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Abstract 

Although the de Bruijn graphs represent the basis of many genome assemblers, it remains unclear how to                 
construct these graphs for large genomes and large k-mer sizes. This algorithmic challenge has become               
particularly important with the emergence of long and accurate high-fidelity (HiFi) reads that were recently               
utilized to generate a semi-manual telomere-to-telomere assembly of the human genome using the             
alternative string graph assembly approach. To enable fully automated high-quality HiFi assemblies of             
various genomes, we developed an efficient jumboDB algorithm for constructing the de Bruijn graph for               
large genomes and large k-mer sizes and the LJA genome assembler that error-corrects HiFi reads and                
uses jumboDB to construct the de Bruijn graph on the error-corrected reads. Since the de Bruijn graph                 
constructed for a fixed k-mer size is typically either too tangled or too fragmented, LJA uses a new                  
concept of a multiplex de Bruijn graph with varying k-mer sizes. We demonstrate that LJA produces                
contiguous assemblies of complex repetitive regions in genomes including automated assemblies of            
various highly-repetitive human centromeres.  
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Introduction 

The emergence of long and accurate HiFi reads, generated using the consensus circular             
sequencing technology (Wenger et al., 2019), opened a possibility to generate accurate and             
contiguous assemblies of large genomes (Nurk et al., 2020, Cheng et al., 2020). At the same                
time, it raised the challenge of constructing the de Bruijn graphs (Compeau et al., 2011) for                
large genomes and large k-mer sizes (e.g., comparable with the length of HiFi reads). Indeed,               
similarly to assembling short and accurate reads, the de Bruijn graph-based approaches have             
the potential to improve assemblies of any accurate reads. However, although the de Bruijn              
graphs represent the algorithmic engine of the most popular genome assemblers for short and              
accurate reads (Zerbino and Birney, 2008, Simpson et al., 2009, Peng et al., 2010, Bankevich et                
al., 2012), the existing HiFi assemblers HiCanu (Nurk et al., 2020) and Hifiasm (Cheng et al.,                
2020) are based on the alternative string graph approach (Myers, 2005).  

Since HiFi reads are not unlike accurate Illumina reads with respect to repeat resolution              
(albeit at a different scale of repeat lengths), the de Bruijn graph approach is likely to work well                  
for their assembly (see Lin et al. 2014 for a comparison of the de Bruijn graphs and the string                   
graphs). Application of this approach to long HiFi reads requires either constructing the de              
Bruijn graph with large k-mer size or alternatively, using the de Bruijn graph with small               
k-mer-size for follow-up repeat resolution by threading long reads through this graph            
(Kolmogorov et al., 2019, 2020). However, it remains unclear how to (i) construct the de Bruijn                
graphs for large genomes and large k-mer sizes, (ii) error-correct HiFi reads using these graphs               
so that they become nearly error-free, and (iii) utilize the entire length of HiFi reads for resolving                 
repeats that are longer than the k-mer size selected for constructing the de Bruijn graph. We                
introduce the de Bruijn graph-based La Jolla Assembler (LJA) that addresses these algorithmic             
challenges.. 

The existing genome assemblers are not designed for constructing the de Bruijn graphs with              
large k-mer sizes since their memory/time requirements become prohibitive when the k-mer size              
becomes large, e.g., simply storing all 5000-mers of the human genome requires ≅4 Tb of                             
memory. For example, the SPAdes assembler (Bankevich et al., 2012), designed for                       
assembling Illumina reads with the read-length below 300 bp, is typically used with the k-mer                             
size below 100. Applying SPAdes to longer reads and significantly increasing the k-mer size              
beyond k=500 leads to time/memory bottlenecks. To reduce the memory footprint, some            
assembly algorithms avoid explicitly storing all k-mers: e.g., SPAdes (Bankevich et al., 2012)             
constructs a perfect hash map (Fredman et al., 1984) of all k-mers in reads, while MegaHit (Li et                  
al., 2015) constructs the Burrows-Wheeler Transform (Burrows and Wheeler, 1984) of all reads.             
However, even with these improvements, the memory footprint remains large, not to mention             
that the running time remains proportional to the k-mer size.  

Two approaches construct coarse versions of the de Bruijn graph with smaller time/memory             
requirements: the repeat graph approach (Pevzner et al., 2004) and the sparse de Bruijn graph               
approach (Ye et al., 2012). Recently, Kolmogorov et al., 2020 modified the Flye assembler for               
constructing the repeat graph of HiFi reads (in a metagenomic context), while Rautiainen and              
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Marschall, 2020 developed the MBG tool for assembling HiFi reads into a sparse de Bruijn               
graph. However, these graphs are less accurate than the de Bruijn graph with respect to               
representing the repeat structures, thus limiting their capabilities in assembling the most            
repetitive regions such as centromeres. Our jumboDB algorithm for constructing the de Bruijn             
graph for large k-mer sizes combines four algorithmic ideas: the Bloom filter (Bloom, 1970), the               
rolling hash (Karp and Rabin, 1987), the sparse de Bruijn graph (Ye et al., 2012), and the                 
disjointig generation (Kolmogorov et al., 2019). Although each of these ideas was used in              
previous genome assembly studies (e.g., MBG uses the rolling hash to construct the sparse de               
Bruijn graph), jumboDB is the first approach where they are all combined for constructing the de                
Bruijn graphs. LJA launches jumboDB to construct the de Bruijn graph of HiFi reads, uses this                
graph to correct errors in HiFi reads, generates a much simpler graph of the error-corrected HiFi                
reads, and transform it into the multiplex de Bruijn graphs with varying k-mer sizes to take                
advantage of the full length of HiFi reads.  

The paper is organized as follows. Section 1 introduces the concepts of the compressed de               
Bruijn graph (where each non-branching path is compressed into a single edge), sparse de              
Bruijn graph, and the Bloom filter. The traditional assembly approach constructs the de Bruijn              
graph DB(Reads,k) first and transforms it into the compressed de Bruijn graph CDB(Reads,k)             
afterward. Since this approach is impractical for large genomes and large k-mer sizes, jumboDB              
constructs CDB(Reads,k) without constructing DB(Reads,k). We first address a simpler problem           
of constructing the de Bruijn graph of a genome CDB(Genome,k) rather than the de Bruijn               
graph of reads CDB(Reads,k) - section 2 describes a modified version of the             
Minkin-Pham-Medvedev algorithm (Minkin et al., 2017) for constructing CDB(Genome,k) that          
serves as a stepping stone for constructing CDB(Reads,k). Since this algorithm becomes            
prohibitively slow in the case of large k-mer sizes, jumboDB utilizes the rolling hash (Karp and                
Rabin, 1987) to adapt it for large k-mer sizes. Since constructing CDB(Reads,k) faces             
time/memory bottlenecks, jumboDB first assembles reads into disjointigs that represent random           
walks through the (unknown) de Bruijn graph of reads and further generates the compressed de               
Bruijn graph of disjointigs. Although switching from reads to error-prone disjointigs may appear             
reckless, it is an important step for addressing the time/memory bottleneck since a disjointig-set              
Disjointigs result in a much lower coverage of a genome than the read-set Reads while resulting                
in the identical compressed de Bruijn graph, i.e., CDB(Disjointigs,k)=CDB(Reads,k). Section 3           
explains how to achieve this goal and how to construct disjointigs using the sparse de Bruijn                
graph of reads. Section 4 summarizes various steps of jumboDB. Section 5 provides information              
about its running time and memory footprint of jumboDB. Section 6 describes a transDB              
algorithm for transforming CDB(Reads,k) into CDB(Reads,k+1) that serves as a stepping stone            
toward constructing the multiplex de Bruijn graph. Finally, section 7 describes an algorithm for              
constructing the multiplex de Bruijn graph and illustrates its applications to assembling human             
centromeres. The code of jumboDB is available at https://github.com/AntonBankevich/jumboDB. 

Section 1: Compressed de Bruijn graph,  sparse de Bruijn graph, and the Bloom filter  

De Bruijn graphs . We define the k-prefix (k-suffix) of a string as the first (last) k-mer in this                  
string. Given a string-set Genome (each string in this set is referred to as a chromosome) and                 
an integer k, the de Bruijn multigraph multiDB(Genome,k) is defined as follows. Each k-mer              
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occurring in Genome corresponds to a vertex in the de Bruijn graph (identical k-mers              
correspond to the same vertex) and each (k+1)-mer corresponds to an edge connecting its              
k-prefix with its k-suffix (identical (k+1)-mers form parallel edges in the graph). The de Bruijn               
graph DB(Genome,k) is obtained from the de Bruijn multigraph multiDB(Genome,k) by           
substituting each set of parallel edges connecting two vertices with a single edge (the              
multiplicity of this edge is defined as the number of such parallel edges). Given a path P formed                  
by edges e1,e 2,…,e n in DB(Genome,k), its path-label label(P) is defined as           
label(e1)* lastSymbol(e2)*…* lastSymbol(en), where lastSymbol(e) stands for the last symbol of         
label(e) and x*y stands for the concatenate of strings x and y. We say that a path P spells                   
label(P). A string-set Genome corresponds to a path-set that traverses each edge in             
multiDB(Genome,k) exactly once (and each edge in DB(Genome,k) at least once) and spells             
Genome. We refer to this path-set in DB (Genome,k) as the genome traversal.  

The goal of genome assembly is to reconstruct the genome from its error-prone substrings              
referred to as reads. Given a read-set Reads, we construct the de Bruijn graph DB(Reads,k) (by                
assuming that each read is a mini-chromosome) and compute the coverage of an edge e in this                 
graph as the number of times label(e) occurs in Reads. We say that a read-set Reads is full with                   
respect to Genome if each (k+1)-mer from Genome appears in a read from Reads. For a full set                  
of error-free reads, the graph DB(Reads,k) coincides with DB(Genome,k). In the case of             
error-prone reads, the traditional approach to genome assembly is to construct the graph             
DB(Reads,k) and further modify it with the goal of approximating the graph DB(Genome,k).  

Compressed de Bruijn graphs. A vertex with the indegree N and the outdegree M is               
referred to as N-in-M-out vertex. A vertex is classified as complex if both its indegree and                
outdegree exceed 1, and simple, otherwise. A vertex is classified as non-branching if it is a                
1-in-1-out vertex, and as a junction, otherwise. A junction is classified as a dead-end if it has no                  
incoming or no outgoing edges, and a cross-road, otherwise. We refer to the set of all junctions                 
in the graph DB(Genome,k) as Junctions(Genome,k). A path between junctions is classified as             
non-branching if all its intermediate vertices are non-branching.  

Given a non-branching path P between junctions v and w in a graph, its compression results                
in substituting this path by a single edge (v,w) labeled by label(P). Compressing all              
non-branching paths in DB(Genome,k ) results in the compressed de Bruijn graph           
CDB(Genome,k ) (the graph CDB(Reads,k ) is defined similarly). The compressed de Bruijn           
graph is more compact than the de Bruijn graph since it does not require storing all k-mers - the                   
total length of all labels in CDB(Genome,k ) is typically k times smaller than the total length of all                  
labels in DB(Genome,k ). The coverage of an edge in CDB(Reads, k) is defined as the average                
coverage of all edges in the non-branching path that was compressed into this edge.  

A subpartition of an edge (v,w) of a graph substitutes it by two edges by “adding” a vertex u                   
on this edge, i.e., deleting the edge (v,w) and adding a new vertex u to the graph along with                   
edges (v,u) and (u,w). A subpartition of a graph G(V,E ) is defined as a result of an arbitrary                  
series of subpartitions. The simple subpartition of a graph G(V,E) is a graph with |V|+|E |               
vertices, resulting from a subpartition of each edge in G.  
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Sparse de Bruijn graphs. Given a set of k-mers Anchors (referred to as anchors) from a                
string-set Genome, we consider every two consecutive occurrences a and a’ of these k-mers in               
Genome and generate a substring of Genome that starts at the first nucleotide of a and ends at                  
the last nucleotide of a’. The resulting set of substrings is denoted Split(Genome,Anchors).  

The sparse de Bruijn graph SDB(Genome,Anchors) is defined as a graph with the vertex-set              
Anchors and the edge-set Split(Genome, Anchors) (each string in Split(Genome, Anchors)           
represents a label of an edge connecting its k-prefix with its k-suffix). Two vertices in this graph                 
may be connected by multiple edges in the case several substrings of Genome with different               
labels connect the same anchors. In contrast to the de Bruijn graph, with degrees bounded by                
the alphabet size, vertices of the sparse de Bruijn graph may have arbitrarily large degrees. A                
straightforward algorithm for constructing SDB(Genome,Anchors) takes O(|Genome|・|Anchors|      
・k) time.  

When the anchor-set coincides with the junction-set Junctions=Junctions(Genome,k), each         
vertex of CDB(Genome,k) is an anchor and each edge corresponds to two consecutive anchors              
in the genome traversal. Therefore, the sparse de Bruijn graph SDB(Genome,Junctions)           
coincides with CDB(Genome,k). Moreover, if Junctions+ is a superset of all junctions that             
contains all junctions as well as some false junctions (i.e., non-branching k-mers from Genome),              
SDB(Genome,Junctions+) is a subpartition of CDB(Genome,k).  

Bloom filter. jumboDB stores all (k+1)-mers from Genome in the Bloom filter            
Bloom(Genome,k,BloomNumber,BloomSize) formed by BloomNumber different independent      
hash functions, each mapping (k+1)-mers into a bit array of size BloomSize. The Bloom filter is                
a compact probabilistic data structure for storing sets that may report false positives but never               
false negatives (see Pell et al., 2012 and Chikhi and Rizk, 2013 for applications of the Bloom                 
filter to de Bruijn graph construction). Storing all (k+1)-mers from Genome in a Bloom filter               
allows one to quickly query whether an arbitrary (k+1)-mer occurs in Genome. The Bloom filter               
reports “yes” for all (k+1)-mers occurring in Genome but may also report “yes” for some               
(k+1)-mers that do not occur in Genome (with a small probability).  

Section 2: Constructing the compressed de Bruijn graph of a genome 

Using the junction-superset to construct the compressed de Bruijn graph of a            
genome . We start by describing the algorithm for constructing CDB(Genome, k) of a circular              
genome Genome (Minkin et al., 2017) before addressing a more difficult problem of constructing              
CDB(Reads,k). The key observation is that if the junction-set Junctions=Junctions(Genome,k)          
was known, construction of CDB(Genome,k) would be a simple task because it coincides with              
the sparse de Bruijn graph SDB(Genome,Junctions). Moreover, even if the junction-set is            
unknown but a junction-superset Junctions+ (with a small number of false junctions) is known,              
one can construct CDB(Genome,k) by first constructing SDB(Genome,Junctions+) and         
compress all non-branching paths in the resulting graph. Below we explain how to generate a               
junction-superset with a small number of false junctions. 

Generating a junction-superset of a genome. To generate a junction-superset Junctions+,           
jumboDB uses the Bloom filter to compute the upper bound on the indegree and outdegree of                
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each k-mer from Genome (i.e., a vertex in DB(Genome,k)) by checking which of its 4+4=8               
extensions by a single nucleotide on the right or on the left represent (k+1)-mers present in the                 
Bloom filter. A k-mer is called a non-joint if the upper bounds on its indegree and outdegree are                  
both equal to 1, and a joint otherwise. JumboDB forms the junction-superset from all joints.               
Since the Bloom filter can report false positives, this procedure may overestimate the indegree              
and/or outdegree of a k-mer, resulting in some false junctions formed by simple vertices. In the                
case of linear chromosomes, it may also overestimate the indegree and/or outdegree of some              
dead-end junctions, e.g., to misclassify a 0-in-1-out junction as a simple vertex. However, all              
cross-road junctions will be found, thus solving the problem of generating a junction-superset (at              
least in the case of circular genomes that do have dead-end junctions), constructing a              
subpartition of CDB(Genome,k), and further transforming it into CDB(Genome,k). jumboDB sets           
the parameter BloomSize to be proportional to the total genome length (in the number of               
(k+1)-mers) in such a way that the false positive rate of the Bloom filter does not exceed a                  
threshold.  

Since jumboDB stores the k-mer hashes in the Bloom filter (instead of k-mers themselves), it               
fills the Bloom filter by calculating hashes of hashes. Since many hashing approaches take O(k)               
time to compute a hash of a k-mer, the running time of the algorithm scales as a factor of k and                     
becomes prohibitively large when k is large. Below we describe how jumboDB uses the rolling               
hash to reduce the amortized running time for computing the hash function to O(1).  

Using the rolling hash to rapidly generate the junction-superset and construct the            
compressed de Bruijn graph. In addition to speeding up the algorithm for generating a              
junction-superset, we also need to speed-up the straightforward algorithm for constructing the            
graph SDB(Genome,Junctions+). One can speed-up building SDB(Genome,Junctions+) by        
constructing a hashmap of Junctions+ to support a fast check whether a k-mer from Genome               
coincides with a k-mer from Junctions+. However, if the hash function is calculated in O(k) time,                
this approach results in O(|Genome|・k ) running time, which is still prohibitive for large k-mer              
sizes. jumboDB uses a 128-bit polynomial rolling hash (Karp and Rabin, 1987) of the k-mers               
from the genome to rapidly check whether two k-mers (one from Genome and one from               
Junctions+) are equal and to reduce the running time to O(|Genome|). Since hashes of all               
k-mers from Junctions+ are known, this approach computes hashes of all k-mers in Genome              
and reveals all junctions in O(|Genome|) time as well as reduces the running time for               
constructing CDB(Genome, k) to O(|Genome |).  

The challenge of constructing the compressed de Bruijn graph from reads. We say             
that a genome Genome bridges an edge of the compressed de Bruijn graph CDB(Genome,k) if               
the label of this edge represents a substring of Genome. A genome is classified as bridging if it                  
bridges all edges of CDB(Genome,k), and non-bridging otherwise.  

jumboDB constructs a graph jumboDB(Genome,k) that coincides with the compressed de           
Bruijn graph CDB(Genome, k) in the case of a genome formed by circular chromosomes or any                
bridging genome. However, jumboDB(Genome,k) differs from CDB(Genome, k) in the case of a             
non-bridging genome, e.g., a genome formed by linear chromosomes that do not bridge all              
edges of CDB(Genome, k). However, after extending the junction-superset by all k-prefixes and             
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k-suffixes of all linear chromosomes, the same algorithm will construct the graph that represents              
a subpartition of CDB(Genome, k). Although this subpartition can be further transformed into             
CDB(Genome, k) by compressing all non-branching paths, the resulting algorithm may become            
slow if the number of linear chromosomes is large, resulting in a large increase in the size of the                   
junction-superset. This increase becomes particularly problematic when we construct the          
compressed de Bruijn graph CDB(Reads, k) from error-prone reads (each such read represents             
a separate linear mini-chromosome). Even more problematic is the accompanying increase in            
the number of calls to the hash functions that scales proportionally to the coverage of the                
genome by reads. An additional difficulty is that, in the absence of the genome, it is unclear how                  
to select the appropriate size of the Bloom filter that keeps the false-positive rate below a                
threshold — selecting BloomSize to be proportional to the total read-length leads to a high               
false-positive rate.  

Below we describe how to address these problems by assembling reads into disjointigs that              
form a bridging genome for the graph CDB(Reads,k) and constructing the compressed de Bruijn              
graph from a bridging disjointig-set Disjointigs instead of the read-set. Even though each             
disjointig may represent an error-prone assembly of reads, we show that           
CDB(Disjointigs,k)=CDB(Reads,k). Using disjointigs allows us to set the parameter BloomSize          
to be proportional to the total disjointig-length instead of the total read-length, thus greatly              
reducing the memory footprint. jumboDB sets BloomSize=32・length(Disjointigs), where        
length(Disjointigs) is the total length of disjointigs measured in the number of (k+1)-mers.  

Section 3: Constructing the compressed de Bruijn graph from disjointigs  

Disjointigs. We define a disjointig of a genome Genome as a string spelled by an arbitrary                
path in the de Bruijn graph DB(Genome,k). A disjointig is compact if it starts and ends in a                  
junction. Note that although a disjointig does not necessarily represent a substring of the              
genome, all (k+1)-mers from a disjointig occur in the genome.  

A set of disjointigs of Genome is complete if each (k+1)-mer from Genome is present in a                 
disjointig from this set. A complete disjointig-set is compact if each disjointig in this set is                
compact. If a disjointig-set Disjointigs is complete then CDB(Genome,k) coincides with           
CDB(Disjointigs,k). However, jumboDB(Disjontigs,k) may differ from CDB(Genome,k) since         
jumboDB does not reconstruct edges of CDB(Genome,k) that are not bridged by Disjointigs.             
However, if a disjointig-set Disjontigs is compact, it forms a bridging genome, implying that              
jumboDB(Disjontigs,k) coincides with CDB(Genome,k). Thus, our goal is to generate an initial            
complete disjointig-set and to transform it into a compact disjointig-set. Similarly to a disjointig of               
a genome, we define a disjointig of a read-set as a string spelled by an arbitrary path in the                   
graph DB(Reads,k). Below we show how to constructs a disjointig-set from a read-set.  

Generating a complete disjointig-set by constructing the sparse de Bruijn graph of            
reads. Given a hash function on k-mers and an integer width, a minimizer of a string (Roberts et                  
al., 2004) is defined as a k-mer with a minimal hash in its substring formed by width consecutive                  
k-mers. A sensible choice of the parameter width ensures that each read is densely covered by                
minimizers and that overlapping reads share many minimizers, facilitating the assembly.  
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The sparse de Bruijn graphs, initially introduced for reducing memory of short-read            
assemblers (Ye et al., 2012), can also be applied for assembling long and accurate reads.               
Traditionally the anchor-set Anchors for constructing SDB(Reads,Anchors) is constructed as a           
set of all minimizers across all reads. However, if the k-prefix and/or k-suffix of a read are not                  
anchors, then a prefix and/or a suffix of this read may be missing in SDB(Reads,Anchors) since                
only segments between anchors are added to this graph. We thus add all k-prefixes and               
k-suffixes of all reads to the anchor-set formed by all minimizers. In this case, the set of                 
(k+1)-mers occurring on edges of SDB(Reads,Anchors) coincides with the set of all (k+1)-mers             
from reads. We refer to the resulting set of anchors as Anchors=Anchors(Reads,width,k).            
jumboDB constructs the graph SDB(Reads,Anchors) and generates a complete disjointig-set as           
the collection of all non-branching paths in this graph. It further transforms this disjointig-set into               
a compact disjointig-set by extending or shortening each disjointig as described below.  

Generating a compact disjointig-set. We explain how to extend/shorten a disjointig using            
an example of a vertex w in the graph SDB(Reads,Anchors) that has one incoming edge in and                 
two outgoing edges out1 and out2 (a similar approach is applicable to any vertex). The               
previously constructed disjointed-set includes the disjointig in (that we will extend) and            
disjointigs out1 and out2  (that we will shorten). 

Edges out1 and out2 share their first k-mer (that labels vertex w) and possibly their second,                 
third, etc. k-mers. Let prefix(out1,out2) be the longest common prefix of these edges and              
last(out1,out2) be the last k-mer of this prefix. While the vertex w is not necessarily a junction, the                  
edges out1 and out2 must share a junction, specifically the junction last(out1,out2). We thus              
extend the disjointig in ending in w by concatenating it with the suffix of prefix(out1,out2) starting                
at position k, and shorten the disjointigs starting in w by removing their prefixes of length                
|prefix(out1,out2)|-k . The resulting disjointig-set contains the same collection of (k+1)-mers as the            
initial disjointig-set but the disjointigs that previously started/ended at an anchor w, now             
start/end at a junction last(out1,out2) of the graph CDB(Reads,k). Applying the described            
procedure to all vertices of the graph SDB(Reads, Anchors) transforms the initial disjointig-set             
into a compact disjointig-set.  

Section 4: Outline of the jumboDB algorithm  

Outline of the jumboDB algorithm. Below we summarize all steps of jumboDB. Appendix 
1 describes its parameters, while Appendix 2 describes how jumboDB maps reads to this graph. 

 
1. Generate the anchor-set Anchors=Anchors(Reads,width,k) by constructing the set of all          

minimizers in Reads and extending this set by all k-prefixes and k-suffixes of all reads.  
2. Construct the sparse de Bruijn graph SDB(Reads,Anchors). 
3. Construct a complete disjointig-set formed by all non-branching paths in          

SDB(Reads,Anchors). 
4. Transform it into a compact disjointig-set Disjointigs by extending/shortening disjointigs.  
5. Generate the Bloom filter Bloom(Disjointigs,k,BloomNumber,BloomSize) with      

BloomSize=32・length(Disjointigs).   
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6. Compute the upper bounds on the indegree and outdegree of each k-mer from Disjointigs              
using the Bloom filter and the rolling hash.  

7. Construct the junction-superset Junctions+ as the set of all joints in Disjointigs. 
8. Construct the string-set Split(Disjointigs,Junctions+) to generate edges of a subpartition of           

the compressed de Bruijn graph CDB(Disjointigs,k). 
9. Compress all 1-in-1-out vertices in this graph to generate CDB(Disjointigs,k) that coincides            

with CDB(Reads,k). 

Section 5: Benchmarking jumboDB and error-correcting HiFi reads  

Benchmarking jumboDB. We do not benchmark jumboDB against other de Bruijn graph            
construction tools since there are no tools for constructing the compressed de Bruijn graphs for               
large k-mers yet (the MBG tool (Rautiainen and Marschall, 2020) constructs the sparse de              
Bruijn graph, a coarse approximation of the compressed de Bruijn graph).  

Table Time/Memory provides information about the running time and memory footprint of            
jumboDB. Since homopolymer runs represent the dominant source of errors in HiFi reads, we              
collapse each homopolymer run X...X in HiFi reads (and in the assembled genome) into a single                
nucleotide X and benchmark jumboDB using the datasets of homopolymer-collapsed (HPC)           
reads Below we list the benchmarking datasets that are described in details in Appendix 3:  

 
● The ECOLI dataset contains HiFi reads from the E. coli genome.  
● The T2T dataset contains HiFi reads from a human cell line generated by the              

Telomere-To-Telomere (T2T) consortium (Nurk et al., 2020). The T2T dataset was           
semi-manually assembled into a sequence HumanGenome by integrating information         
generated by multiple sequencing technologies.  

● The T2TErrorFree dataset is derived by mapping reads from the T2T dataset to             
HumanGenome and substituting each mapped read by the genomic segment it spans.  

● The chrX dataset, that we use for benchmarking our algorithm for error-correcting HiFi             
reads, is a subset of the T2T dataset that contains all reads originating from the               
chromosome X (referred to as chrX) The cenX (cen6) dataset is a subset of the chrX                
dataset that contains all reads originating from the centromere of chromosome X            
(chromosome 6) referred to as cenX (cen6). The cenXErrorFree (cen6ErrorFree) datasets           
contain error-free reads from the T2TcenX (T2Tcen6) datasets. 

 
 

 

T2T 

 time (h) 
memory 

(Gb) #vertices #edges 
total edge 

length (Gbp) #paths median path length 
#complex 
vertices 

251 2.4 52 29806686 43750620 10 5566455 159 208737 

511 2.7 54 23171326 33230906 15 5566321 111 95702 
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Table Time/Memory. The running time and memory footprint of jumboDB as well as the number of                
vertices and edges in the constructed compressed de Bruijn graphs for the T2T (top),              
T2TErrorFree (middle), and ECOLI (bottom) datasets. The table also provides information about the             

 

1001 3.2 65 17032673 23357700 18 5559705 69 36041 

2001 3.6 81 12025225 14947471 23 5422657 35 11493 

3001 4.2 90 9927841 11160720 25 5157197 22 5308 

5001 3.9 93 8152006 7560390 27 4564678 10 1581 

T2TErrorFree 

 time (h) 

memory 

(Gb) #vertices #edges 
total edge 

length (Gbp) #paths median path length 
#complex 
vertices 

251 0.6 32 311042 472380 2.1 874719 55 7432 

511 0.6 33 143011 214517 2.1 590730 30 1230 

1001 0.7 33 64371 95716 2.1 456338 13 220 

2001 0.7 34 21724 31862 2.0 307824 5 16 

3001 0.6 35 10035 14723 2.0 205879 4 8 

5001 0.6 36 3530 4956 2.0 88460 3 2 

ECOLI 

 time(min) 

memory 

(Gb) #vertices #edges 
total edge 

length (Gb) #paths median path length 
#complex 
vertices 

251 3.2 2.2 378261 561569 0.5 190456 1057 10187 

511 2.5 2.2 316317 457755 0.7 190386 800 6546 

1001 2.2 2.1 246417 338726 1.0 190134 518 3389 

2001 2.5 2.1 180581 221930 1.3 186832 267 1240 

3001 2.5 2.2 150975 164848 1.5 176924 156 574 

5001 1.5 2.1 101569 88062 1.3 116270 52 18588 
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number of paths (excluding single-edge paths), their median length (in the number of edges they               
traverse), and the number of complex vertices. The running time/memory footprint for the T2TErrorFree              
read-set hardly changes with an increase in the k-mer size, suggesting that the running time/memory               
footprint of jumboDB mainly depends on the size of the compressed de Bruijn rather than the k-mer size.                  
All tools were benchmarked on a computational node with two Intel Xeon 8164 CPUs, with 26 cores each                  
and 1.5 TB of RAM. All runs were done in 32 threads.  

 
Error-correction of HiFi reads. Error-correction was first introduced in the context of            

Sanger reads (Pevzner et al., 2001) and became ubiquitous in both short-read and long-read              
assemblers (Chaisson et al., 2008, Kelly et al., 2010, Medvedev et al., 2011, Bankevich et al.,                
2012, Nikolenko et al., 2013, Lima et al., 2020). However, error-correction of long and accurate               
reads remains a poorly explored topic — the Hifiasm assembler (Cheng et al., 2020) is currently                
the only error-correcting tool for HiFi reads. 

 
HiFi reads in the T2T dataset have a mean error rate of 0.2% per nucleotide. Collapsing all                 

homopolymer runs reduces the error rate to 0.062%, with 38% of all reads in the T2T dataset                 
being error-free. However, the remaining errors have to be corrected to ensure that the graph               
CDB(Reads,k) of the homopolymer-collapsed read-set represents a good approximation of the           
graph CDB(Genome,k) of the homopolymer-collapsed genome. For example, while the graph           
CDB(T2T,511) has ≅33 million edges, the graph CDB(T2TErrorFree ,511) has only ≅214           
thousand edges, illustrating that error correction is needed even after collapsing all            
homopolymer runs.  
 

The HiFiasm error correction (Cheng et al., 2020) reduced the errors in reads to 210 errors                
per megabase and increased the percentage of error-free reads to ≈92%. Since the de Bruijn               
graphs have been successfully used for error-correcting short and accurate reads, we            
implemented a simple path-rerouting and bulge-collapsing approach to error-correct HiFi reads           
that is inspired by a more involved graph simplification procedure in the SPAdes assembler              
(Bankevich et al., 2012). Appendix 4 benchmarks this error correction approach on the chrX              
dataset and illustrates that it reduces the errors in reads to only 3.6 errors per megabase and                 
increases the percentage of error-free reads to ≈96% (after “breaking” a small number of reads               
as described in Appendix 4). Even though it represents a significant reduction in the number of                
errors as compared to the Hifiasm error-correction procedure, we are now working on further              
optimization of the LJA error-correction procedure since the remaining errors may fragment the             
compressed de Bruijn graph and propagate during the multiplex graph construction step.  

Section 6: Graph Transformation Algorithm: from CDB(Reads,k) to CDB(Reads,k+1)  

Iterative construction of the compressed de Bruijn graph. Below we describe our            
transDB algorithm for transforming the graph CDB(Reads,k) into CDB(Reads,K) for K>k by            
iteratively increasing the k-mer size by 1 at each iteration. Although launching jumboDB to              
construct CDB(Reads,k) followed up by transDB transformations takes more time than simply            
launching jumboDB to construct CDB(Reads,K), we use it as a stepping stone toward the              
multiplex de Bruijn graph construction.  

Below we consider graphs, where each edge is labeled by a string, and each vertex w is                 
assigned an integer vertexSize(w). We limit attention to graphs where suffixes of length             
vertexSize(w) for all incoming edges into w coincide with prefixes of length vertexSize(w) for all               
outgoing edges from w. We refer to the string of length vertexSize(w) that represents these               
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prefixes/suffixes as the label of the vertex w. Below we consider graphs with specified              
edge-labels and assume that vertex-labels can be inferred from these edge-labels and that             
different vertices have different vertex-labels. Although in this section, vertexSize(w) is the same             
for all vertices, it will vary among vertices in the multiplex de Bruijn graph.  

Transition graph . Let Transitions be an arbitrary set of pairs of consecutive edges (v,w)              
and (w,u) in an edge-labeled graph G. We define the transition graph G(Transitions) as follows.               
Every edge e in G corresponds to two vertices estart and eend in G(Transitions) that are connected                 
by a blue edge . This blue edge in G(Transitions) inherits the label of the edge e in G and we set                     
vertexSize(estart)=vertexSize(eend)=k+1 (vertex-labels are uniquely defined by the       
(k+1)-suffixes/prefixes of the incoming/outgoing edges in each vertex). If an edge e in G is               
labeled by a (k+1)-mer, the corresponding blue edge in G(Transitions) is collapsed into a single               
vertex estart=eend in G(Transitions). In addition to blue edges, each pair of edges in=(v,w) and               
out=(w,u) in Transitions adds a red edge between inend and outstart to the graph G(Transitions).               
The label of this red edge is defined as a (k+2)-mer symbol-(k+1)(in)*label(w)*symbol(k+1)(out),            
where symboli(e) stands for the i-th symbol of label(e), and symbol-i(e) stands for the i-th symbol                
from the end of label(e). When the set Transitions includes all pairs of consecutive edges in                
graph G, the transition graph is the standard line graph (Wilson, 2015) of the simple subpartition                 
of G. 

Path graph. We say that a path traverses a vertex w in a graph if it both enters and exits                    
this vertex. Given a path-set Paths in a graph, we denote the set of all paths containing an edge                   
(v,w) as Paths(v,w), the set of all paths traversing a vertex w as Paths(w), and the set of all                   
paths visiting incoming edges into vertex v as Paths+(v) (each path in Paths+(v) either traverses               
v or stops at v). Given a path-set Paths in a graph G, we define the set Transitions(Paths) as                   
the set of all pairs of consecutive edges in all paths from Paths. A path-graph of a path-set                  
Paths in a graph  G is defined as the transition graph G(Transitions(Paths)). 

Let Paths be the set of all read-paths in the compressed de Bruijn graph G=CDB(Reads,k ).               
The graph G(Transitions(Paths)) is a subpartition of the graph CDB(Reads,k +1) (after properly            
defining edge-labels and ignoring colors of edges). For each edge e in the graph CDB(Reads,k),               
we maintain the set of paths Paths(e) containing this edge. A path e1, e 2, e 3,… in CDB(Reads, k)                  
corresponds to a blue-red path e1, transition edge between e1 and e2, e2, transition edge               
between e2 and e3, e3,… in G(Transitions(Paths)), where labels of blue edges have lengths at               
least (k+1) and labels of red edges represent (k+2)-mers. Therefore, a straightforward approach             
to constructing the graph G(Transitions(Paths) (that recomputes labels from scratch at each            
iteration) faces the time/memory bottleneck since it nearly doubles the path lengths at each              
iteration. However, the compressed de Bruijn graph is getting less tangled with an increase in               
the k-mer size, implying that the vast majority of the newly introduced red edges are merely                
subpartitions of longer non-branching paths. Below we describe how transDB avoids the            
time/memory bottleneck by modifying rather than recomputing the edge labels from scratch.   

Transforming simple vertices. A path (v1,...v i,...,v n) in a graph is called out-unambiguous            
(in-unambiguous) if the outdegrees (indegrees) of all vertices in this path except the first and the                
last one are equal to 1. A path (v1,...v i,...,v n) is called unambiguous if there is an edge (vi,v i+1) in                   
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this path such that (vi,...,v n) is an out-unambiguous path and (v1,...v i+1) is an in-unambiguous              
path. We refer to unambiguous paths in the compressed de Bruijn graph as virtual reads. Note                
that in the case when Genome is formed by circular chromosomes, all virtual reads in the                
compressed de Bruijn graph CDB(Genome,k) represent substrings of Genome and thus can be             
safely added to any read-set. In the case of linear chromosomes, we assume that the k-prefix                
and k-suffix of each chromosome correspond to dead-ends in the graph CDB(Reads, k). 

Given a path-set Reads in a graph G, we call edges (v,w) and (w,u) in G paired if                  
Transitions(Reads) contains this pair of edges. A vertex w in G is classified as paired if each                 
edge incident to w is paired with at least one other edge incident to w, and unpaired, otherwise. 

For a simple paired vertex, the local topology of the graph “around” this vertex remains the                
same after the graph transformation. In the framework of the Iterative de Bruijn graph (when the                
set of reads is complemented by virtual reads), the local topology of both paired and unpaired                
simple vertices (with the exception of the dead-end simple vertices) remains the same after this               
transformation. Below we describe how transDB speeds-up transformations of simple vertices. 

For each parameter k, the vast majority of vertices in the compressed de Bruijn graph of                
reads are 2-in-1-out and 1-in-2-out vertices (Appendix 4). Below we describe the graph             
transformation of 2-in-1-out vertex w with incoming edges in1 and in2 and the outgoing edge out                
(transformations of N-in-1-out and 1-in-N-out vertices are performed similarly). This          
transformation merely substitutes the k-mer label of this vertex by the (k+1)-mer            
label(w)*symbolk+1(out). It preserves the label of the edge out and adds a single symbol              
symbolk+1(out) after the end of labels of edges in1 and in2. 

Transforming complex vertices. The transformation of a complex N-in-M-out vertex w           
results in substituting this vertex by N+M vertices and adding up to N・M red edges (that                
connect N added vertices with M added vertices) to the graph. Each path from Paths(w)               
traversing t complex vertices will be transformed into a path with t red edges and the                
non-branching paths that may result from this transformation have to be compressed into single              
edges. 

To efficiently implement this transformation, transDB generates the list of paths traversing            
each new red edge (for up to new N*M red edges for each complex N-in-M-out vertex) using the                  
list of paths Paths(v,w) traversing each edge (v,w) in the graph. The transformation of a complex                
vertex w takes |Paths+(w)| time. The number of operations to transform all complex vertices is               
bounded by the sum of |Paths+(v)| over all complex vertices in the graph. Since the number of                 
complex vertices in a compressed de Bruijn graph is small (see Appendix 4) and since               
processing a simple vertex takes constant time, the transformation of CDB(Reads, k) into             
CDB(Reads, k+1) is fast for large k (e.g., for k=5001 because the graph CDB(T2T,5001) is               
small) even though it can be rather slow for small k (e.g., for k=511 because the graph                 
CDB(T2T,511) is large). For example, constructing the graph CDB(chrX,511) using jumboDB           
and further transforming it into the graph CDB(chrX,5001) using transDB takes 5+393 minutes,             
while the direct construction of CDB(chrX,5001) using jumboDB takes just 3 minutes. However,             
iterative increasing of the k-mer size during the construction of the multiplex de Bruijn graph is                
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only crucial for large k (e.g., greater than 5001) that, as we demonstrate below, can be done                 
rapidly.  

Section 7: Multiplex de Bruijn graph 

Limitation of the de Bruijn graph approach to genome assembly. The choice of the               
k-mer size greatly a ffects the complexity of the graph DB(Reads,k). There is no perfect choice               
since gradually increasing k leads to a less tangled but more fragmented de Bruijn graph. This                
trade-off affects the contiguity of assembly, particularly in the case when the k-mers coverage              
by reads is non-uniform, let alone when some genomic k-mers are missing in the read-set.  

The coverage of an edge (a (k+1)-mer) in DB(Reads,k) is defined as the total number of                
traversals of this edge by all read-paths. The (k+1)-mers from the genome that are missing in a                 
read-set (coverage zero) are missing in DB(Reads,k), reducing the contiguity of assembly. The             
(k+1)-mers with small coverage may also result in fragmented assemblies since our            
error-correction procedure may break regions with a small coverage. Ideally, we would like to              
use larger k-mer sizes in the high-coverage regions and smaller k-mer sizes in the low-coverage               
regions. The iterative de Bruijn graph approach (Peng et al., 2010) addresses this challenge by               
incorporating information about the de Bruijn graphs for a range of parameters k1 < k2 < … < kt                   
into the de Bruijn graph for a larger value K > kt. Although this approach was implemented in                  
many short-read assemblers (Peng et al., 2012, Bankevich et al., 2012, Peng et al., 2012), it still                 
constructs a graph with a fixed k-mer size equal to K. Boucher et al., 2015 described the                 
variable-order de Bruijn graph that compactly represents information about the de Bruijn graph             
of a read-set across multiple k-mer sizes. Lin and Pevzner, 2014 described a theoretical              
approach for constructing the de Bruijn graphs with vertices labeled by k-mers of varying sizes               
that however was not designed for practical genome assembly challenges.  

Below we introduce the concept of the multiplex de Bruijn graph (with vertices labeled by               
k-mers of varying sizes) and describe its applications to genome assembly. We note that we               
add all virtual reads to the read-set Reads during the construction of the multiplex de Bruijn                
graph.  

Multiplex graph transformation. The important property of CDB(Genome,k) is that there           
exists a genome traversal of this graph. If there exists a genome traversal of the graph                
CDB(Reads,k), we want to preserve it in CDB(Reads,k+1) after the graph transformation.            
However, it is not necessarily the case since the transformation of CDB(Reads,k) into             
CDB(Reads,k+1) may create dead-ends (each unpaired vertex in CDB(Reads,k) results in a            
dead-end in CDB(Reads,k+1)), thus “losing” the genome traversal that existed in           
CDB(Reads,k). Below we describe a multiDB algorithm for transforming CDB(Reads,k) into the            
multiplex de Bruijn graph MDB(Reads,k+1) that avoids creating dead-ends whenever possible           
by introducing vertices of varying sizes in this graph.  

multiDB transforms each paired vertex of CDB(Reads,k) using the transDB algorithm and            
“freezes” each unpaired vertex by preserving its k-mer label and the local topology. It also               
freezes some vertices adjacent to the already frozen vertices even if these vertices are simple.               
Specifically, if a frozen vertex u is connected with a non-frozen vertex v by an edge of length                  
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VertexSize(v) + 1, we freeze v. The motivation for freezing v is that, if we do not freeze it, we                    
would need to remove the edge connecting u and v in MDB(Reads, k+1), disrupting the               
topology of the graph. multiDB continues the multiplex graph transformations for all paired             
vertices (while freezing unpaired vertices) with gradually increasing k-mer sizes from k to K,              
resulting in the multiplex de Bruijn graph MDB(Reads,K) with varying k-mer sizes.  

We classify a read-set as incomplete if it does not contain reads supporting some genomic               
transitions through a vertex in the de Bruijn graph. Similarly to the iterative de Bruijn graph                
approach (Peng et al., 2010), although the graph MDB(Reads,K) results in a more contiguous              
assembly than CDB(Reads,K), there is a risk that some multiplex graph transformation may             
“destroy” the genome traversal and even lead to assembly errors in the case of an incomplete                
read-set. Appendix 6 describes these risks and illustrates that a multiplex graph transformation             
may be overly-optimistic (by transforming vertices that should have been frozen) and            
overly-pessimistic (by freezing vertices that should have been transformed). Appendices 7 and            
8 describe how to minimize the risk of overly-optimistic graph transformations. 

Assembling cenX. We first illustrate the construction of the multiplex de Bruijn graph using              
the error-free read-set cenXErrorFree. Afterward, we show that the multiplex de Bruijn graph             
approach results in a complete cenX assembly from the real cenX read-set. The graph              
CDB(cenXErrorFree , 5001 ) contains 34 vertices and 49 edges. We transformed this graph into             
the multiplex de Bruijn graph MDB(cenXErrorFree ,40001 ) by increasing the k-mer size and            
reducing it to a single edge at the K-mer size equal to 37771, illustrating that error-free HiFi                 
reads enable cenX assembly in a single contig. In contrast, the compressed de Bruijn graph               
CDB(cenXErrorFree ,37771 ) cannot be constructed, because all reads in the set cenXErrorFree           
are shorter than 37771bp. We emphasize that the multiplex de Bruijn graph utilizes virtual reads               
that are often longer than real HiFi reads, explaining why it was important to increase the K-mer                 
size beyond the length of all reads in the cenXErrorFree read-set.  

To assemble the real cenX read-set, we implemented the traditional error correction based             
on the removal of tips and bulges from the de Bruijn graph (similar to the SPAdes graph                 
simplification procedure (Bankevich et al., 2012)) coupled with a path rerouting procedure that             
keeps track of read paths in the graph (Appendix 4). This error correction resulted in significant                
improvement in the error rate (0.01%) and the percentage of error-free reads (≈94%). We              
constructed the graph CDB(cenXErrorCorrected ,5001) with 34 vertices and 49 edges using           
jumboDB and transformed it into the multiplex de Bruijn graph MDB(cenXErrorCorrected,           
40001 ) using multiDB. This multiplex de Bruijn graph has reduced to a single edge at the K-mer                 
size equal to 37771, illustrating that HiFi reads enable cenX assembly into a single contig.               
Transformation of CDB(cenXErrorCorrected ,5001) into MDB(cenXErrorCorrected,40001 ) takes      
less than a minute. 

Assembling cen6. Extremely repetitive cen6 is one of the most difficult-to-assemble regions            
of the human genome that was recently assembled using ultralong Oxford Nanopore (ONT)             
reads (Bzikadze and Pevzner, 2020). Assembling cen6 using shorter HiFi reads is challenging             
since it contains long nearly identical repeats. Below we show that even if HiFi reads in the T2T                  
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dataset were error-free, it still would not be possible to completely assemble cen6, illustrating              
that ultralong ONT reads are needed to generate telomere-to-telomere assemblies.  

The graph CDB(cen6ErrorFree , 5001 ) contains 152 vertices and 226 edges (the read-set            
cen6ErrorFree contains no missing 5001-mers). multiDB transformed this graph into a small            
multiplex de Bruijn graph MDB(cen6ErrorFree , 40001) with only 10 vertices and 15 edges             
(Figure 1). Transformation of CDB(cen6ErrorFree , 5001 ) into MDB(cen6ErrorFree , 40001) takes          
less than two minutes. The large reduction in complexity of MDB(cen6ErrorFree , 40001) as             
compared to CDB(cen6ErrorFree , 5001 ) illustrates the value of multiplex de Bruijn graphs for             
follow up repeat resolution using ultralong ONT reads. Although our error-correction of the cen6              
read-set made nearly all reads error-free, the remaining error-prone reads generate some            
bulges, making it difficult to construct the multiplex de Bruijn graph. Our next goal is to further                 
optimize error correction to enable the construction of the multiple de Bruijn graph of the most                
repetitive genomic regions.  

 

Figure 1. The multiplex de Bruijn graph MDB(cen6ErrorFree,40001) obtained from the compressed            
de Bruijn graph CDB(cen6ErrorFree, 5001). The lengths of frozen vertices are smaller than 40001. The               
length of an edge and its multiplicity are shown next to each edge. 

Conclusions 

The development of assembly algorithms for both short and accurate reads (e.g., reads             
generated by Sanger and Illumina technologies) and long and error-prone reads (e.g., reads             
generated by Pacific Biosciences and Oxford Nanopore technologies) started from applications           
of the overlap/string graph approach. Even though this approach has an inherent theoretical             
limitation (representing reads that are substrings of other reads results in fragmented            
assemblies) and becomes slow and error-prone with respect to detecting overlaps detection in             
the most repetitive regions, the alternative de Bruijn graph approach (Idury and Waterman,             
1995, Pevzner et al., 2001) was often viewed as a theoretical concept rather than a practical                
genome assembly method.  

Even after it turned into the most popular method for assembling short and accurate reads,               
the development of algorithms for assembling long and error-prone reads again started from the              
overlap/string graph approach (Koren et al., 2012, Chin et al., 2013, 2016) since the de Bruijn                
graph approach was viewed as inapplicable to error-prone reads due to the “error myth”              
(Roberts et al., 2013) - since long k-mers from the genome typically do not even occur in                 
error-prone reads, it seemed unlikely that the de Bruijn graph approach may assemble such              
reads. However, the development of the Flye (Kolmogorov et al., 2019) and wtdbg2 (Ruan and               
Li, 2020) assemblers demonstrated once again that, even for error-prone reads, the de Bruijn              
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graph-based assemblers result in accurate and order(s) of magnitude faster algorithms than the             
overlap/string graph approach.  

Since the de Bruijn graph approach was initially designed for assembling accurate reads, it              
would seem natural to use it for assembling long and accurate reads. However, the history               
repeated itself and the first HiFi assemblers again relied on the overlap/string graph approach              
(Nurk et al., 2020, Cheng et al., 2020). We and Rautiainen and Marschall, 2000 described               
alternative de Bruijn graph approaches for assembling HiFi reads, illustrating that the “contest”             
between the de Bruijn graph approach and the overlap/string graph approach continues.  
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2. Mapping reads to the compressed de Bruijn graph 
3. Information about datasets used for benchmarking jumboDB 
4. Error correction of HiFi reads  
5. Selecting the minimum coverage  threshold 
6. Limitations of the multiplex graph transformation procedure 
7. Adding virtual reads to avoid overly-optimistic graph transformations 
8. Freezing vertices to avoid overly-optimistic graph transformations 
9. Analyzing variations in the k-mer coverage by reads 

 

 

Appendix 1: Parameters of jumboDB  

 

Ideally, when one constructs the compressed de Bruijn graph of Genome, the parameter             
BloomSize should be selected to be proportional to the number of different (k+1)-mers in              
Genome in such a way that the false positive rate of the Bloom filter does not exceed a                  
threshold (the default value is 10 -4). In the case of constructing the compressed de Bruijn graph                
of Genome, although the number of different (k+1)-mers in Genome is unknown, jumboDB uses              
|Genome| as a proxy for this number. As a tradeoff between the memory footprint and the false                 
positive rate of the Bloom filter, we use 32 bits per (k+1)-mer resulting in approximately 10-4                    
false-positive rate. Increasing the number of hash functions decreases the false positive rate             
but, at the same time, increases the query time of the Bloom filter. To minimize the running time,                  
jumboDB uses the default (small) value BloomNumber=5. 

Although the total genome length is a good proxy for the number of different (k+1)-mers in                
Genome, the total read length greatly overestimates the number of different (k+1)-mers in             
Reads, thus making it unclear how to set the size of the Bloom filter for constructing                
CDB(Reads,k). Since jumboDB constructs CDB(Disjointigs,k) instead of CDB(Reads,k), it uses          
the total disjointing length instead of the total read length to set the parameter BloomSize, thus                
greatly reducing the memory footprint. 

jumboDB uses a 128-bit polynomial rolling hash of the (k+1)-mers from reads. Although             
hashing may lead to collisions when different (k+1)-mers result in the same hash function, a               
128-bit rolling hash has a very low probability of collisions. Indeed, if a hash is viewed as a                  
pseudo-random function on a set of 128-bit integers, the probability of a collision during the               
construction of the compressed de Bruijn graph CDB(Genome,k ) is extremely low even for large              
genomes. Moreover, the probability of a collision during the construction of the graph             
CDB(Reads,k ) remains small for large read-sets - it is estimated as 10 -17 in the case of the T2T                  
read-set (described below) with approximately 10 11 511-mers. We performed multiple tests on            
k-mers from the T2T read-sets and detected no collisions.  

jumboDB uses the default value width=maxWidth-k, where maxWidth=10000 for selecting          
minimizers.  
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Appendix 2: Mapping reads to the compressed de Bruijn graph  

Each read traverses a read-path in the compressed de Bruijn graph CDB(Reads,k). A             
read-path is called a single-edge path if it traverses a single edge in CDB(Reads,k). After               
constructing CDB(Reads,k), jumboDB maps each read to this graph, generates its read-path,            
and identifies the starting (ending) position of this read within the starting (ending) edge of its                
read-path. 

jumboDB discards all short reads (shorter than width+k-1) to ensure that each remaining             
read contains at least one minimizer. Given an edge in the graph CDB(Reads,k), we classify the                
k-mers starting at positions width, 2・width, 3・width, etc. in the label of this edge as the                  
padded k-mers. jumboDB uses the padded k-mers to obtain information about the            
starting/ending positions of single-edge paths in the compressed de Bruijn graph (each such             
path traverses at least one padded k-mer). 

jumboDB combines all padded k-mers for all edges and all junctions in CDB(Reads,k) into a               
single set and traverses all k-mers in each read in Reads to find out how this read traverses all                   
vertices in this combined set. Using this information, it generates the read-path for each read               
and identifies the starting/ ending position of each read within the starting/ending edge of a               
read-path.  

Appendix 3: Information about benchmarking datasets  

 

Supplementary Table Datasets. Information about read-sets used for benchmarking jumboDB. The           
ECOLI dataset is available from the SRA database (accession number SRR10971019). The T2T dataset              
is available at https://github.com/nanopore-wgs-consortium/chm13 . The total length of HumanGenome         
after compressing all homopolymer runs is 2,133,004,165. The chrX dataset was generated by mapping              
the T2T dataset to HumanGenome using Winnowmap (Jain, 2020) and selecting reads that mapped to               
chrX. In rare cases when a read maps to multiple nearly identical instances of a repeat, Winnowmap                 

 

dataset #reads 
median read 
length (kbp) coverage 

Genome length 
(Mb) 

ECOLI 95,514 14.5 400 3.5 

T2T 5,567,158 17.2 32 3100 

T2TErrorFree 5,567,034 17.2 32 3100 

chrX 272,732 17.2 32 154 

cenX/cenXErrorFree 6,527 17.3 35 3.3 

cen6/cen6ErrorFree 11,409 16,8 60 3.4 
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outputs both primary and secondary read alignments. Although using primary alignments works well for a               
vast majority of regions in the human genome, primary alignments incorrectly map some reads in the                
most repetitive regions such as cen6, result in low coverage of some repeat instances, and thus                
negatively affect the generation of datasets containing error-free reads. We thus used both primary and               
secondary alignments in such regions, e.g., for generating the Cen6 ErrorFree  dataset.  

Appendix 4: Error correction of HiFi reads  
 
Error-correcting reads by read-rerouting. Two paths in a graph are called compatible if they              
both start in the same vertex and both end in the same vertex. Given compatible paths P* and                  
Q* and a path P that contains P* as a subpath, the (P*,Q* )-rerouting substitutes P by a new                  
path where the subpath P* of P is substituted by Q*.  
 
At each step of its error-correction procedure, LJA selects a low-coverage subpath P* of a               
read-path P in the graph CDB(Reads,k) and attempts to find a read-path Q that contains a                
higher-coverage P*-compatible subpath Q*. Afterward, it corrects errors in P by performing the             
(P*,Q* )-rerouting of P. After this (P*,Q* )-rerouting, it reduces (increases) the coverage of all             
edges in the subpath P* (Q* ) by 1. Below we describe how LJA searches for candidates for                 
read-rerouting.  
 
Analyzing low-coverage paths in the compressed de Bruijn graph. We denote the edit             
distance between strings v and w as distance(v,w). We classify strings v and w as similar if the                  
edit distance between them does not exceed fraction*min{|v|,|w |}, where fraction is a parameter             
(the default value=0.01). We classify strings v and w as possibly-similar if the difference              
between their lengths does not exceed fraction*min{|v|,|w |}. Two compatible subpaths in the            
compressed de Bruijn graph are similar (possibly-similar) if they spell similar (possibly-similar)            
strings.  
 
We classify an edge in a compressed de Bruijn graph as a low-coverage edge if its coverage is                  
below a threshold minCoverage, and a high-coverage edge, otherwise. Appendix 5 describes            
how LJA selects this threshold (minCoverage=2 for the T2T dataset). LJA partitions each             
read-path P into the high-coverage and low-coverage edges (resulting in its partitioning into             
alternating low-coverage and high-coverage subpaths) and attempts to error-correct         
low-coverage subpaths.  
 
When a genome is known, we classify edges in CDB(Reads,k ) that are visited by the genome                
traversal as the correct edges. Figure CoverageCorrectEdges illustrates that the vast majority of             
correct edges are high-coverage edges in the graph CDB(chrX,511). This graph has only 32              
isolated edges that correspond to reads that do not share 511-mers with any other reads               
because they have a surprisingly high error-rate. In contrast, the graph CDB(chrX,5001),            
constructed for a larger k-mer size, has many more reads (1454) that correspond to isolated               
edges. However, after performing error correction and constructing the graph CDB(chrX*,5001)           
on the error-corrected read-set chrX*, only 398 reads form isolated edges in this graph and do                
not share 5001-mers with other reads.  
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Figure CoverageCorrectEdges. Histogram of the normalized coverage of correct edges in the            
graph CDB(chrX,511). The normalized coverage of an edge is defined as the coverage of this edge                
divided by the median coverage of all edges in the graph. The genome traversal of chrX is formed by                   
1,180,374 edges in CDB(chrX,511) (only 56/71/112 of them have a small coverage 1/2/3). Since 6841               
511-mers from the assembled chrX do not appear in reads, the genome traversal of chrX in                
CDB(chrX,511) consists of 20 paths rather than a single path in CDB(chrX,511).  
 
When a genome is known, one can align each read (corresponding to a read-path P in                
CDB(Reads,k )) to the genome and identify the genomic segment spanned by this read. This              
genomic segment typically corresponds to a high-coverage path ℙ in CDB(Reads,k ) that            
however may differ from P. An edge in a read-path P is called correct if it is also an edge of ℙ                      
(and the corresponding edges are aligned against each other in the read-genome alignment),             
and incorrect, otherwise. The correct and incorrect edges partition the read-path P into the              
correct and incorrect subpaths. Given an incorrect subpath P* of P, its valid correction is defined                
as substituting this subpath with a subpath of ℙ that P* is aligned to (all other corrections are                   
classified as invalid) 98.2% of the incorrect subpaths in the chrX dataset are low-coverage              
subpaths and 99.95% of low-coverage subpaths in the chrX dataset are incorrect subpaths.  
 
A subpath of a path P is called external if it contains the first or the last edge of P, and internal,                      
otherwise. Figure LowCoverageSubpathLength illustrates that the vast majority of low-coverage          
internal subpaths in the graph CDB(Reads,k) spell strings of length close to k. Figure              
ErrorNumberPerRead provides information about the number of reads with the specified           
number of error-clusters in the chrX dataset (with reads subjected to the homopolymer             
collapsing (HPC) procedure) before and after the error correction step. 37% (96%) of the reads               
in the chrX dataset are error-free before (after) our error correction procedure.  
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Figure LowCoverageSubpathLength. Distribution of lengths of strings spelled by all 455548 internal            
(left) and 79398 external (right) low-coverage subpaths of read-paths from the chrX datasets in the graph                
CDB(chrX,511). 
 

 
Figure ErrorNumberPerRead. The number of reads with the specified number of error-clusters in             
the chrX dataset before and after the error correction step. Two errors in a read belong to the same                   
error-cluster if they are located close to each other in this read, i.e., within the distance k (the histogram is                    
constructed for k=511). The x-axis specifies the number of error-clusters and the y-axis shows the fraction                
of reads with the specified number of error-clusters (in logarithmic scale). Number of error-clusters are               
given after the homopolymer collapsing (HPC) step. 37% of the reads in the chrX datasets are error-free                 
and 22% have a single error-cluster. After error-correction, 96% of the HPC reads in the chrX dataset are                  
error-free and 3.7% have a single error-cluster. 
 
Below we describe how LJA corrects reads by performing the read-rerouting and            
bulge-collapsing operations.  
 
Bypasses. We first describe how LJA error-corrects internal low-coverage subpaths by           
read-rerouting. Subsection “Error-correcting external low-coverage subpaths” describes how it         
corrects external subpaths.  
 
Given compatible and similar subpaths P* and Q* of some read-paths in the compressed de               
Bruijn graph, Q* is classified as a bypass of P* if it is a high-coverage subpath . For each                  
low-coverage internal subpath P* of a read-path P, LJA searches for a read-path Q and its                
subpath Q* that represents a bypass of P*.  
 
We classify a low-coverage internal subpath as a no-bypass, uni-bypass, or multi-bypass if it              
has no bypasses, a single bypass, and multiple bypasses, respectively. Since classifying            
bypasses into these three categories may be time-consuming (particularly, in the case of long              
low-coverage subpaths), LJA uses a slightly different but fast classification of bypasses.            
Specifically, for each low-coverage internal subpath P* that starts at a vertex source and ends at                
a vertex sink, LJA considers all read-paths that traverse both source and sink and identifies all                
possibly-similar subpaths of these read-paths that are compatible with P*. If there are no              
high-coverage subpaths in this set, P* is classified as a no-bypass. If all high-coverage              
subpaths in this set are identical (resulting in a subpath Q* ), P* is classified as a uni-bypass.                 
Otherwise, it is classified as a multi-bypass.  
 
444, 414,399, and 1,314 out of all 416157 low-coverage internal subpaths in the graph              
CDB(chrX,511) are no-bypasses, uni-bypasses, and multi-bypasses, respectively 
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Rerouting uni-bypasses. Since a uni-bypass P* has a single bypass Q* , it is a candidate for a                 
(P*,Q* )-rerouting if P* and Q* are similar. However, jumboDB skips the time-consuming            
similarity check since possibly-similar subpaths turned out to be similar in the vast majority of               
cases. After rerouting all internal uni-bypasses, 76% of reads in the chrX dataset become              
error-free. Only 1522 out of 414,399 internal uni-bypasses (0.35%) resulted in invalid            
re-routings. We note that an invalid re-routing does not necessarily lead to an error in the final                 
assembly since it can be corrected at the follow-up error-correction steps.  
 
Rerouting multi-bypasses. Given a multi-bypass P*, LJA computes its edit distance with each             
its bypass to identify the closest bypass Q1*. Although in the vast majority of cases Q1* is a                  
valid correction of P*, in rare cases it is not. To detect cases where Q1* is not a valid correction                    
of P*, LJA performs an additional triangle test inspired by a similar test in the mosaicFlye                
assembler (Bankevich and Pevzner, 2020). For each bypass Q2* different from Q1*, it tests if               
distance(P*,Q2*)=distance(P*,Q1*)+distance(Q1*,Q2*). If this triangle test holds, it performs the         
(P*,Q1* )-rerouting of the multi-bypass P*. In most cases, the triangle test is equivalent to              
checking whether the edit operations to transform P* into Q1* represent a subset of edit               
operations to transform P* into Q2*, a rather strong condition. The triangle condition leads to               
correcting 1790 out of 2035 multi-bypasses (1511 of them represent valid corrections).  
 
Error-correcting external low-coverage subpaths. The simplest way to deal with external           
low-coverage subpaths is to simply shorten each read-path by deleting its low-coverage prefix             
and/or suffix. However, as Figure LowCoverageSubpathLength illustrates, this procedure         
significantly reduces the length of some read-paths and thus may negatively affect the ability of               
the multiplex de Bruijn graph to resolve some repeats.  
 
LJA considers each low-coverage external subpath P* and attempts to error-correct a read-path             
P (that contains this subpath) by substituting P* with a high-coverage subpath in CDB(Reads,k).              
For simplicity, below we consider ending external subpaths that end in the last edge of a read                 
(starting external subpaths that start in the first edge of a read are analyzed similarly).  
 
Given an ending subpath P*, LJA considers all reads passing through its first vertex and               
identifies their high-coverage subpaths that start at this vertex. For each such subpath, it              
identifies its prefix that has the lowest edit distance from P* and analyzes the set of the                 
identified similar prefixes. Similar to the classification of each internal low-coverage subpath into             
a no-bypass, uni-bypass, or multi-bypass, LJA classifies each ending low-coverage subpath into            
a no-suffix, uni-suffix, or multi-suffix and error-corrects it using the previously described            
algorithm for three types of bypasses of internal subpaths, but this time applied to three types of                 
ending (external) subpaths.  
 
This procedure results in the rerouting of 79150 out of 79398 external low-coverage subpaths.              
LJA removes the remaining 248 low-coverage external subpaths, thus shortening the           
corresponding reads.  
 
Error-correction by bulge-collapsing. We refer to all parallel edges between vertices v and w              
in the graph CDB(Reads,k) as a bulge (denoted as bulge(v,w)). An edge in a bulge with the                 
highest coverage is referred to as a heavy edge and all other edges are referred to as light                  
edges. We classify a bulge as collapsible if the total coverage of its edges does not exceed                 
coverageAmplifier・medianCoverage, where coverageAmplifier is a parameter (the default        
value 1.5) and medianCoverage stands for the median coverage of all edges in the graph. An                
edge in a bulge is correct if it represents a substring of the genome and erroneous, otherwise. A                  
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collapsible bulge is reducible if it has a single correct edge and foolproof if this single edge is                  
heavy.  
 
Bulge collapsing refers to a procedure that removes all light edges in a bulge and reroutes all                 
read-paths containing these edges through a heavy edge of this bulge. Although the graph              
CDB(chrX,511) has no bulges, the graph CDB(chrX*,511) on the error-corrected read-set chrX*            
has 144 bulges and 140 of them are collapsible. Moreover, 128 (124) out of 140 collapsible                
bulges in CDB(chrX*,511) are reducible (foolproof). Since the vast majority of collapsible bulges             
CDB(chrX*,511) are foolproof, LJA iteratively collapses all collapsible bulges until no collapsible            
bulges are left.  
 
An additional round of error-correction with larger k-mer sizes. After read-rerouting and            
bulge-collapsing in the graph CDB(Reads,511), 92.5% of reads in the error corrected read-set             
have perfect alignment to the homopolymer-compressed reference genome and the error rate in             
reads is reduced to 36 errors per megabase. The remaining errors are often supported by               
multiple reads and thus are difficult to distinguish from genomic variations. To further reduce the               
error rate, after correcting errors using the compressed de Bruijn graph for a relatively small               
k-mer size (e.g., k=511), jumboDB switches to the compressed de Bruijn graph for a larger               
k-mer size (e.g., k=5001) and performs one more round of error-correction. The rationale for this               
additional round of error-correction is that it becomes less likely for the same error to be                
supported by large k-mers than by smaller k-mers. Indeed, the graph CDB(chrX*,5001) has 750              
bulges and 744 of them are collapsible. 738 (536) out of 744 collapsible bulges in               
CDB(chrX*,5001) are reducible (foolproof) bulges. After the rerouting procedure (k=5001 and           
minCoverage=2) corrects 7990 reads we are left with 484 no-bypasses and no multi-bypasses. 
 
After two rounds of error-correction, the initial chrX read-set is transformed into the             
error-corrected read-set chrX*, where 96% of reads are error-free and the error rate in reads is                
reduced to only 3.6 errors per megabase. However, the de Bruijn graph constructed from              
error-corrected reads for k=5001 does not contain low-coverage edges, suggesting that the            
remaining 4% of reads are corrected consistently with each other even though they do not               
perfectly match the reference genome due to either heterozygous sites or read corruption. The              
read corruption refers to incorrect correction of reads spanning one repeat copy to match              
another slightly different repeat copy. We emphasize that read corruption does not necessarily             
lead to errors in the final assembly since all original reads are realigned against the assembly at                 
the final consensus step that often fixes differences introduced by the corrupted reads.  
 
The compressed de Bruijn graph on error-corrected reads. After read-routing and           
bulge-collapsing, we consider all 1395 uncorrected reads that still contain uncorrected bypasses            
and break each such read into shorter reads by removing each uncorrected bypass. Figure              
CoverageDrop analyzes the “survival” of genomic k-mers in the read-set and illustrates that             
breaking even a small number of reads may have a negative effect of breaking the compressed                
de Bruijn graph into multiple components. It also illustrates that our switch from a small k-mer                
size (511) to a much larger k-mer size (5001) may be somewhat too-aggressive since some               
genomic segments of length 5001 are not spanned by any reads in the chrX dataset (let alone,                 
by reads after the read-breaking procedure). We are currently working on optimizing the             
parameters of error correction (e.g., a switch from k=511 to k=2501 instead of k=5001 appears               
to be a safer strategy) and minimizing the negative effects of the read-breakage procedure.  
 
After all error-correction steps, the compressed de Bruijn graph on 5001-mers consists of 95              
vertices and 120 edges and is broken into 19 connected components, indicating breaks in              
coverage.  
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Figure CoverageDrop. Effect of error correction on the survival of genomic k-mers in the read-set.               
For each position in chrX, among all reads that cover this position, we select the one with the longest                   
suffix that starts at this position and compute the length of this suffix. The red (blue) curve corresponds to                   
this metric computed for the reads before (after) error correction. Since reads contain sequencing errors,               
this metric at each position of chrX is an upper bound on the length of the longest surviving k-mer in the                     
read-set. Afterward, we compute the minimum of this function in each window of length 100 kb centered                 
at each position. 
 

Appendix 5: Selecting the minimum coverage  threshold 
 
To set the threshold minCoverage, we select a long contig (that we refer to as Genome) that is                  
represented by a single copy in the genome. We denote the set of all k-mers in Genome                 
(referred to as genomic k-mers) as Kmers(Genome,k). We identify all reads (referred to as              
Reads) that originated from the selected contig and compute the set of high-coverage k-mers              
KmersCoverage(Reads,k) as the set of all k-mers in Reads* with coverage exceeding a threshold              
Coverage.  
 
In the case when the threshold Coverage perfectly separates correct and incorrect k-mers from              
Genome, the set of genomic k-mers coincides with the set of high-coverage k-mers in Reads,               
i.e., KmersCoverage(Reads,k)=Kmers(Genome,k). We define false positives as high-coverage        
k-mers that do not appear in the genome:  
  
FalsePositivesCoverage(Reads,Genome,k)=|KmersCoverage(Reads,k))∖Kmers(Genome,k)| 
  
and false negatives as genomic k-mers that have low-coverage:  
  
FalseNegativesCoverage(Reads,Genome,k)=|Kmers(Genome,k)∖KmersCoverage(Reads,k))| 
  
Figure FalsePositives/Negatives shows the distribution of      
FalsePositivesCoverage(T2T,HumanGenome,k) and FalseNegativesCoverage(T2T,HumanGenome,k)   
for varying values of Coverage and for k=511. Since our error-correction procedure works well              
with respect to removing false positive edges and is less efficient with respect to restoring false                
negative edges, we select a rather low minimum coverage threshold to minimize the number of               
false-negative edges. E.g., when minCoverage equals 2, 3, and 4, the number of false              
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negatives (false positives) equals 0.6, 0.8, 1.0 (101, 44, 27) millions, respectively. jumboDB sets              
minCoverage as 0.1* medianCoverage.  

  
Figure FalsePositives/Negative. The number FalsePositivesCoverage(T2T,HumanGenome,k ) (x-axis)      
and FalseNegativesCoverage(T2T,HumanGenome,k ) (y-axis) for varying values of Coverage and for          
k-mer size 511 (in millions). The numbers were computed for the entire HumanGenome and are given                
in the logarithmic scale.  
 

Appendix 6: Limitations of the multiplex graph transformation procedure  

Figure ThreeRepeats shows a circular genome ARDARCBRCE that traverses the repeat R            
three times via subpaths ARD, ARC, and BRC and an incomplete read-set that supports only               
two of these three subpaths (e.g., does not support ARC). This example illustrates the case               
when a graph transformation results in a fragmented assembly since the multiplex de Bruijn              
graph of reads “loses” the genome traversal. Indeed, after a series of transformations, when the               
k-mer size becomes equal to the length of the repeat R, this repeat will be transformed into a                  
single “red” vertex that will be classified as paired because each incoming edge into this vertex                
is paired with an outgoing edge from this vertex (and vice versa). 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/


Figure ThreeRepeats. A circular genome ARDARCBRCE (first panel), its compressed de Bruijn            
graph (second panel), its multiplexed de Bruijn graph after the edge R is transformed into a paired                 
vertex (third panel), and its multiplexed de Bruijn graph after transforming this paired vertex              
(fourth panel). The read-set includes each two-edge path corresponding to a pair of consecutive edges               
in the genome as well as the three-edge paths AR D and BR C shown in purple. However, it does not                   
include the three-edge path AR C . After the repeat R is transformed into a single vertex, this vertex is                  
classified as paired since each incoming edge is paired with an outgoing edge and vice versa (A is paired                   
with D and B is paired with C ). Transforming this vertex results in a multiplex de Bruijn graph that does                    
not adequately represent the genome since it “loses” the genome traversal.   

Another limitation of the multiplex graph transformation procedure is illustrated by an            
example of a linear genome ARBRC and an incomplete read-set that contains a read ARB               
spanning one instance of the repeat R but does not contain a read BRC spanning another                
instance of this repeat. In this case, after a series of transformations, when the k-mer size                
becomes equal to the length of the repeat R, this repeat will be transformed into an unpaired                 
vertex that has to be frozen. However, an addition of a virtual read BRC (when it is relatively                  
“safe”) reclassifies this vertex as paired and enables a graph transformation at this vertex.  

Appendices 7 and 8 describe how to modify the multiplex graph transformation algorithm so              
that it freezes some paired vertices (to address the complication shown in Figure ThreeRepeats)              
and transforms some unpaired vertices (to address the complication described in the above             
paragraph). 

Appendix 7: Adding virtual reads to avoid overly-optimistic graph transformations 

The multiplicity of an edge in the graph CDB(Genome,k) is defined as the number of times                
the genome traversal visits this edge. We assume that each edge in the constructed graph               
jumboDB(Reads,k) corresponds to an edge in an (unknown) graph CDB(Genome,k) and           
attempt to assign multiplicities to edges of jumboDB(Reads,k) that approximate multiplicities of            
the corresponding edges in CDB(Genome,k). Below we assume that the multiplicity of each             
edge in the graph jumboDB(Reads,k) is given (see subsection “Analyzing variations in the k-mer              
coverage”) and that the total multiplicity of all incoming edges into each vertex (except for               
dead-ends) equals the total multiplicity of all outgoing edges from this vertex.  

Given a path-set Paths, the in-flow through an edge (v,w) is defined as the number of pairs                 
of edges (v,w) and (w,u) that form a transition in Transitions(Paths). Similarly, the out-flow              
through an edge (w,u) is defined as the number of pairs of edges (v,w) and (w,u) that form a                   
transition in Transitions(Paths). An incoming edge into (outgoing edge from) a vertex w is called               
balanced if its multiplicity equals the in-flow (out-flow) through this edge , and unbalanced,             
otherwise. A vertex w is called balanced if all its incoming/outgoing edges are balanced, and               
unbalanced otherwise.  

If the edge multiplicities were known for the example shown in Figure ThreeRepeats, an              
edge A entering the vertex R and the edge C leaving the vertex R would be classified as                  
unbalanced . Therefore, the missing transition through the unbalanced vertex R can be restored             
by simply adding a virtual read AC to the read-set and making the vertex R balanced. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/


We thus find all unbalanced vertices and analyze all incoming/outgoing unbalanced edges            
for these vertices. If an unbalanced vertex has a single incoming unbalanced edge e (or a single                 
outgoing unbalanced edge e), we turn it into a balanced vertex by adding virtual reads that                
connect the edge e with other unbalanced edges for this vertex. These virtual reads lead to an                 
increased number of resolved vertices and thus reduce the number of frozen vertices in the               
multiplex de Bruijn graph. 

The concept of a balanced vertex assumes that we can accurately compute the multiplicity              
of edges in the compressed de Bruijn graph, a difficult task. Previous studies addressed this               
problem by using both the graph topology and the coverage of edges by reads (Pevzner and                
Tang, 2001, Kolmogorov et al., 2019). Appendix 9 provides statistics on variations in the k-mer               
coverage by HiFi reads.  

Appendix 8: Freezing vertices to avoid overly-optimistic graph transformations 

To evaluate how often the missing transitions trigger overly-optimistic graph transformations           
(Figure ThreeRepeats), we collected the following statistics. Given a read-set generated from a             
known genome and a parameter k, we compute coveragek(i) – the number of mapped reads in                
the read-set that bridge a k-nucleotide long segment starting at position i in the genome.               
Positions with coveragek(i)=0 model a situation when a k-mer in a genome is not spanned by                
any reads. We thus compute the non-spanning probability p(k) that a randomly selected k-mer              
in a genome has no spanning reads and assume that it provides a good approximation of the                 
probability that an instance of a k-nucleotide long repeat is not bridged by any reads (Figure                
NonSpanningProbability). We use these probabilities to estimate the risk that increasing the            
k-mer-size during the multiplex graph transformations will lead to a situation illustrated in Figure              
ThreeRepeats. 

Using the precomputed non-spanning probabilities for all values of k, we classify a vertex in               
the graph CDB(Reads,k) as weakly resolved if p(k) exceeds non-spanningThreshold (the default            
value 0.001), i.e., if the risk of missing transitions in this vertex is high. We modify the graph                  
transformation algorithm to freeze (rather than resolve) all weakly resolved unbalanced vertices            
to avoid the risk of getting into a situation illustrated in Figure ThreeRepeats. 
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Figure NonSpanningProbability. The estimated non-spanning probability p(k) for the T2T read-set           
(for k from 9000 to 15000) based on a segment from chromosome 6 (left) and the entire                 
chromosome X (right). (Left) The spanning probability is computed for a 55-Mb segment of              
chromosome 6 that does not contain the centromere (positions from 0 to 55 Mb). The spanning                
probabilities for k below 9000 are zeros (all k-mers are spanned) but grow fast with increasing the k-mer                  
size (p(10000)=0.03%, p(11000)=0.2%, p(12000)=1.1%). (Right) The spanning probabilities computed for          
the entire chromosome X (that contains the centromere) are significantly higher, likely because some              
reads are misaligned in highly repetitive regions such as the centromere. The spanning probability grows               
fast with increasing the k-mer size (p(10000)=0.08%, p(11000)=0.10%, p(12000)=0.13%).  

Appendix 9: Analyzing variations in the k-mer coverage by reads 

To analyze variations in coverage, we define the normalized coverage of each k-mer in the               
graph jumboDB(Reads,k) as its coverage by reads divided over the average coverage across all              
k-mers in the genome. The function covk(x) is defined as the fraction of k-mers with normalized                
coverage below x. We further define the normalized coverage of an edge in the graph               
jumboDB(Reads,k) as its normalized coverage by reads divided over the average normalized            
coverage across all k-mers in the genome. The function edge-covk(x) is defined as the fraction               
of edges in jumboDB(Reads,k) with normalized coverage below x. For the T2T read-set,             
cov500(0.5)=0.006, cov500(1.5)=0.98, cov(0.5)=0.01, and cov(1.5)=0.83.  

Figure CoverageFunctions illustrates that the coverage-based estimates of multiplicity         
become more reliable when they are computed for smaller values of k. We thus estimate the                
edge multiplicities for the initially constructed graph jumboDB(Reads,k) for small k-mer size and             
use them to propagate multiplicities of edges for larger values of k during graph transformations.  
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Figure CoverageFunctions. Functions cov511(x) and cov5001 (x), as well as the function           
edge-cov511 (x), for the T2T read-set. The average coverage across all 511-mers (5001-mers) in             
HumanGenome is equal to 32 (19).  

We further mapped each edge e in the graph jumboDB(T2T,k ) to a most similar edge e’ in                 
the graph CDB(HumanGenome,k) and computed the ratio of the normalized coverage of e and              
the multiplicity of e’. Figure Multiplicity shows the distribution of this value over all edges of the                 
graph jumboDB(T2T,k ).  

 

Figure Multiplicity. Comparing the normalized coverage of edges in jumboDB (T2T,511) with the            
multiplicities of edges in CDB(HumanGenome,511). The histogram is generated for edges of length at              
least 5000 bp as the coverage estimates for shorter edges are less reliable. 
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