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Abstract 

Much of human behaviour is governed by common processes that unfold over varying 

timescales. Standard event-related potential analysis assumes fixed-latency responses relative 

to experimental events. However, recent single unit recordings in animals have revealed 

neural activity scales to span different durations during behaviours demanding flexible 

timing. Here, we employed a general linear modelling approach using a novel combination of 

fixed-duration and variable-duration regressors to unmix fixed-time and scaled-time 

components in human magneto/electroencephalography (M/EEG) data. We use this to reveal 

consistent temporal scaling of human scalp-recorded potentials across four independent EEG 

datasets, including interval perception, production, prediction and value-based decision 

making. Between-trial variation in the temporally scaled response predicts between-trial 

variation in subject reaction times, demonstrating the relevance of this temporally scaled 

signal for temporal variation in behaviour. Our results provide a general approach for 

studying flexibly timed behaviour in the human brain.  
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Action and perception in the real world require flexible timing. We can walk quickly 1 

or slowly, recognize the same piece of music played at different tempos, and form temporal 2 

expectations over long and short intervals. In many cognitive tasks, reaction time variability 3 

is modelled in terms of internal evidence accumulation [1], whereby the same dynamical 4 

process unfolds at different speeds on different trials.  5 

Flexible timing is critical in our lives, yet despite several decades of research [2–5] its 6 

neural correlates remain subject to extensive debate. Due to their high temporal resolution, 7 

magnetoencephalography and electroencephalography (M/EEG) have played a particularly 8 

prominent role in understanding the neural basis of timing [5–13], and the method typically 9 

used to analyze such data has been the event-related potential (ERP), which averages event-10 

locked responses across multiple repetitions. For example, this approach has been used to 11 

identify the presence of a slow negative-going signal during timed intervals. This signal, 12 

called the contingent negative variation (CNV) [14], is thought to be timing related because 13 

its slope depends inversely on the duration of the timed interval [7,8,12]. 14 

Crucially, the ERP analysis strategy implicitly assumes that neural activity occurs at 15 

fixed-time latencies with respect to experimental events. However, it has recently been shown 16 

that brain activity at the level of individual neurons can be best explained by a temporal 17 

scaling model [15,16], in which activity is explained by a single response that is stretched or 18 

compressed according to the length of the produced interval. When monkeys are cued to 19 

produce intervals of different lengths, the temporal scaling model explains the majority of 20 

variance in neural responses from medial frontal cortex (MFC) single units [15]. This 21 

suggests that one mechanism by which flexible motor timing can be achieved is by adjusting 22 

the speed of a common neural process, a perspective readily viewed through the lens of 23 

dynamical systems theory [16]. Consistent with the broad role played by dynamical systems 24 

in a range of neural computations [17,18], recent studies in neural populations have revealed 25 
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time-warping as a common property across many different population recordings and 26 

behavioural tasks [19]. For example, temporal scaling is also implicit in the neural correlates 27 

of evidence integration during sensory and value-based decision making [20] (which itself 28 

has also been proposed as a mechanism for time estimation in previous work [21]).   29 

Successfully characterising scaled-time components in humans could open the door to 30 

studying the role of temporal scaling in more complex, hierarchical tasks such as music 31 

production or language perception, as well as in patient populations in which timing is 32 

impaired [22]. Yet it is currently unclear how temporal scaling of neural responses may 33 

manifest at the scalp (if at all) using non-invasive recording in humans. This is because of the 34 

fixed-time nature of the ERP analysis strategy. Again, one component of the ERP called the 35 

CNV has been found to ramp at different speeds for different temporal intervals [7,8,12], 36 

suggestive of temporal scaling. Crucially though, any scaled activity would appear mixed at 37 

the scalp with fixed-time components due to the superposition problem [23]. 38 

We therefore developed an approach to unmix scaled-time and fixed-time components 39 

in the EEG (Fig 1a). Our proposed method builds on recently developed least square 40 

regression-based approaches [24–29] that have proven useful in unmixing fixed-time 41 

components that overlap with one another, such as stimulus-related activity and response-42 

related activity. To overcome the superposition problem, these approaches use a 43 

convolutional general linear model (GLM) to deconvolve neural responses that are 44 

potentially overlapping. Following this work, we estimate the fixed-time ERPs using a GLM 45 

in which the design matrix is filled with time-lagged ‘stick functions’ (a regressor which is 46 

valued 1 around the timepoint of interest, and 0 otherwise). Importantly, the stick functions 47 

can overlap in time to capture overlap in the underlying neural responses (Fig 1b), and the 48 

degree of fit to neural data can be improved by adding a regularisation penalty to the model 49 
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estimation [29]. In situations without any overlap, the GLM would exactly return the 50 

conventional ERP.  51 

The key innovation that we introduce here is to allow for variable-duration regressors 52 

in such models, in addition to fixed-duration regressors, to test for the presence of scaled-time 53 

Fig 1. Regression based unmixing of simulated data successfully recovers scaled-time and fixed-time components. (a) EEG data were 
simulated by summing fixed-time components (cue and response), a scaled-time component with differing durations for different trials (short, 
medium, or long), and noise. (b) The simulated responses were unmixed via a GLM with stick basis functions: cue-locked, response-locked, 
and a single scaled-time basis spanning from cue to response (i.e., variable duration). (c) The GLM successfully recovered all three 
components, including the scaled-time component. (d) A conventional ERP analysis (cue-locked and response-locked averages) of the same 
data obscured the scaled-time component. 
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responses. In particular, we allow the duration of the stick function to vary depending upon 54 

the interval between stimulus and response, meaning that the same neural response can span 55 

different durations on different trials. Thus, rather than modelling the mean interval duration 56 

of each condition (e.g., via traditional ERPs), the proposed method captures trial-to-trial 57 

response variability. The returned scaled-time potential is no longer a function of real-world 58 

(‘wall clock’) time, but instead a function of the percentage of time elapsed between stimulus 59 

and response.  60 

As a proof of concept, we simulated data at a single EEG sensor for an interval timing 61 

task, consisting of two fixed-time components (locked to cues and responses), and one scaled-62 

time component spanning between cues and responses (Fig 1a). Our proposed method was 63 

successful in recovering all three components (Fig 1c), whereas a conventional ERP approach 64 

obscured the scaled-time component (Fig 1d). Crucially, in real EEG data we repeated this 65 

approach across all sensors, potentially revealing different scalp distributions (and hence 66 

different neural sources) for fixed-time versus scaled-time components. 67 

By unmixing fixed and scaled components, our method goes beyond previous 68 

approaches for dealing with timing variability in EEG experiments. For example, the event-69 

related timing of EEG trials can be aligned by translating either the entire waveform [30] or 70 

individual ERP components [31]. Trials can also be aligned by scaling EEG to a common 71 

time frame, e.g., through upsampling/downsampling [32] or dynamic time warping [33]. 72 

Finally, the fixed-time effect of continuously varying stimuli (including fast/slow speech) on 73 

EEG can be quantified using the method of temporal response functions (TRFs), another 74 

regression-based approach [27,34–36]. Critically, unlike the proposed method, these methods 75 

either fail to quantify a scaled signal (translation-based methods and TRFs) or involve scaling 76 

but no unmixing. 77 
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We also note that a time-frequency decomposition might also readily separate the 78 

responses at higher and lower-frequencies. Indeed, a wide range of neural oscillations have 79 

been implicated in time perception [37]. One might reasonably expect stretched/compressed 80 

signals to manifest differently in the time-frequency domain, e.g., as they correlate more 81 

strongly with different stretched/compressed versions of the same wavelet function. Unlike 82 

our proposed approach, however, a time-frequency decomposition is not readily designed to 83 

look for temporal scaling of the scaled-time response, namely the same neural response 84 

unfolding over different timescales on different trials. Nor will a time-frequency 85 

decomposition separate fixed-time responses from scaled-time responses if the signals 86 

occupy the same frequency band [38]. 87 

 We used our approach to analyze EEG recorded across four independent datasets, 88 

comprising three interval timing tasks and one decision-making task. In the first task, 89 

participants produced a target interval (short, medium, or long) following a cue (Fig 2a). 90 

Feedback was provided, and participants were able to closely match the target intervals. In 91 

the second, participants evaluated a computer-produced interval (Fig 2b). The closer the 92 

produced interval was to the target interval, the more likely participants were to judge the 93 

response as ‘on time’. In the third (previously analyzed [39,40]) task, participants made 94 

temporal predictions about upcoming events based on rhythmic predictions (Fig 2c). 95 

In the fourth task (also previously analyzed [41,42]) participant chose between pairs 96 

of snack items (Fig 2d) – a process in which reaction time variability can be modelled as a 97 

process of internal evidence accumulation across time [43]. Neural activity related to 98 

evidence accumulation is measurable on the scalp as ramping activity that scales with 99 

decision difficulty. EEG for fast, easy trials increases at a faster rate compared to EEG for 100 

slow, difficult trials, indicating a higher rate of internal evidence accumulation [41]. Thus, we 101 
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predicted that the EEG would contain an underlying scaled component associated with 102 

different rates of evidence accumulation. 103 

 In all four tasks, we observed a scaled-time component that was distinct from the 104 

preceding and following fixed-time components (Fig 3), which resembled conventional ERPs 105 

(Supplementary Fig 3). Typically, ERP components are defined by their polarity and scalp 106 

distribution [44]. The observed scaled-time components shared a common polarity (negative) 107 

and scalp distribution (central). In each task, cluster-based permutation testing revealed that 108 

Fig 2. Datasets from three time-estimation and one decision-making paradigm were analyzed. In the temporal production task (a) 
participants successfully produced one of three cued intervals. In the temporal perception task (b) participants were able to properly judge a 
computer-produced interval. In a previously analyzed temporal prediction task11,12, participants responded quickly to targets following either a 
rhythmic or repeated (non-rhythmic) cue. In a previously analyzed decision-making task13,14 participants were cued to choose one of two snack 
food items, resulting in a range of response times (mean shown as red line). Error bars represent 95% confidence intervals. 
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the scaled-time component differed significantly from zero. The differences were driven by 109 

clusters spanning 13-91% in the production task (p = .01), 34-100% in the perception task (p 110 

= .001),  11-56% in the prediction task (p = .004), and 4-68% in the decision-making task (p 111 

= .01). In many cases, scaled-time components were reliably observed at the single-subject 112 

level (Supplementary Fig 5-8). To further validate our method, we quantified temporal 113 

scaling by computing a ‘scaling index’ [15] for each task and participant (Fig 4). To calculate 114 

this, we stretched/compressed each epoch to match the longest interval in each task, averaged 115 

by condition, then calculated the coefficient of determination for predicting the longer 116 

interval using stretched versions of the shorter intervals. We did this first on the raw data 117 

(‘Original’), then separately for the data containing only the fixed-time components (‘Fixed-118 

only’, i.e., scaled-time components regressed out) and the scaled-time components (‘Scaled-119 

only’, i.e., fixed-time components regressed out). In three out of four tasks, the scaling index 120 

for the scaled component exceeded the scaling index for the fixed component (production: 121 

Fig 3. Scaled-time components were consistently observed across all four paradigms, with distinct scalp topographies from fixed-time 
components. Each had distinct fixed-time components relative to task-relevant events (left/middle columns), and a common negative scaled-
time component over central electrodes, reflecting interval time (right column). The scalp topographies represent the mean voltage across the 
intervals indicated by the grey bars. For the fixed-time components, the intervals were chosen to visualize prominent deflections in the average 
waveform. For the scaled-time components, the intervals represent regions of significance as determined by cluster-based permutation tests. 
The error bars represent 95% confidence intervals. 
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t(9) = 3.79, p = .004, Cohen’s d = 1.20; perception: t(9) = 1.89, p = .09, Cohen’s d = 0.60; 122 

prediction: t(18) =5.45, p < .001, Cohen’s d = 1.27; decision-making: t(17) = 5.45, p < .001, 123 

Cohen’s d = 1.29). 124 

We then examined how the scaled-time component relates to behavioural variability: 125 

does the latency of the scaled-time component predict participants’ response time? We 126 

focussed on the temporal production and decision-making tasks, in which the interval 127 

duration was equal to the response time. As response time varied from trial to trial, so did the 128 

modelled scaled component. To measure component latency, we applied an approach 129 

developed in [45,46], using principal component analysis (PCA) to model delay activity over 130 

central electrodes in the temporal production task.. The approach works by detecting latency 131 

shifts in a common underlying component [45,46]. Unlike simple peak detection, PCA can 132 

account for a range of waveform dynamics (e.g., multiple peaks). We first regressed out the 133 

fixed-time component as identified by the GLM, resulting in a dataset that consisted only of 134 

the residual scaled-time activity. We then computed the average scaled-time activity for each 135 

of the three interval conditions (Fig 5a-c). PCA was applied separately to each interval. This 136 

consistently revealed a first principal component that matched the shape of the scaled-time 137 

component and a second principal component that matched its temporal derivative. This 138 

Fig 4. The unmixed signals differed quantitatively in their degree of scaling. The scaling index, a measure of similarity between epochs of 
differing duration, was greater for the scaled-time component compared to the fixed-time component. This result was replicated in three of the 
four tasks. 
 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2020.12.11.421180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421180
http://creativecommons.org/licenses/by/4.0/


 11 

analysis confirms the presence of the scaled-time component in our data, as it is the first 139 

principal component of the residuals after removing fixed-time components. Crucially, 140 

adding or subtracting the second principal component captures variation in the latency of the 141 

scaled-time component (Supplementary Fig 4). Across response time quantiles, we found that 142 

PC2 scores (Supplementary Table 6) were significantly related to response times (Fig 5d), 143 

F(2,18) = 8.31, p = .003, ηp2 = 0.48, ηg2 = 0.43). This implies that the earlier in time that the 144 

scaled-time component peaked, the faster the subject would respond on that trial. This result 145 

was replicated in the decision-making task, F(2,34) = 43.60, p < .001, ηp2 = 0.72, ηg2 = 0.61 146 

(Fig 5e). 147 

 148 

Discussion 149 

Fig 5. Variation in scaled-time components predicts behavioural variation in time estimation. Cue-locked EEG, shown as ERPs in (a), 
was analyzed via GLM. To visualize the unmixing of scaled-time and fixed-time components, the residual (noise) was recombined with either 
the scaled-time component (b) or the fixed-time components (c). PCA was run on the ‘scaled-time plus residual’ EEG. The second principal 
component resembled the temporal derivative or ‘rate’ of the scaled component (Supplementary Fig 5). (d) PC2 scores depended on response 
time, implying the scaled-time component peaked earlier for fast responses and later for slow responses. (e) The effect replicated in a decision-
making task. Error bars represent 95% confidence intervals. 
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Our results provide a general method for recovering temporally scaled signals in 150 

human M/EEG, where scaled-time components are mixed at the scalp with conventional 151 

fixed-time ERPs. We focused here on tasks that have been widely used in the timing 152 

literature, namely interval production, perception, and prediction, as well as an example of a 153 

cognitive task that exhibits variable reaction times across trials (value-based decision 154 

making). Distinct scaled-time components and scalp topographies were revealed in all four 155 

tasks. These results suggest that flexible cognition relies on temporally scaled neural activity, 156 

as seen in recent animal work [15,16]. 157 

The existence of temporally scaled signals at the scalp may not be surprising to those 158 

familiar with the study of time perception. Because of its excellent temporal resolution, EEG 159 

has long been used to study delay activity in interval timing tasks. As discussed, one signal of 160 

interest has been a ramping frontal-central signal called the CNV, which we observed in our 161 

conventional ERP analysis (Supplementary Fig 3). Notably, CNV slope has been interpreted 162 

as an accumulation signal in pacemaker-accumulation models of timing [7,8,11,13]. Our 163 

work differs from these previous studies in one important respect. In a conventional ERP 164 

analysis, delay activity is assumed to occur over fixed latencies. The CNV is thus computed 165 

by averaging over many cue-locked EEG epochs of the same duration. In contrast, we have 166 

considered the possibility that scalped-recorded potentials reflect a mixture of both fixed-time 167 

and scaled-time components. By modelling fixed-time and scaled-time components 168 

separately, we revealed scaled activity that was common across all timed intervals. This, in 169 

turn, is consistent with a recent class of models of timing that propose time estimation reflects 170 

the variable speed over which an underlying dynamical system unfolds [16–18]. 171 

We also observed temporally scaled activity in a decision-making task, a somewhat 172 

surprising result given that the task did not have an explicit timing component (participants 173 

made simple binary decisions [41]). Nevertheless, time is the medium within which decisions 174 
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are made [47]. Computationally, the timing of binary decisions can be captured in a drift 175 

diffusion model as the accumulation of evidence in favour of each alternative [1]. This 176 

accumulation is thought to be indexed by an ERP component called the central parietal 177 

positivity (CPP) [48]. There is evidence that the slope of the CPP – which can be either 178 

stimulus-locked or response-locked – captures the rate of evidence accumulation [49]. For 179 

faster/easier decisions the CPP climbs more rapidly compared to slower/harder decisions 180 

[48,49]. Perhaps these effects can also be explained by stretching/compressing a common 181 

scaled-time component while holding stimulus- and response-related activity constant. 182 

Furthermore, variation in the scaled-time component is relevant to decision making according 183 

to our results: it predicts when a decision will be made. However, we also note that the 184 

topography observed in our scaled-time component was a negative-going potential rather 185 

than positive (Fig 3d). This can potentially be explained by the standard CPP-like ERP [41] 186 

being a mixture of our observed negative scaled-time topography with the positive fixed-time 187 

topographies. 188 

Although our approach makes no assumptions about the overall shape of the scaled-189 

time component, it does assume a consistent, linear scaling across intervals. This is an 190 

assumption that could be relaxed in a more complex model, e.g., using spline regression [25].  191 

We also note that although we made no a priori predictions about waveform shape, some 192 

between-task similarities and differences were noted in the resulting scaled-time components. 193 

For example, similar responses were seen in the tasks for which the interval of interest ended 194 

with a motor response (temporal production and decision making – see Fig 3a,d). In both 195 

cases, activity immediately preceding the response depended on a ramping, fixed-time, 196 

motor-related component, with little contribution from a scaled component. A similar 197 

observation was made in the temporal prediction task – activity just before the appearance of 198 

the target depended on anticipatory fixed-time activity, not scaled activity (Fig 3c). In 199 
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contrast, pre-probe activity in the temporal perception task showed almost no fixed-time 200 

activity, but a robust scaled-time component (Fig 3b). The reason for this difference cannot 201 

be identified by the current experiments, however. First, the perception and prediction tasks 202 

involved different tasks instructions (‘listen for the probe’ versus ‘respond to the target’). 203 

Second, the probe/target distributions differed in the two tasks; the mean duration was 75% 204 

likely in the prediction task, but only 20% likely in the perception task. We therefore 205 

speculate that scaled activity may be somewhat task dependent. 206 

Our approach is not only conceptually different from previous work that models 207 

variability in timing using a regression framework [27,34–36], it is also a mechanistically 208 

important finding. It indicates the brain may support flexible timing by adapting the duration 209 

of an otherwise consistent neural response. This can be understood as varying the rate of a 210 

dynamical system [17,18] during interval estimation. Although there is evidence for such 211 

temporally scaled responses in the monkey neurophysiology literature (e.g., [15,16], which 212 

inspired the current study), we are not aware of any direct evidence in support of this idea in 213 

humans. Indeed, it goes against the dominant framework of fixed-latency responses that has 214 

thus far dominated M/EEG analysis. 215 

Although we have focused here on interval timing and decision-making tasks, we 216 

anticipate other temporally-scaled EEG and MEG signals will be discovered for cognitive 217 

processes known to unfold over varying timescales. For example, the neural basis of flexible 218 

(fast/slow) speech production and perception is an active area of research [50–52], and may 219 

involve a form of temporal scaling [32]. Flexible timing is also important across a vast array 220 

of decision-making tasks, where evidence accumulation can proceed quickly or slowly 221 

depending on the strength of the evidence [20]. Flexible timing helps facilitate a range of 222 

adaptive behaviours via temporal attention [4], while disordered timing characterizes several 223 
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clinical disorders [53], underscoring the importance of characterising temporal scaling of 224 

neural responses in human participants.  225 
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Methods 226 

Simulations 227 

 We simulated cue-related and response-related EEG in a temporal production task 228 

using MATLAB 2020a (Mathworks, Natick, USA). Cue and response were separated by 229 

either a short, medium, or long interval. During the delay period, we simulated a scaled 230 

response that stretched or compressed to fill the interval. All three responses (cue, response, 231 

scaled) were summed together at appropriate lags (short, medium, or long), with noise – see 232 

Fig 1a. In total, we simulated 50 trials of each condition (short, medium, long).   233 

 To unmix fixed-time and scaled-time components, we used a regression-based 234 

approach [24,25,54] in which the continuous EEG at one sensor Y is modelled as a linear 235 

combination of the underlying event-related responses b, which are unknown initially. The 236 

model can be written in equation form as: 237 

𝑌 = 𝑋b	 + 	e	 238 

where X is the design matrix and e is the residual EEG not accounted for by the 239 

model. X contains as many rows as EEG data points, and as many columns as predictors (that 240 

is, the number of points in the estimated event-related responses). In our case, X was 241 

populated by ‘stick functions’ – non-zero values around the time of the modelled events, and 242 

zeros otherwise. We included in X two fixed-time components, the cue and the response, as 243 

stick functions of fixed EEG duration (with variables set to 1). In other words, the height of 244 

the fixed-time stick function was constant across events of the same type and equal to its 245 

width. To model a temporally-scaled response, we used the MATLAB imresize function 246 

(Image Processing Toolbox, R2020b) with ‘box’ interpolation to stretch/compress a stick 247 

function so that it spanned the duration between cue and response (other interpolation 248 

methods were tried – see Supplementary Fig 1 – but this choice had little effect on the 249 

results). Thus, the duration of the scaled stick function varied from trial to trial (Fig 1b). The 250 
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goal here was to estimate a single scaled-time response to account for EEG activity across 251 

multiple varying delay periods. For the fixed-time responses, each column of X represents a 252 

latency in ms before/after an experimental event; by contrast, for the scaled-time responses, 253 

each column of X represents the percentage of time that has elapsed between two events 254 

(stimulus and response). Simulation code is available at 255 

https://git.fmrib.ox.ac.uk/chassall/temporal-scaling. 256 

Production and Perception Tasks 257 

Participants 258 

Participants completed both the production and perception tasks within the same 259 

recording session. We tested ten university-aged participants, 5 male, 2 left-handed, Mage = 260 

23.40, 95% CI [21.29, 25.51]. Participants had normal or corrected-to-normal vision and no 261 

known neurological impairments. Participants provided informed consent approved by the 262 

Medical Sciences Interdivisional Research Ethics Committee at the University of Oxford. 263 

Following the experiment, participants were compensated £20 (£10 per hour of participation) 264 

plus a mean performance bonus of £3.23, 95% CI [2.92, 3.55]. 265 

Apparatus and Procedure 266 

 Participants were seated approximately 64 cm from a 27-inch LCD display (144 Hz, 1 267 

ms response rate, 1920 by 1080 pixels, Acer XB270H, New Taipei City, Taiwan). Visual 268 

stimuli were presented using the Psychophysics Toolbox Extension [55,56] for MATLAB 269 

2014b (Mathworks, Natick, USA). Participants were given written and verbal instructions to 270 

minimize head and eye movements. The goal of the production task was to produce a target 271 

interval and the goal of the perception task was to judge whether or not a computer-produced 272 

interval was correct.  273 

The experiment was blocked with ten trials per block. There were 18 production 274 

blocks and 18 perception blocks, completed in random order. Prior to each block, participants 275 
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listened to five isochronic tones indicating the target interval. Beeps were 400 Hz sine waves 276 

of duration 50 ms and an onset/offset ramping to a point 1/8 of the length of the wave (to 277 

avoid abrupt transitions).  The target interval was either short (0.8 s), medium (1.65 s), or 278 

long (2.5 s). 279 

In production trials, participants listened to a beep then waited the target time before 280 

responding. Feedback appeared after a 400-600 ms delay (uniform distribution) and remained 281 

on the display for 1000 ms. Feedback was a ‘quarter-to’ clockface to indicate ‘too early’, a 282 

‘quarter-after’ clockface to indicate ‘too late’, or a checkmark to indicate an on-time 283 

response. Feedback itself was determined by where the participant’s response fell relative to a 284 

window around the target duration. The response window was initialized to +/- 100 ms 285 

around each target, then changed following each feedback via a staircase procedure: 286 

increased on each side by 10 ms following a correct response and decreased by 10 ms 287 

following an incorrect response (either too early or too late).  288 

In perception trials, participants heard two beeps, then were asked to judge the 289 

correctness of the interval, that is, whether or not the test interval matched the target interval. 290 

Test intervals (very early, early, on time, late, very late) were set such that each subsequent 291 

interval was 25% longer than the previous (see Supplementary Table 1). Participants were 292 

then given feedback on their judgement – a checkmark for a correct judgement, or an ‘x’ for 293 

an incorrect judgement.  294 

For each task, participants gained 2 points for each correct response and lost 1 point 295 

for each incorrect response. At the end of the experiment points were converted to a monetary 296 

bonus at a rate of £0.01 per point.  297 

Data Collection 298 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2020.12.11.421180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421180
http://creativecommons.org/licenses/by/4.0/


 20 

In the perception task we recorded participant response time from cue, trial outcome 299 

(early, late, on time), and staircase- response window. In the production task, we recorded 300 

trial ‘on time’ judgements (yes/no), and trial outcome (correct/incorrect). 301 

We recorded 36 channels of EEG, referenced to AFz. Data were recorded at 1000 Hz 302 

using a Synamps amplifier and CURRY 8 software (Compumetrics Neuroscan, Charlotte, 303 

USA). The electrodes were sintered Ag/AgCl (EasyCap, Herrsching, Germany). 31 of the 304 

electrodes were laid out according to the 10-20 system. Additional electrodes were placed on 305 

the left and right mastoids, on the outer canthi of the left and right eyes, and below the right 306 

eye. The reference electrode was placed at location AFz, and the ground electrode at Fpz.  307 

Prediction Task 308 

 In this previously published [39,40] experiment, 19 participants responded to the 309 

onset of a visual target following a visual warning cue. The delay between cue and target was 310 

either short (700 ms) or long (1300 ms) and, in some conditions, congruent with a preceding 311 

stimulus stream. Only congruent trials were included in the current analysis (i.e., the ‘valid’ 312 

trials in the ‘rhythmic’ and ‘repeated’ conditions). Each trial was preceded by a 500 ms 313 

fixation cross subtending 0.6° of visual angle. During the pre-cue period, participants were 314 

shown a flashing stimulus for 4-6 repetitions to indicate the target interval. The stimulus was 315 

a centrally presented black disc (1.2°) that appeared on the display for 100 ms. In the 316 

rhythmic condition the black disc appeared every 700 ms or 1300 ms (‘short’ or ‘long’). In 317 

the repeated condition, a red disc appeared either 700 ms or 1300 ms after the appearance of 318 

the black disc, followed by a variable delay period of either 1500-1900 ms (short) or 1900-319 

2700 ms (long). Following the pre-cue period participants were then shown the warning cue, 320 

a white disc (1.2°) that appeared for 100 ms. After either a short or long delay (700 ms or 321 

1300 ms) the target appeared – a green 1.2° disc – for 100 ms, followed by the participant’s 322 
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response. The experimental program recorded the response time (time since the onset of the 323 

target). See Supplementary Fig 2c and [39,40] for more detail. 324 

Decision-Making Task 325 

 In this experiment, also previously published [41,42], 18 participants were presented 326 

with two snack foods and asked to pick one. This was not an interval timing task and on 327 

average participants took 763 ms, 95% CI [713, 813], to respond. Trials began with the 328 

appearance of a centrally presented fixation cross (0.6°) for 2-4 s followed by the 329 

presentation of the snack items (3°  across, in total). Participants were asked to indicate their 330 

preference by making a left or right button press within a 1.25 s window. The experimental 331 

program recorded the response time (time since the onset of the snack items). See 332 

Supplementary Fig 2d and [41] for more detail. 333 

Data Analysis 334 

Behavioural data 335 

For the production task, we computed the mean produced interval for each participant. 336 

For the perception task, we computed mean likelihood of responding yes to the ‘on time’ 337 

prompt, for each condition (short, medium, long) and interval (very early, early, on time, late, 338 

very late). For the prediction task, we computed the mean reaction time for each analyzed 339 

condition (rhythmic, repeated) and interval (short, long). For the decision-making task, we 340 

computed the mean response (decision) time. See Fig 2 and Supplementary Tables 2-4 for 341 

behavioural results. 342 

EEG Preprocessing 343 

For all three timing tasks, EEG was preprocessed in MATLAB 2020b (Mathworks, 344 

Natick, USA) using EEGLAB [57].  We first down-sampled the EEG to 200 Hz, then applied 345 

a 0.1-20 Hz bandpass filter and 50 Hz notch filter. The EEG was then re-referenced to the 346 

average of the left and right mastoids (and AFz recovered in the production/perception tasks). 347 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2020.12.11.421180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421180
http://creativecommons.org/licenses/by/4.0/


 22 

Ocular artifacts were removed using independent component analysis (ICA). The ICA was 348 

trained on 3-second epochs of data following the appearance of the fixation cross at the 349 

beginning of each trial. Ocular components were identified using the iclabel function and 350 

then removed from the continuous data.  351 

EEG for the decision-making task was already preprocessed prior to our analysis. This 352 

was a simultaneous EEG-fMRI recording, and preprocessing included the removal of MR-353 

related artifacts via filtering and principal component analysis, as well as a 0.5-40 Hz 354 

bandpass filter. In line with our other analyses, we re-referenced the EEG to the average of 355 

TP7 and TP8 (located close to the mastoids) and applied an additional 20 Hz low-pass filter. 356 

ERPs 357 

To construct conventional event-related potentials (ERPs), we first created epochs of 358 

EEG around cues (all tasks), responses (perception task), probes (production task), targets 359 

(prediction task), and decisions (decision-making task). Cue-locked ERPs extended from 200 360 

ms pre-cue to either 800, 1650, or 2500 ms post-cue (the short, medium, and long targets) in 361 

the perception/production tasks, 700 or 1300 ms in the prediction task (the short and long 362 

targets), and 600 ms in the decision-making task. Epochs were baseline-corrected using a 200 363 

ms pre-cue window. We also constructed epochs from 800, 1650, or 2500 ms prior to the 364 

response/probe in the production/perception tasks, 700 or 1300 ms prior to the target in the 365 

prediction task, and 600 prior to the decision in the decision-making task to 200 ms after the 366 

response/probe/target/decision. A baseline was defined around the event of interest (mean 367 

EEG from -20 to 20 ms) and removed in all cases except for the decision-making task, in line 368 

with the original analysis [41]. We then removed any trials in which the sample-to-sample 369 

voltage differed by more than 50 µV or the voltage change across the entire epoch exceeded 370 

150 µV. We then created conditional cue and response/probe/target/decision averages for 371 

each participant and task: production/perception (short, medium, and long), prediction (short 372 
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and long), and decision-making (early and late, via a median split [41]). Finally, participant 373 

averages in the timing tasks were combined into grand-average waveforms at electrode FCz, 374 

a location where timing-related activity has been previously observed [5] and Pz in the 375 

decision-making task, in line with the previously published analysis [41] (Supplementary Fig 376 

3). 377 

rERPs 378 

 To unmix fixed-time and scaled-time components in our EEG data, we estimated 379 

regression-ERPs (rERPs) following the same GLM procedure we used with our simulated 380 

data, but now applied to each sensor. We used a design matrix consisting of a regular stick 381 

functions for cue and response/probe/target and a stretched/compressed stick function 382 

spanning the interval from cue to response/probe/target/decision. In particular, we estimated 383 

cue-locked responses that spanned from 200 ms pre-cue to 800 ms post-cue. The 384 

response/probe/target/decision response interval spanned from -800 to 200 ms. Each fixed-385 

time response thus spanned 1000 ms, or 200 EEG sample points. The scaled-time component, 386 

as described earlier, was modelled as a single underlying component (set width in X) that 387 

spanned over multiple EEG durations (varying number of rows in X). Thus, our method 388 

required choosing how many scaled-time sample points to estimate (the width in X). For the 389 

production/perception tasks, we chose to estimate 330 scaled-time points, equivalent to the 390 

duration of the ‘medium’ interval. For the prediction task, we chose to estimate 200 scaled-391 

time points, equivalent to the mean of the short and long conditions (700 ms, 1300 ms). For 392 

the decision-making task, we estimated 153 scaled-time points (roughly equivalent to the 393 

mean decision time). Unlike the conventional ERP approach, this analysis was conducted on 394 

the continuous EEG. To identify artifacts in the continuous EEG, we used the basicrap 395 

function from the ERPLAB [58] toolbox with a 150 µV threshold (2000 ms window, 1000 396 

ms step size). A sample was flagged if it was ‘bad’ for any channel. Flagged samples were 397 
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excluded from the GLM (samples removed from the EEG and rows removed from the design 398 

matrix). Additionally, we removed samples/rows associated with unusually fast or slow 399 

responses in the production task (less than 0.2 s or more than 5 s). On average, we removed 400 

2.17 % of samples in the production task (95% CI [1.49, 2.86]), 3.75 % of samples in the 401 

perception task (95% CI [2.39, 5.10]), 1.03% of samples in the prediction task (95% CI [0.95, 402 

1.10]), and 5.56% of samples in the decision-making task (95% CI [4.99, 6.12]). 403 

To test for multicollinearity between the regressors we computed the variance 404 

inflation factor (VIF) for each regressor, i.e., at each timepoint in the estimated waveforms. 405 

This was done using the uf_vif function in the Unfold toolbox [25]. We were concerned about 406 

multicollinearity because the fixed-time and scaled-time components occurred over the same 407 

‘real time’ durations. For example, in the production task the early and later parts of the 408 

scaled waveform always coincided with the start of the cue-locked and end of the response-409 

locked responses, respectively. The overlap was not consistent, however; alignment between 410 

the fixed and scaled regressors was lessened due to distortions in the scaled stick function 411 

(see Supplementary Fig 1). As a result, the VIF was low (< 10) at nearly all points other than 412 

the start/end (Supplementary Fig 9). This was true in all tasks except for the temporal 413 

prediction task (VIFs > 10), as these tasks incorporated greater temporal variability across 414 

trials. We therefore expected the waveform estimates in the temporal prediction task to be 415 

noisier relative to the other tasks. We note that future studies could use VIF to evaluate the 416 

likelihood of successfully unmixing fixed-time and scaled-time components. Introducing 417 

elements of experimental design (such as increased interval variability across trials) could 418 

help to address concerns over multicollinearity. 419 

To lessen the effect of multicollinearity and impose a smoothness constraint on our 420 

estimates, we used a first-derivative form of Tikhonov regularization [29]. Tikhonov 421 

regularization reframes the GLM solution as the minimization of: 422 
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‖𝑋b− Y	‖! + 	λ‖Lb‖! 423 

where L is the regularization operator and l is the regularization parameter. In other 424 

words, we aimed to minimize a penalty term in addition to the usual residual. This has the 425 

solution 426 

(𝑋"𝑋 + 	λL)#$𝑋"𝑌 427 

In our case, L approximated the first derivative as a scaled finite difference[59]: 428 

𝐿 =
1
2	0

1 −1 0 … 0 0
0 1 −1 … 0 0
… … … … … …
0 0 0 … 1 −1

3 429 

We then chose regularization parameters for each participant using 10-fold cross 430 

validation. Our goal here was to minimize the mean-squared error of the residual EEG at 431 

electrode FCz, our electrode of interest. The following ls were tested on each fold: 0.001, 432 

0.01, 0, 1, 10, 100, 1000, 10000, 100000. An optimal l was chosen for each participant 433 

corresponding to the parameter with the lowest mean mean-squared error across all folds. See 434 

Supplementary Table 7 for a summary. 435 

Statistics 436 

We quantified the amplitude of the scaled-time component in two ways. First, we 437 

computed and plotted the 95% confidence interval at each ‘timepoint’ of the scaled-time 438 

signal (right column of Fig 3). Next, we conducted a nonparametric statistical test of the 439 

scaled-time component according to the procedure outlined in [60]. After computing a single-440 

sample t-statistic at each sample point, we identified clusters of points for with the t-value 441 

exceeded a critical threshold corresponding to an alpha level of .05 (i.e., the 2.5th and 97.5th 442 

percentiles, making this a two-sided test). For each cluster, we computed the ‘cluster mass’, 443 

defined as the sum of the absolute values of the t-values within the cluster. To determine 444 

whether the observed cluster masses exceeded what could occur by chance, we permuted the 445 

scaled components by randomly flipping (multiplying by -1) the entire waveform. We then 446 
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computed the cluster masses for the permuted waveforms as before, and recorded the 447 

maximum cluster mass (or zero if there were no clusters). Every possible permutation was 448 

checked for the production and perception tasks (210 = 1024 permutations). For the prediction 449 

and decision-making tasks, 1000 random permutations were checked. We then labelled our 450 

observed cluster masses as ‘significant’ if they exceeded 95% of the maximum cluster masses 451 

of the permuted waveforms. These analyses were done at the scalp location where the mean 452 

scaled-time signal reached its most negative value, i.e. electrode Cz in the 453 

production/perception tasks, FCz in the prediction task, and C1 in the decision-making task. 454 

Scaling Index 455 

To validate the unmixing procedure, we regressed out either the scaled-time 456 

component or the fixed-time components from the EEG in each task and participant to create 457 

‘fixed-only’ or ‘scaled-only’ data sets. We then quantified the amount of temporal scaling 458 

present in each task, participant, and data set (original, fixed-only, scaled only) using a 459 

similar procedure as [15]. Specifically, we constructed epochs spanning the intervals of 460 

interest (e.g., cue to response), then stretched or compressed each epoch to match a common 461 

duration (the longest duration in the interval timing tasks; the mean of the ‘late’ responses in 462 

the decision-making task, as defined above). For each task and participant, we averaged by 463 

condition (e.g., short, medium, long) to create conditional ERPs with a common duration, 464 

then computed a scaling index defined as the coefficient of determination. Specifically, we 465 

asked how well the ‘long’ waveform could be predicted by the ‘short’ waveform. If there was 466 

also a ‘medium’ waveform (the production/perception tasks) another coefficient of 467 

determination was computed, and the two coefficients were averaged. A larger scaling index 468 

can therefore be interpreted as a greater post-scaling similarity between conditions. Scaling 469 

indices in the fixed-only and scaled-only data sets were compared via paired-samples t-tests. 470 

For each t-test, we computed Cohen’s d as: 471 
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𝐶𝑜ℎ𝑒𝑛%𝑠	𝑑 = 	
𝑀&'((

𝑠&'((
 472 

where Mdiff is the mean difference between the scores being compared and sdiff is the 473 

standard deviation of the difference of the scores being compared [61]. Interestingly, the 474 

scaling index of the original signal appeared to be a mixture of the scaling indices of the 475 

fixed-only and scaled-only signals in all tasks except for the temporal prediction task (Fig 4). 476 

We interpreted this as further evidence that the unmixing procedure was less effective here 477 

due to multicollinearity.  478 

PCA 479 

 To explore the link between the scaled-time component and behaviour, we examined 480 

the scaled-only data set described above – that is, the scaled-time regressors plus residuals. 481 

Only mid-frontal electrodes were considered: FC1, FCz, FC2, Cz, CP1, CPz, and CP2. We 482 

then constructed epochs starting at the cue and ending at the target interval (800 ms, 1650 ms, 483 

or 2500 ms). Epochs within each condition (short, medium, long) were further grouped into 484 

three equal-sized response-time bins (early, on time, late) and averaged for each electrode 485 

and participant. We then conducted a PCA for each condition (short, medium, long) and 486 

participant. See Supplementary Table 5 for amount of variance explained by PC1 and PC2. 487 

To visualize the effect of PC2, we computed the mean PC2 across all participants. We then 488 

added more or less of the mean PC2 to the mean PC1 projection and applied a 25-point 489 

moving-mean window for visualization purposes (Supplementary Fig 4). In order to choose a 490 

reasonable range of PC2 scores, we examined the average minimum and maximum PC2 491 

score for each participant and condition (short, medium, long). The PC2 score ranges were -492 

21 to 15 (short), -41 to 38 (medium), and -40 to 55 (long). To assess the relationship between 493 

PC2 score and behaviour, we binned PC2 scores according to our response time bins (early, 494 

on time, late) and collapsed across conditions (short, medium, long). This gave us as single 495 

mean PC2 score for each participant and response time bin (early, on time, late), which we 496 
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analyzed using a two-sided repeated-measures ANOVA (Fig 5d) after verifying the 497 

assumption of normality using the Shapiro-Wilk test. Two different effect sizes, ηp2 and ηg2, 498 

were computed, according to: 499 

η)! =	
**!

**!+**"!
   η,! =	

**!
**!+**#+**"!

 500 

where SSQ is the sum of squares of the quantile effect (early, on time, late), SSsQ is the error 501 

sum of squares of the quantile effect, and SSS is the sum of squares between subjects [62].  502 

  We then replicated the PCA procedure for the decision-making task using an epoch 503 

extending 800 ms from the cue at a central electrode cluster (FC3, FC1, FC2, FC4, C3, C1, 504 

Cz, C2, C4, CP3, CP1, CP2, CP4, P3, P1, Pz, P2, and P4). Note that the assumption of 505 

normality was violated for ‘early' responses in the decision-making task. However, as 506 

repeated-measures ANOVA is robust to violations of normality, no statistical correction was 507 

made.  508 

Data Availability 509 

Raw and preprocessed EEG for the production and perception tasks will be made 510 

publicly available at the time of publication. Raw data for the prediction task is available at 511 

https://doi.org/10.5061/dryad.5vb8h. Raw data for the decision-making task is available at 512 

https://openneuro.org/datasets/ds002734/versions/1.0.2. 513 

Code Availability 514 

Simulation and analysis scripts are available athttps://git.fmrib.ox.ac.uk/chassall/temporal-515 

scaling. 516 
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