
The hidden pangenome: comparative genomics reveals pervasive diversity in 

symbiotic and free-living sulfur-oxidizing bacteria 

 

Rebecca Ansorge1,3*, Stefano Romano2,3, Lizbeth Sayavedra3, Maxim Rubin-Blum1,4, Harald Gruber-Vodicka1, 

Stefano Scilipoti1,5, Massimiliano Molari1, Nicole Dubilier1,6*, Jillian Petersen2* 

 
1Max Planck Institute for Marine Microbiology, Bremen, Germany 
2Division for Microbiology and Ecosystem Science, University of  Vienna, Austria 
3Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom 
4Israel Limnology and Oceanography Research, Tel Shikmona, Haifa, Israel 
5Department of  Bioscience, Aarhus University, Aarhus, Denmark 
6MARUM, University of  Bremen, Bremen, Germany 

*corresponding authors 

 

Author contributions 

RA conceived the study, analyzed the data (unless specified otherwise), prepared the figures and tables and wrote 

the manuscript. 

SR performed the KEGG LOR enrichment analysis, contributed to the conceptual design and data 

interpretation, provided support for the statistical analyses and provided critical input to the manuscript and 

writing. 

LS and MRB obtained samples, extracted DNA and performed genome binning of  some of  the included 

MAGs, and provided critical input to the manuscript. 

JP and ND conceived the study with RA, and provided critical input to the study, manuscript and writing. 

SS, MM and HGV provided genome bins and valuable input to the manuscript. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.11.421487doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421487


 

 2 

Abstract 

Sulfur-oxidizing Thioglobaceae, often referred to as SUP05 and Arctic96BD clades, are widespread and common to 

hydrothermal vents and oxygen minimum zones. They impact global biogeochemical cycles and exhibit a variety 

of  host-associated and free-living lifestyles. The evolutionary driving forces that led to the versatility, adoption of  

multiple lifestyles and global success of  this family are largely unknown. Here, we perform an in-depth 

comparative genomic analysis using all available and newly generated Thioglobaceae genomes. Gene content 

variation was common, throughout taxonomic ranks and lifestyles. We uncovered a pool of  variable genes within 

most Thioglobaceae populations in single environmental samples and we referred to this as the ‘hidden 

pangenome’. The ‘hidden pangenome’ is often overlooked in comparative genomic studies and our results 

indicate a much higher intra-specific diversity within environmental bacterial populations than previously 

thought. Our results show that core-community functions are different from species core genomes suggesting 

that core functions across populations are divided among the intra-specific members within a population. 

Defense mechanisms against foreign DNA and phages were enriched in symbiotic lineages, indicating an 

increased exchange of  genetic material in symbioses. Our study suggests that genomic plasticity and frequent 

exchange of  genetic material drives the global success of  this family by increasing its evolvability in a 

heterogeneous environment. 
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Introduction 

Widespread high-throughput genome sequencing, metagenomics and comparative genome analyses have vastly 

increased our understanding of  microbial biodiversity, revealing a complex landscape of  genomic variation even 

among members of  single species [1]. The collective gene content of  lineages within a taxonomic group (e.g., a 

species) is commonly referred to as ‘pangenome’. This is divided into the ‘core genome’, defined as the set of  

genes encoded by all members of  the group and the ‘accessory genome’, referring to the variable part that is only 

encoded in some members of  the group. The mechanisms that lead to the emergence and evolution of  accessory 

genomes and their role in the biology of  species are the subject of  ongoing debate [2], which gravitates around 

data obtained mainly from cultivated bacteria of  medical relevance (e.g., Escherichia coli, Mycobacterium tuberculosis) 

[1, 3]. However, conclusions based on the study of  isolates are not necessarily extendable to microbes in nature, 

as they neglect the diversity within populations, which is needed to understand a species’ evolutionary history [4]. 

To obtain a more realistic, comprehensive, and general view on the evolutionary driving forces that shape 

bacterial genome diversity, both free-living and host-associated populations need to be studied in their natural 

context [5]. 

 

Accumulating evidence suggests that there can be substantial subspecies diversity affecting function within 

environmental bacterial populations and microbiomes [6–8]. For example, populations of  intracellular sulfur-

oxidizing symbionts of  bathymodiolin mussels harbor extensive gene content diversity within single host 

individuals [9–11]. These and other observations suggest that subspecies variation in symbiotic populations may 

be far more widespread than currently known [9]. These sulfur-oxidizing bacteria belong to a highly successful 

gammaproteobacterial group of  symbiotic and free-living sulfur oxidizers widespread in the world’s oceans [12]. 

Based on the Genome Taxonomy Database [13], these bacteria belong to two well-known sister clades SUP05 

and Arctic96BD within the Thioglobaceae family. Free-living Thioglobaceae are particularly abundant and active in 

oxygen minimum zones, anoxic marine zones and at hydrothermal vents playing a pivotal role in sulfur and 

nitrogen cycles [14–18]. To date, only three strains from the Thioglobaceae family have been isolated [19–21]. 

However, metagenomic and single-cell sequencing efforts revealed extensive metabolic versatility among free-

living Thioglobaceae lineages, in particular sulfur, nitrogen, oxygen and carbon metabolism [22, 15, 16, 23, 24]. 

Underlining their versatility, members of  this clade evolved symbioses with various deep-sea invertebrates which 

vary in their intimacy and life history, from vertical to horizontal transmission [25–27]. 

 

The metabolic diversity among free-living lineages [22, 15, 16, 24], the intraspecific gene content variation within 

the mussel symbionts [9–11], and the range of  different lifestyles observed within the Thioglobaceae family indicate 

an impressive versatility and genomic plasticity. However, to date, a comprehensive understanding of  this 

variability is lacking, as most studies focus on either symbiotic lineages or the free-living. Here we investigate the 

extent of  genomic diversity and its relationship to bacterial lifestyles. We retrieved an extensive collection of  

Thioglobaceae genomes from public data and generated new metagenome-assembled genomes (MAGs) to assess 
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the pangenome of  this cosmopolitan marine microbial family. Specifically, we used high-resolution 

metagenomics, to determine the extent of  genetic variation within and among Thioglobaceae sub-clades of  

different relatedness. We uncovered an unexplored sub-species diversity and interpret this in light of  current 

evolutionary theories. 

 

Methods 

Sample collection and DNA extraction 

Samples and collection sites are listed in the supplementary Tab. S1. An overview of  the sampling locations is 

plotted as a geographic map using the tmap package (v. 2.0) in R (v 3.6.1) [28] (Fig. 1). We include newly 

generated sequencing data, publicly available metagenomes that were assembled and binned within our study and 

publicly available MAGs and genomes (details in Tab. S1). For newly generated sequencing data, mussels were 

collected, dissected on board and gill tissue was frozen and stored at -80°C or preserved in RNAlater and 

subsequently frozen at -80°C. DNA extraction was performed with the DNeasy Blood & Tissue kit (Qiagen, 

Germany) or according to Zhou et al. [29]. Library preparation and paired-end Illumina sequencing was 

performed at the Max Planck Genome Center Cologne. Sample acquisition and DNA extraction from mussel 

and sponge samples deriving from other studies are described in the respective publications [9, 10, 30–32] and 

summarized in Tab. S1 and S2. To obtain published genomes we scanned publications and public databases (see 

Tab. S3). Accession numbers of  published genome sequences included in this study are listed in Tab. S2. 

 

 

Figure 1 | Sampling locations of  all datasets included in the study. Color corresponds to lifestyle and shape of  the 
symbols corresponds to the environment type. The names of  the sites, their coordinates and additional metadata can be found 
in Tab. S1, S2, and S5. 
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Metagenomics and genome binning 

Libraries of  genomic DNA were generated for each sample with the Illumina TruSeq DNA Sample Prep Kit 

(BioLABS, Germany). Details of  the sequencing are shown in Tab. S1. Raw sequences were processed, 

assembled and binned either as described by the respective publication or as described in the following. For the 

metagenomes in this study, read adapters were removed and read quality was filtered to a minimum of  two (Q2), 

using BBDuk (v 38.34, Bushnell B. - sourceforge.net/projects/bbmap/). Metagenomes were assembled for each 

sample individually with metaSPAdes using the default parameters and kmer sizes of  33, 55, 77, 99 and 127 [33, 

34]. Binning of  the sulfur-oxidizing symbiont MAGs in mussel hosts was performed using Bandage [35], 

differential coverage analysis combined with taxonomy and GC content [36] using gbtools [37], or Metabat2 [38]. 

This produced high-quality MAGs with the completeness of  > 89% according to gammaproteobacterial marker 

genes in checkM (v 1.0.7) [39]. Publicly accessible genomes and MAGs included in this study were > 87% 

complete. We also included genome sequences from three vertically transmitted vesicomyid symbionts, which 

had lower checkM-estimated completeness (85-87%) reflecting their previously reported genome reduction [40, 

41]. Genome contamination was corrected for the degree of  strain diversity, as estimated by CheckM, and only 

genomes with a value < 5% were included in this study. Genome statistics of  all MAGs used in this study are 

listed in Tab. S1 and S2. Contigs smaller than 500 bp were excluded from all final MAGs created in this study. 

 

Pangenome analysis 

For annotation consistency, all genomes, MAGs and SAGs were annotated with RAST-tk [43] as implemented in 

PATRIC [44]. Average nucleotide identity (ANI) and average amino acid identity (AAI) were calculated with the 

enveomics collection [45], and clusters of  Thioglobaceae species were defined according to ANI cutoff  > 95% [42, 

43]. Percentages of  conserved proteins (POCP) were calculated as described previously [44] for all genome pairs 

using a published bash script [45]. Amino acid sequences of  all coding sequences were used to calculate core, 

accessory and unique genes among all genomes and MAGs within a single species cluster with BPGA (v 1.3.0) 

[46] using default settings of  0.5 sequence identity for clustering with USEARCH (v 1.1.1) [47]. To reflect the 

inability of  assemblers to resolve microdiversity within an environmental sample and to separate these terms 

from the strain-specific gene analysis (see below) we referred to these sets as ‘assembly-based core’, ‘assembly-

based accessory’ and ‘assembly-based unique’ genomes. 

To obtain a representative set of  genes encompassing all genomes of  each species, we produced a single 

representative gene catalog per Thioglobaceae species, which included one protein sequence for each gene cluster 

observed in at least one genome. On these species-specific pangenome catalogs, we performed clustering of  

orthologous protein sequences to determine those shared between species using BPGA as described above. The 

resulting presence-absence matrix of  gene clusters was formatted and shared genes among Thioglobaceae groups 

of  interest were visualized, using the package UpsetR (v1.3.3) in R. The gene sets shared among all genomes of  
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that species (species-specific gene catalogue) were uploaded to BlastKOALA (v2.2) [48] to assess the pathway 

modules and potential phenotypic discreteness of  each proposed species (Tab. S4). 

Functional analysis 

We mapped the genes of  each MAG to the Kyoto encyclopedia of  genes and genomes (KEGG) [49–51] using 

BPGA to assess and compare their functional genetic potentials. We performed two distance-based redundancy 

analyses (dbRDA) on Bray-Curtis dissimilarities of  KEGG ortholog (KO) relative frequencies per MAG or 

genome, using the capscale function in the vegan (v2.5-6) package and the ggplot2 (v3.3.0) package in R. One 

dbRDA was performed on the KO profiles of  all genomes in this study (Thioglobaceae family) and the second 

dbRDA was performed on the genomes of  the SUP05 clade only (Ca. Thiomultimodus gen. nov.). 

Permutational multivariate analysis of  variance (PERMANOVA; 999 permutations) was performed on the Bray-

Curtis dissimilarities of  KO profiles in the SUP05 clade to determine the influence of  ‘species’, ‘lifestyle’, and 

‘environment’ (data in Tab. S5) on the genomic functional profiles, using the adonis2 function of  the vegan 

package in R (Tab. S6). First, we performed a by ‘terms’ analysis. We observed that influence of  ‘lifestyle’ on the 

data could be explained by the factor ‘species’ alone (Tab. S6B). This is because the factor ‘lifestyle’ was 

confounded by the factor ‘species’. Therefore, we excluded ‘lifestyle’ from the model and tested only the 

marginal effects of  ‘species’ and ‘environment’ by performing a second PERMANOVA model by ‘margin’ (Tab. 

S6C). To visualize the effects of  both factors on data clustering, we performed two additional dbRDA analyses - 

one conditioned for ‘species’ and the other one conditioned for ‘environment’, using the capscale function in the 

vegan package. 

A generalized odds ratio for two-group ordinal data was computed using the R package genodds (v 1.0.0) on the 

functional KEGG KO frequencies to detect significant differences (Benjamini-Hochberg adjusted p-value < 

0.05) between both lifestyles, symbiotic and free-living (Tab. S7). 

Phylogenetic tree calculation 

We identified 98 core genes in a pangenome analysis, which included all genomes, MAGs, and SAGs in this 

study, supplemented with two outgroup genomes Thiomicrospira arctica (GCA_000381085.1) and Thiomicrospira 

crunogena (GCA_000012605.1). The protein sequences were aligned with MAFFT (v7.215) [52, 53] and sites of  

low confidence were identified and removed using GUIDANCE2 (v 2.02) [54]. The maximum likelihood tree 

was calculated using IQ-TREE (v1.6.9) [55] based on the concatenated protein sequences of  the core genes, 

following the selection of  the best evolution model by the ModelFinder module of  IQ-TREE, using partition 

models [56] and ultrafast bootstrap [57]. 
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Protein domain prediction 

We used Interproscan (v 5.32-71.0) [58] to identify protein domains from the Pfam database [59, 60] in all amino 

acid sequences from the representative pangenome catalogs of  each species (see Pangenome analysis section). 

All sequences that had one or more Pfam domains were compared between datasets and two proteins were 

considered ‘identical’ in their domain composition when the same Pfam but no other domains were detected and 

the domains occurred in the same order. Proteins with identical domain compositions were clustered and 

visualized using the package UpsetR in R. 

Identification of  CRISPR-Cas and RM systems 

To identify clustered regularly interspaced short palindromic repeat (CRISPR) and their associated genes (Cas), 

we extracted and counted all predicted ‘cas’ and CRISPR ‘spacer’ annotations from the gff3 files generated by 

RAST-tk. We identified restriction-modification (RM) systems based on their Pfam domains [61], identified with 

Interproscan, and all coding sequences that had at least one of  these RM domains were counted. 

Strain-specific gene analysis 

Sequencing reads were trimmed to a quality of  20 using BBDuk (v 38.34) and mapped to each genome or MAG 

with a minimum identity of  0.95 using BBMap (v 38.34). The average read coverage of  all samples was reduced 

to 100x using samtools (v 1.3.1) [62], and the MAGs with lower coverage were used with their maximum read 

coverages (Tab. S7). The identification of  strain-specific genes was performed as described previously [9], for 

each MAG. Briefly, all genes in a genome or MAG that had lower read coverage than gammaproteobacterial 

marker genes were classified as strain-specific. Subsequently, all genes that had an overlap with the contig 

proximities (100 bp on both edges of  a contig were regarded as contig proximities) were filtered out. We 

visualized the percentage of  strain-specific genes of  all coding sequences and the percentages of  strain-specific 

genes that fall into the assembly-based core, accessory or unique genomes of  a Thioglobaceae species using the 

ggplot2 package in R. 

Data availability 

All MAGs and sequencing reads generated within this study were deposited at the European Nucleotide Archive 

under the study PRJEB36091. Accession numbers for each MAG are listed in Tab. S1.  
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Results and Discussion 

Diversity and phylogenetic relationships within the Thioglobaceae family 

To capture the genomic diversity among members of  the Thioglobaceae family, we first collected publicly available 

genomes, single-cell amplified genomes (SAGs), and metagenome-assembled genomes (MAGs). We only 

included genomes that had > 87% completeness and < 5% contamination (see methods for details and 

exceptions). Altogether, this resulted in a total of  141 genomes, the most comprehensive analysis of  the 

Thioglobaceae family to date (Fig. 1, Tab. S1, S2). These include 97 newly assembled and binned MAGs of  

bathymodiolin symbionts, as well as the following publicly-available genomes and MAGs: 17 MAGs and one 

closed genome of  bathymodiolin mussel symbionts, six MAGs of  sponge symbionts, three genomes of  clam 

symbionts, one MAG of  coral symbionts, and 11 MAGs, two SAG and four genomes of  free-living Thioglobaceae 

lineages originating from deep-sea hydrothermal vents, cold seeps, and open water including oxygen minimum 

zones. 

Numerous genomes and MAGs from this family were previously assigned Candidatus species names [63, 14, 64, 

21, 41, 65]. Despite this, a family-level classification is still lacking, but is urgently needed to allow consistent 

naming and comparisons of  species. We calculated genome phylogenies and overall genome relatedness indices 

(OGRI) to disentangle the taxonomic relationships between the sequenced genomes. First, to delineate species 

clusters we grouped all MAGs and genomes that had average nucleotide identity (ANI) of  >95% (Fig. S1). 

According to these widely accepted cut-offs [42, 43], we identified 20 species clusters from the SUP05 clade and 

three species clusters from the sister Arctic96BD clade (Fig. 2). All these species clusters formed robust and 

divergent lineages in the phylogenomic tree constructed using 98 shared genes (Fig 2). 
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Figure 2 | Phylogenomic tree of  the Thioglobaceae family. The tree is based on 98 protein sequences shared among all 
SAGs, MAGs and genomes including the outgroup Thiomicrospira spp. Bootstrap support between 90-100% is represented by 
black circles. The inner colors in the tree represent the different lifestyles. The inner grey-colored ring indicates the two clades 
SUP05 and Arctic96BD. The outer grey-colored ring indicates two subclades A and B within the SUP05 clade. The outermost 
ring highlights the species clusters based on >95% average nucleotide identity (Fig. S1) and proposed Candidatus species names 
correspond to those described in Tab. S9. 

 

Our results suggest that the SUP05 and Arctic96BD clades, which were both considered previously as Ca. 

Thioglobus represent two distinct genera. This is based on average amino-acid identity (AAI) and the percentage 

of  conserved proteins (POCP), and their divergence in the phylogenomic tree. AAI of  65% has been considered 
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a possible genus boundary cut-off  [66]. As these boundaries can vary between bacterial groups [67], POCP 

below 50% was proposed to serve as an additional measure to differentiate bacterial genera [44]. Among the 141 

genomes, we found that all members within the SUP05 clade shared AAI > 66%, whereas pairwise comparisons 

with Arctic96BD genomes always had AAI < 67% (Fig. 3). The mean of  pairwise POCP value distribution 

between genomes of  the two clades Arctic96BD and SUP05 was below 50%, whereas the mean of  the 

distribution within the SUP05 clade was above 50%. 

Based on this comprehensive analysis of  available genomes, using phylogeny and various OGRIs, we propose a 

new nomenclature for this clade including one new Candidatus genus and 22 new Candidatus species (Fig. 2, 4; 

details in Tab. S9). Proposing these names is important to allow the communication between scientists that study 

the bacteria of  this family and we followed previously proposed standards for the naming of  uncultivated taxa 

[66] (Tab. S10, Tab. S4). To establish standing species names recognized by the International Code of 

Nomenclature of Prokaryotes these taxa need to be further described beyond their genomic traits. One MAG 

was divergent to both SUP05 and Arctic96BD clades and could not be assigned to either of  the two with 

confidence, but POCP and average amino-acid identity AAI indicated that this lineage is closer to the SUP05 

clade and we refer to it as ‘divSUP05-5’ (Fig. 3). 

 

Figure 3 | Overall genome relatedness indices among MAGs, SAGs, and genomes of  the Thioglobaceae family. 
Pairwise average amino acid identity (AAI) is plotted against pairwise percentage of  conserved proteins (POCP). Common 
genus cut-offs are 65% AAI and 50% POCP. Boxplots above and next to the scatter plot show within-clade SUP05 (dark 
green) and between clades SUP05 and Arctic96BD (light green) AAI and POCP, respectively. 
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Metabolic differences between the Arctic96BD and SUP05 clades 

We refer to the genes shared and variable among all genomes as ‘assembly-based’ core and ‘assembly-based’ 

accessory genomes. The assembly-based core genome of  all Thioglobaceae species contained 353 genes. We found 

62 genes unique to the SUP05 clade and 270 unique to the Arctic96BD clade (Fig. 4, Tab. S11, S12, S13). As 

indicated by the name Thioglobaceae, sulfur (‘Thio’) oxidation is considered the core metabolic feature shared by all 

members of  this family. Surprisingly, we did not detect sulfur oxidation genes in the assembly-based core 

genome of  the family. Although all compared Thioglobaceae species had the potential to oxidize sulfur, the 

enzymatic pathways differed substantially between the SUP05 and Arctic96BD clades. In previous cultivation 

experiments, sulfur oxidation and the formation of  sulfur globules have been observed in Ca. Thioglobus 

singularis (Arctic96BD) and the presence of  thiosulfate stimulated its heterotrophic growth [21]. However, only 

the adenine sulfate reductase (aprAB) and sulfate adenyltransferase (sat), which facilitate the oxidation of  sulfite 

to sulfate, are encoded in the genome of  Ca. Thioglobus singularis (Arctic96BD) [16]. These genomes lacked the 

sulfur oxidation (sox) and dissimilatory sulfite reduction (dsrAB) genes needed for the oxidation of  sulfide and 

thiosulfate. Genes encoding the proteins that catalyze the intermediate steps of  the 2-thiouridine sulfur relay 

were also not found. All of  these genes are present in all members of  the SUP05 clade and divSUP05-5 MAGs 

(Tab. S12). Instead, only the Ca. Thioglobus singularis lineages (Arctic96BD) encoded the proteins that are 

needed to use the extracellular amino acid taurine, which can be used as a sulfur source [61, 68] (Tab. S13). 

These differences in key metabolic features strengthen our conclusion that the two clades SUP05 and 

Arctic96BD form two distinct genera within the Thioglobaceae family. The Arctic96BD clade (Ca. Thioglobus) 

contains the first cultivated species Ca. Thioglobus singularis and we suggest retaining this genus-level naming 

for this clade only [21]. For the SUP05 clade, we propose the name Ca. Thiomultimodus gen. nov. which consists 

of  ‘Thio’ (sulfur) and ‘multimodus’ (manifold), the latter reflecting the multiple ‘diversified’ lifestyles and hosts 

adopted by species belonging to this genus. 

Phylogeny is the best predictor of  genetic composition within the Thioglobaceae family 

The phylogenomic analysis revealed that bacterial lifestyles, such as the association with various invertebrate 

hosts, are intermixed across the Thioglobaceae tree (Fig. 2). Hence, we wanted to assess to what extent other 

factors, such as lifestyle and environment, contribute to the evolution of  the family pangenome. This is of  

particular interest because recent data suggest that the environment is a strong driver of  pangenome evolution, 

explaining more of  the observed pangenome variation than phylogeny alone [69]. To tease apart the role of  

different environmental factors, we clustered the orthologous protein sequences of  the ‘species pangenomes’ to 

determine which protein sequences are shared between species or unique to species that share a specific lifestyle 

or environment (Fig. 4). Comparing all symbiotic to the free-living lifestyles did not result in any orthologous 

gene set specific to either of  the lifestyles. In contrast, when excluding Ca. Thioglobus genus (clade Arctic96BD) 
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we detected three genes that were unique to the free-living species (Fig. 4). None of  these genes could be 

reliably annotated. 

We then refined the criteria used in the comparison and considered the different symbiotic lifestyles separately, as 

these represent three fundamentally different forms of  symbioses: vesicomyid clam-associated (intracellular, 

vertically transmitted), bathymodiolin mussel-associated (intracellular, horizontally transmitted), and sponge-

associated symbionts (unknown transmission mode and cellular location). The coral symbiont was excluded as 

only a single MAG was available. We identified seven orthologous genes that were exclusively shared by the 

vertically transmitted clam symbionts. However, these lineages form a monophyletic clade (Fig. 2, 4) and thus it 

is not possible to distinguish between phylogenetic differentiation and lifestyle-specific gene signatures. Despite 

having 114 MAGs available, we could not identify a single group of  orthologous gene that was unique to all 

mussel-associated symbiont species. These data and the phylogenomic reconstruction are in line with previous 

conclusions suggesting that the association between Thioglobaceae bacteria and bathymodiolin mussels has evolved 

multiple times through convergent evolution [30, 27]. 

Intriguingly, we detected two orthologous genes specific to the three sponge symbiont species, even though they 

were phylogenetically quite distant from each other (Fig. 4). Only one gene could be properly annotated and 

encoded for a malate:quinone oxidoreductase (KEGG enzyme EC1.1.5.4). This enzyme converts malate into 

oxaloacetate and can potentially be part of  various pathways including the citric acid cycle (TCA) and pyruvate 

metabolism. Most free-living species encoded a malate dehydrogenase (KEGG enzyme EC1.1.1.37), which can 

catalyze the same reaction. Ca. Thiomultimodus autotrophica comb. nov., Ca. Thiomultimodus malila sp. nov., 

and all clam-, and mussel-associated symbionts lacked both enzymes and thus may need to replenish 

intermediates into the TCA from other sources unless an uncharacterized enzyme can replace this function [70, 

71]. The intracellular mussel and clam symbionts may obtain these metabolic intermediates from their hosts [70]. 

For the sponge symbionts the malate:quinone oxidoreductase could be an essential enzyme if  they reside 

extracellularly in the mesohyl matrix [72], where metabolite exchange with the host may be limited. It was 

surprising that two of  the free-living species also lacked both enzymes and the source of  replenishment for the 

TCA intermediates in nature (or in culture) remains unclear. 

We asked whether type of  environment or geographic location can influence gene content in Ca. 

Thiomultimodus species. We found that the effect of  the geographic location on the accessory genome is 

negligible, as not a single orthologous gene was specific to the sponge and mussel symbiont species that co-occur 

at vent site GoM-CH. We did not detect gene sets specific to the environment types hydrothermal vents 

(excluding plumes) or cold seeps. Genomes from lineages that occurred in vent plumes shared one orthologous 

gene, which could not be functionally annotated. However, we found five genes that were shared exclusively by 

Ca. Thiomultimodus and Ca. Thioglobus species sampled from open water environments, when excluding the 

divergent species divSUP05-5. Two of  these genes could be annotated as ABC-type antimicrobial peptide 
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transport system, whereas the other three genes were unknown. We conducted an additional comparison of  

protein domain composition to account for the fact that similar functions could be encoded by genes that are 

too dissimilar at the protein sequence level, and thus not detected by the orthologous clustering approach. Both 

approaches concurred that there were no clear differences between lifestyles and environment in the Thioglobaceae 

family (Fig. 4). 

 
Figure 4 | Shared gene content among groups of  species within the Thioglobaceae family. The shared gene content 
was determined by comparing orthologous clustering of  the species pangenome catalogues to account for potentially missing 
genes in single genomes (shown in bars above the plot). For shared gene sets within the SUP05- and Arctic96BD-clade, the 
gene content of  divSUP05-5 was included in both counts as this genome could not be assigned to either of  the two clades 
(details in Tab. S12 and S13). In addition, shared genes that had identical Pfam domain composition where identified and the 
numbers are shown as bars below the plot. The groups above the plots represent taxonomic clades, lifestyles, environment 
and site. The colors represent the lifestyles: free-living (purple), mussel-associated (green), sponge-associated (yellow), clam-
associated (pink) and coral-associated (orange). The tree was collapsed at the species level and the brackets indicate the number 
of  MAGs, SAGs, or genomes within each species. 
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Finally, we inferred genome similarities based on their KEGG ortholog (KO) functional category profiles (Fig. 

5). A distance-based redundancy analysis (dbRDA) based on Bray-Curtis dissimilarities revealed that the genomes 

grouped according to phylogenetic affiliation. Supporting our previous conclusions, the genera Ca. 

Thiomultimodus (SUP05 clade) and Ca. Thioglobus (Arctic96BD clade) were clearly separated in the ordination 

(Fig. S2). Similarly, within the Ca. Thiomultimodus genus MAGs clustered by their phylogeny rather than any 

other parameter, in agreement with the fact that genes unique to a symbiotic, mussel-associated, or free-living 

lifestyle were not found (Fig. 5). As ‘lifestyle’ was confounded by ‘species’ we only tested the marginal effects of  

‘species’ and ‘environment’ on the genomic functional profiles using permutational multivariate analysis of  

variance (PERMANOVA). A large proportion of  variance in the dataset (31.5%) could be significantly explained 

by the phylogeny, whereas the factor ‘environment’ was also significant but explained only 2% of  the variance 

(Tab. S6C). To visualize the effect of  phylogeny on the clustering of  the data, we performed an additional 

dbRDA for the variability introduced by the phylogenetic affiliation and showed that the clustering completely 

dissolved (Fig. 5). When conditioned for ‘environment’, the clustering in the dbRDA was diminished but not 

completely dissolved, showing the smaller but still significant influence of  the environment compared to the 

effect of  phylogeny (Fig. S3). 
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Figure 5 | dbRDA on Bray-Curtis dissimilarities of  KEGG KO profiles between MAGs and genomes within Ca. 
Thiomultimodus gen. nov. (SUP05 clade). The inset shows a dbRDA conditioned for species, hence removing the species 
effect on the clustering. A PERMANOVA analyses confirmed that species was the strongest significant determinant, 
explaining 31.5% of  the clustering (Tab. S6). 

 

Based on presence-absence analyses we observed that within the Thioglobaceae family, ‘lifestyle’ mostly resembled 

phylogenetic relatedness and appeared to be a poor predictor of  overall genetic repertoires. Using the 

generalized odds ratio, a more permissive statistical testing approach, we then assessed whether any KEGG KO 

feature was enriched in bacteria with certain lifestyles. We detected 153 KOs significantly more abundant in free-

living lineages and 230 KOs significantly more abundant in host-associated lineages (Tab. S7). In line with our 

previous finding, the malate dehydrogenase was enriched in the free-living species. We found restriction-

modification (RM) systems, transposases, type II and type I secretion systems, phosphate-dependent regulatory 

system PhoB-R and the high-affinity phosphate transport system PstSCAB among 27 KOs that had the 

strongest difference in abundance enriched in the symbiont MAGs (LOR > 2, Fig. 6). Other significantly 

enriched KOs (0 < LOR < 2) included additional RM systems and CRISPR-Cas systems (Tab. S7). This data 

indicates that mobilome and phage-defense systems are particularly enriched in the symbiotic Thioglobaceae. 
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Figure 6 | Significant differences between free-living and symbiotic Thioglobaceae. A) Log-odds ratio (LOR) and 
confidence intervals of  KEGG KO features that were significantly different (adjusted p-value <0.05) in numbers between 
free-living and symbiotic lifestyles. Positive LOR indicates KOs that were enriched in symbiotic taxa and negative LOR 
indicates those enriched in the free-living taxa. For representative purposes, only those KOs with the strongest shift estimation 
(LOR > 2 or < -2) are shown (see Tab. S7 for all significant hists). B) Number of  RM systems, CRISPR-Cas genes and 
CRISPR spacer sequences per genome, MAG, or SAG in the different lifestyles (symbiotic = yellow; free-living = blue). 
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We have previously developed a read coverage-based approach that detected considerable gene content 

differences within natural populations of  Thioglobaceae symbionts with identical 16S rRNA gene sequences [9]. To 

assess the extent of  this variability across the different lifestyles within this family, we identified the genes that 

are present in the MAGs but are not shared among all bacterial cells within the Ca. Thiomultimodus genus. We 

found that gene content variation among co-existing strains was prevalent across lifestyles, and not specific to 

those living in symbiosis. Strain-specific genes comprised between 0.5 and 32% of  the total protein-coding genes 

of  genomes or MAGs (Fig. 7). This analysis was performed by sub-sampling the datasets to 100x average read 

coverage to reduce the skew due to variations in sequencing depth in different metagenomes. A few samples had 

read coverage below 100x (13x-97x; Tab. S8), therefore, the number of  strain-specific genes in these 

metagenomes may be underestimated. As expected, most of  this intra-population variable gene content was part 

of  the assembly-based accessory genome. Surprisingly, however, a prominent number of  variable genes within 

populations belonged to the assembly-based core genome of  Ca. Thiomultimodus species (i.e., 3-50% for the 

two species with ≥ 39 available MAGs each; Fig. 7). This means that despite being identified in every genome 

assembly and thus every analyzed environmental population of  a species, not every bacterial cell within those 

populations encoded these genes. Thus, by definition, these genes should not be regarded as part of  the true 

core genome but instead should be regarded as accessory genomes. These findings underline the importance of  

extending pangenome studies to environmental populations. Only by including intra-population gene content 

variation can we fully capture the adaptive potential of  bacterial species in nature and understand the 

mechanisms through which microbial genomes evolve. 
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Figure 7 | Fraction of  genes [%] that were not encoded by every cell within environmental populations of  Ca. 
Thiomultimodus gen. nov. species. This was retrieved from mapping the metagenomic reads to the same-sample MAGs. 
Most datasets were subsampled to 100x read coverage, but a few samples had lower read coverage and are marked with an 
asterix (precise coverage values in Tab. S8). The right panel shows what proportion of  these variable genes could be assigned 
to the assembly-derived core genome (green), or accessory genome (yellow) and unique genes (purple) of  the species. The 
three facets correspond to lifestyles free-living (‘free-living’), mussel-associated (‘mussel’), and sponge-associated (‘spon’). 
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Genetic flexibility is key 

In theoretical models, the more phylogenetically related two co-occurring strains are, the more likely they have 

the same growth requirements, which would often result in competition [74, 75]. We have previously suggested 

that genetic variation among highly related Thioglobaceae strains can allow them to occupy different niches and 

therefore co-exist [9]. Here, we show that intra-population gene content variability is pervasive within the 

Thioglobaceae family, affecting also bacterial metabolism assigned to the assembly-based core genome of  some 

species. This highlights that common comparative genomic analyses on MAGs can miss a substantial fraction of  

accessory functions by falsely assigning these to the species core genome. In the Thioglobaceae species these 

included genes for processes such as nitrate respiration (e.g. nar, narK), phosphorous acquisition (e.g. phoH, 

phnA), iron transport (e.g. ferric iron ABC transporter) and amino acid synthesis (e.g. asparaginase, glutaminase) 

(Tab. S14). Considering evolutionary theories, some of  these genes may be subject to negative frequency-

dependent selection, providing a benefit only when rare in the population [76, 77]. This could apply to nitrate 

respiration genes that were variable in 19, out of  43 investigated, populations of  a single species (Ca. 

Thiomultimodus septentrionalia), despite being assigned to the assembly-based core genome. Lower abundance 

of  some of  these genes in the population could be selected for by costs of  carrying that gene, avoidance of  

accumulation of  potentially toxic metabolic intermediates (such as nitrite during nitrogen respiration) and the 

exchange of  intermediates between bacterial cells [78]. One explanation for detecting these variable genomic 

features in every MAG of  a species can be that these encode essential functions for the population, while they 

are not essential to every single cell in the community. Therefore, these could be considered conserved core 

functions only at the level of  the population or ‘meta-organism’, the latter representing the association between a 

host and its symbionts [79], and not the core genome of  a species. 

The extensive intra-specific genomic variability we detected within the Thioglobaceae family aligns with the 

evolvability concept, which is considered as the potential of  a population to evolve adaptive solutions to 

unknown future conditions [80]. It is debated in the theoretical literature if  and how evolvability itself  can be 

favored by selection [80, 81]. Theory would predict that if  the cost of  encoding a gene in a genome is greater 

than the benefits gained, it will tend to be lost [82, 83]. Genes for which the cost-benefit ratio hovers around 

zero, providing slight total benefits or slight total costs, may be ‘kept’ available at the population level, as they 

might provide a potential adaptive benefit when the environment changes. The larger the gene pool, particularly 

when rampant horizontal gene transfer occurs (see below), the higher the chances that the population encodes a 

metabolism that confers a stronger fitness benefit under new conditions. In this way, these genes can either be 

passed on and acquired by a greater proportion of  the population, or the cells encoding them can proliferate 

more successfully than those without. It is worth mentioning that within this scenario some of  the variable genes 

we observed within a population may never provide a selective advantage. 
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Such heterogeneity in a population may be widespread in natural environments that are heterogeneous and 

change over time, whereas homogeneous environments likely lead to the purging of  genomic heterogeneity by 

purifying selection [83]. Evolvability therefore depends on two factors: genomic innovation and ecological 

opportunity. Bacterial species belonging to Ca. Thiomultimodus often thrive in heterogeneous environments 

with steep chemical gradients and rapid change, such as the oxygen minimum zones where dynamic water 

currents and mixing expose free-living populations to fluctuating conditions. This can also be the case for the 

horizontally transmitted mussel symbionts at hydrothermal vents where extreme changes in conditions may 

result from environmental fluctuations and exposure to within-host and outside-host environments. The key to 

Ca. Thiomultimodus’ success may be the ability to maintain enormous genomic flexibility, from shorter 

ecological time scales with mosaics of  strains occupying distinct micro-niches within a population, to 

evolutionary time scales resulting in genus-wide plasticity in gene content [16]. Ca. Thiomultimodus bacteria 

partition these capabilities into distinct strains with small genomes (Fig. S5) rather than one versatile strain that 

carries the costly potential to deal with all possible changing conditions. 

One factor that can increase genomic plasticity and possibly lead to convergent evolution of  similar lifestyles 

with different genetic setups, is horizontal gene transfer (HGT). Metabolic genes that could enable niche-

partitioning, such as the hydrogenase, are affected by HGT in symbiotic Ca. Thiomultimodus gen. nov (SUP05) 

bacteria [71]. This, as well as the duplication and loss of  genes, can lead to variation in gene content and increase 

the accessory genome of  bacterial species. 

Increased exchange of  genetic material in mussel and sponge symbionts 

Mechanisms that increase rates of  genetic innovation and exchange would increase the evolvability of  a species. 

One example of  such mechanisms is phages-mediated HGT and in fact, massive phage infection has been 

shown for free-living Ca. Thiomultimodus bacteria where key sulfur-oxidation genes are found in the phage gene 

pool [84, 85, 23]. Thus, phages likely are among the driving forces of  genetic exchange in this genus, possibly 

contributing to their evolvability [90]. In agreement with this, RM and CRISPR-Cas systems were relatively 

enriched in mussel, sponge and coral symbionts compared to the free-living lineages (Fig. 6). CRISPR-Cas 

systems are prokaryotic defense mechanisms against bacteriophages and foreign DNA [86]. Except for Ca. 

Thiomultimodus endoheckerae sp. nov., we found cas genes in all mussel symbiont species, with high variability in 

numbers between genomes and MAGs. Such intra-specific variability in phage defense mechanisms is commonly 

observed in bacterial species leading to a flexible pan-immune system within populations [87]. Two of  the 

sponge-associated species also encoded cas genes. Except for a single cas gene in the divergent free-living lineage 

divSUP05-5, neither the free-living nor the coral and clam symbionts in the Thioglobaceae encoded any cas gene. 

Similarly, RM systems that have been described to be involved in phage defense, increased genomic variation, 

control of  HGT and stabilization of  genomic islands [88], were more abundant in mussel and sponge symbionts 
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than in clam symbionts and free-living lineages. This is in line with previous observations [89, 90, 32, 91] and 

strongly suggests an important role of  these mechanisms for the evolution of  a facultative host-associated 

lifestyle. HGT in mussel, sponge and coral symbionts appears rampant even though the host may offer a 

sheltered environment from phage predation. Possibly, the free-living stage during horizontal transmission may 

provide phages a window of  opportunity to infect bacterial cells that will later, inside a host, become part of  a 

high-density population. Alternatively, phages might reach bacteria that reside intracellularly in eukaryotic cells 

[92]. The lack of  CRISPR-Cas systems in the clam symbionts is likely attributed to the vertical transmission 

which is accompanied by bottlenecks and subsequent genome reduction, which, possibly led to a loss of  these 

defense systems by genetic drift [93]. 

A higher number of  RM and CRISPR-Cas is generally subjected to and associated with a higher rate of  HGT 

[87, 94]. For example, naturally competent bacteria with small genomes, including Helicobacter pylori, have been 

characterized by increased numbers of  RM systems [88, 94]. This suggests that mussel and sponge symbionts 

experienced an increased rate of  HGT, although it is unclear whether RM and CRISPR-Cas systems have an 

active role in HGT or are merely a consequence. In addition to the uptake of  foreign DNA, both systems have 

also been shown to increase heterogeneity within bacterial populations through self-targeting affecting gene 

expression [95, 88]. Association with a host could potentially increase the selective pressure towards increased 

rates of  HGT and population heterogeneity, adding the ‘host-associated lifestyle’ as an additional level of  

selection, which has to be separated from the idea that symbiont and host evolve only as a ‘unit’ which is very 

much debated in the field [96]. Such an additional layer of  selection might exist because, first, a host at 

hydrothermal vents and seeps harboring a more flexible and genomically adaptable symbiont population might 

be more successful as has been suggested for this and other systems before [9, 97]. And second, horizontally 

transmitted symbionts (such as the mussel symbionts) experience extreme changes in conditions between a 

within-host and outside-host environment were population heterogeneity of  distinct genetic features may be an 

advantage to the symbionts. Compared to a permanently free-living bacterial population, these two factors could 

increase selective pressure towards mechanisms that increase genomic heterogeneity and thus evolvability within 

the symbiont population. 

 

Conclusion 

The Thioglobaceae family (commonly referred to as SUP05 and Arctic96BD clade) showed a fine-scale genomic 

diversity that is common among all its members and was pervasive throughout all taxonomic ranks and lifestyles 

investigated. We discovered a ‘hidden’ intra-population diversity in symbiotic and free-living lifestyles throughout 

the novel genus Ca. Thiomultimodus, that is completely overlooked when standard comparative genomics 

approaches are used. The bacterial variants with different gene content in these populations can be considered 

‘puzzle pieces’ that resemble a composition of  ‘core functions’ as a consortium instead of  one single versatile 
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strain. We propose that selection for high evolvability by enhancing intra-population heterogeneity paired with a 

fluctuating or variable environment is the key to the global success of  this genus. Our data indicate that 

population heterogeneity might be more advantageous in some of  the host-associated lifestyles than free-living 

ones and can be explained only if  increased HGT and heterogeneity are selected for at the level of  the host-

association. In agreement with our findings, other widespread marine species have recently been shown to have 

intra-population variation at the nucleotide level underlining the fact that such sub-specific variability may be a 

ubiquitous phenomenon across bacterial groups and lifestyles in nature [4]. Our findings of  intra-population 

variation in gene content, the ‘hidden pangenome’, show that it is not only possible but necessary to study 

population pangenomes of  cultivated and uncultivated bacteria in their natural environment. These variable and 

low-frequency traits are the foundation for the adaptability of  free-living and host-associated bacteria. 
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