bidelman and Walker, 2017). Parameters were included in the 118 

computational models based on listeners’ single-trial EEG responses to assess whether inclusion 119 

of neural data improves model predictions. We hypothesized that (1) category learning would 120 

develop rapidly within a short (20 min) training session; (2) learning would transfer to untrained 121 

stimuli (i.e., music intervals not present in the learning phase); and (3) incorporating neural 122 

measures in the models (i.e., ERP P2) would yield better predictions of learning outcomes than 123 

models based on behavior alone.  124 

 125 

II. METHODS 126 

A. Participants 127 

 Twenty young adults (µ=25.2 ± 4.0 yrs, 16 females) were recruited for this study. All 128 

participants had normal hearing (<25 dB SPL, 250-8000 Hz), were right-handed (Oldfield, 129 

1971), and had no history of neurological disorders. Participants were required to be fluent 130 
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speakers of English; 6 reported a native language other than English according to language 131 

history questionnaires (Li et al., 2006). Importantly, none of the participants had any tone 132 

language experience as these languages improve musical pitch perception (Bidelman et al., 133 

2013a). All participants had minimal to no formal music experience (µ=1.1 ± 1.1 yrs, <3 years 134 

on any combination of instruments) and were thus naïve to the music-theoretic labels for pitch 135 

intervals. Participants gave written informed consent according to protocol approved by the 136 

University of Memphis Institutional Review Board, and they were compensated $10 per hour for 137 

their time (~2.5-3 hours total duration).  138 

B. Stimuli 139 

 Two five-step musical interval continua were constructed of complex tones consisting of 140 

10 equal amplitude harmonics added in cosine phase. The fundamental frequency for the bass 141 

note across both continua was fixed at 150 Hz, while the upper note of the harmonic interval 142 

ranged from 180-188 Hz (spanning a minor to major 3rd) or 240-250 Hz (minor to major 6th) with 143 

equidistant frequency spacing between adjacent steps along the continuum. These intervals were 144 

selected because both continua span a semitone and are considered similar in qualia (i.e., 145 

imperfect consonances) in Western music practice. Each token was 100 ms in duration with a 10 146 

ms rise/fall time to reduce spectral splatter. Stimulus presentation was controlled via MATLAB 147 

and routed through a TDT interface (Tucker Davis Technologies). 148 

C. Procedure 149 

 Subjects were seated comfortably in an electroacoustically shielded booth. Stimuli were 150 

presented binaurally through ER-2 insert earphones at 80 dB SPL (Etymotic Research). Baseline 151 

categorization was assessed in the pretest, followed by a brief training session on the 152 

minor/major interval categories, then a posttest which measured learning-associated changes in 153 
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performance. During the pre- and post-test phases, 3rds and 6ths were presented in separate blocks 154 

(i.e., one block for each continuum per phase, counterbalanced across participants). 155 

Approximately 2-3 minor/major exemplars were played at the beginning of each block to orient 156 

participants to the stimulus categories. For both the pretest and posttest phases, each token of the 157 

continuum was randomly presented 120 times for a total of 600 trials per block (5 tokens x 120 = 158 

600 trials; 1200 total trials in pretest and posttest)1. On each trial, participants were asked to label 159 

the sounds they heard as either “minor” or “major” via keyboard button press as fast and 160 

accurately as possible. Feedback was not provided. The interstimulus interval was jittered 161 

randomly between 400-600 ms (20 ms steps, uniform distribution) following the listener’s 162 

response to avoid anticipation of the next trial, reduce rhythmic entrainment of EEG oscillations, 163 

and to help filter out overlapping activity from the previous trial (Luck, 2014). Participants were 164 

offered a break between blocks to reduce fatigue. 165 

 Between the pre- and post-test, participants performed a single, approximately 20-minute 166 

identification training session. Training consisted of 250 presentations of each exemplar 167 

(endpoint) from the minor and major 3rd continuum (total = 500 trials spread across 10 blocks, 25 168 

randomized trials of each token per block)2. The 6ths continuum was withheld from training. 169 

Feedback was given during the training to improve accuracy and efficiency of auditory category 170 

learning (Yi and Chandrasekaran, 2016). Training only on the endpoints of the 3rd continuum 171 

allowed us to examine (i) the perceptual warping of the remaining stimulus space (cf. Livingston 172 

et al., 1998; Guenther et al., 1999) and (ii) evaluate transfer effects to the untrained 6th intervals. 173 

EEGs were recorded continuously throughout the experiment (i.e., pretest, training, & posttest 174 

phases). 175 

D. EEG acquisition and preprocessing 176 
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 EEG data were recorded from 64 sintered Ag/AgCl electrodes at 10-10 scalp locations 177 

(Oostenveld and Praamstra, 2001) and digitized at a sampling rate of 500 Hz (Synamps RT 178 

amplifier; Compumedics Neuroscan). Electrodes were referenced during acquisition to an 179 

additional sensor placed approximately 1 cm posterior to Cz. Impedances were set to <10 kΩ at 180 

the start of data collection, and caps were refreshed with saline as needed prior to the posttest. 181 

Ocular movements were monitored by electrodes placed on the outer canthi of the eyes and the 182 

superior and inferior orbit. The data were epoched (-200-800 ms), filtered (1-30 Hz, 4th-order 183 

Butterworth filter), and re-referenced offline to the common average reference.  184 

The neural correlates of auditory categorization emerge between the N1 and P2 185 

deflections (100-150ms) (Bidelman et al., 2013b; Bidelman and Alain, 2015; Bidelman and Lee, 186 

2015; Alho et al., 2016; Bidelman and Walker, 2017; Toscano et al., 2018; Bidelman and 187 

Walker, 2019; Mankel et al., 2020), so these ERPs were explored as possible neural model 188 

predictors of categorical learning. Single-trial ERP amplitudes and latencies were calculated as 189 

the peak negative voltage between 85-160 ms for N1 and peak positive voltage between 150-220 190 

ms for P2 from channel Cz (Hall, 1992). N1-P2 amplitudes were computed as the difference 191 

between the individual peak amplitudes. 192 

E. Statistical Models 193 

Four logistic regression models were tested in the analyses. The basic model structures 194 

are given in Table I, where the outcome Response is a logit value depicting the trial-to-trial 195 

probability of responding “major” (i.e., binary variable: 0= “minor”, 1= “major”). The predictor 196 

features for the β coefficients are written out as words to aid clarity and discussion. 197 

[INSERT TABLE I] 198 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420091doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420091
http://creativecommons.org/licenses/by-nc-nd/4.0/


BRAIN DYNAMICS INFLUENCE CATEGORY LEARNING 10 

 

Token codes for the stimulus. These values were centered at 0 so that tokens 1-5 along the 199 

continuum ranged from -2 for minor endpoints to +2 for the major endpoints. Interval denotes 200 

whether the block is from the 3rds or 6ths continuum, which tests whether performance differs (or 201 

whether learning transfers) across stimulus sets.  202 

 Reminiscent of PFA (Pavlik Jr et al., 2009), the Learn variable captures the accumulating 203 

history of behavioral performance as a representation of category learning. Learn is calculated as 204 

the natural log of the relative ratio between the summed totals of correct and incorrect trials 205 

during training, where the natural log function provides diminishing returns for learning in later 206 

trials than earlier trials (see "logit" feature: Pavlik Jr et al., 2020). 1 was added to the prior trial 207 

count (i.e., both the numerator and denominator of the logit parameter) to avoid taking the 208 

log(0), which is undefined (Pavlik Jr et al., 2020). Learn is then weighted according to the token 209 

heard on each trial throughout all phases. We assumed the prototypical musical intervals have a 210 

stronger influence over learning than more ambiguous tokens—trials with the major/minor 211 

prototypes (i.e., tokens -2, 2) are multiplied by 2, inner tokens (i.e., tokens -1, 1) are multiplied 212 

by 1, and the middle token (i.e., token 0) nulls the Learn variable with a multiplication factor of 213 

0 (i.e., Learn = log[sum of correct trials/1 + sum of incorrect trials] x token weight). Scaling 214 

Learn in this way therefore allows minor and major exemplars to carry more weight in predicting 215 

responses whereas the ambiguous middle token offers equal bias on responses. Moreover, this 216 

weighting scheme captures the fact that only prototypes (and feedback) were provided in the 217 

training phase and thus contribute to categorical learning; learning gains were presumed to be 218 

constant in the pre- and post-test. Consequently, Learn is always 0 during pretest, increases with 219 

better accuracy during training (where only minor and major exemplars are heard), and equals 220 

the final training value multiplied by the token weight in posttest trials. Finally, EEG refers to the 221 
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single trial EEG amplitudes or latencies for N1 and P2 (see D. EEG acquisition and 222 

preprocessing), where each measure was fit individually in separate model iterations. Inclusion 223 

of this neural measure assessed which ERP component most strongly contributed to behavioral 224 

learning outcomes and whether brain activity aids in predicting categorical learning on a trial-to-225 

trial basis. 226 

 To determine the predictive performance, predictions from the model were compared to 227 

empirical data (i.e., participants’ actual responses). AIC, root mean squared error (RMSE), and 228 

McFadden’s pseudo-R2 values were calculated to evaluate model fit. Variance inflation factors 229 

(VIF) assessed multicollinearity between parameters during model building. Two cross-230 

validation (CV) procedures assessed model reliability and overfitting. An “intersubject CV” 231 

involved a 10-fold, 10-run holdout method where 10% of subjects were randomly withheld for 232 

the test model while the remaining 90% were used for training (model building). A “random split 233 

CV” randomly selected 10% of the data (across all subjects) for testing in another 10-fold, 10-234 

run holdout method. In each method, the ratio of McFadden’s R2 between the test and train 235 

models averaged over the 10 folds and 10 runs were computed; values closer to 1 indicate 236 

adequate reliability and minimal overfitting. Statistical analyses were completed in R (v3.5.3). 237 

 238 

III. RESULTS 239 

Grand average ERPs are shown for each continuum and training phase in Fig.  1A while 240 

token specific responses for the 3rds continuum are shown in Fig. 1B. We first determined which 241 

ERP components were reliable predictors of behavior. In models 2 and 4, the EEG parameter 242 

was replaced (separately) with single-trial N1, P2, or N1-P2 measures (see Table I). Models 243 

incorporating P2 latencies, N1 amplitudes and latencies, or N1-P2 amplitudes had poorer fit (i.e., 244 
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smaller McFadden’s pseudo-R2) than those containing P2 amplitudes. Single-trial P2 amplitudes 245 

also produced larger parameter estimates compared to the other ERP components, indicating a 246 

stronger relationship between this neural measure and behavioral outcomes (Bidelman et al., 247 

2013b; Ross et al., 2013; Bidelman et al., 2014; Bidelman and Alain, 2015; Alho et al., 2016; 248 

Bidelman and Walker, 2017; 2019; Mankel et al., 2020). Thus, P2 amplitudes (P2amp) were 249 

used in subsequent single-trial learning models to evaluate whether brain responses inform 250 

behavioral auditory categorical learning. 251 

 252 

Fig. 1: (A) Grand average ERP responses for pre- and posttest, separated by 3rd vs. 6th intervals, 253 

reflecting averaged activity across all 5 tokens per interval continuum (n=20). (B) Grand average 254 

responses for the 3rds interval continuum indicate categorization differences after training 255 

(posttest) around the timeframe of P2 (~150-200 ms), particularly for the minor vs. major 256 

prototypical tokens (i.e., tokens -2 and 2, respectively). Color figures are available in the online 257 

version of this manuscript. 258 

 259 

Estimates, standard errors (SEs), and p-values for each of the model parameters are 260 

shown in the appendix table. Models 1 and 2 contain “static” variables that do not scale with 261 
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learning. Meanwhile, models 3 and 4 contain the variable Learn, the log of the correct to 262 

incorrect training trials ratio (see Methods).  263 

While the exact parameter estimates differ, certain patterns are evident across models. 264 

For example, the large positive estimates for Token demonstrate that as participants hear tokens 265 

towards the major end of the continuum (coded as +1 and +2), they are more likely to respond 266 

“major” (see Fig. 2 below). The Interval parameter indicates a very slight bias towards 267 

responding major for the trained 3rds compared to the untrained 6ths. The Interval*Token 268 

interaction in model 2 shows a stronger effect of responding “major” for tokens towards the 269 

major end of the 3rds continuum compared to the 6ths, suggesting that the learned categorization 270 

effects were stronger for those sounds heard during training. Meanwhile, the 3-way interaction of 271 

Learn*Interval*Token in model 4 demonstrates this effect was stronger for those with better 272 

training performance. 273 

 Models 2 and 4 include the single-trial EEG data to test whether neural amplitudes 274 

(P2amp) are significant predictors of behavioral response outcomes. As indicated by the 275 

appendix table, P2amp*Token is a highly significant parameter in both the simpler static model 276 

(#2) and the more complex learning model (#4) (p<0.001). The P2amp*Token interaction reveals 277 

that larger P2 amplitudes are associated with a decreased probability of reporting “major” for 278 

tokens towards the major end of the continuum and vice versa (i.e., reduced probability of 279 

identifying minor tokens on the minor end of the continuum). The interaction of P2amp*Interval 280 

suggests that larger P2 amplitudes are associated with a lower probability of responding major 281 

for the trained 3rds compared to the untrained 6ths. Additionally, P2amp*Learn was a significant 282 

predictor in model 4 (p = 0.0423), demonstrating a relationship between P2 amplitudes and 283 

successful performance.  284 
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These coefficients can be used to estimate the combined contribution of the P2amp 285 

variables (i.e., P2amp, P2amp*Token, P2amp*Interval, and P2amp*Learn; the latter only 286 

included in model 4) to the odds of responding major. For example, in comparing the odds of 287 

responding “major” for the major 3rd token (i.e., tk 2) at an 80% accuracy rate for the training 288 

phase, a one-µV increase in P2 amplitudes corresponds to an odds ratio of 0.9468 for model 2 289 

and 0.9669 for model 4, respectively. This means that the odds of responding “major” for the 290 

major token decreases ~4-5% with a one-µV increase in P2 amplitudes, after holding the other 291 

variables constant.  292 

Fig. 2 compares predictions of models 2 and 4 to actual recorded responses for each 293 

token during pretest, training, and posttest. Predicted values > 0.5 are associated with higher 294 

probability of responding major, while values < 0.5 reflect minor responses. Steeper slopes of 295 

these functions indicate stronger categorization for music intervals, which is most evident in 296 

training and posttest. Training on the 3rds led to stronger categorization on the inner tokens (i.e., -297 

1, 1). Steeper slopes from pre- to post-test are also observed for the 6ths, suggesting learning 298 

transferred to musical intervals not heard during training. A better correspondence between 299 

model predictions and subject responses for the dynamic (#4) rather than the static (#2) model 300 

demonstrates the effect of successful learning. Specifically, the correlation between predicted 301 

condition average values and actual average response values is larger for model 4 (r = 0.96) than 302 

model 2 (r = 0.91). Similar results were also observed for models 1 and 3, respectively. 303 
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 304 

Fig. 2: Comparisons between model predictions (solid lines) and subject behavioral responses 305 

(dashed lines) for (A) model 2 and (B) model 4 indicate better data fit for the more complex 306 

“learning” model 4 compared to the “static” model 2. Both models and behavioral responses 307 

demonstrate sharper identification curves after training, where transfer of learning is evident for 308 

the inner 3rd tokens (tokens -1, 1) as well as the untrained 6th continuum. Results are highly 309 

similar for the models without P2amp variables, models 1 and 3. Color figures are available in 310 

the online version of this manuscript. 311 

 312 

Table II summarizes the fit statistics and results of the CV procedures. As expected, fits 313 

improved (i.e., larger R2 and smaller RMSE) for the models that included the Learn parameters 314 

compared to the static models. Fits also slightly improved with the addition of P2amp. Given 315 

that it is more difficult to predict behavior for novel subjects than to predict random trials within 316 

the same subjects, it is not surprising that the test data fits are worse for the inter-subject CV than 317 

the random split CV procedures. However, the test R2 and RMSEs closely approximate the 318 

respective fit measures of the full models, suggesting good predictive capabilities for new data. 319 
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The CV ratios are quite high (i.e., close to 1), indicating good correspondence between models 320 

fit to training and test data and thus rule out overfitting. VIFs were <5 for all variables in each 321 

model, suggesting limited multicollinearity among variables and more crucially, that the Learn 322 

and neural P2amp parameters captured independent variance in the data.  323 

[INSERT TABLE II] 324 

Fig. 3 visualizes how model predictions evolve over the course of the experiment 325 

compared to actual behavioral responses. The figure shows trial-by-trial predictions of model 4 326 

across all three experimental phases for the major exemplar only (i.e., tk 2). The model predicts 327 

steady performance in the pre- and post-test, consistent with the general pattern of behavioral 328 

responses. In contrast, prediction values (and the proportion of “major” responses) increase 329 

steadily throughout training, where values closer to 1 correspond to a higher probability of 330 

responding “major” on each trial, indicating improvement in the ability to identify the major 331 

interval. Once these tokens are randomized among the other tokens, however, their identification 332 

is predicted to be worse in the posttest compared to the end of training, likely a result of 333 

interference from the other tokens not heard during training. Yet, performance is still better 334 

overall in the posttest compared to the pretest, demonstrating an effect of learning. Successful 335 

learning is depicted by larger values in the posttest compared to the pretest for both the 3rds and, 336 

to a lesser extent, the 6ths, the latter effect indicating transfer. Given the binary nature of the 337 

response variable, the opposite relationship would be observed in plotting model predictions for 338 

the minor token (i.e., tk -2), whereby successful learning would be characterized by a decrease in 339 

values as prediction outcomes closer to 0 correspond to a higher probability of responding 340 

“minor.” These results thus demonstrate using single-trial model predictions how acquisition of a 341 
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categorical knowledge component like major or minor musical intervals can be traced over time 342 

during learning. 343 

 344 

Fig. 3: Model 4 traces the trial-to-trial development of categorical behavior throughout the 345 

experiment for the major prototypical token (tk 2). Model predictions (solid lines) and actual 346 

behavioral data (dashed lines) rise as training progresses, indicating a greater probability or 347 

proportion of responding “major” for the major token as subjects learn the appropriate interval 348 

labels. Meanwhile, the model predicts steady behavioral responses during the pre- and post-test 349 

phases, consistent with the proportion of “major” behavioral responses, but better performance is 350 

demonstrated in the posttest by higher overall prediction and response values compared to the 351 

pretest. Improvement in performance can also be seen for the untrained 6th major token, though 352 

not as drastic of a pre- to post-test change in model predictions as the trained 3rd token. For 353 

plotting purposes only, a running average smoother (width of 25 trials) was applied to subject 354 

responses to make the overall patterns clearer, and two subjects who terminated the 3rds posttest 355 

block early due to technical issues were excluded from the figure. Color figures are available in 356 

the online version of this manuscript. 357 

 358 

Models 2 and 4 were then fit with additional parameters to assess how the relationship 359 

between brain and behavior differs from pre- to post-test; these are depicted in Table I as models 360 

5 and 6, respectively. We were interested in whether the interactions of P2amp variables with 361 
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Phase—dummy coded to contrast pretest vs. training or posttest trials—would suggest that the 362 

association between single-trial neural responses and behavioral outcomes changed after 363 

training. For model 5, the 3-way interaction between Phase, P2amp, and Token was significant. 364 

The negative 3-way interaction estimates suggest that the P2amp*Token relationship becomes 365 

stronger in both the training (β = -0.0247, p < 0.001) and the posttest phases (β = -0.0108, p = 366 

0.0199) compared to the pretest; the effect of associating smaller P2 amplitudes with enhanced 367 

categorization (i.e., higher probability of reporting “major” for tokens on the major end of the 368 

continuum and vice versa) is enhanced after training. Both models indicated an interaction 369 

between P2amp and Phase; specifically, larger amplitudes are associated with a slightly higher 370 

probability of responding major for the training trials (β = 0.0353, p =0.0025), but not posttest 371 

trials (β = 0.0017, p = 0.8564), compared to the pretest. None of the other interactions including 372 

P2amp and Phase were significant in the more complex model 6. 373 

 374 

IV. DISCUSSION 375 

 We investigated whether rapid auditory category learning could be described via single-376 

trial neural data and psychological computational models of learning. These findings show that 377 

the P2 wave of the auditory ERPs plays a significant role in predicting the gains and time-course 378 

of listeners’ perceptual learning of musical interval categories with only 20-min of training. 379 

Specifically, smaller P2 amplitudes were associated with a higher probability of correctly 380 

identifying minor and major tokens, an effect that became stronger after training. To our 381 

knowledge, this is the first study to apply learning theory models to auditory categorization and 382 

assess how the dynamics of single-trial ERP activity modulates behavioral performance during 383 

category learning.  384 
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 These analyses demonstrate that even at the noisy, single-trial level, P2 amplitudes (but 385 

not other ERP components) are associated with categorization of auditory stimuli and, more 386 

critically, are linked with behavioral identification during category learning. No other ERP 387 

component was a reliable predictor of category learning in the models. This converges with other 388 

evidence suggesting that category-level representations of sound emerge by N1 and are fully 389 

formed by P2 (Bidelman et al., 2013b; Ross et al., 2013; Bidelman et al., 2014; Bidelman and 390 

Alain, 2015; Alho et al., 2016; Bidelman and Walker, 2017; 2019; Mankel et al., 2020). 391 

Additionally, these results extend prior work on the neural chronometry of auditory 392 

categorization by demonstrating that meaningful brain-behavior associations develop at a single-393 

trial neural level and are subject to rapid plasticity during short-term training. 394 

  Remarkably, category learning was evident in only one, 2.5-hour experimental session, 395 

only 20 minutes of which was spent in identification training. Specifically, smaller trial-wise P2 396 

amplitudes were associated with a higher accuracy in identifying musical interval categories, an 397 

effect that became stronger after training. Critically, the interaction between P2amp*Learn 398 

further suggests this relationship is not simply exogenous (i.e., due to the brain’s mere response 399 

to stimulus properties), as the P2-behavior association scaled with successful learning. Instead, 400 

the data suggest P2 reflects more than obligatory stimulus coding but is instead, a neural marker 401 

of endogenous processing related to abstract categories and learning (Alain et al., 2007; Alain et 402 

al., 2010; Bidelman et al., 2013b; Ross et al., 2013; Bidelman and Walker, 2017). The notion 403 

that smaller ERP responses correspond to better categorization for complex auditory stimuli has 404 

been reported in other training studies, and is often attributed to more efficient neural processing 405 

after short-term learning (Alain et al., 2010; Ben-David et al., 2011). 406 
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 While these results show promise for understanding the psychobiological dynamics of 407 

auditory categorization, there are caveats and limitations of the current approach worth 408 

mentioning. Our models make several assumptions about the nature of learning and 409 

categorization based on prior work on CP (Harnad, 1987; Livingston et al., 1998) and learner 410 

models in the GKT framework (Cen et al., 2006; Pavlik Jr et al., 2009; Chi et al., 2011; Pavlik Jr 411 

et al., 2020). For instance, we assume learning only occurs during overt training. Instead, 412 

implicit learning experiments suggest that categorization performance can improve through 413 

training without explicit knowledge of the categorical structure (Luthra et al., 2019). However, 414 

our results indicate that categorization responses exhibit the greatest change during training 415 

where feedback on the interval category is present (Fig. 3). Second, the improvement in learning 416 

performance is captured by a logit parameter (“Learn”), the log of the ratio between a running 417 

sum of correct to incorrect trials (see Pavlik Jr et al., 2020)3. This implies learning is perhaps 418 

related to monitoring ongoing successes and failures during the training paradigm. As such, these 419 

model assumptions may limit generalizability to other datasets, particularly those experiments 420 

without a training component.  421 

Additionally, our models’ McFadden’s R2 values are smaller than other examples 422 

reported in the learner model literature (e.g., Pavlik Jr et al., 2020), which indicates substantial 423 

variance in categorization performance not captured by even the best model configuration (i.e., > 424 

85%). This could simply be the result of fitting a model to a very noisy behavioral task (i.e., lots 425 

of error). Alternatively, a larger dataset and a more complex task than our design might capture 426 

additional variance from other factors that contribute to identification performance. This could 427 

also allow for comparing individual student learning parameters without risk of overfitting as 428 

well as the inclusion of model parameters that, for example, capture initial, baseline knowledge 429 
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about musical intervals prior to training (i.e., using separate intercepts for each learner) or 430 

different learning rates for each individual (i.e., using different learning slopes for each learner) 431 

(Cen et al., 2006; Pavlik Jr et al., 2009; Liu and Koedinger, 2017). Multiple days of training may 432 

also permit deeper probing of brain-behavior relationships supporting auditory category learning, 433 

including how different training regimens might enhance performance (Little et al., 2019) or 434 

whether incorporating known psychological constructs like recency or forgetting/decay effects 435 

impact predicted learning outcomes (Pavlik Jr et al., 2020). 436 

 Another important consideration of these models is that the outcome is a binary code for 437 

whether a subject responds minor (coded as 0) or major (coded as 1) rather than whether or not 438 

the subject was correct on a given trial, as is common in the learner modeling literature. This 439 

choice accommodated the subjectivity in auditory categorization; our task does not afford a true 440 

“correct” or “incorrect” response. While possible to reconfigure models for predicting 441 

“accuracy,” it would not be appropriate to consider identification of the inner tokens (particularly 442 

the ambiguous mid-continuum token) as “correct” or “incorrect” because these stimuli, by 443 

definition, do not fit neatly into a single category. Subjective categorization judgments also 444 

naturally differ across individuals, reminiscent of fuzzy logic models or gradient theories of 445 

categorization processes (e.g., Massaro, 1987; McMurray et al., 2008). Only continuum 446 

endpoints (minor/major prototypes), could justifiably be used for determination of subject 447 

accuracy across the experiment, but this would miss the local transfer effects of categorizing 448 

inner 3rds tokens not heard during training (and, apparently, their subsequent interference effects 449 

in the posttest; see Fig. 3). Our use of a continuum that is more graded rather than all-or-nothing 450 

(Medin and Barsalou, 1987) might limit generalizability to other studies that model category 451 
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learning using stimuli with more binary, “true/false” category properties (e.g., visual shapes: 452 

Kruschke, 1992; bird species: Roads and Mozer, 2019). 453 

 Future studies might benefit from alternative methods of incorporating neural data in 454 

computational models to better understand categorical processes in auditory learning. For 455 

example, source localization techniques could be used to estimate the neural response from 456 

specific regions in the brain to identify the neural networks most important for learning and 457 

acquiring category structure (Liebenthal et al., 2005; Desai et al., 2008; Myers et al., 2009; 458 

Chang et al., 2010; Myers and Swan, 2012; Bidelman and Walker, 2019; Mankel et al., 2020). 459 

Similarly, single-trial neural data could be used to understand mechanistic differences in speech 460 

vs. music categorization (Cutting and Rosner, 1974; Weidema et al., 2016; Bidelman and 461 

Walker, 2017; 2019), long-term neuroplasticity (Siegel and Siegel, 1977; Burns and Ward, 1978; 462 

Zatorre and Halpern, 1979; Klein and Zatorre, 2011; Bidelman et al., 2014; Bidelman and Alain, 463 

2015; Bidelman and Lee, 2015; Wu et al., 2015; Bidelman and Walker, 2019) attentional 464 

modulation (Bidelman and Walker, 2017), and individual differences in CP (Howard et al., 465 

1992; Mankel et al., 2020).  466 

 467 

V. CONCLUSIONS 468 

 In conclusion, we demonstrate that computational learning models can be used to trace 469 

the rapid development of novel sound categories for musical intervals within ~20 minutes of 470 

feedback training. Moreover, neuroimaging data (single-trial EEG) helps decipher listeners’ 471 

behavioral gains in learning during training. Specifically, trial-by-trial changes in brain activity 472 

(P2 ~150 ms) were associated with greater probability of correct interval identification after 473 

learning. Our study highlights the more nuanced possibilities of adapting sophisticated 474 
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computational models of learning theory to understand how dynamic coupling between brain and 475 

behavior drives the time course of auditory categorical learning. 476 
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APPENDIX: TABLE OF MODEL PARAMETER ESTIMATES 485 

Model # Parameter Estimate (SE) p-value  486 

(1) Intercept  -0.0972 (0.0134) < 0.001 487 

 Interval  0.0333 (0.0178)  0.0616 488 

 Token  0.3607 (0.0097)  < 0.001 489 

 Interval*Token 0.1149 (0.0123)  < 0.001  490 

(2) Intercept  -0.0927 (0.0161) < 0.001 491 

 Interval  0.0634 (0.0214)  0.0030 492 

 Token  0.3974 (0.0104)  < 0.001 493 

 Interval*Token 0.1155 (0.0123)  < 0.001 494 

 P2amp -0.0025 (0.0045) 0.5817 495 

 P2amp*Token -0.0186 (0.0019) < 0.001 496 

 P2amp*Interval -0.0150 (0.0060) 0.0118 497 

(3) Intercept  -0.0926 (0.0153) < 0.001 498 

 Interval  0.0490 (0.0208)  0.0188 499 

 Token  0.2376 (0.0115)  < 0.001 500 

 Interval*Token -0.0804 (0.0150) < 0.001 501 

 Learn -0.0102 (0.0125) 0.4156 502 

 Learn*Token 0.1569 (0.0086)  < 0.001 503 

 Learn*Interval -0.0315 (0.0174) 0.0697 504 

 Learn*Interval*Token 0.1784 (0.0115)  < 0.001 505 

(4) Intercept  -0.0815 (0.0179) < 0.001 506 

 Interval  0.0785 (0.0239) 0.0010 507 

 Token  0.2569 (0.0121)  < 0.001 508 

 Interval*Token -0.0782 (0.0150) < 0.001 509 

 Learn -0.0216 (0.0137) 0.1149 510 

 Learn*Token 0.1555 (0.0086) < 0.001 511 

 Learn*Interval -0.0345 (0.0174) 0.0470 512 

 Learn*Interval*Token 0.1768 (0.0115)  < 0.001 513 

 P2amp -0.0055 (0.0045) 0.2274 514 

 P2amp*Token -0.0093 (0.0018) < 0.001 515 

 P2amp*Interval -0.0132 (0.0056) 0.0184 516 

 P2amp*Learn 0.0061 (0.0030) 0.0423   517 
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TEXTUAL FOOTNOTES 518 

1 One pilot subject heard 100 presentations of each token in the pre- and post-training phases. 519 

Due to technical issues, two participants terminated one of the blocks in the posttest early 520 

(though both were at least ~3/4 complete with the block), but since the missing data constituted 521 

<10% of their responses, imputation was not performed (Newman, 2014).  522 

2 One pilot subject received only 6 blocks of training while another pilot subject was tested on 15 523 

blocks of training before the final number of 10 blocks was settled for all others. All of these 524 

trials were included in the analyses. One subject’s EEG responses were not recorded during 525 

training, so their trials were excluded from learning model analyses. 526 

3 During model building, a logit parameter offered a cleaner explanation of results by combining 527 

in a ratio the correct and incorrect trials rather than fitting separate parameters for each (Pavlik Jr 528 

et al., 2009), and it provides diminishing marginal returns to learning for later vs. earlier training 529 

trials in accordance with theories of learning (Pavlik Jr et al., 2020).  530 
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Table I  740 

Main comparison models for predicting subject response outcomes 741 

Model # Parameters    742 

(1) Response ~ Interval + Token + Interval*Token    743 

(2) Response ~ Interval + Token + Interval*Token + EEG + EEG*Token +  744 

  EEG*Interval 745 

(3) Response ~ Interval + Token + Interval*Token + Learn + Learn*Token +  746 

  Learn*Interval + Learn*Interval*Token     747 

(4) Response ~ Interval + Token + Interval*Token + Learn + Learn*Token +  748 

  Learn*Interval + Learn*Interval*Token + EEG + EEG*Token +  749 

  EEG*Interval + EEG*Learn 750 

(5) Response ~ Interval + Token + Interval*Token + P2amp + P2amp*Token +  751 

   P2amp*Interval + Phase + P2amp*Phase + Token*Phase +  752 

   Interval*Phase + P2amp*Token*Phase + P2amp*Interval*Phase 753 

(6) Response ~ Interval + Token + Interval*Token + Learn + Learn*Token +  754 

  Learn*Interval + Learn*Interval*Token + P2amp + P2amp*Token +  755 

  P2amp*Interval + P2amp*Learn + Phase + P2amp*Phase + Token*Phase +  756 

  Learn*Phase + Interval*Phase + P2amp*Token*Phase +  757 

  P2amp*Interval*Phase + P2amp*Learn*Phase  758 

Note. Models 2 and 4 assess the relationship between brain and behavior by including parameters 759 

with “EEG”, depicting single-trial neural data. “Learning” models 3 and 4 demonstrate effects of 760 

the Learn parameter when compared to the “static” models 1 and 2, respectively. Models 5 and 6 761 

assess whether the relationship between brain (i.e., P2 amplitudes) and behavior differs from pre- 762 

to post-test by adding additional parameters containing “Phase”.  763 
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Table II 764 

Summary of model fit and cross-validation statistics 765 

a Cross-validation (CV) measures reflect the average McFadden’s R2 and RMSE of the 766 

test dataset from 10 folds and 10 runs with standard deviation across the 10 runs 767 

indicated in parentheses.  768 
b CV ratio depicts the ratio of the mean R2 values for the train and test set data across the 769 

10 runs. 770 

  771 

Model 

Full Model Intersubject CV Random split CV 

McFadden's 

R2 
RMSE AIC 

 R2  

(SD)a 

RMSE  

(SD)a 

CV 

ratiob 

 R2  

(SD)a 

RMSE  

(SD)a 

CV 

ratiob 

1 0.074 0.4741 72996 
0.0689 

(0.0641) 

0.4755 

(0.0221) 
0.9276 

0.0739 

(0.0053) 

0.4742 

(0.0019) 
0.9987 

2 0.0755 0.4737 72889 
0.0688 

(0.0655) 

0.4755 

(0.0226) 
0.9080 

0.0753 

(0.0057) 

0.4737 

(0.0019) 
0.9975 

3 0.1104 0.4639 70134 
0.1055 

(0.0704) 

0.4651 

(0.0234) 
0.9532 

0.1102 

(0.0066) 

0.4639 

(0.0021) 
0.9981 

4 0.1110 0.4637 70099 
0.1050 

(0.0706) 

0.4652 

(0.0235) 
0.9435 

0.1107 

(0.0061) 

0.4638 

(0.0019) 
0.9974 
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Fig. 1: (A) Grand average ERP responses for pre- and posttest, separated by 3rd vs. 6th intervals, 772 

reflecting averaged activity across all 5 tokens per interval continuum (n=20). (B) Grand average 773 

responses for the 3rds interval continuum indicate categorization differences after training 774 

(posttest) around the timeframe of P2 (~150-200 ms), particularly for the minor vs. major 775 

prototypical tokens (i.e., tokens -2 and 2, respectively). Color figures are available in the online 776 

version of this manuscript. 777 

Fig. 2: Comparisons between model predictions (solid lines) and subject behavioral responses 778 

(dashed lines) for (A) model 2 and (B) model 4 indicate better data fit for the more complex 779 

“learning” model 4 compared to the “static” model 2. Both models and behavioral responses 780 

demonstrate sharper identification curves after training, where transfer of learning is evident for 781 

the inner 3rd tokens (tokens -1, 1) as well as the untrained 6th continuum. Results are highly 782 

similar for the models without P2amp variables, models 1 and 3. Color figures are available in 783 

the online version of this manuscript. 784 

Fig. 3: Model 4 traces the trial-to-trial development of categorical behavior throughout the 785 

experiment for the major prototypical token (tk 2). Model predictions (solid lines) and actual 786 

behavioral data (dashed lines) rise as training progresses, indicating a greater probability or 787 

proportion of responding “major” for the major token as subjects learn the appropriate interval 788 

labels. Meanwhile, the model predicts steady behavioral responses during the pre- and post-test 789 

phases, consistent with the proportion of “major” behavioral responses, but better performance is 790 

demonstrated in the posttest by higher overall prediction and response values compared to the 791 

pretest. Improvement in performance can also be seen for the untrained 6th major token, though 792 

not as drastic of a pre- to post-test change in model predictions as the trained 3rd token. For 793 

plotting purposes only, a running average smoother (width of 25 trials) was applied to subject 794 
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responses to make the overall patterns clearer, and two subjects who terminated the 3rds posttest 795 

block early due to technical issues were excluded from the figure. Color figures are available in 796 

the online version of this manuscript. 797 
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