
Assembling Long Accurate Reads Using de Bruijn Graphs

Anton Bankevich 1,3, Andrey Bzikadze 2, Mikhail Kolmogorov1, Pavel A. Pevzner1

1Department of Computer Science and Engineering
2Graduate Program in Bioinformatics and Systems Biology

University of California at San Diego
3abankevich@eng.ucsd.edu

Abstract

Although the de Bruijn graphs represent the basis of many genome assemblers, it remains unclear how to
construct these graphs for large genomes and large k-mer sizes. This algorithmic challenge has become
particularly important with the emergence of long and accurate high-fidelity (HiFi) reads that were recently
utilized to generate a semi-manual telomere-to-telomere assembly of the human genome using the
alternative string graph assembly approach. To enable fully automated high-quality HiFi assemblies of
various genomes, we developed an efficient jumboDB algorithm for constructing the de Bruijn graph for
large genomes and large k-mer sizes and the LJA genome assembler that error-corrects HiFi reads and
uses jumboDB to construct the de Bruijn graph on the error-corrected reads. Since the de Bruijn graph
constructed for a fixed k-mer size is typically either too tangled or too fragmented, LJA uses a new
concept of a multiplex de Bruijn graph with varying k-mer sizes. We demonstrate that LJA produces
contiguous assemblies of complex repetitive regions in genomes including automated assemblies of
various highly-repetitive human centromeres.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Introduction

The emergence of long and accurate HiFi reads, generated using the consensus circular
sequencing technology (Wenger et al., 2019), opened a possibility to generate accurate and
contiguous assemblies of large genomes (Nurk et al., 2020, Cheng et al., 2020). At the same
time, it raised the challenge of constructing the de Bruijn graphs (Compeau et al., 2011) for
large genomes and large k-mer sizes (e.g., comparable with the length of HiFi reads). Indeed,
similarly to assembling short and accurate reads, the de Bruijn graph-based approaches have
the potential to improve assemblies of any accurate reads. However, although the de Bruijn
graphs represent the algorithmic engine of the most popular genome assemblers for short and
accurate reads (Zerbino and Birney, 2008, Simpson et al., 2009, Peng et al., 2010, Bankevich et
al., 2012), the existing HiFi assemblers HiCanu (Nurk et al., 2020) and Hifiasm (Cheng et al.,
2020) are based on the alternative string graph approach (Myers, 2005).

Since HiFi reads are not unlike accurate Illumina reads with respect to repeat resolution
(albeit at a different scale of repeat lengths), the de Bruijn graph approach is likely to work well
for their assembly (see Lin et al. 2014 for a comparison of the de Bruijn graphs and the string
graphs). Application of this approach to long HiFi reads requires either constructing the de
Bruijn graph with large k-mer size or alternatively, using the de Bruijn graph with small
k-mer-size for follow-up repeat resolution by threading long reads through this graph
(Kolmogorov et al., 2019, 2020). However, it remains unclear how to (i) construct the de Bruijn
graphs for large genomes and large k-mer sizes, (ii) error-correct HiFi reads using these graphs
so that they become nearly error-free, and (iii) utilize the entire length of HiFi reads for resolving
repeats that are longer than the k-mer size selected for constructing the de Bruijn graph. We
introduce the de Bruijn graph-based La Jolla Assembler (LJA) that addresses these algorithmic
challenges..

The existing genome assemblers are not designed for constructing the de Bruijn graphs with
large k-mer sizes since their memory/time requirements become prohibitive when the k-mer size
becomes large, e.g., simply storing all 5000-mers of the human genome requires ≅4 Tb of
memory. For example, the SPAdes assembler (Bankevich et al., 2012), designed for
assembling Illumina reads with the read-length below 300 bp, is typically used with the k-mer
size below 100. Applying SPAdes to longer reads and significantly increasing the k-mer size
beyond k=500 leads to time/memory bottlenecks. To reduce the memory footprint, some
assembly algorithms avoid explicitly storing all k-mers: e.g., SPAdes (Bankevich et al., 2012)
constructs a perfect hash map (Fredman et al., 1984) of all k-mers in reads, while MegaHit (Li et
al., 2015) constructs the Burrows-Wheeler Transform (Burrows and Wheeler, 1984) of all reads.
However, even with these improvements, the memory footprint remains large, not to mention
that the running time remains proportional to the k-mer size.

Two approaches construct coarse versions of the de Bruijn graph with smaller time/memory
requirements: the repeat graph approach (Pevzner et al., 2004) and the sparse de Bruijn graph
approach (Ye et al., 2012). Recently, Kolmogorov et al., 2020 modified the Flye assembler for
constructing the repeat graph of HiFi reads (in a metagenomic context), while Rautiainen and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Marschall, 2020 developed the MBG tool for assembling HiFi reads into a sparse de Bruijn
graph. However, these graphs are less accurate than the de Bruijn graph with respect to
representing the repeat structures, thus limiting their capabilities in assembling the most
repetitive regions such as centromeres. Our jumboDB algorithm for constructing the de Bruijn
graph for large k-mer sizes combines four algorithmic ideas: the Bloom filter (Bloom, 1970), the
rolling hash (Karp and Rabin, 1987), the sparse de Bruijn graph (Ye et al., 2012), and the
disjointig generation (Kolmogorov et al., 2019). Although each of these ideas was used in
previous genome assembly studies (e.g., MBG uses the rolling hash to construct the sparse de
Bruijn graph), jumboDB is the first approach where they are all combined for constructing the de
Bruijn graphs. LJA launches jumboDB to construct the de Bruijn graph of HiFi reads, uses this
graph to correct errors in HiFi reads, generates a much simpler graph of the error-corrected HiFi
reads, and transform it into the multiplex de Bruijn graphs with varying k-mer sizes to take
advantage of the full length of HiFi reads.

The paper is organized as follows. Section 1 introduces the concepts of the compressed de
Bruijn graph (where each non-branching path is compressed into a single edge), sparse de
Bruijn graph, and the Bloom filter. The traditional assembly approach constructs the de Bruijn
graph DB(Reads,k) first and transforms it into the compressed de Bruijn graph CDB(Reads,k)
afterward. Since this approach is impractical for large genomes and large k-mer sizes, jumboDB
constructs CDB(Reads,k) without constructing DB(Reads,k). We first address a simpler problem
of constructing the de Bruijn graph of a genome CDB(Genome,k) rather than the de Bruijn
graph of reads CDB(Reads,k) - section 2 describes a modified version of the
Minkin-Pham-Medvedev algorithm (Minkin et al., 2017) for constructing CDB(Genome,k) that
serves as a stepping stone for constructing CDB(Reads,k). Since this algorithm becomes
prohibitively slow in the case of large k-mer sizes, jumboDB utilizes the rolling hash (Karp and
Rabin, 1987) to adapt it for large k-mer sizes. Since constructing CDB(Reads,k) faces
time/memory bottlenecks, jumboDB first assembles reads into disjointigs that represent random
walks through the (unknown) de Bruijn graph of reads and further generates the compressed de
Bruijn graph of disjointigs. Although switching from reads to error-prone disjointigs may appear
reckless, it is an important step for addressing the time/memory bottleneck since a disjointig-set
Disjointigs result in a much lower coverage of a genome than the read-set Reads while resulting
in the identical compressed de Bruijn graph, i.e., CDB(Disjointigs,k)=CDB(Reads,k). Section 3
explains how to achieve this goal and how to construct disjointigs using the sparse de Bruijn
graph of reads. Section 4 summarizes various steps of jumboDB. Section 5 provides information
about its running time and memory footprint of jumboDB. Section 6 describes a transDB
algorithm for transforming CDB(Reads,k) into CDB(Reads,k+1) that serves as a stepping stone
toward constructing the multiplex de Bruijn graph. Finally, section 7 describes an algorithm for
constructing the multiplex de Bruijn graph and illustrates its applications to assembling human
centromeres. The code of jumboDB is available at https://github.com/AntonBankevich/jumboDB.

Section 1: Compressed de Bruijn graph, sparse de Bruijn graph, and the Bloom filter

De Bruijn graphs . We define the k-prefix (k-suffix) of a string as the first (last) k-mer in this
string. Given a string-set Genome (each string in this set is referred to as a chromosome) and
an integer k, the de Bruijn multigraph multiDB(Genome,k) is defined as follows. Each k-mer

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://github.com/AntonBankevich/jumboDB
https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

occurring in Genome corresponds to a vertex in the de Bruijn graph (identical k-mers
correspond to the same vertex) and each (k+1)-mer corresponds to an edge connecting its
k-prefix with its k-suffix (identical (k+1)-mers form parallel edges in the graph). The de Bruijn
graph DB(Genome,k) is obtained from the de Bruijn multigraph multiDB(Genome,k) by
substituting each set of parallel edges connecting two vertices with a single edge (the
multiplicity of this edge is defined as the number of such parallel edges). Given a path P formed
by edges e1,e 2,…,e n in DB(Genome,k), its path-label label(P) is defined as
label(e1)* lastSymbol(e2)*…* lastSymbol(en), where lastSymbol(e) stands for the last symbol of
label(e) and x*y stands for the concatenate of strings x and y. We say that a path P spells
label(P). A string-set Genome corresponds to a path-set that traverses each edge in
multiDB(Genome,k) exactly once (and each edge in DB(Genome,k) at least once) and spells
Genome. We refer to this path-set in DB (Genome,k) as the genome traversal.

The goal of genome assembly is to reconstruct the genome from its error-prone substrings
referred to as reads. Given a read-set Reads, we construct the de Bruijn graph DB(Reads,k) (by
assuming that each read is a mini-chromosome) and compute the coverage of an edge e in this
graph as the number of times label(e) occurs in Reads. We say that a read-set Reads is full with
respect to Genome if each (k+1)-mer from Genome appears in a read from Reads. For a full set
of error-free reads, the graph DB(Reads,k) coincides with DB(Genome,k). In the case of
error-prone reads, the traditional approach to genome assembly is to construct the graph
DB(Reads,k) and further modify it with the goal of approximating the graph DB(Genome,k).

Compressed de Bruijn graphs. A vertex with the indegree N and the outdegree M is
referred to as N-in-M-out vertex. A vertex is classified as complex if both its indegree and
outdegree exceed 1, and simple, otherwise. A vertex is classified as non-branching if it is a
1-in-1-out vertex, and as a junction, otherwise. A junction is classified as a dead-end if it has no
incoming or no outgoing edges, and a cross-road, otherwise. We refer to the set of all junctions
in the graph DB(Genome,k) as Junctions(Genome,k). A path between junctions is classified as
non-branching if all its intermediate vertices are non-branching.

Given a non-branching path P between junctions v and w in a graph, its compression results
in substituting this path by a single edge (v,w) labeled by label(P). Compressing all
non-branching paths in DB(Genome,k) results in the compressed de Bruijn graph
CDB(Genome,k) (the graph CDB(Reads,k) is defined similarly). The compressed de Bruijn
graph is more compact than the de Bruijn graph since it does not require storing all k-mers - the
total length of all labels in CDB(Genome,k) is typically k times smaller than the total length of all
labels in DB(Genome,k). The coverage of an edge in CDB(Reads, k) is defined as the average
coverage of all edges in the non-branching path that was compressed into this edge.

A subpartition of an edge (v,w) of a graph substitutes it by two edges by “adding” a vertex u
on this edge, i.e., deleting the edge (v,w) and adding a new vertex u to the graph along with
edges (v,u) and (u,w). A subpartition of a graph G(V,E) is defined as a result of an arbitrary
series of subpartitions. The simple subpartition of a graph G(V,E) is a graph with |V|+|E |
vertices, resulting from a subpartition of each edge in G.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Sparse de Bruijn graphs. Given a set of k-mers Anchors (referred to as anchors) from a
string-set Genome, we consider every two consecutive occurrences a and a’ of these k-mers in
Genome and generate a substring of Genome that starts at the first nucleotide of a and ends at
the last nucleotide of a’. The resulting set of substrings is denoted Split(Genome,Anchors).

The sparse de Bruijn graph SDB(Genome,Anchors) is defined as a graph with the vertex-set
Anchors and the edge-set Split(Genome, Anchors) (each string in Split(Genome, Anchors)
represents a label of an edge connecting its k-prefix with its k-suffix). Two vertices in this graph
may be connected by multiple edges in the case several substrings of Genome with different
labels connect the same anchors. In contrast to the de Bruijn graph, with degrees bounded by
the alphabet size, vertices of the sparse de Bruijn graph may have arbitrarily large degrees. A
straightforward algorithm for constructing SDB(Genome,Anchors) takes O(|Genome|・|Anchors|
・k) time.

When the anchor-set coincides with the junction-set Junctions=Junctions(Genome,k), each
vertex of CDB(Genome,k) is an anchor and each edge corresponds to two consecutive anchors
in the genome traversal. Therefore, the sparse de Bruijn graph SDB(Genome,Junctions)
coincides with CDB(Genome,k). Moreover, if Junctions+ is a superset of all junctions that
contains all junctions as well as some false junctions (i.e., non-branching k-mers from Genome),
SDB(Genome,Junctions+) is a subpartition of CDB(Genome,k).

Bloom filter. jumboDB stores all (k+1)-mers from Genome in the Bloom filter
Bloom(Genome,k,BloomNumber,BloomSize) formed by BloomNumber different independent
hash functions, each mapping (k+1)-mers into a bit array of size BloomSize. The Bloom filter is
a compact probabilistic data structure for storing sets that may report false positives but never
false negatives (see Pell et al., 2012 and Chikhi and Rizk, 2013 for applications of the Bloom
filter to de Bruijn graph construction). Storing all (k+1)-mers from Genome in a Bloom filter
allows one to quickly query whether an arbitrary (k+1)-mer occurs in Genome. The Bloom filter
reports “yes” for all (k+1)-mers occurring in Genome but may also report “yes” for some
(k+1)-mers that do not occur in Genome (with a small probability).

Section 2: Constructing the compressed de Bruijn graph of a genome

Using the junction-superset to construct the compressed de Bruijn graph of a
genome . We start by describing the algorithm for constructing CDB(Genome, k) of a circular
genome Genome (Minkin et al., 2017) before addressing a more difficult problem of constructing
CDB(Reads,k). The key observation is that if the junction-set Junctions=Junctions(Genome,k)
was known, construction of CDB(Genome,k) would be a simple task because it coincides with
the sparse de Bruijn graph SDB(Genome,Junctions). Moreover, even if the junction-set is
unknown but a junction-superset Junctions+ (with a small number of false junctions) is known,
one can construct CDB(Genome,k) by first constructing SDB(Genome,Junctions+) and
compress all non-branching paths in the resulting graph. Below we explain how to generate a
junction-superset with a small number of false junctions.

Generating a junction-superset of a genome. To generate a junction-superset Junctions+,
jumboDB uses the Bloom filter to compute the upper bound on the indegree and outdegree of

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

each k-mer from Genome (i.e., a vertex in DB(Genome,k)) by checking which of its 4+4=8
extensions by a single nucleotide on the right or on the left represent (k+1)-mers present in the
Bloom filter. A k-mer is called a non-joint if the upper bounds on its indegree and outdegree are
both equal to 1, and a joint otherwise. JumboDB forms the junction-superset from all joints.
Since the Bloom filter can report false positives, this procedure may overestimate the indegree
and/or outdegree of a k-mer, resulting in some false junctions formed by simple vertices. In the
case of linear chromosomes, it may also overestimate the indegree and/or outdegree of some
dead-end junctions, e.g., to misclassify a 0-in-1-out junction as a simple vertex. However, all
cross-road junctions will be found, thus solving the problem of generating a junction-superset (at
least in the case of circular genomes that do have dead-end junctions), constructing a
subpartition of CDB(Genome,k), and further transforming it into CDB(Genome,k). jumboDB sets
the parameter BloomSize to be proportional to the total genome length (in the number of
(k+1)-mers) in such a way that the false positive rate of the Bloom filter does not exceed a
threshold.

Since jumboDB stores the k-mer hashes in the Bloom filter (instead of k-mers themselves), it
fills the Bloom filter by calculating hashes of hashes. Since many hashing approaches take O(k)
time to compute a hash of a k-mer, the running time of the algorithm scales as a factor of k and
becomes prohibitively large when k is large. Below we describe how jumboDB uses the rolling
hash to reduce the amortized running time for computing the hash function to O(1).

Using the rolling hash to rapidly generate the junction-superset and construct the
compressed de Bruijn graph. In addition to speeding up the algorithm for generating a
junction-superset, we also need to speed-up the straightforward algorithm for constructing the
graph SDB(Genome,Junctions+). One can speed-up building SDB(Genome,Junctions+) by
constructing a hashmap of Junctions+ to support a fast check whether a k-mer from Genome
coincides with a k-mer from Junctions+. However, if the hash function is calculated in O(k) time,
this approach results in O(|Genome|・k) running time, which is still prohibitive for large k-mer
sizes. jumboDB uses a 128-bit polynomial rolling hash (Karp and Rabin, 1987) of the k-mers
from the genome to rapidly check whether two k-mers (one from Genome and one from
Junctions+) are equal and to reduce the running time to O(|Genome|). Since hashes of all
k-mers from Junctions+ are known, this approach computes hashes of all k-mers in Genome
and reveals all junctions in O(|Genome|) time as well as reduces the running time for
constructing CDB(Genome, k) to O(|Genome |).

The challenge of constructing the compressed de Bruijn graph from reads. We say
that a genome Genome bridges an edge of the compressed de Bruijn graph CDB(Genome,k) if
the label of this edge represents a substring of Genome. A genome is classified as bridging if it
bridges all edges of CDB(Genome,k), and non-bridging otherwise.

jumboDB constructs a graph jumboDB(Genome,k) that coincides with the compressed de
Bruijn graph CDB(Genome, k) in the case of a genome formed by circular chromosomes or any
bridging genome. However, jumboDB(Genome,k) differs from CDB(Genome, k) in the case of a
non-bridging genome, e.g., a genome formed by linear chromosomes that do not bridge all
edges of CDB(Genome, k). However, after extending the junction-superset by all k-prefixes and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

k-suffixes of all linear chromosomes, the same algorithm will construct the graph that represents
a subpartition of CDB(Genome, k). Although this subpartition can be further transformed into
CDB(Genome, k) by compressing all non-branching paths, the resulting algorithm may become
slow if the number of linear chromosomes is large, resulting in a large increase in the size of the
junction-superset. This increase becomes particularly problematic when we construct the
compressed de Bruijn graph CDB(Reads, k) from error-prone reads (each such read represents
a separate linear mini-chromosome). Even more problematic is the accompanying increase in
the number of calls to the hash functions that scales proportionally to the coverage of the
genome by reads. An additional difficulty is that, in the absence of the genome, it is unclear how
to select the appropriate size of the Bloom filter that keeps the false-positive rate below a
threshold — selecting BloomSize to be proportional to the total read-length leads to a high
false-positive rate.

Below we describe how to address these problems by assembling reads into disjointigs that
form a bridging genome for the graph CDB(Reads,k) and constructing the compressed de Bruijn
graph from a bridging disjointig-set Disjointigs instead of the read-set. Even though each
disjointig may represent an error-prone assembly of reads, we show that
CDB(Disjointigs,k)=CDB(Reads,k). Using disjointigs allows us to set the parameter BloomSize
to be proportional to the total disjointig-length instead of the total read-length, thus greatly
reducing the memory footprint. jumboDB sets BloomSize=32・length(Disjointigs), where
length(Disjointigs) is the total length of disjointigs measured in the number of (k+1)-mers.

Section 3: Constructing the compressed de Bruijn graph from disjointigs

Disjointigs. We define a disjointig of a genome Genome as a string spelled by an arbitrary
path in the de Bruijn graph DB(Genome,k). A disjointig is compact if it starts and ends in a
junction. Note that although a disjointig does not necessarily represent a substring of the
genome, all (k+1)-mers from a disjointig occur in the genome.

A set of disjointigs of Genome is complete if each (k+1)-mer from Genome is present in a
disjointig from this set. A complete disjointig-set is compact if each disjointig in this set is
compact. If a disjointig-set Disjointigs is complete then CDB(Genome,k) coincides with
CDB(Disjointigs,k). However, jumboDB(Disjontigs,k) may differ from CDB(Genome,k) since
jumboDB does not reconstruct edges of CDB(Genome,k) that are not bridged by Disjointigs.
However, if a disjointig-set Disjontigs is compact, it forms a bridging genome, implying that
jumboDB(Disjontigs,k) coincides with CDB(Genome,k). Thus, our goal is to generate an initial
complete disjointig-set and to transform it into a compact disjointig-set. Similarly to a disjointig of
a genome, we define a disjointig of a read-set as a string spelled by an arbitrary path in the
graph DB(Reads,k). Below we show how to constructs a disjointig-set from a read-set.

Generating a complete disjointig-set by constructing the sparse de Bruijn graph of
reads. Given a hash function on k-mers and an integer width, a minimizer of a string (Roberts et
al., 2004) is defined as a k-mer with a minimal hash in its substring formed by width consecutive
k-mers. A sensible choice of the parameter width ensures that each read is densely covered by
minimizers and that overlapping reads share many minimizers, facilitating the assembly.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

The sparse de Bruijn graphs, initially introduced for reducing memory of short-read
assemblers (Ye et al., 2012), can also be applied for assembling long and accurate reads.
Traditionally the anchor-set Anchors for constructing SDB(Reads,Anchors) is constructed as a
set of all minimizers across all reads. However, if the k-prefix and/or k-suffix of a read are not
anchors, then a prefix and/or a suffix of this read may be missing in SDB(Reads,Anchors) since
only segments between anchors are added to this graph. We thus add all k-prefixes and
k-suffixes of all reads to the anchor-set formed by all minimizers. In this case, the set of
(k+1)-mers occurring on edges of SDB(Reads,Anchors) coincides with the set of all (k+1)-mers
from reads. We refer to the resulting set of anchors as Anchors=Anchors(Reads,width,k).
jumboDB constructs the graph SDB(Reads,Anchors) and generates a complete disjointig-set as
the collection of all non-branching paths in this graph. It further transforms this disjointig-set into
a compact disjointig-set by extending or shortening each disjointig as described below.

Generating a compact disjointig-set. We explain how to extend/shorten a disjointig using
an example of a vertex w in the graph SDB(Reads,Anchors) that has one incoming edge in and
two outgoing edges out1 and out2 (a similar approach is applicable to any vertex). The
previously constructed disjointed-set includes the disjointig in (that we will extend) and
disjointigs out1 and out2 (that we will shorten).

Edges out1 and out2 share their first k-mer (that labels vertex w) and possibly their second,
third, etc. k-mers. Let prefix(out1,out2) be the longest common prefix of these edges and
last(out1,out2) be the last k-mer of this prefix. While the vertex w is not necessarily a junction, the
edges out1 and out2 must share a junction, specifically the junction last(out1,out2). We thus
extend the disjointig in ending in w by concatenating it with the suffix of prefix(out1,out2) starting
at position k, and shorten the disjointigs starting in w by removing their prefixes of length
|prefix(out1,out2)|-k . The resulting disjointig-set contains the same collection of (k+1)-mers as the
initial disjointig-set but the disjointigs that previously started/ended at an anchor w, now
start/end at a junction last(out1,out2) of the graph CDB(Reads,k). Applying the described
procedure to all vertices of the graph SDB(Reads, Anchors) transforms the initial disjointig-set
into a compact disjointig-set.

Section 4: Outline of the jumboDB algorithm

Outline of the jumboDB algorithm. Below we summarize all steps of jumboDB. Appendix
1 describes its parameters, while Appendix 2 describes how jumboDB maps reads to this graph.

1. Generate the anchor-set Anchors=Anchors(Reads,width,k) by constructing the set of all

minimizers in Reads and extending this set by all k-prefixes and k-suffixes of all reads.
2. Construct the sparse de Bruijn graph SDB(Reads,Anchors).
3. Construct a complete disjointig-set formed by all non-branching paths in

SDB(Reads,Anchors).
4. Transform it into a compact disjointig-set Disjointigs by extending/shortening disjointigs.
5. Generate the Bloom filter Bloom(Disjointigs,k,BloomNumber,BloomSize) with

BloomSize=32・length(Disjointigs).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

6. Compute the upper bounds on the indegree and outdegree of each k-mer from Disjointigs
using the Bloom filter and the rolling hash.

7. Construct the junction-superset Junctions+ as the set of all joints in Disjointigs.
8. Construct the string-set Split(Disjointigs,Junctions+) to generate edges of a subpartition of

the compressed de Bruijn graph CDB(Disjointigs,k).
9. Compress all 1-in-1-out vertices in this graph to generate CDB(Disjointigs,k) that coincides

with CDB(Reads,k).

Section 5: Benchmarking jumboDB and error-correcting HiFi reads

Benchmarking jumboDB. We do not benchmark jumboDB against other de Bruijn graph
construction tools since there are no tools for constructing the compressed de Bruijn graphs for
large k-mers yet (the MBG tool (Rautiainen and Marschall, 2020) constructs the sparse de
Bruijn graph, a coarse approximation of the compressed de Bruijn graph).

Table Time/Memory provides information about the running time and memory footprint of
jumboDB. Since homopolymer runs represent the dominant source of errors in HiFi reads, we
collapse each homopolymer run X...X in HiFi reads (and in the assembled genome) into a single
nucleotide X and benchmark jumboDB using the datasets of homopolymer-collapsed (HPC)
reads Below we list the benchmarking datasets that are described in details in Appendix 3:

● The ECOLI dataset contains HiFi reads from the E. coli genome.
● The T2T dataset contains HiFi reads from a human cell line generated by the

Telomere-To-Telomere (T2T) consortium (Nurk et al., 2020). The T2T dataset was
semi-manually assembled into a sequence HumanGenome by integrating information
generated by multiple sequencing technologies.

● The T2TErrorFree dataset is derived by mapping reads from the T2T dataset to
HumanGenome and substituting each mapped read by the genomic segment it spans.

● The chrX dataset, that we use for benchmarking our algorithm for error-correcting HiFi
reads, is a subset of the T2T dataset that contains all reads originating from the
chromosome X (referred to as chrX) The cenX (cen6) dataset is a subset of the chrX
dataset that contains all reads originating from the centromere of chromosome X
(chromosome 6) referred to as cenX (cen6). The cenXErrorFree (cen6ErrorFree) datasets
contain error-free reads from the T2TcenX (T2Tcen6) datasets.

T2T

 time (h)
memory

(Gb) #vertices #edges
total edge

length (Gbp) #paths median path length
#complex
vertices

251 2.4 52 29806686 43750620 10 5566455 159 208737

511 2.7 54 23171326 33230906 15 5566321 111 95702

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Table Time/Memory. The running time and memory footprint of jumboDB as well as the number of
vertices and edges in the constructed compressed de Bruijn graphs for the T2T (top),
T2TErrorFree (middle), and ECOLI (bottom) datasets. The table also provides information about the

1001 3.2 65 17032673 23357700 18 5559705 69 36041

2001 3.6 81 12025225 14947471 23 5422657 35 11493

3001 4.2 90 9927841 11160720 25 5157197 22 5308

5001 3.9 93 8152006 7560390 27 4564678 10 1581

T2TErrorFree

 time (h)

memory

(Gb) #vertices #edges
total edge

length (Gbp) #paths median path length
#complex
vertices

251 0.6 32 311042 472380 2.1 874719 55 7432

511 0.6 33 143011 214517 2.1 590730 30 1230

1001 0.7 33 64371 95716 2.1 456338 13 220

2001 0.7 34 21724 31862 2.0 307824 5 16

3001 0.6 35 10035 14723 2.0 205879 4 8

5001 0.6 36 3530 4956 2.0 88460 3 2

ECOLI

 time(min)

memory

(Gb) #vertices #edges
total edge

length (Gb) #paths median path length
#complex
vertices

251 3.2 2.2 378261 561569 0.5 190456 1057 10187

511 2.5 2.2 316317 457755 0.7 190386 800 6546

1001 2.2 2.1 246417 338726 1.0 190134 518 3389

2001 2.5 2.1 180581 221930 1.3 186832 267 1240

3001 2.5 2.2 150975 164848 1.5 176924 156 574

5001 1.5 2.1 101569 88062 1.3 116270 52 18588

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

number of paths (excluding single-edge paths), their median length (in the number of edges they
traverse), and the number of complex vertices. The running time/memory footprint for the T2TErrorFree
read-set hardly changes with an increase in the k-mer size, suggesting that the running time/memory
footprint of jumboDB mainly depends on the size of the compressed de Bruijn rather than the k-mer size.
All tools were benchmarked on a computational node with two Intel Xeon 8164 CPUs, with 26 cores each
and 1.5 TB of RAM. All runs were done in 32 threads.

Error-correction of HiFi reads. Error-correction was first introduced in the context of

Sanger reads (Pevzner et al., 2001) and became ubiquitous in both short-read and long-read
assemblers (Chaisson et al., 2008, Kelly et al., 2010, Medvedev et al., 2011, Bankevich et al.,
2012, Nikolenko et al., 2013, Lima et al., 2020). However, error-correction of long and accurate
reads remains a poorly explored topic — the Hifiasm assembler (Cheng et al., 2020) is currently
the only error-correcting tool for HiFi reads.

HiFi reads in the T2T dataset have a mean error rate of 0.2% per nucleotide. Collapsing all

homopolymer runs reduces the error rate to 0.062%, with 38% of all reads in the T2T dataset
being error-free. However, the remaining errors have to be corrected to ensure that the graph
CDB(Reads,k) of the homopolymer-collapsed read-set represents a good approximation of the
graph CDB(Genome,k) of the homopolymer-collapsed genome. For example, while the graph
CDB(T2T,511) has ≅33 million edges, the graph CDB(T2TErrorFree ,511) has only ≅214
thousand edges, illustrating that error correction is needed even after collapsing all
homopolymer runs.

The HiFiasm error correction (Cheng et al., 2020) reduced the errors in reads to 210 errors
per megabase and increased the percentage of error-free reads to ≈92%. Since the de Bruijn
graphs have been successfully used for error-correcting short and accurate reads, we
implemented a simple path-rerouting and bulge-collapsing approach to error-correct HiFi reads
that is inspired by a more involved graph simplification procedure in the SPAdes assembler
(Bankevich et al., 2012). Appendix 4 benchmarks this error correction approach on the chrX
dataset and illustrates that it reduces the errors in reads to only 3.6 errors per megabase and
increases the percentage of error-free reads to ≈96% (after “breaking” a small number of reads
as described in Appendix 4). Even though it represents a significant reduction in the number of
errors as compared to the Hifiasm error-correction procedure, we are now working on further
optimization of the LJA error-correction procedure since the remaining errors may fragment the
compressed de Bruijn graph and propagate during the multiplex graph construction step.

Section 6: Graph Transformation Algorithm: from CDB(Reads,k) to CDB(Reads,k+1)

Iterative construction of the compressed de Bruijn graph. Below we describe our
transDB algorithm for transforming the graph CDB(Reads,k) into CDB(Reads,K) for K>k by
iteratively increasing the k-mer size by 1 at each iteration. Although launching jumboDB to
construct CDB(Reads,k) followed up by transDB transformations takes more time than simply
launching jumboDB to construct CDB(Reads,K), we use it as a stepping stone toward the
multiplex de Bruijn graph construction.

Below we consider graphs, where each edge is labeled by a string, and each vertex w is
assigned an integer vertexSize(w). We limit attention to graphs where suffixes of length
vertexSize(w) for all incoming edges into w coincide with prefixes of length vertexSize(w) for all
outgoing edges from w. We refer to the string of length vertexSize(w) that represents these

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

prefixes/suffixes as the label of the vertex w. Below we consider graphs with specified
edge-labels and assume that vertex-labels can be inferred from these edge-labels and that
different vertices have different vertex-labels. Although in this section, vertexSize(w) is the same
for all vertices, it will vary among vertices in the multiplex de Bruijn graph.

Transition graph . Let Transitions be an arbitrary set of pairs of consecutive edges (v,w)
and (w,u) in an edge-labeled graph G. We define the transition graph G(Transitions) as follows.
Every edge e in G corresponds to two vertices estart and eend in G(Transitions) that are connected
by a blue edge . This blue edge in G(Transitions) inherits the label of the edge e in G and we set
vertexSize(estart)=vertexSize(eend)=k+1 (vertex-labels are uniquely defined by the
(k+1)-suffixes/prefixes of the incoming/outgoing edges in each vertex). If an edge e in G is
labeled by a (k+1)-mer, the corresponding blue edge in G(Transitions) is collapsed into a single
vertex estart=eend in G(Transitions). In addition to blue edges, each pair of edges in=(v,w) and
out=(w,u) in Transitions adds a red edge between inend and outstart to the graph G(Transitions).
The label of this red edge is defined as a (k+2)-mer symbol-(k+1)(in)*label(w)*symbol(k+1)(out),
where symboli(e) stands for the i-th symbol of label(e), and symbol-i(e) stands for the i-th symbol
from the end of label(e). When the set Transitions includes all pairs of consecutive edges in
graph G, the transition graph is the standard line graph (Wilson, 2015) of the simple subpartition
of G.

Path graph. We say that a path traverses a vertex w in a graph if it both enters and exits
this vertex. Given a path-set Paths in a graph, we denote the set of all paths containing an edge
(v,w) as Paths(v,w), the set of all paths traversing a vertex w as Paths(w), and the set of all
paths visiting incoming edges into vertex v as Paths+(v) (each path in Paths+(v) either traverses
v or stops at v). Given a path-set Paths in a graph G, we define the set Transitions(Paths) as
the set of all pairs of consecutive edges in all paths from Paths. A path-graph of a path-set
Paths in a graph G is defined as the transition graph G(Transitions(Paths)).

Let Paths be the set of all read-paths in the compressed de Bruijn graph G=CDB(Reads,k).
The graph G(Transitions(Paths)) is a subpartition of the graph CDB(Reads,k +1) (after properly
defining edge-labels and ignoring colors of edges). For each edge e in the graph CDB(Reads,k),
we maintain the set of paths Paths(e) containing this edge. A path e1, e 2, e 3,… in CDB(Reads, k)
corresponds to a blue-red path e1, transition edge between e1 and e2, e2, transition edge
between e2 and e3, e3,… in G(Transitions(Paths)), where labels of blue edges have lengths at
least (k+1) and labels of red edges represent (k+2)-mers. Therefore, a straightforward approach
to constructing the graph G(Transitions(Paths) (that recomputes labels from scratch at each
iteration) faces the time/memory bottleneck since it nearly doubles the path lengths at each
iteration. However, the compressed de Bruijn graph is getting less tangled with an increase in
the k-mer size, implying that the vast majority of the newly introduced red edges are merely
subpartitions of longer non-branching paths. Below we describe how transDB avoids the
time/memory bottleneck by modifying rather than recomputing the edge labels from scratch.

Transforming simple vertices. A path (v1,...v i,...,v n) in a graph is called out-unambiguous
(in-unambiguous) if the outdegrees (indegrees) of all vertices in this path except the first and the
last one are equal to 1. A path (v1,...v i,...,v n) is called unambiguous if there is an edge (vi,v i+1) in

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

this path such that (vi,...,v n) is an out-unambiguous path and (v1,...v i+1) is an in-unambiguous
path. We refer to unambiguous paths in the compressed de Bruijn graph as virtual reads. Note
that in the case when Genome is formed by circular chromosomes, all virtual reads in the
compressed de Bruijn graph CDB(Genome,k) represent substrings of Genome and thus can be
safely added to any read-set. In the case of linear chromosomes, we assume that the k-prefix
and k-suffix of each chromosome correspond to dead-ends in the graph CDB(Reads, k).

Given a path-set Reads in a graph G, we call edges (v,w) and (w,u) in G paired if
Transitions(Reads) contains this pair of edges. A vertex w in G is classified as paired if each
edge incident to w is paired with at least one other edge incident to w, and unpaired, otherwise.

For a simple paired vertex, the local topology of the graph “around” this vertex remains the
same after the graph transformation. In the framework of the Iterative de Bruijn graph (when the
set of reads is complemented by virtual reads), the local topology of both paired and unpaired
simple vertices (with the exception of the dead-end simple vertices) remains the same after this
transformation. Below we describe how transDB speeds-up transformations of simple vertices.

For each parameter k, the vast majority of vertices in the compressed de Bruijn graph of
reads are 2-in-1-out and 1-in-2-out vertices (Appendix 4). Below we describe the graph
transformation of 2-in-1-out vertex w with incoming edges in1 and in2 and the outgoing edge out
(transformations of N-in-1-out and 1-in-N-out vertices are performed similarly). This
transformation merely substitutes the k-mer label of this vertex by the (k+1)-mer
label(w)*symbolk+1(out). It preserves the label of the edge out and adds a single symbol
symbolk+1(out) after the end of labels of edges in1 and in2.

Transforming complex vertices. The transformation of a complex N-in-M-out vertex w
results in substituting this vertex by N+M vertices and adding up to N・M red edges (that
connect N added vertices with M added vertices) to the graph. Each path from Paths(w)
traversing t complex vertices will be transformed into a path with t red edges and the
non-branching paths that may result from this transformation have to be compressed into single
edges.

To efficiently implement this transformation, transDB generates the list of paths traversing
each new red edge (for up to new N*M red edges for each complex N-in-M-out vertex) using the
list of paths Paths(v,w) traversing each edge (v,w) in the graph. The transformation of a complex
vertex w takes |Paths+(w)| time. The number of operations to transform all complex vertices is
bounded by the sum of |Paths+(v)| over all complex vertices in the graph. Since the number of
complex vertices in a compressed de Bruijn graph is small (see Appendix 4) and since
processing a simple vertex takes constant time, the transformation of CDB(Reads, k) into
CDB(Reads, k+1) is fast for large k (e.g., for k=5001 because the graph CDB(T2T,5001) is
small) even though it can be rather slow for small k (e.g., for k=511 because the graph
CDB(T2T,511) is large). For example, constructing the graph CDB(chrX,511) using jumboDB
and further transforming it into the graph CDB(chrX,5001) using transDB takes 5+393 minutes,
while the direct construction of CDB(chrX,5001) using jumboDB takes just 3 minutes. However,
iterative increasing of the k-mer size during the construction of the multiplex de Bruijn graph is

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

only crucial for large k (e.g., greater than 5001) that, as we demonstrate below, can be done
rapidly.

Section 7: Multiplex de Bruijn graph

Limitation of the de Bruijn graph approach to genome assembly. The choice of the
k-mer size greatly a ffects the complexity of the graph DB(Reads,k). There is no perfect choice
since gradually increasing k leads to a less tangled but more fragmented de Bruijn graph. This
trade-off affects the contiguity of assembly, particularly in the case when the k-mers coverage
by reads is non-uniform, let alone when some genomic k-mers are missing in the read-set.

The coverage of an edge (a (k+1)-mer) in DB(Reads,k) is defined as the total number of
traversals of this edge by all read-paths. The (k+1)-mers from the genome that are missing in a
read-set (coverage zero) are missing in DB(Reads,k), reducing the contiguity of assembly. The
(k+1)-mers with small coverage may also result in fragmented assemblies since our
error-correction procedure may break regions with a small coverage. Ideally, we would like to
use larger k-mer sizes in the high-coverage regions and smaller k-mer sizes in the low-coverage
regions. The iterative de Bruijn graph approach (Peng et al., 2010) addresses this challenge by
incorporating information about the de Bruijn graphs for a range of parameters k1 < k2 < … < kt
into the de Bruijn graph for a larger value K > kt. Although this approach was implemented in
many short-read assemblers (Peng et al., 2012, Bankevich et al., 2012, Peng et al., 2012), it still
constructs a graph with a fixed k-mer size equal to K. Boucher et al., 2015 described the
variable-order de Bruijn graph that compactly represents information about the de Bruijn graph
of a read-set across multiple k-mer sizes. Lin and Pevzner, 2014 described a theoretical
approach for constructing the de Bruijn graphs with vertices labeled by k-mers of varying sizes
that however was not designed for practical genome assembly challenges.

Below we introduce the concept of the multiplex de Bruijn graph (with vertices labeled by
k-mers of varying sizes) and describe its applications to genome assembly. We note that we
add all virtual reads to the read-set Reads during the construction of the multiplex de Bruijn
graph.

Multiplex graph transformation. The important property of CDB(Genome,k) is that there
exists a genome traversal of this graph. If there exists a genome traversal of the graph
CDB(Reads,k), we want to preserve it in CDB(Reads,k+1) after the graph transformation.
However, it is not necessarily the case since the transformation of CDB(Reads,k) into
CDB(Reads,k+1) may create dead-ends (each unpaired vertex in CDB(Reads,k) results in a
dead-end in CDB(Reads,k+1)), thus “losing” the genome traversal that existed in
CDB(Reads,k). Below we describe a multiDB algorithm for transforming CDB(Reads,k) into the
multiplex de Bruijn graph MDB(Reads,k+1) that avoids creating dead-ends whenever possible
by introducing vertices of varying sizes in this graph.

multiDB transforms each paired vertex of CDB(Reads,k) using the transDB algorithm and
“freezes” each unpaired vertex by preserving its k-mer label and the local topology. It also
freezes some vertices adjacent to the already frozen vertices even if these vertices are simple.
Specifically, if a frozen vertex u is connected with a non-frozen vertex v by an edge of length

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

VertexSize(v) + 1, we freeze v. The motivation for freezing v is that, if we do not freeze it, we
would need to remove the edge connecting u and v in MDB(Reads, k+1), disrupting the
topology of the graph. multiDB continues the multiplex graph transformations for all paired
vertices (while freezing unpaired vertices) with gradually increasing k-mer sizes from k to K,
resulting in the multiplex de Bruijn graph MDB(Reads,K) with varying k-mer sizes.

We classify a read-set as incomplete if it does not contain reads supporting some genomic
transitions through a vertex in the de Bruijn graph. Similarly to the iterative de Bruijn graph
approach (Peng et al., 2010), although the graph MDB(Reads,K) results in a more contiguous
assembly than CDB(Reads,K), there is a risk that some multiplex graph transformation may
“destroy” the genome traversal and even lead to assembly errors in the case of an incomplete
read-set. Appendix 6 describes these risks and illustrates that a multiplex graph transformation
may be overly-optimistic (by transforming vertices that should have been frozen) and
overly-pessimistic (by freezing vertices that should have been transformed). Appendices 7 and
8 describe how to minimize the risk of overly-optimistic graph transformations.

Assembling cenX. We first illustrate the construction of the multiplex de Bruijn graph using
the error-free read-set cenXErrorFree. Afterward, we show that the multiplex de Bruijn graph
approach results in a complete cenX assembly from the real cenX read-set. The graph
CDB(cenXErrorFree , 5001) contains 34 vertices and 49 edges. We transformed this graph into
the multiplex de Bruijn graph MDB(cenXErrorFree ,40001) by increasing the k-mer size and
reducing it to a single edge at the K-mer size equal to 37771, illustrating that error-free HiFi
reads enable cenX assembly in a single contig. In contrast, the compressed de Bruijn graph
CDB(cenXErrorFree ,37771) cannot be constructed, because all reads in the set cenXErrorFree
are shorter than 37771bp. We emphasize that the multiplex de Bruijn graph utilizes virtual reads
that are often longer than real HiFi reads, explaining why it was important to increase the K-mer
size beyond the length of all reads in the cenXErrorFree read-set.

To assemble the real cenX read-set, we implemented the traditional error correction based
on the removal of tips and bulges from the de Bruijn graph (similar to the SPAdes graph
simplification procedure (Bankevich et al., 2012)) coupled with a path rerouting procedure that
keeps track of read paths in the graph (Appendix 4). This error correction resulted in significant
improvement in the error rate (0.01%) and the percentage of error-free reads (≈94%). We
constructed the graph CDB(cenXErrorCorrected ,5001) with 34 vertices and 49 edges using
jumboDB and transformed it into the multiplex de Bruijn graph MDB(cenXErrorCorrected,
40001) using multiDB. This multiplex de Bruijn graph has reduced to a single edge at the K-mer
size equal to 37771, illustrating that HiFi reads enable cenX assembly into a single contig.
Transformation of CDB(cenXErrorCorrected ,5001) into MDB(cenXErrorCorrected,40001) takes
less than a minute.

Assembling cen6. Extremely repetitive cen6 is one of the most difficult-to-assemble regions
of the human genome that was recently assembled using ultralong Oxford Nanopore (ONT)
reads (Bzikadze and Pevzner, 2020). Assembling cen6 using shorter HiFi reads is challenging
since it contains long nearly identical repeats. Below we show that even if HiFi reads in the T2T

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

dataset were error-free, it still would not be possible to completely assemble cen6, illustrating
that ultralong ONT reads are needed to generate telomere-to-telomere assemblies.

The graph CDB(cen6ErrorFree , 5001) contains 152 vertices and 226 edges (the read-set
cen6ErrorFree contains no missing 5001-mers). multiDB transformed this graph into a small
multiplex de Bruijn graph MDB(cen6ErrorFree , 40001) with only 10 vertices and 15 edges
(Figure 1). Transformation of CDB(cen6ErrorFree , 5001) into MDB(cen6ErrorFree , 40001) takes
less than two minutes. The large reduction in complexity of MDB(cen6ErrorFree , 40001) as
compared to CDB(cen6ErrorFree , 5001) illustrates the value of multiplex de Bruijn graphs for
follow up repeat resolution using ultralong ONT reads. Although our error-correction of the cen6
read-set made nearly all reads error-free, the remaining error-prone reads generate some
bulges, making it difficult to construct the multiplex de Bruijn graph. Our next goal is to further
optimize error correction to enable the construction of the multiple de Bruijn graph of the most
repetitive genomic regions.

Figure 1. The multiplex de Bruijn graph MDB(cen6ErrorFree,40001) obtained from the compressed
de Bruijn graph CDB(cen6ErrorFree, 5001). The lengths of frozen vertices are smaller than 40001. The
length of an edge and its multiplicity are shown next to each edge.

Conclusions

The development of assembly algorithms for both short and accurate reads (e.g., reads
generated by Sanger and Illumina technologies) and long and error-prone reads (e.g., reads
generated by Pacific Biosciences and Oxford Nanopore technologies) started from applications
of the overlap/string graph approach. Even though this approach has an inherent theoretical
limitation (representing reads that are substrings of other reads results in fragmented
assemblies) and becomes slow and error-prone with respect to detecting overlaps detection in
the most repetitive regions, the alternative de Bruijn graph approach (Idury and Waterman,
1995, Pevzner et al., 2001) was often viewed as a theoretical concept rather than a practical
genome assembly method.

Even after it turned into the most popular method for assembling short and accurate reads,
the development of algorithms for assembling long and error-prone reads again started from the
overlap/string graph approach (Koren et al., 2012, Chin et al., 2013, 2016) since the de Bruijn
graph approach was viewed as inapplicable to error-prone reads due to the “error myth”
(Roberts et al., 2013) - since long k-mers from the genome typically do not even occur in
error-prone reads, it seemed unlikely that the de Bruijn graph approach may assemble such
reads. However, the development of the Flye (Kolmogorov et al., 2019) and wtdbg2 (Ruan and
Li, 2020) assemblers demonstrated once again that, even for error-prone reads, the de Bruijn

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

graph-based assemblers result in accurate and order(s) of magnitude faster algorithms than the
overlap/string graph approach.

Since the de Bruijn graph approach was initially designed for assembling accurate reads, it
would seem natural to use it for assembling long and accurate reads. However, the history
repeated itself and the first HiFi assemblers again relied on the overlap/string graph approach
(Nurk et al., 2020, Cheng et al., 2020). We and Rautiainen and Marschall, 2000 described
alternative de Bruijn graph approaches for assembling HiFi reads, illustrating that the “contest”
between the de Bruijn graph approach and the overlap/string graph approach continues.

Bibliography

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko,
S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, .N, Tesler, G., Alekseyev, M.A.,
Pevzner, P.A. (2012) SPAdes: a new genome assembly algorithms and its applications to single cell
sequencing. J Comput Biol., 19:455-77

Bankevich, A., Pevzner, P. (2020) mosaicFlye: Resolving long mosaic repeats using long error-prone
reads, biorxiv, doi: https://doi.org/10.1101/2020.01.15.908285

Bloom, B.H. (1970) Space/time tradeoffs in hash coding with allowable errors, Communications of the
ACM, 13, 422–426,

Boucher, C., Bowe, A, Gagie, T., Puglisi, S.J., Sadakane, K. (2015) Variable-Order de Bruijn Graphs.
Data Compression Conference (DCC 2015), 383–392

Burrows, M., Wheeler, D. J. (1994), A block sorting lossless data compression algorithm, Digital
Equipment Corporation, Technical Report 124.

Bzikadze, A. V. & Pevzner, P. A. (2020) Automated assembly of centromeres from ultra-long error-prone
reads. Nat. Biotechnology, 38, 1309-1316

Chaisson, M.J., Pevzner, P.A. (2008) Short read fragment assembly of bacterial genomes. Genome Res.
18, 324-30.

Cheng, H., Gregory T Concepcion, G.T., Feng, X., Zhang, H., Li, H. (2020) Haplotype-resolved de novo
assembly with phased assembly graphs. arXiv:2008.01237

Chikhi, R., Rizk, G. (2013) Space-efficient and exact de Bruijn graph representation based on a Bloom
filter. Algorithms for Molecular Biology 8, 22

Chin, C. S. et al . (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT
sequencing data. Nat. Methods 10, 563-569

Chin, C., Peluso, P., Sedlazeck, F. Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., O'Malley, R.,
Figueroa-Balderas, R., Morales-Cruz, A., Cramer, G.R. Delledonne, M., Luo, C., Ecker, J.R., Cantu, D.,
Rank, D.R., Schatz, M.C. (2016) Phased diploid genome assembly with single-molecule real-time
sequencing. Nat Methods 13, 1050–1054

Compeau, P.E., Pevzner, P.A., Tesler, G. (2011) How to apply de Bruijn graphs to genome assembly Nat
Biotechnol., 29:987-91

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Fredman, M.L., Komlos, J., Szemeredi,J (1984) Storing a sparse table with 0(1) worst case access time.
Journal of the Association for Computing Machinery, 31:538–54

Idury, R.M. Waterman, M.S. (1995) A new algorithm for DNA sequence assembly. J Comput Biol.,
2:291-306.

Jain, C., Rhie, A., Zhang, H., Chu, C., Walenz, B.P., Koren, S., Phillippy, A.M. (2020) Weighted minimizer
sampling improves long read mapping, Bioinformatics, 36, i111–i118

Karp, R.M., Rabin, M.O. (1987). Efficient randomized pattern-matching algorithms. IBM Journal of
Research and Development. 31: 249–260.

Kelley, D.R., Schatz, M.C. & Salzberg, S.L. (2010) Quake: quality-aware detection and correction of
sequencing errors. Genome Biology 11, R116.

Kolmogorov, M., J. Yuan, Y. Lin, P.A. Pevzner. (2019) Assembly of long error-prone reads using repeat
graphs. Nature Biotechnology, 37, 540

Kolmogorov, M., Bickhart, D.M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S.B., Kuhn, K., Yuan, J.,
Polevikov, E., Smith T.P.L., Pevzner, P.A. (2020) metaFlye: scalable long-read metagenome assembly
using repeat graphs. Nature Methods, 17, 1103-1110

Koren, S. et al. (2012) Hybrid error correction and de novo assembly of single-molecule sequencing
reads. Nat. Biotechnol. 30, 693-700

Li, D., Liu, C.M, Luo, R., Sadakane, K., Lam, T.W. (2015) MEGAHIT: an ultra-fast single-node solution for
large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674–1676.

Li, H., (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics , 34(18), 3094-3100.

Lima, L., Marchet, C., Caboche, S., Da Silva, C., Istace, B., Aury, J.M., Touzet, H., Chikhi, R. (2020)
Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing
data, Briefings in Bioinformatics, 21, 1164–1181

Lin, Y., Pevzner, P.A. (2014) Manifold de Bruijn Graphs. Lecture Notes in Bioinformatics, 8701 : 296-310

Lin, Y., Nurk, S., Pevzner P.A. (2014) What is the difference between the breakpoint graph and the de
Bruijn graph? BMC Genomics 15 (Suppl 6) S6

Medvedev, P., Scott, E., Kakaradov, B., Pevzner, P. (2011)Error correction of high-throughput
sequencing datasets with non-uniform coverage. Bioinformatics. 27: i137-41.

Minkin, I., Pham, S., Medvedev, P. (2017) TwoPaCo: an efficient algorithm to build the compacted de
Bruijn graph from many complete genomes. Bioinformatics, 33, 4024–4032

Myers, E. W. (2005) The fragment assembly string graph. Bioinformatics 21, ii79–ii85

Nikolenko, S.I., Korobeynikov, A.I. & Alekseyev, M.A. (2013) BayesHammer: Bayesian clustering for error
correction in single-cell sequencing. BMC Genomics 14, S7

Nurk, S., Brian P. Walenz, B.P., Rhie, A., Vollger, M.R., Logsdon, G.A., Grothe, R., Karen H. Miga, K.H.,
Eichler, E.E., Phillippy, A.M., Koren, S. (2020) HiCanu: accurate assembly of segmental duplications,
satellites, and allelic variants from high-fidelity long reads, Genome Research (in press)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Pell, J, Hintze., A, Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T. (2012) Scaling metagenome
sequence assembly with probabilistic de Bruijn graphs. Proceedings of the National Academy of Sciences
of the United States of America, 109:13272-13277

Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L. (2010) IDBA–a practical iterative de Bruijn graph de
novo assembler. Lecture Notes in Computer Science. 6044, 426–440.

Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L. (2012) IDBA-UD: a de novo assembler for single-cell and
metagenomic sequencing data with highly uneven depth. Bioinformatics, 28:1420–1428.

Pevzner, P.A., Tang, H., Waterman, M.S. (2001) An Eulerian path approach to DNA fragment assembly.
Proceedings of the National Academy of Sciences, 98, 9748-9753

Pevzner, P.A., Tang, H. (2001) Fragment assembly with double-barreled data. Bioinformatics, Suppl
1:S225-33.

Pevzner P. Tang H. Tesler G. (2004) De novo repeat classification and fragment assembly. Genome Res.
14:1786–1796.

Rautiainen, M., Marschall, T. (2000) MBG: Minimizer-based Sparse de Bruijn Graph Construction. Biorxiv,
doi: https://doi.org/10.1101/2020.09.18.303156

Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A. (2004) Reducing storage requirements for
biological sequence comparison. Bioinformatics, 20, 3363–3369

Roberts, R.J., Carneiro, M.O. & Schatz, M.C. (2013) The advantages of SMRT sequencing. Genome Biol
14, 405 (2013).

Ruan, J., Li, H. (2020) Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17, 155-158

Simpson J. Wong K. Jackman S., et al. (2009) ABySS: a parallel assembler for short read sequence data.
Genome Res. 19:1117–1123.

Wenger, A.M., Peluso, P., Rowell, W.J., Chang, P.C., Hall, R.J., Concepcion, G.T., Ebler, J.,
Fungtammasan, A., Kolesnikov, A., Olson, N.D., Töpfer, A., Alonge, M., Mahmoud, M., Qian, Y., Chin,
C.S., Phillippy, A.M., Schatz, M.C., Myers, G., DePristo, M.A., Ruan, J., Marschall, T., Sedlazeck, F.J.,
Zook, J.M., Li H., Koren, S., Carroll, A., Rank, D.R., Hunkapiller, M.W. (2019) Accurate circular
consensus long-read sequencing improves variant detection and assembly of a human genome. Nat
Biotechnol. 37:1155-1162.

Wilson, R.J., (2015) Introduction to Graph Theory. 5th Edition, Prentice Hall

Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Yu, D.W. (2012) Exploiting sparseness in de novo genome
assembly. BMC Bioinformatics.;13 Suppl 6:S1.

Zerbino, D.R., Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn
graphs. Genome Res 18: 821–9.

Appendices

1. Parameters of jumboDB

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

2. Mapping reads to the compressed de Bruijn graph
3. Information about datasets used for benchmarking jumboDB
4. Error correction of HiFi reads
5. Selecting the minimum coverage threshold
6. Limitations of the multiplex graph transformation procedure
7. Adding virtual reads to avoid overly-optimistic graph transformations
8. Freezing vertices to avoid overly-optimistic graph transformations
9. Analyzing variations in the k-mer coverage by reads

Appendix 1: Parameters of jumboDB

Ideally, when one constructs the compressed de Bruijn graph of Genome, the parameter
BloomSize should be selected to be proportional to the number of different (k+1)-mers in
Genome in such a way that the false positive rate of the Bloom filter does not exceed a
threshold (the default value is 10 -4). In the case of constructing the compressed de Bruijn graph
of Genome, although the number of different (k+1)-mers in Genome is unknown, jumboDB uses
|Genome| as a proxy for this number. As a tradeoff between the memory footprint and the false
positive rate of the Bloom filter, we use 32 bits per (k+1)-mer resulting in approximately 10-4
false-positive rate. Increasing the number of hash functions decreases the false positive rate
but, at the same time, increases the query time of the Bloom filter. To minimize the running time,
jumboDB uses the default (small) value BloomNumber=5.

Although the total genome length is a good proxy for the number of different (k+1)-mers in
Genome, the total read length greatly overestimates the number of different (k+1)-mers in
Reads, thus making it unclear how to set the size of the Bloom filter for constructing
CDB(Reads,k). Since jumboDB constructs CDB(Disjointigs,k) instead of CDB(Reads,k), it uses
the total disjointing length instead of the total read length to set the parameter BloomSize, thus
greatly reducing the memory footprint.

jumboDB uses a 128-bit polynomial rolling hash of the (k+1)-mers from reads. Although
hashing may lead to collisions when different (k+1)-mers result in the same hash function, a
128-bit rolling hash has a very low probability of collisions. Indeed, if a hash is viewed as a
pseudo-random function on a set of 128-bit integers, the probability of a collision during the
construction of the compressed de Bruijn graph CDB(Genome,k) is extremely low even for large
genomes. Moreover, the probability of a collision during the construction of the graph
CDB(Reads,k) remains small for large read-sets - it is estimated as 10 -17 in the case of the T2T
read-set (described below) with approximately 10 11 511-mers. We performed multiple tests on
k-mers from the T2T read-sets and detected no collisions.

jumboDB uses the default value width=maxWidth-k, where maxWidth=10000 for selecting
minimizers.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Appendix 2: Mapping reads to the compressed de Bruijn graph

Each read traverses a read-path in the compressed de Bruijn graph CDB(Reads,k). A
read-path is called a single-edge path if it traverses a single edge in CDB(Reads,k). After
constructing CDB(Reads,k), jumboDB maps each read to this graph, generates its read-path,
and identifies the starting (ending) position of this read within the starting (ending) edge of its
read-path.

jumboDB discards all short reads (shorter than width+k-1) to ensure that each remaining
read contains at least one minimizer. Given an edge in the graph CDB(Reads,k), we classify the
k-mers starting at positions width, 2・width, 3・width, etc. in the label of this edge as the
padded k-mers. jumboDB uses the padded k-mers to obtain information about the
starting/ending positions of single-edge paths in the compressed de Bruijn graph (each such
path traverses at least one padded k-mer).

jumboDB combines all padded k-mers for all edges and all junctions in CDB(Reads,k) into a
single set and traverses all k-mers in each read in Reads to find out how this read traverses all
vertices in this combined set. Using this information, it generates the read-path for each read
and identifies the starting/ ending position of each read within the starting/ending edge of a
read-path.

Appendix 3: Information about benchmarking datasets

Supplementary Table Datasets. Information about read-sets used for benchmarking jumboDB. The
ECOLI dataset is available from the SRA database (accession number SRR10971019). The T2T dataset
is available at https://github.com/nanopore-wgs-consortium/chm13 . The total length of HumanGenome
after compressing all homopolymer runs is 2,133,004,165. The chrX dataset was generated by mapping
the T2T dataset to HumanGenome using Winnowmap (Jain, 2020) and selecting reads that mapped to
chrX. In rare cases when a read maps to multiple nearly identical instances of a repeat, Winnowmap

dataset #reads
median read
length (kbp) coverage

Genome length
(Mb)

ECOLI 95,514 14.5 400 3.5

T2T 5,567,158 17.2 32 3100

T2TErrorFree 5,567,034 17.2 32 3100

chrX 272,732 17.2 32 154

cenX/cenXErrorFree 6,527 17.3 35 3.3

cen6/cen6ErrorFree 11,409 16,8 60 3.4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://github.com/nanopore-wgs-consortium/chm13
https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

outputs both primary and secondary read alignments. Although using primary alignments works well for a
vast majority of regions in the human genome, primary alignments incorrectly map some reads in the
most repetitive regions such as cen6, result in low coverage of some repeat instances, and thus
negatively affect the generation of datasets containing error-free reads. We thus used both primary and
secondary alignments in such regions, e.g., for generating the Cen6 ErrorFree dataset.

Appendix 4: Error correction of HiFi reads

Error-correcting reads by read-rerouting. Two paths in a graph are called compatible if they
both start in the same vertex and both end in the same vertex. Given compatible paths P* and
Q* and a path P that contains P* as a subpath, the (P*,Q*)-rerouting substitutes P by a new
path where the subpath P* of P is substituted by Q*.

At each step of its error-correction procedure, LJA selects a low-coverage subpath P* of a
read-path P in the graph CDB(Reads,k) and attempts to find a read-path Q that contains a
higher-coverage P*-compatible subpath Q*. Afterward, it corrects errors in P by performing the
(P*,Q*)-rerouting of P. After this (P*,Q*)-rerouting, it reduces (increases) the coverage of all
edges in the subpath P* (Q*) by 1. Below we describe how LJA searches for candidates for
read-rerouting.

Analyzing low-coverage paths in the compressed de Bruijn graph. We denote the edit
distance between strings v and w as distance(v,w). We classify strings v and w as similar if the
edit distance between them does not exceed fraction*min{|v|,|w |}, where fraction is a parameter
(the default value=0.01). We classify strings v and w as possibly-similar if the difference
between their lengths does not exceed fraction*min{|v|,|w |}. Two compatible subpaths in the
compressed de Bruijn graph are similar (possibly-similar) if they spell similar (possibly-similar)
strings.

We classify an edge in a compressed de Bruijn graph as a low-coverage edge if its coverage is
below a threshold minCoverage, and a high-coverage edge, otherwise. Appendix 5 describes
how LJA selects this threshold (minCoverage=2 for the T2T dataset). LJA partitions each
read-path P into the high-coverage and low-coverage edges (resulting in its partitioning into
alternating low-coverage and high-coverage subpaths) and attempts to error-correct
low-coverage subpaths.

When a genome is known, we classify edges in CDB(Reads,k) that are visited by the genome
traversal as the correct edges. Figure CoverageCorrectEdges illustrates that the vast majority of
correct edges are high-coverage edges in the graph CDB(chrX,511). This graph has only 32
isolated edges that correspond to reads that do not share 511-mers with any other reads
because they have a surprisingly high error-rate. In contrast, the graph CDB(chrX,5001),
constructed for a larger k-mer size, has many more reads (1454) that correspond to isolated
edges. However, after performing error correction and constructing the graph CDB(chrX*,5001)
on the error-corrected read-set chrX*, only 398 reads form isolated edges in this graph and do
not share 5001-mers with other reads.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Figure CoverageCorrectEdges. Histogram of the normalized coverage of correct edges in the
graph CDB(chrX,511). The normalized coverage of an edge is defined as the coverage of this edge
divided by the median coverage of all edges in the graph. The genome traversal of chrX is formed by
1,180,374 edges in CDB(chrX,511) (only 56/71/112 of them have a small coverage 1/2/3). Since 6841
511-mers from the assembled chrX do not appear in reads, the genome traversal of chrX in
CDB(chrX,511) consists of 20 paths rather than a single path in CDB(chrX,511).

When a genome is known, one can align each read (corresponding to a read-path P in
CDB(Reads,k)) to the genome and identify the genomic segment spanned by this read. This
genomic segment typically corresponds to a high-coverage path ℙ in CDB(Reads,k) that
however may differ from P. An edge in a read-path P is called correct if it is also an edge of ℙ
(and the corresponding edges are aligned against each other in the read-genome alignment),
and incorrect, otherwise. The correct and incorrect edges partition the read-path P into the
correct and incorrect subpaths. Given an incorrect subpath P* of P, its valid correction is defined
as substituting this subpath with a subpath of ℙ that P* is aligned to (all other corrections are
classified as invalid) 98.2% of the incorrect subpaths in the chrX dataset are low-coverage
subpaths and 99.95% of low-coverage subpaths in the chrX dataset are incorrect subpaths.

A subpath of a path P is called external if it contains the first or the last edge of P, and internal,
otherwise. Figure LowCoverageSubpathLength illustrates that the vast majority of low-coverage
internal subpaths in the graph CDB(Reads,k) spell strings of length close to k. Figure
ErrorNumberPerRead provides information about the number of reads with the specified
number of error-clusters in the chrX dataset (with reads subjected to the homopolymer
collapsing (HPC) procedure) before and after the error correction step. 37% (96%) of the reads
in the chrX dataset are error-free before (after) our error correction procedure.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Figure LowCoverageSubpathLength. Distribution of lengths of strings spelled by all 455548 internal
(left) and 79398 external (right) low-coverage subpaths of read-paths from the chrX datasets in the graph
CDB(chrX,511).

Figure ErrorNumberPerRead. The number of reads with the specified number of error-clusters in
the chrX dataset before and after the error correction step. Two errors in a read belong to the same
error-cluster if they are located close to each other in this read, i.e., within the distance k (the histogram is
constructed for k=511). The x-axis specifies the number of error-clusters and the y-axis shows the fraction
of reads with the specified number of error-clusters (in logarithmic scale). Number of error-clusters are
given after the homopolymer collapsing (HPC) step. 37% of the reads in the chrX datasets are error-free
and 22% have a single error-cluster. After error-correction, 96% of the HPC reads in the chrX dataset are
error-free and 3.7% have a single error-cluster.

Below we describe how LJA corrects reads by performing the read-rerouting and
bulge-collapsing operations.

Bypasses. We first describe how LJA error-corrects internal low-coverage subpaths by
read-rerouting. Subsection “Error-correcting external low-coverage subpaths” describes how it
corrects external subpaths.

Given compatible and similar subpaths P* and Q* of some read-paths in the compressed de
Bruijn graph, Q* is classified as a bypass of P* if it is a high-coverage subpath . For each
low-coverage internal subpath P* of a read-path P, LJA searches for a read-path Q and its
subpath Q* that represents a bypass of P*.

We classify a low-coverage internal subpath as a no-bypass, uni-bypass, or multi-bypass if it
has no bypasses, a single bypass, and multiple bypasses, respectively. Since classifying
bypasses into these three categories may be time-consuming (particularly, in the case of long
low-coverage subpaths), LJA uses a slightly different but fast classification of bypasses.
Specifically, for each low-coverage internal subpath P* that starts at a vertex source and ends at
a vertex sink, LJA considers all read-paths that traverse both source and sink and identifies all
possibly-similar subpaths of these read-paths that are compatible with P*. If there are no
high-coverage subpaths in this set, P* is classified as a no-bypass. If all high-coverage
subpaths in this set are identical (resulting in a subpath Q*), P* is classified as a uni-bypass.
Otherwise, it is classified as a multi-bypass.

444, 414,399, and 1,314 out of all 416157 low-coverage internal subpaths in the graph
CDB(chrX,511) are no-bypasses, uni-bypasses, and multi-bypasses, respectively

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Rerouting uni-bypasses. Since a uni-bypass P* has a single bypass Q* , it is a candidate for a
(P*,Q*)-rerouting if P* and Q* are similar. However, jumboDB skips the time-consuming
similarity check since possibly-similar subpaths turned out to be similar in the vast majority of
cases. After rerouting all internal uni-bypasses, 76% of reads in the chrX dataset become
error-free. Only 1522 out of 414,399 internal uni-bypasses (0.35%) resulted in invalid
re-routings. We note that an invalid re-routing does not necessarily lead to an error in the final
assembly since it can be corrected at the follow-up error-correction steps.

Rerouting multi-bypasses. Given a multi-bypass P*, LJA computes its edit distance with each
its bypass to identify the closest bypass Q1*. Although in the vast majority of cases Q1* is a
valid correction of P*, in rare cases it is not. To detect cases where Q1* is not a valid correction
of P*, LJA performs an additional triangle test inspired by a similar test in the mosaicFlye
assembler (Bankevich and Pevzner, 2020). For each bypass Q2* different from Q1*, it tests if
distance(P*,Q2*)=distance(P*,Q1*)+distance(Q1*,Q2*). If this triangle test holds, it performs the
(P*,Q1*)-rerouting of the multi-bypass P*. In most cases, the triangle test is equivalent to
checking whether the edit operations to transform P* into Q1* represent a subset of edit
operations to transform P* into Q2*, a rather strong condition. The triangle condition leads to
correcting 1790 out of 2035 multi-bypasses (1511 of them represent valid corrections).

Error-correcting external low-coverage subpaths. The simplest way to deal with external
low-coverage subpaths is to simply shorten each read-path by deleting its low-coverage prefix
and/or suffix. However, as Figure LowCoverageSubpathLength illustrates, this procedure
significantly reduces the length of some read-paths and thus may negatively affect the ability of
the multiplex de Bruijn graph to resolve some repeats.

LJA considers each low-coverage external subpath P* and attempts to error-correct a read-path
P (that contains this subpath) by substituting P* with a high-coverage subpath in CDB(Reads,k).
For simplicity, below we consider ending external subpaths that end in the last edge of a read
(starting external subpaths that start in the first edge of a read are analyzed similarly).

Given an ending subpath P*, LJA considers all reads passing through its first vertex and
identifies their high-coverage subpaths that start at this vertex. For each such subpath, it
identifies its prefix that has the lowest edit distance from P* and analyzes the set of the
identified similar prefixes. Similar to the classification of each internal low-coverage subpath into
a no-bypass, uni-bypass, or multi-bypass, LJA classifies each ending low-coverage subpath into
a no-suffix, uni-suffix, or multi-suffix and error-corrects it using the previously described
algorithm for three types of bypasses of internal subpaths, but this time applied to three types of
ending (external) subpaths.

This procedure results in the rerouting of 79150 out of 79398 external low-coverage subpaths.
LJA removes the remaining 248 low-coverage external subpaths, thus shortening the
corresponding reads.

Error-correction by bulge-collapsing. We refer to all parallel edges between vertices v and w
in the graph CDB(Reads,k) as a bulge (denoted as bulge(v,w)). An edge in a bulge with the
highest coverage is referred to as a heavy edge and all other edges are referred to as light
edges. We classify a bulge as collapsible if the total coverage of its edges does not exceed
coverageAmplifier・medianCoverage, where coverageAmplifier is a parameter (the default
value 1.5) and medianCoverage stands for the median coverage of all edges in the graph. An
edge in a bulge is correct if it represents a substring of the genome and erroneous, otherwise. A

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

collapsible bulge is reducible if it has a single correct edge and foolproof if this single edge is
heavy.

Bulge collapsing refers to a procedure that removes all light edges in a bulge and reroutes all
read-paths containing these edges through a heavy edge of this bulge. Although the graph
CDB(chrX,511) has no bulges, the graph CDB(chrX*,511) on the error-corrected read-set chrX*
has 144 bulges and 140 of them are collapsible. Moreover, 128 (124) out of 140 collapsible
bulges in CDB(chrX*,511) are reducible (foolproof). Since the vast majority of collapsible bulges
CDB(chrX*,511) are foolproof, LJA iteratively collapses all collapsible bulges until no collapsible
bulges are left.

An additional round of error-correction with larger k-mer sizes. After read-rerouting and
bulge-collapsing in the graph CDB(Reads,511), 92.5% of reads in the error corrected read-set
have perfect alignment to the homopolymer-compressed reference genome and the error rate in
reads is reduced to 36 errors per megabase. The remaining errors are often supported by
multiple reads and thus are difficult to distinguish from genomic variations. To further reduce the
error rate, after correcting errors using the compressed de Bruijn graph for a relatively small
k-mer size (e.g., k=511), jumboDB switches to the compressed de Bruijn graph for a larger
k-mer size (e.g., k=5001) and performs one more round of error-correction. The rationale for this
additional round of error-correction is that it becomes less likely for the same error to be
supported by large k-mers than by smaller k-mers. Indeed, the graph CDB(chrX*,5001) has 750
bulges and 744 of them are collapsible. 738 (536) out of 744 collapsible bulges in
CDB(chrX*,5001) are reducible (foolproof) bulges. After the rerouting procedure (k=5001 and
minCoverage=2) corrects 7990 reads we are left with 484 no-bypasses and no multi-bypasses.

After two rounds of error-correction, the initial chrX read-set is transformed into the
error-corrected read-set chrX*, where 96% of reads are error-free and the error rate in reads is
reduced to only 3.6 errors per megabase. However, the de Bruijn graph constructed from
error-corrected reads for k=5001 does not contain low-coverage edges, suggesting that the
remaining 4% of reads are corrected consistently with each other even though they do not
perfectly match the reference genome due to either heterozygous sites or read corruption. The
read corruption refers to incorrect correction of reads spanning one repeat copy to match
another slightly different repeat copy. We emphasize that read corruption does not necessarily
lead to errors in the final assembly since all original reads are realigned against the assembly at
the final consensus step that often fixes differences introduced by the corrupted reads.

The compressed de Bruijn graph on error-corrected reads. After read-routing and
bulge-collapsing, we consider all 1395 uncorrected reads that still contain uncorrected bypasses
and break each such read into shorter reads by removing each uncorrected bypass. Figure
CoverageDrop analyzes the “survival” of genomic k-mers in the read-set and illustrates that
breaking even a small number of reads may have a negative effect of breaking the compressed
de Bruijn graph into multiple components. It also illustrates that our switch from a small k-mer
size (511) to a much larger k-mer size (5001) may be somewhat too-aggressive since some
genomic segments of length 5001 are not spanned by any reads in the chrX dataset (let alone,
by reads after the read-breaking procedure). We are currently working on optimizing the
parameters of error correction (e.g., a switch from k=511 to k=2501 instead of k=5001 appears
to be a safer strategy) and minimizing the negative effects of the read-breakage procedure.

After all error-correction steps, the compressed de Bruijn graph on 5001-mers consists of 95
vertices and 120 edges and is broken into 19 connected components, indicating breaks in
coverage.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Figure CoverageDrop. Effect of error correction on the survival of genomic k-mers in the read-set.
For each position in chrX, among all reads that cover this position, we select the one with the longest
suffix that starts at this position and compute the length of this suffix. The red (blue) curve corresponds to
this metric computed for the reads before (after) error correction. Since reads contain sequencing errors,
this metric at each position of chrX is an upper bound on the length of the longest surviving k-mer in the
read-set. Afterward, we compute the minimum of this function in each window of length 100 kb centered
at each position.

Appendix 5: Selecting the minimum coverage threshold

To set the threshold minCoverage, we select a long contig (that we refer to as Genome) that is
represented by a single copy in the genome. We denote the set of all k-mers in Genome
(referred to as genomic k-mers) as Kmers(Genome,k). We identify all reads (referred to as
Reads) that originated from the selected contig and compute the set of high-coverage k-mers
KmersCoverage(Reads,k) as the set of all k-mers in Reads* with coverage exceeding a threshold
Coverage.

In the case when the threshold Coverage perfectly separates correct and incorrect k-mers from
Genome, the set of genomic k-mers coincides with the set of high-coverage k-mers in Reads,
i.e., KmersCoverage(Reads,k)=Kmers(Genome,k). We define false positives as high-coverage
k-mers that do not appear in the genome:

FalsePositivesCoverage(Reads,Genome,k)=|KmersCoverage(Reads,k))∖Kmers(Genome,k)|

and false negatives as genomic k-mers that have low-coverage:

FalseNegativesCoverage(Reads,Genome,k)=|Kmers(Genome,k)∖KmersCoverage(Reads,k))|

Figure FalsePositives/Negatives shows the distribution of
FalsePositivesCoverage(T2T,HumanGenome,k) and FalseNegativesCoverage(T2T,HumanGenome,k)
for varying values of Coverage and for k=511. Since our error-correction procedure works well
with respect to removing false positive edges and is less efficient with respect to restoring false
negative edges, we select a rather low minimum coverage threshold to minimize the number of
false-negative edges. E.g., when minCoverage equals 2, 3, and 4, the number of false

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

negatives (false positives) equals 0.6, 0.8, 1.0 (101, 44, 27) millions, respectively. jumboDB sets
minCoverage as 0.1* medianCoverage.

Figure FalsePositives/Negative. The number FalsePositivesCoverage(T2T,HumanGenome,k) (x-axis)
and FalseNegativesCoverage(T2T,HumanGenome,k) (y-axis) for varying values of Coverage and for
k-mer size 511 (in millions). The numbers were computed for the entire HumanGenome and are given
in the logarithmic scale.

Appendix 6: Limitations of the multiplex graph transformation procedure

Figure ThreeRepeats shows a circular genome ARDARCBRCE that traverses the repeat R
three times via subpaths ARD, ARC, and BRC and an incomplete read-set that supports only
two of these three subpaths (e.g., does not support ARC). This example illustrates the case
when a graph transformation results in a fragmented assembly since the multiplex de Bruijn
graph of reads “loses” the genome traversal. Indeed, after a series of transformations, when the
k-mer size becomes equal to the length of the repeat R, this repeat will be transformed into a
single “red” vertex that will be classified as paired because each incoming edge into this vertex
is paired with an outgoing edge from this vertex (and vice versa).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Figure ThreeRepeats. A circular genome ARDARCBRCE (first panel), its compressed de Bruijn
graph (second panel), its multiplexed de Bruijn graph after the edge R is transformed into a paired
vertex (third panel), and its multiplexed de Bruijn graph after transforming this paired vertex
(fourth panel). The read-set includes each two-edge path corresponding to a pair of consecutive edges
in the genome as well as the three-edge paths AR D and BR C shown in purple. However, it does not
include the three-edge path AR C . After the repeat R is transformed into a single vertex, this vertex is
classified as paired since each incoming edge is paired with an outgoing edge and vice versa (A is paired
with D and B is paired with C). Transforming this vertex results in a multiplex de Bruijn graph that does
not adequately represent the genome since it “loses” the genome traversal.

Another limitation of the multiplex graph transformation procedure is illustrated by an
example of a linear genome ARBRC and an incomplete read-set that contains a read ARB
spanning one instance of the repeat R but does not contain a read BRC spanning another
instance of this repeat. In this case, after a series of transformations, when the k-mer size
becomes equal to the length of the repeat R, this repeat will be transformed into an unpaired
vertex that has to be frozen. However, an addition of a virtual read BRC (when it is relatively
“safe”) reclassifies this vertex as paired and enables a graph transformation at this vertex.

Appendices 7 and 8 describe how to modify the multiplex graph transformation algorithm so
that it freezes some paired vertices (to address the complication shown in Figure ThreeRepeats)
and transforms some unpaired vertices (to address the complication described in the above
paragraph).

Appendix 7: Adding virtual reads to avoid overly-optimistic graph transformations

The multiplicity of an edge in the graph CDB(Genome,k) is defined as the number of times
the genome traversal visits this edge. We assume that each edge in the constructed graph
jumboDB(Reads,k) corresponds to an edge in an (unknown) graph CDB(Genome,k) and
attempt to assign multiplicities to edges of jumboDB(Reads,k) that approximate multiplicities of
the corresponding edges in CDB(Genome,k). Below we assume that the multiplicity of each
edge in the graph jumboDB(Reads,k) is given (see subsection “Analyzing variations in the k-mer
coverage”) and that the total multiplicity of all incoming edges into each vertex (except for
dead-ends) equals the total multiplicity of all outgoing edges from this vertex.

Given a path-set Paths, the in-flow through an edge (v,w) is defined as the number of pairs
of edges (v,w) and (w,u) that form a transition in Transitions(Paths). Similarly, the out-flow
through an edge (w,u) is defined as the number of pairs of edges (v,w) and (w,u) that form a
transition in Transitions(Paths). An incoming edge into (outgoing edge from) a vertex w is called
balanced if its multiplicity equals the in-flow (out-flow) through this edge , and unbalanced,
otherwise. A vertex w is called balanced if all its incoming/outgoing edges are balanced, and
unbalanced otherwise.

If the edge multiplicities were known for the example shown in Figure ThreeRepeats, an
edge A entering the vertex R and the edge C leaving the vertex R would be classified as
unbalanced . Therefore, the missing transition through the unbalanced vertex R can be restored
by simply adding a virtual read AC to the read-set and making the vertex R balanced.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

We thus find all unbalanced vertices and analyze all incoming/outgoing unbalanced edges
for these vertices. If an unbalanced vertex has a single incoming unbalanced edge e (or a single
outgoing unbalanced edge e), we turn it into a balanced vertex by adding virtual reads that
connect the edge e with other unbalanced edges for this vertex. These virtual reads lead to an
increased number of resolved vertices and thus reduce the number of frozen vertices in the
multiplex de Bruijn graph.

The concept of a balanced vertex assumes that we can accurately compute the multiplicity
of edges in the compressed de Bruijn graph, a difficult task. Previous studies addressed this
problem by using both the graph topology and the coverage of edges by reads (Pevzner and
Tang, 2001, Kolmogorov et al., 2019). Appendix 9 provides statistics on variations in the k-mer
coverage by HiFi reads.

Appendix 8: Freezing vertices to avoid overly-optimistic graph transformations

To evaluate how often the missing transitions trigger overly-optimistic graph transformations
(Figure ThreeRepeats), we collected the following statistics. Given a read-set generated from a
known genome and a parameter k, we compute coveragek(i) – the number of mapped reads in
the read-set that bridge a k-nucleotide long segment starting at position i in the genome.
Positions with coveragek(i)=0 model a situation when a k-mer in a genome is not spanned by
any reads. We thus compute the non-spanning probability p(k) that a randomly selected k-mer
in a genome has no spanning reads and assume that it provides a good approximation of the
probability that an instance of a k-nucleotide long repeat is not bridged by any reads (Figure
NonSpanningProbability). We use these probabilities to estimate the risk that increasing the
k-mer-size during the multiplex graph transformations will lead to a situation illustrated in Figure
ThreeRepeats.

Using the precomputed non-spanning probabilities for all values of k, we classify a vertex in
the graph CDB(Reads,k) as weakly resolved if p(k) exceeds non-spanningThreshold (the default
value 0.001), i.e., if the risk of missing transitions in this vertex is high. We modify the graph
transformation algorithm to freeze (rather than resolve) all weakly resolved unbalanced vertices
to avoid the risk of getting into a situation illustrated in Figure ThreeRepeats.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Figure NonSpanningProbability. The estimated non-spanning probability p(k) for the T2T read-set
(for k from 9000 to 15000) based on a segment from chromosome 6 (left) and the entire
chromosome X (right). (Left) The spanning probability is computed for a 55-Mb segment of
chromosome 6 that does not contain the centromere (positions from 0 to 55 Mb). The spanning
probabilities for k below 9000 are zeros (all k-mers are spanned) but grow fast with increasing the k-mer
size (p(10000)=0.03%, p(11000)=0.2%, p(12000)=1.1%). (Right) The spanning probabilities computed for
the entire chromosome X (that contains the centromere) are significantly higher, likely because some
reads are misaligned in highly repetitive regions such as the centromere. The spanning probability grows
fast with increasing the k-mer size (p(10000)=0.08%, p(11000)=0.10%, p(12000)=0.13%).

Appendix 9: Analyzing variations in the k-mer coverage by reads

To analyze variations in coverage, we define the normalized coverage of each k-mer in the
graph jumboDB(Reads,k) as its coverage by reads divided over the average coverage across all
k-mers in the genome. The function covk(x) is defined as the fraction of k-mers with normalized
coverage below x. We further define the normalized coverage of an edge in the graph
jumboDB(Reads,k) as its normalized coverage by reads divided over the average normalized
coverage across all k-mers in the genome. The function edge-covk(x) is defined as the fraction
of edges in jumboDB(Reads,k) with normalized coverage below x. For the T2T read-set,
cov500(0.5)=0.006, cov500(1.5)=0.98, cov(0.5)=0.01, and cov(1.5)=0.83.

Figure CoverageFunctions illustrates that the coverage-based estimates of multiplicity
become more reliable when they are computed for smaller values of k. We thus estimate the
edge multiplicities for the initially constructed graph jumboDB(Reads,k) for small k-mer size and
use them to propagate multiplicities of edges for larger values of k during graph transformations.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

Figure CoverageFunctions. Functions cov511(x) and cov5001 (x), as well as the function
edge-cov511 (x), for the T2T read-set. The average coverage across all 511-mers (5001-mers) in
HumanGenome is equal to 32 (19).

We further mapped each edge e in the graph jumboDB(T2T,k) to a most similar edge e’ in
the graph CDB(HumanGenome,k) and computed the ratio of the normalized coverage of e and
the multiplicity of e’. Figure Multiplicity shows the distribution of this value over all edges of the
graph jumboDB(T2T,k).

Figure Multiplicity. Comparing the normalized coverage of edges in jumboDB (T2T,511) with the
multiplicities of edges in CDB(HumanGenome,511). The histogram is generated for edges of length at
least 5000 bp as the coverage estimates for shorter edges are less reliable.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420448doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.10.420448
http://creativecommons.org/licenses/by-nc/4.0/

