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Abstract 23 

Proponents of personalized medicine have promoted neuroimaging evaluation and 24 

treatment of major depressive disorder in three areas of clinical application: clinical 25 

prediction, outcome evaluation, and neurofeedback. Whereas psychometric 26 

considerations such as test-retest reliability are basic precursors to clinical adoption 27 

for most clinical instruments, they are often not considered for neuroimaging 28 

assessments. As an example, we consider functional magnetic resonance imaging 29 

(fMRI) of depression, a common and particularly well validated mechanistic technology 30 

for understanding disorder and guiding treatment. In this article, we review work on 31 

test-retest reliability for depression fMRI studies. We find that basic psychometrics 32 

have not been regularly attended to in this domain. For instance, no fMRI 33 

neurofeedback study has included measures of test-retest reliability despite the implicit 34 
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assumption that brain signals are stable enough to train. We consider several factors 35 

that could be useful to aid clinical translation including 1) attending to how the BOLD 36 

response is parameterized, 2) identifying and promoting regions or voxels with stronger 37 

psychometric properties 3) accounting for within-individual changes (e.g., in 38 

symptomatology) across time and 4) focusing on tasks and clinical populations that 39 

are relevant for the intended clinical application. We apply these principles to published 40 

prognostic and neurofeedback data sets. The broad implication of this work is that 41 

attention to psychometrics is important for clinical adoption of mechanistic assessment, 42 

is feasible, and may improve the underlying science. 43 
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1. GENERAL INTRODUCTION 50 

Proponents of personalized medicine have promoted mechanistic evaluation and 51 

mechanistically targeted treatments for major depressive disorder (Hansen and Siegle, 52 

2015). As an example, we consider functional magnetic resonance imaging (fMRI), a 53 

common and particularly well validated mechanistic technology that represents a 54 

promising proof-of-concept in this area. Longitudinal assessment of changes in 55 

regional brain activity using functional magnetic resonance imaging (fMRI) has 56 

increasingly been used in research on the treatment of psychiatric conditions including 57 

major depressive disorder (MDD) (Fournier et al., 2014). As good psychometric 58 

properties are essential for any measure to be considered for clinical adoption 59 

(Pickford and Guilford, 2007), best-practice guidelines for increasing generalizability 60 

and reproducibility of fMRI results are emerging (Nichols et al., 2017; Poldrack et al., 61 

2017). We focus here on test-retest reliability in task-based fMRI and neurofeedback 62 

(fMRI-nf) designs, using MDD as a running case example. Ideally, our observations 63 

can be applied to other technologies and across neuropsychiatric disorders. 64 

To understand the current state of the field, we conducted literature reviews 65 

quantifying how often test-retest reliability was reported in fMRI biomarker and real-66 

time fMRI neurofeedback (rtfMRI-nf) studies in MDD. As we will demonstrate below, 67 

this was infrequent and the general literature has shown that wen assessed, reliability 68 

was generally low. We thus suggest a few analytic techniques for improving test-rest 69 

reliability in fMRI and its clinical applicability. We focus on data analysis to make our 70 

suggestions maximally applicable to already collected data. Finally, we test these 71 

suggested principles on published MDD neuroimaging treatment outcome and 72 

neurofeedback datasets as proofs of concept.  73 

The idea that fMRI could have therapeutic utility is based on assumptions that 74 

hemodynamic activity is reliable over time in the absence of intervention, and that 75 

observed changes between one scan session and the next have significant and 76 

interpretable values (Barch and Mathalon, 2011). The reliability of fMRI also affects its 77 

criterion validity, as poor reliability limits the strength of association between the 78 

instrument and other relevant measures (Vul et al., 2009). 79 

 80 

1.1. On computing reliability of fMRI  81 

Demonstrating ability to achieve similar results over time, or the reliability of 82 

measures is considered critical to creating a clinically useful measure (Pickford and 83 
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Guilford, 2007). Reliability is a quantitative measure of stability of an individual’s data 84 

(Bennett and Miller, 2013). It refers to the ability of a measure to distinguish participants 85 

from each other and to replicate the order of individuals’ ranks during repeated 86 

assessments, assuming they do not experience true signal change between 87 

assessments (Barch and Mathalon, 2011). 88 

Though stable regional hemodynamic activations at the group level can be 89 

observed over time, there are significant changes in how each subject contributes 90 

individually to the observed group activation (Caceres et al., 2009; Zandbelt et al., 91 

2008). Various approaches have been used to measure test-retest reliability for fMRI. 92 

For example, a Pearson correlation between visits across time  measure the degree 93 

to which visits on two occasions are linearly related, where data from each visit are 94 

independently scaled (e.g., Harrington et al., 2006). A more common approach, and 95 

the measure we focus on in this manuscript, involves computing intra-class correlation 96 

coefficients (ICC) that also reflect rank ordering of values across days (Bennett and 97 

Miller, 2010) as a ratio of variance between values observed across subjects and sites 98 

divided by the total visit variance (Bartko, 1966). Values range from 0 (no reliability) to 99 

1 (perfect reliability). There are three different types of ICCs described by the princeps 100 

article written by Shrout and Fleiss (1979). The ICC(1,1) index is similar to the Pearson 101 

correlation but normalizes by the pooled mean and variance across visits. ICC(2,1) is 102 

an agreement index that allows generalization of results across scanners while 103 

ICC(3,1) works under the assumption that the variance is the same across scanners. 104 

Therefore, the ICC(3,1), mostly used across studies, is a scanner consistency index 105 

where the effect of scanner is considered a fixed effect (Shrout and Fleiss, 1979). In 106 

order to match the literature in the field and because we considered the scanner as a 107 

covariate of interest when investigating the impact of taking into account clinical and 108 

design covariates when computing reliability indexes, we mainly used ICC(3,1) in our 109 

analyses.  110 

Interpretation of ICC values is subjective with no uniformly accepted standards; ICC 111 

values of less than 0.4 are often considered poor, 0.4-0.59 fair, 0.60-0.74 good, and 112 

above 0.75 excellent (Cicchetti, 1994; Plichta et al., 2012; Shrout and Fleiss, 1979), 113 

though more stringent cutoffs have also been recommended (e.g., Portney and 114 

Watkins, 2009). Negative ICC value are usually interpreted as no reliability (Bartko, 115 

1976), since these values are outside the theoretical limits of ICC (although negative 116 
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values may appear when within-subject variance is greater than between-subject 117 

variance) (Lahey et al., 1983). 118 

Though the ICC has been recommended for use in fMRI (Caceres et al., 2009), 119 

some fMRI analysis packages (SPM, FSL) do not inherently support computation of 120 

this metric, potentially hinting at its perceived value in the field, though other packages 121 

(e.g., AFNI, NIfTI) do provide for its computation, and add-on packages (e.g., reliability 122 

toolbox for SPM or other packages on R) do allow such computations (see 123 

Computation of voxelwise ICCs using different tools in Box 3 in supplementary 124 

materials for more details). Indeed, reliability estimates have been rarely reported in 125 

fMRI studies and usually reveal poor reliability when estimated (Elliott et al., 2020). 126 

Non-clinical studies have generally found low to moderate test-retest reliability values 127 

for regional fMRI activity, with ICCs ranging from 0.33-0.66 (reviewed in Bennett and 128 

Miller, 2010). 129 

 130 

1.2. Biomarker/Prediction Studies Review 131 

Many studies suggest fMRI measurements can be used to predict treatment 132 

outcome in MDD (for reviews, see Arnone, 2019; Fonseka et al., 2018; Phillips and 133 

Swartz, 2014; Wessa and Lois, 2015). The underlying assumption is that biomarkers 134 

in the brain are involved in the causal process of MDD. Therefore, it is expected that 135 

the activity measured in these biomarkers is related to, and evolves over time with, 136 

symptom changes in general and that for interventions targeting the biomarker the 137 

more abnormal activity observed, the more effective the intervention will be. However, 138 

clinical applications of these findings are limited by the possibility that these biomarkers 139 

may have low test-retest reliability (Nord et al., 2017). If a biomarker is not reliable, it 140 

is impractical to interpret its activation at the individual level (Fu et al., 2013; Guo et 141 

al., 2012). Thus, despite strong predictive utility, researchers acknowledge that their 142 

results might be limited by poor test-retest reliability (e.g., Fu et al., 2015). Of particular 143 

interest, the amygdala, a commonly reported biomarker for MDD, shows poor to good 144 

reliability when emotional stimuli are displayed, with great heterogeneity between 145 

studies in healthy participants (Lois et al., 2018). Thus, we surveyed the predictive 146 

fMRI literature in MDD to examine whether this first step was being taken. 147 

1.2.1. Method 148 

  A PubMed search with the key words “fMRI AND biomarker OR prediction OR 149 

predict AND depression OR MDD OR major depressive disorder NOT Rest NOT 150 
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Resting” produced 140,640 results.  We combined this list with other articles 151 

discovered in our submitted fMRI meta-analysis of depression treatment outcome 152 

prediction studies (Strege et al., 2020) to complete the list of articles (Table 1).” After 153 

removing articles not including functional neuroimaging (i.e., studies focusing on 154 

volumetric measures or using PET) or human participants, we were left with 55 studies 155 

(Table 1).  156 

Table 1: Studies Examining neuroimaging biomarkers of pharmacotherapy and 157 

psychotherapy outcomes in Major Depressive Disorder and mention of test-158 

retest reliability of the studies 159 

 160 

Reference  Treatment(s) Biomarker Findings 
Mention of 

signal 
reliability  

Possibility 
to test 
signal 

reliability 

Sheline et 
al.(2001) 

Sertraline Amygdala 

Decreased 

activation 
following 

treatment 

No Yes 

Davidson, et 

al. (2003) 
Venlafaxine ACC 

Greater 

activation at 
baseline 

associated with 
better treatment 

response 

No Yes 

Fu et al. 

(2004) 
Fluoxetine 

ACC, ventral 
striatum, 

cerebellum 

Reduction of 

dynamic range 
associated with 

symptoms 
improvement 

No Yes 

Canli et al. 
(2005) 

None Amygdala 

Amygdala 
activation at 

baseline 
predicts 

symptom 
improvement 

No No 
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Schaefer, et 
al. (2006) 

Venlafaxine 

Prefrontal, 

temporal and 
parietal 

cortices, 
insula, basal 

ganglia and 
hippocampus 

Normalized 

activation after 
treatment 

No Yes 

Siegle, 
Carter, & 
Thase 

(2006) 

CBT 
sgACC and 
amygdala 

Low and high, 
respectively, 

activation is 
associated with 

greater 

symptom 
improvement 

after therapy 

No No 

Anand, et al. 

(2007) 
Sertaline 

Amygdala and 

ACC 

Decrease 

activation in 
limbic regions 

and increased 
connectivity 

with the ACC 
after treatment 

No Yes 

Chen et al. 
(2007) 

Fluoxetine ACC 

Greater 
activation at 

baseline predict 
faster rates of 

symptom 
improvement 

No No 

Fales et al. 

(2007) 
Escitalopram DLPFC 

Enhanced 
activation 

following 
treatment 

No Yes 

Fitzgerald et 

al. (2007) 
TMS 

Middle frontal 
gyrus, left 

precuneus, left 

precentral 
gyrus, left 

medial frontal 

Decreased 
activation after 
low frequency 

treatment in 
middle frontal 

gyrus and left 

No Yes 
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gyrus, right 

inferior frontal 
gyrus 

precuneus in 

respondents – 
Increased 

activation after 
high frequency 

treatment in left 
prefrontal 

gyrus, left 
medial frontal 
gyrus, right 

inferior frontal 
gyrus in 

respondents 

Fu et al. 

(2007) 
Fluoxetine 

Hippocampus 
and 

extrastriate 
cortex 

Greater 

activation 
following 

treatment and 
associated with 

symptom 
improvement 

No Yes 

Langenecker 

et al. (2007) 
S-citalopram 

Insula, right 
middle frontal 

gyrus, left 
inferior frontal 

gyrus, 
amygdala and 

cerebellar 

vermis 

Greater 

activation at 
baseline 

associated with 
symptoms 

improvement 

No Yes 

Robertson et 
al. (2007) 

Bupropion Amygdala 

Reduced 
activation 

associated with 

symptom 
improvement 

No Yes 

Walsh et al. 

(2007) 
Fluoxetine 

dACC, left 
middle frontal 

and lateral 
temporal 

cortices 

Recuced 
activity at 

baseline 
associated with 

Yes 

(discussion 
section)a 

Yes 
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symptom 

improvement 

Fu et al. 

(2008)  
CBT dACC 

Reduced 

activation at 
baseline 

associated with 
symptom 

improvement 

No Yes 

Benedetti et 
al. (2009) 

Venlafaxine 
Right medial 
frontal gyrus 

Decreased 

activation 
following 

treatment was 
associated with 

symptom 

improvement 

No Yes 

Costafreda, 

et al. (2009) 
CBT 

ACC, superior 

and middle 
frontal 

cortices, 
paracentral 

cortex, 
superior 

parietal cortex, 
precuneus 

and 
cerebellum 

Activation 
contributed to 

prediction of 
remission 

No No 

Dichter et al. 
(2010) 

Behavioral 
Action Therapy 

Paracingulate 
gyrus 

Activation was 
prognostic for 

depressive 
symptom 

change after 
psychotherapy 

No Yes 

Forbes et 

al., 2010 
CBT and SSRI 

Striatum and 

mPFC 

Final levels of 
severity 

symptoms were 

related to 
pretreatment 

striatal reactivity 

No No 
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and greater 

striatal and 
lower mPFC 

activity was 
prognostic for 

anxiety 
symptom 

reduction 

Keedwell et 
al. (2010) 

Various 
antidepressants 

Right visual 

cortex and 
right sgACC 

Greater 

baseline activity 
associated with 

clinical 

improvement 
after treatment 

No Yes 

Lemogne et 

al. (2010)  

Various 

antidepressants 
Left DLPFC 

Reduced 
activation 

following 
treatment 

No Yes 

López-Solà 

et al. (2010) 
Duolexetine 

pACC, right 

prefrontal 
cortex, pons 

Clinical 
improvement 

associated with 
reduced 

activation 

No Yes 

Roy et al. 

(2010) 
Citalopram 

Ventromedial 
prefrontal 

cortex and 
ACC 

Greater 

activation at 
baseline 

associated with 
symptom 

improvement 

No Yes 

Victor, et al. 
(2010) 

Sertaline Amygdala 

Decreased 

activation after 
treatment 

No Yes 

Wagner et 

al. (2010) 

Citalopram, 

reboxetine 

Amygdala, 

hippocampus 

Decreased 
activation after 

citalopram 
treatment 

No Yes 

Frodl et al. 
(2011) 

Mirtazapine, 
venlafaxine 

Left fusiform 
gyrus, right 

Increased 
activation in the 

No Yes 
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rolandic 

operculum 

left fusiform 

gyrus at 
baseline was 

associated with 
a better 

response to 
venlafaxine and 

smaller 
activation in the 

right rolandic 

operculum was 
related to better 

response to 
mirtazapine 

Light et al. 
(2011) 

Venlefaxine, 
fluoxetine 

Ventrolateral 

prefrontal 
cortex 

Reduced 
activity at 

baseline is 
associated with 

anhedonia 
reduction 

No Yes 

Ritchey, et 
al. (2011) 

CBT 
Ventromedial 

prefrontal 

cortex 

Increased 
activity at 

baseline 
associated with 

symptom 
improvement 

No Yes 

Samson et 
al. (2011) 

Mirtazapine, 
venlafaxine 

dmPFC, 
posterior 

cingulate 
cortex, 

superior 

frontal gyrus, 
caudate 

nucleus and 
insula 

Greater 
activation at 

treatment 
associated with 

better treatment 
response 

No Yes 

Arnone et al. 
(2012) 

Citalopram Amygdala 
Reduced 
activation 

No Yes 
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following 

treatment 

Godlewska, 
et al. (2012) 

Escitalopram Amygdala 

Reduced 

activity after 
treatment 

No No 

Rosenblau 

et al. (2012) 
Escitalopram 

Amygdala, 
prefrontal 

cortex 

Decreased 
activation 

following 
treatment 

No Yes 

Ruhé, et al. 
(2012) 

Paroxetine Amygdala 

Lower 
activation 

associated with 
better response 

to treatment 
after 

No Yes 

Siegle et al. 

(2012) 
CBT sgACC 

Reduced 
activation at 

baseline 

associated with 
greater 

symptom 
improvement 

Yes Yes 

Stoy et al. 

(2012) 
Escitalopram 

Ventral 

striatum 

Increased 
activation 

following 
treatment 

No Yes 

Tao et al. 

(2012) 
Fluoxetine 

Amygdala, 
orbitofrontal 

cortex and 
sgACC 

Decreased 
activation after 

treatment 

Yes 
(discussion 

section)b 

Yes 

Wang et al. 

(2012) 
Fluoxetine 

Insula, left 
ACC and 

middle frontal 
gyrus 

Decreased 
activation in 

insula and left 
ACC and 

greater in the 
middle frontal 

gyrus following 
treatment 

No Yes 
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Furey et al. 

(2013) 
Scopolamine 

Middle 

occipital 
cortex 

Increased 

activation at 
baseline was 

prognostic for 
symptoms 

improvement 

No Yes 

Heller et al. 
(2013) 

Fluoxetineor 
venlafaxine 

Nucleus 
accumbens 

Greater 

activation 
following 

treatment 
associated with 

more self-

reported 
positive affect 

No Yes 

Miller et al. 

(2013) 
Escitalopram 

Midbrain, 

DLPFC, 
paracingulate, 

ACC, 
thalamus and 

caudate nuclei 

Reduced 
activation at 

baseline 
correlated with 

greater 
improvement 

following 
treatment 

No No 

Rizvi et al. 

(2013) 

Fluoxetine and 

olanzapine 

Premotor 

cortex 

Increased 
activation at 

baseline in 
respondents 

was prognostic 
for symptom 

improvement 

Yes but not 
reported 

(method 
section)c 

Yes 

Victor, et al. 
(2013) 

Sertraline pgACC 

Increased 

correlation at 
baseline 

correlated with 

greater clinical 
improvement 

after treatment 

No Yes 

Toki et al. 

(2014) 

Various 

antidepressants 

Left 

hippocampus 

Increased 

activation 
No No 
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associated with 

greater 
response 

treatment 

Yoshimura 

et al. (2014) 
CBT vACC 

Improvements 

in depressive 
symptoms were 

negatively 
correlated with 

its activity 

No Yes 

Fu et al. 
(2015) 

Duloxetine 
Posterior 
cingulate 

cortex 

Increased 

activation 
following 
treatment 

Yes 
(limitation 

section)d 

Yes 

Furey et al. 
(2015) 

Scopolamine 

sgACC and 

middle 
occipital 

cortex 

Increased and 
decreased 

activation, 
respectively, 

associated with 
treatment 

response 

No Yes 

Straub et al., 

2015 
CBT sgACC 

Activation 

before 
treatment 

related to 
therapeutic 

success 

No Yes 

Williams et 

al. (2015) 

Escitalopram, 

sertraline, 
venlafaxine 

Amygdala 

Decreased 

activation at 
baseline was 

associated with 
treatment 

response 

No Yes 

Cullen et al. 

(2016) 

Various 

antidepressants 

Rostral and 

sgACC, 
insula, middle 
frontal cortex, 

right 

Decreased 

activation in 
postral and 
sgACC and 

increased in , 

No Yes 
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hippocampus 

and left 
cerebellum 

insula, middle 

frontal cortex, 
right 

hippocampus 
and left 

cerebellum 
associated with 

symptom 
improvement 

Delaveau et 
al. (2016) 

Agomelatine 
DLPFC and 
precuneus 

Activation at 
baseline was 

related to 

treatment 
response 

No Yes 

Doerig et al. 
(2016) 

CBT Amygdala 

Activity in this 
region pre-

intervention is 
negatively 

correlated with 
the outcome 

No No 

Godlewska, 
et al. (2016) 

Escitalopram 
ACC, insula, 

amydgala and 

thalamus 

Reduced 
activity after 

treatment 
associated with 

treatment 
response 

No Yes 

Gyurak et al. 
(2016) 

Escitalopram, 

sertraline and 
venlafaxine 

DLPFC and 

inferior 
parietal cortex 

Increased 
DLPFC 

activation at 
baseline 

associated with 
remission and 

increased 

inferior parietal 
activation 

associated with 
remission for 

SSRI and the 

No Yes 
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opposite pattern 

for SNRI 

Opmeer et 
al. (2016) 

- Rostral ACC 

Increased 
activation at 
baseline was 

prognostic for 
remission 

No Yes 

Szczepanik 
et al. (2016) 

Scopolamine Amygdala 

Increased 
activity at 

baseline was 
associated with 

symptoms 
improvement 

Yes 

(limitation 
section)e 

No 

Fang et al., 

(2017) 

Transcutaneous 
vagus nerve 

stimulation 

Insula 

Activation level 
at first 

stimulation 
session 

associated with 
clinical 

improvement  

No No 

Sankar, et 
al. (2017) 

Duloxetine 
Left inferior 

frontal activity 

Decreased 

activation 
following 

treatment 

No Yes 

Spies et al. 

(2017) 
Escitalopram 

Precuneus 

and PCC 

Deactivation 

before 
treatment was 

related to 

change in 
symptoms after 

2 weeks of 
treatment 

No No 

Godlewska 
et al. (2018) 

Escitalopram pgACC 

Activity before 
treatment was 

able to predict 
response status 

(responder vs 
non-responder) 

No No 
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at the level of 

individual 
participant 

Rubin-
Falcone et 

al. (2018) 

CBT 

sgACC, 

medial 
prefrontal 

cortex, lingual 
gyrus 

Increased 
activation 

following 
treatment 

associated with 
better treatment 

outcome 

No Yes 

 161 
ACC: Anterior Cingulate Cortex; CBT: Cognitive Behavioral Therapy; dACC: dorsal Anterior Cingulate 162 
Cortex; DLPFC: DorsoLateral Prefrontal Cortex; dmPFC: dorsomedial Prefrontal Cortex; mPFC : medial 163 
Prefrontal Cortex ; MDD: Major Depressive Disorder; PCC : Posterior Cingulate Cortex; pgACC: 164 
pregenual Anterior Cingulate Cortex; sgACC: subgenual Anterior Cingulate Cortex ; SSRI : selective 165 
serotonine reuptake inhibitor 166 
 167 
a "Test-retest effects were accounted for by the healthy control group, who underwent the same scans 168 
at the same time points" 169 
b "repeat fMRI assessment of healthy comparison subjects, as well as repeat assessment of the 170 
depressed adolescents, thus providing assessment of expected test-retest reliability" 171 
c "For analyses of change over time, a higher level fixed effects analysis was run for each subject, 172 
contrasting parameter estimates within subject for the response to slides at the two time points of 173 
interest." 174 
d”perhaps in part reflecting the poor test-retest reliability of amygdala response to these emotional faces 175 
[54], while resting-state fMRI data show greater robustness and reproducibility [55]. Test-retest reliability 176 
of a neuroimaging measure becomes particularly important in the development of biomarkers for 177 
prognosis and diagnosis [44].” 178 
e"some investigators have raised concerns regarding the reliability of the BOLD signal (Boubela et al., 179 
2015). Nevertheless, studies have found that emotional stimuli evoke a consistent pattern of responsivity 180 
over repeated sessions (Johnstone et al., 2005)." 181 

 182 

1.2.2. Results 183 

Though most of the reviewed studies could have reported test-retest reliability (i.e., 184 

participants performed two scans), most did not mention it. Seven mentioned reliability 185 

in the discussion and only one reported test-retest reliability at the subject level; Siegle 186 

et al. (2012) reported “sgACC z scores and reactivity had moderate test-retest 187 

reliability in controls undergoing testing approximately 16 weeks apart (N=27; r=0.39 188 
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[P=0.04]). All but 1 had a pretest z score less than 0.5, and all but 2 had a posttest z 189 

score less than 0.5, suggesting stability within a restricted range.” Other studies that 190 

mention reliability describe stability of group effects. For example, “Test-retest effects 191 

were accounted for by the healthy control group, who underwent the same scans at 192 

the same time points” (Walsh et al., 2007) is often reported in the discussion. This 193 

technique, while valuable, does not yield estimates of test-retest reliability at the 194 

individual subject level; the absence of a main effect of Time is evidence of the lack of 195 

a mean shift, but not of the stability of participants ranks.  196 

 197 

1.3. rtfMRI-nf Studies Review 198 

Interventions that use biological measures as real-time targets, including rtfMRI-nf 199 

also implicitly assume reliability. rtfMRI-nf trains patients to regulate the hemodynamic 200 

activity in regions of interest (Decharms, 2008) with the hope that changing a causal 201 

mechanism will result in symptom changes. rtfMRI-nf appears useful for several clinical 202 

populations, including patients with MDD (Thibault et al., 2018). Most patients can 203 

learn volitional control of hemodynamic activity in a targeted brain region (Fovet et al., 204 

2015) which has been associated with clinical improvements (Fovet et al., 2015; 205 

Linden, 2014; Linden et al., 2012; Young et al., 2014) suggesting potential translational 206 

applications (Decharms, 2008; Ruiz et al., 2014; Thibault et al., 2018). An implicit 207 

assumption of rtfMRI-nf is that the signal measured on one day represents the same 208 

quantity measured on subsequent days, and thus performance on that metric can be 209 

trained over days. Consequently, test-retest reliability seems a strong prerequisite. 210 

Thus, as for prediction studies, we considered whether test-retest reliability is being 211 

reported in the fMRI neurofeedback literature. 212 

1.3.1. Method 213 

A PubMed search with the key words “(neurofeedback AND fMRI) OR rt-fMRI-nf) 214 

AND (depression OR MDD OR major depressive disorder” provided 44 results. After 215 

removing articles not including rtfMRI-nf or patients suffering from MDD, we were left 216 

with 11 studies (Table 2). 217 

 218 
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Table 2: rt-fMRI-nf studies in Major Depressive Disorder and mention and 219 

possibility of test-retest reliability  220 

Reference Neurofeedback ROI 

Mention 
of the 

reliability 
of the 
signal 

Possibility 
to test 
signal 

reliability 

How 
could 

they look 
at 

reliability 

Linden et al. (2012) Upregulation 

Functional 

localizer of 
brain areas 

involved in 
the 

generation of 

positive 
emotions 

(e.g., VLPLC, 
insula) 

No Yes 

Same 
regions 

selected 
by the 

localizer 

on 
different 

sessions 

Zotev, et al., (2014) Upregulation 
Left 

amygdala 

(anatomical) 

No No - 

Young et al. (2014) 

a 
Upregulation 

Left 

amygdala 
(anatomical) 

No Yes 

Reliability 

of fMRI 
signal in 

ROI 

Yuan et al. (2014)a Upregulation 

Left 

amygdala 
(anatomical) 

No No - 

Zotev et al. (2016)a Upregulation 
Left 

amygdala 

(anatomical) 

No No - 

Hamilton et al. 
(2016) 

Downregulation 

Functional 

localizer of 
the salience 

network 

No No - 

Young et al. (2017)b Upregulation 
Left 

amygdala 

(anatomical) 

No Yes 

Reliability 

of fMRI 
signal in 

ROI 
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Young, Misaki, et 
al. (2017)b 

Upregulation 
Left 

amygdala 

(anatomical) 

No Yes 

Reliability 

of fMRI 
signal in 

ROI 

Young et al. (2018)b Upregulation 
Left 

amygdala 

(anatomical) 

No Yes 

Reliability 

of fMRI 
signal in 

ROI 

MacDuffie et al. 
(2018) 

Upregulation 

and 
downregulation 

Functional 

localizer of 
ACC 

No No - 

Mehler et al. (2018) Upregulation 

Functional 
localizer of 

brain areas 
involved in 

seeing 

positive 
versus 

neutral 
pictures (e.g., 

insula and 
striatum) 

No Yes 

Same 
regions 

selected 
by the 

localizer 
on 

different 
sessions 

 221 
ACC: Anterior Cingulate Cortex; VLPFC: Ventrolateral Prefrontal Cortex  222 
References associated with the same letter refer to the same data set  223 

1.3.2. Results 224 

None of the examined fMRI-nf studies reported on the reliability of the signal being 225 

trained (Table 2 and specific discussion of functional localizers in Box 4 in 226 

supplements).  227 

 228 

1.4. Conclusions Thus Far 229 

MDD studies using fMRI for clinical prediction or treatment rarely mention reliability, 230 

mirroring the more general fMRI literature (for meta-analysis, see Elliott et al., 2020). 231 

This lack of reporting could be due to failure to consider psychometrics important, or 232 

systematic decisions not to report observed low reliabilities. Indeed, reliability in 233 

published fMRI research in non-clinical studies, across protocols, tasks, regions of 234 

interest, psychological functions, and retest intervals have been fairly low (ICC~0.50), 235 
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with most published studies reporting values between 0.33-0.66. These values are 236 

mostly below “good” reliability thresholds for psychometrically sound clinical tests 237 

(~0.6).  238 

 239 

2. POTENTIAL WAYS TO OPTIMIZE TEST-RETEST RELIABILITY IN fMRI/rtfMRI-240 

NF 241 

To facilitate reporting of reliability in clinical studies as part of every-day 242 

neuroimaging-science, the remainder of this article is dedicated to introducing ways to 243 

report, improve, and increase clinical applicability of test-retest reliability for fMRI in 244 

clinical populations. We apply and evaluate these suggestions in two published data 245 

sets (Siegle et al., 2012; Young et al., 2017b).  246 

There is already a strong literature on optimizing preprocessing, which can increase 247 

measurement of true signal, and thus reliability (Andersson et al., 2001; Miki et al., 248 

2000; Oakes et al., 2005; Zhilkin and Alexander, 2004). We therefore begin by 249 

considering whether using alternate ways of indexing task-related reactivity in single-250 

subject data with optimized preprocessing lead to improved test-retest reliability.  251 

As each combination of task, design, scanner, preprocessing and analysis strategy 252 

has a unique value of reliability that cannot necessarily be generalized to other studies 253 

(Braver et al., 2010), it may be useful to have standardized generally applicable 254 

methods to find out which regions and analysis methods have sufficient psychometric 255 

qualities to be used as biomarkers or in which the signal is stable enough to be able to 256 

give relevant feedback of its activation. 257 

 258 

2.1. Optimize indices of task-related reactivity 259 

The first possibility we consider involves optimizing indices for task related 260 

reactivity in fMRI. This Blood Oxygen Level Dependent (BOLD) response is generally 261 

considered to be convolution of the time-course of neural activity with a physiological 262 

hemodynamic response. Mis-specification of the shape of BOLD reactivity can 263 

introduce inefficiency and noise into estimates, which decreases reliability in human 264 

(Handwerker et al., 2012; Lindquist et al., 2009; Shan et al., 2014) and animal models 265 

(Peng et al., 2019). If, for example, neural responses to task stimuli are sustained in 266 

depression rather than increased in amplitude (e.g., Mandell, Siegle, Shutt, Feldmiller, 267 

& Thase, 2014), standard indices such as the amplitude of the canonical BOLD 268 

response may not capture relevant aspects of the pathology.  269 
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Thus, we propose evaluating indices such as the average amplitude, area under 270 

the curve and timing/shape of the curve of the BOLD response in addition to its 271 

canonical amplitude. Gamma variate models, in particular, yield parameters for onset, 272 

rise and fall slopes, and magnitude of hemodynamic responses (e.g., Larson et al., 273 

2006), which can be evaluated for reliability. Similarly, including temporal and 274 

dispersion derivatives can account for individual differences in peak response timing 275 

and small differences in HRF length, providing larger test-retest reliability values 276 

(Fournier et al., 2014).  277 

 278 

2.2. Examine Regions with Voxel-Wise High Test-Retest Reliability 279 

When considering task-related reactivity in a region of interest (ROI), it is useful 280 

to reduce voxelwise reactivity to a single or few indices which capture reactivity across 281 

the region as a whole. The same consideration applies for reliability. Caceres et. al. 282 

(2009) suggest computing the ICC in each voxel within a region of interest (ROI) and 283 

reporting the median ICC as an index of region’s test-retest reliability. This approach 284 

has been applied practically (Fournier et al., 2014; Lois et al., 2018). However, several 285 

potential biomarkers and neurofeedback targets identified in the literature, including 286 

the amygdala (Lebow and Chen, 2016; Young et al., 2014) and the sgACC (Siegle et 287 

al., 2012), consist of subregions with anatomical and functional heterogeneity 288 

(Hrybouski et al., 2016; Palomero-Gallagher et al., 2019). Their reliability may not be 289 

the same across these sub-divisions (Brabec et al., 2010; Janak and Tye, 2015; 290 

LeDoux, 2012). Therefore, it is possible that only some parts of ROIs may have 291 

adequate reliability and that the median reliability will not capture the most reliable 292 

parts of the signal. Just as questionnaires are traditionally constructed by eliminating 293 

unreliable items from an initial theoretically plausible set (Sheatsley, 1983), an index 294 

that inherits solely from the reliable voxels may increase psychometric properties of 295 

the preserved portions of regions.  296 

Ten years ago, Bennet and Miller (2010) suggested that voxelwise reliability 297 

constitutes the most rigorous criteria of reliability since it implies that the level of activity 298 

in all voxels should remain consistent between scans. Although few studies have used 299 

this approach, we contend the available psychometric arguments weight in favor of 300 

voxel-wise computation of ICCs, restricting "reliable” ROIs to those regions in which all 301 

voxels have good or excellent reliability.  302 

 303 
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2.3. Optimize Models to Account for Individual and Clinical Features 304 

Minimizing sources of non-interest that could vary between administrations 305 

increases the reliability of acquired data (Lin and Monica Way, 2014). Some fMRI noise 306 

sources such as differences in instrumentation, time of day, motion, etc. can be 307 

controlled, to some extent, via design. Tasks can be selected which have few practice 308 

effects and pre-baseline training can remove practice and strategy-development 309 

effects (Barch and Mathalon, 2011; Palmer et al., 2018). Choosing as-simple-as-310 

possible tasks can minimize the impact of non-task cognitive processes. Standardizing 311 

instructions and training procedures helps to ensure participants understand the task 312 

before the first administration (Barch and Mathalon, 2011). Effects of other time-313 

varying noise sources, such as thermal and physiological noise, are routinely 314 

minimized via preprocessing procedures (Krüger and Glover, 2001).  315 

That said, if sources of variation across time, such as physiological or cognitive 316 

features, cannot be fully managed within design or processing, statistical methods for 317 

adjusting test-retest reliability estimates for them (Atri et al., 2011; Hsiao et al., 2011; 318 

Laenen et al., 2006) may be important to consider. Indeed, individual differences in 319 

state anxiety can account for amygdala activation (Calder et al., 2011) and habituation 320 

(Sladky et al., 2012), and, variation in rumination in depression is continuously 321 

associated with individual differences in amygdala, hippocampal, and prefrontal 322 

reactivity to emotional stimuli (Mandell et al., 2014; Siegle et al., 2002). Thus, true 323 

signal differences due to anxiety, mood or other symptoms between scans, especially 324 

if test-retest reliability is being evaluated in the context of possible treatment-related 325 

effects, might account for apparently unreliable neural responses, particularly to 326 

emotional stimuli. Thus, it may be useful to account for individuals’ differences that 327 

could change across time statistically in estimating reliability, e.g., via the inclusion of 328 

clinical covariates.  329 

 330 

2.4. Examine Reliability Within Relevant Tasks and Clinical Populations 331 

Estimating reliability in healthy participants or symptomatic individuals who do 332 

not receive intervention may help separate effects of symptom change from practice 333 

effects. Yet, these approaches can introduce other confounds (e.g., if a task is reliable 334 

in patients but not controls or non-treatment seeking symptomatic individuals). The 335 

majority of studies have examined reliability of fMRI data in homogenous samples of 336 

healthy, often young, university students (Bennett and Miller, 2010; Lois et al., 2018). 337 
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Studies reviewed in Table 1 that discuss reliability in MDD generally restrict their 338 

discussion to whether there was a main effect of Time in healthy controls. Generally, 339 

BOLD response variability is greater in forms of between-subject responses than within 340 

(Aguirre et al., 1998). A limitation of ICC is that simultaneous inclusion of within and 341 

between subject variability causes estimators to be affected by sample composition. 342 

As groups might differ in the degree to which regional signals are reliable between 343 

measurements (Fournier et al., 2014), and because ICCs are proportional to between 344 

subject variability, heterogeneous samples can produce different ICCs even with the 345 

same degree of within-subject reliability of test-retest values. Using only healthy control 346 

participants may underrepresent true variability or over represent measurement errors 347 

in the population of interest, yielding inaccurate reliability estimates. Similarly, non-348 

treatment seeking patients differ from treatment seeking patients on many variables 349 

that could affect test-retest reliability, such as symptomatology and comorbidity 350 

(Galbaud Du Fort et al., 1999). 351 

Thus, testing reliability in the population of interest may provide more accurate 352 

estimates. We therefore recommend the use of representative samples to create a 353 

voxel-wise, population- and task-specific map of test-retest reliability. For example, if 354 

a task is to be used to distinguish symptomatic from healthy individuals, this method 355 

should be applied to a mixed population of healthy and symptomatic participants prior 356 

to the clinical application of the task. If the purpose is to distinguish respondents and 357 

non-respondents to a treatment, we recommend assessing reliability among 358 

treatment-seeking patients. 359 

 360 

3. EVALUATION OF SUGGESTED OPTIMIZATIONS IN A PROGNOSTIC 361 

NEUROIMAGING TREATMENT OUTCOME DATASET  362 

We have described several approaches that could be useful when examining 363 

and seeking to improve test-retest reliability in service of clinical translation including 364 

R1) optimizing BOLD signal parameterization, R2) using regions or voxels with 365 

stronger psychometric properties, R3) accounting for within-individual changes and 366 

R4) studying relevant tasks and populations for the intended application. In this section 367 

we demonstrate feasibility of these approaches and examine whether they are useful 368 

when applied to a published clinical fMRI dataset (Siegle et al., 2012). Our code for 369 

these analyses is freely available from https://github.com/PICANlab/Reliability_toolbox 370 

in the folder named “activation_task_reliability”. 371 
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3.1. Method 372 

The sample consisted of participants described in Siegle et al. (2012) 373 

augmented by the addition of 8 patients who completed the same protocol after that 374 

paper was submitted, yielding 57 patients with major depressive disorder (MDD), and 375 

35 healthy control participants (see supplement for details of this dataset and its 376 

relationship to Siegle et al 2012). Briefly, participants with MDD completed a slow 377 

event-related task during 3T fMRI in which they labeled the valence of emotional words 378 

(here, as in the published dataset, we analyzed only nominally negative words) before 379 

and after 12-16 weeks of Cognitive Therapy. 380 

We computed reliability estimates within 4 ROIs which the literature suggests 381 

may function as biomarkers for treatment response including the amygdala (Arnone et 382 

al., 2012; Godlewska et al., 2012; Sheline et al., 2001), dorsolateral prefrontal cortex 383 

(DLPFC, Koenigs and Grafman, 2009), rostral anterior cingulate cortex (rACC, Hunter 384 

et al., 2013) and subgenual cingulate cortex (sgACC, Siegle et al., 2012b; Straub et 385 

al., 2015; Taylor et al., 2018) (our region-wise definitions are included in Box 1 in 386 

Supplement).  387 

3.1.1. Optimize the BOLD Signal 388 

The BOLD response to negative words was modeled within participants using 389 

4 different methods including 1) amplitude of a canonically shaped BOLD signal (using 390 

AFNI’s 3dDeconvolve with a narrow tent function ('BLOCK5(1,1)', Cox, 1996), 2) Area 391 

under the curve (via multiple regression of a delta function across 8 TRs using 392 

3dDeconvolve, i.e. computed with Finite Impulse Response/FIR basis, with sum of 393 

betas as the parameter retained); 3) Peak amplitude from the same regressions as #2, 394 

and 4) a gamma variate model with parameters for onset-delay, rise-decay rate, and 395 

height. Voxelwise outliers outside the Tukey hinges were windsorized across 396 

participants and ICCs (3,1) were computed (Shrout and Fleiss, 1979) within individuals 397 

for each modeling method using custom Matlab code. While ICC(2,1) allows 398 

generalizing results obtained from different scanners, we chose to use ICC(3,1) to be 399 

able to compare with most of the literature, given that it is the most widely used ICC. 400 

This approach also allowed us to examine the importance of including scanner as a 401 

covariate in 3.1.3.  402 

3.1.2. Compute Voxelwise Reliability  403 
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To measure the benefit of identifying reliable voxels, we calculated the mean, 404 

median and standard deviation of the ICCs in each of the ROIs for each modeling 405 

method and each group.  406 

3.1.3. Include Clinical and Design Related Measures 407 

We examined whether indices of reliability increased when clinical and design-408 

related measures were included. As the ICC does not easily allow inclusion of 409 

covariates, we used semi partial correlations within the context of multiple regressions 410 

with and without covariates to assess changes in reliability, where covariates were pre 411 

and post clinical measures, as: 412 

 413 
This model accounts for the potential that participants who show little change in 414 

symptoms may have better test-retest reliability. Modelling these clinical effects at the 415 

group level should make it possible to identify variance unique to test-retest reliability. 416 

We included indices of pre- and post-treatment depressive symptomatology 417 

(Beck Depression Inventory; BDI, Beck et al., 1996), state and trait anxiety 418 

(Spielberger, 1983), rumination (Nolen-Hoeksema et al., 1993), and sleepiness 419 

(Johns, 1991) administered on the scan day, the scanner on which data were acquired, 420 

and participant’s group when patients and controls were considered in one sample, 421 

coded as dummy variables, as covariates. Missing data were imputed via regression 422 

from the other administered measures also used as covariates.  423 

A primary question was whether any of the proposed techniques described 424 

above, including different BOLD models, accounting for voxelwise variability, and the 425 

use of covariates, would differentially affect reliability estimates (i.e., semi-partial 426 

correlations). As such, after computing reliability estimates at each voxel, we rank 427 

ordered them across all permutations of BOLD estimate parameters (6 parameters) 428 

and the use or non-use of covariates (2 conditions) at each voxel per ROI, yielding 12 429 

x #-voxels rankings per ROI. Following a Kolgomorov-Smirnov test justifying the need 430 

to use non-parametric tests, we report a Kruskal-Wallis test to determine whether the 431 

rankings differed across models in each ROI. If they did, as a simple effects test, we 432 

generated confidence intervals around the mean of rankings for each of the 12 433 

conditions via a one-way ANOVA (via Matlab’s multcompare function). Non-434 

overlapping confidence intervals are interpretable as significant differences between 435 

one condition and any other. To display them we generated figures showing the mean 436 
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of rankings for each condition, which will be numbers on the order of 1 to 12 x # voxels, 437 

with higher means representing being at the top of the rankings across many voxels 438 

within the ROI.  439 

3.1.4. Use Clinically Representative Samples 440 

 All analyses were conducted on the whole sample (controls and patients) to 441 

establish likely reliability of tests that could be used to discriminate groups, and on 442 

patients only, to establish likely reliability of clinical prognostic and change indicators. 443 

We considered multiple reliability effect size thresholds which might be used in other 444 

studies (0.4 and 0.6 for fair and good reliability and 0.7, and 0.75 for traditional labels 445 

of the data as “reliable” and clinically meaningful). 446 

3.1.5. Type 1 error control 447 

As 1) each of the hypotheses and regions examined for this manuscript was 448 

considered a different family of tests and 2) we want our results to generalize to 449 

reliability as it is reported in the confirmatory biomarker and neurofeedback literatures 450 

where only one region is generally examined, consistent with the literature on test-451 

retest reliability in neuroimaging, type I error was not controlled across regions and 452 

hypotheses for ROI-wise statistics. For simple-effects tests of differences in rankings 453 

across conditions, we controlled for the number of conditions with a Bonferroni test. 454 

For voxelwise statistics we subjected all voxelwise residual maps to empirical cluster 455 

thresholding (AFNI’s 3dFWHMx and 3dClustSim, acf model with small-volume 456 

corrections for examined regions) using a p threshold (-pthr) based on each considered 457 

effect size threshold (see in supplementary materials, table S3 for more details).  458 

 459 

3.2. Results and discussion 460 

3.2.1. Optimizing the BOLD signal 461 

ICC’s were uniformly low (<.3) for all BOLD parameterizations when entire ROIs 462 

were considered (Table 4). Kruskal Wallis tests did suggest differential reliability across 463 

our parameterizations (Table 5a). This held when the two outlying uniformly low 464 

reliability parameterizations (rise decay with and without covariates) were removed 465 

from consideration (Table 5b). Yet, there were non-overlapping confidence intervals 466 

among counts of rank orderings of parameterizations for voxelwise tests, suggesting 467 

that at least for some subsets of regions, some parameterizations were superior 468 

(Supplement Figure S1, Table S1). For example, in the full sample, for the amygdala, 469 

amplitude without covariates was superior to other parameters. Over all ROIs, the most 470 
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reliable parameters were amplitude, canonical amplitude, and height (Figure 1 shows 471 

voxelwise variation within a Priori ROIs for the height parameter) for the whole sample 472 

and amplitude, area under the curve, and height for only patients (Figure S1 and Table 473 

S1). However, looking at ROIs and samples independently, the parameter offering the 474 

highest levels of reliability varied. 475 

 476 
Figure 1: Test-retest reliability in ROIs estimated with voxel wise ICCs using 477 

height parameter, a threshold of ICC>0.4 and cluster correction applied for this 478 

threshold in A. Siegle et al. (2012) dataset of patients and B. Young et al. (2017) 479 

data set of the transfer run in the experimental group (signal with training) 480 

preprocessed with the TBV style pipeline. 481 

 482 

3.2.2. Voxelwise reliability 483 

In the whole sample, moderate reliability (ICC>.4) in clusters large enough to 484 

infer significance was observed in the DLPFC using the canonical amplitude model 485 

and in the amygdala using amplitude (Table 3). “Good” (ICC>.6) reliability was reached 486 

in clusters large enough to infer significance when only the patients were considered, 487 

using amplitude and height in the DLPFC. These levels of voxelwise test-retest 488 

reliability were higher than using the median or mean value of ICCs within whole ROIs 489 

(Table 4). Levels of generally accepted reliability for clinical measures (ICC>.7) were 490 

not observed in clusters large enough to report. 491 

A B

1

0

0.4

0.6
0.7
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Table 3: Table of number of voxels reaching different reliability thresholds for 492 

each sample, first level parameter, and ROI with cluster correction applied. 493 

 ROI 
Amydgala 

(242 
voxels) 

DLPFC 
(2675 

voxels) 

rACC  
(865 

voxels) 

sgACC 
liberally 

thresholded 
(33 voxels) 

sgACC 
conservatively 

thresholded 
(18 voxels) 

Population 
Reactivity 

model 
ICC 

thresholds 
ICC 

thresholds 
ICC 

thresholds 
ICC 

thresholds 
ICC thresholds 

  0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 

Controls & 
patients 

Canonical 
amplitude 

0 0 465 0 0 0 0 0 0 0 

 Amplitude 66 0 5 0 0 0 0 0 0 0 

 
Area 

under the 
curve 

10 0 0 0 0 0 0 0 0 0 

 
Onset 
delay 

0 0 0 0 0 0 0 0 0 0 

 Rise decay 0 0 0 0 0 0 0 0 0 0 

 Height 0 0 290 2 0 0 0 0 0 0 

Patients 
Canonical 
amplitude 

0 0 299 6 6 0 0 0 0 0 

 Amplitude 24 0 0 0 0 0 0 0 0 0 

 
Area 

under the 
curve 

0 0 0 0 0 0 0 0 0 0 

 
Onset 
delay 

0 0 0 0 0 0 0 0 0 0 

 Rise decay 0 0 0 0 0 0 0 0 0 0 

 Height 0 0 374 5 5 0 2 0 1 0 

 494 

Table 4: Table of mean, standard deviation and median values of ICCs for each 495 

sample, reactivity model, and ROI. 496 

Population 
Reactivity 

model 
Amygdala DLPFC rACC 

sgACC 
liberally 

thresholded 

sgACC 
conservatively 

thresholded 

Controls & 
patients 

Canonical 
amplitude 

0.11 (±0.09); 

0.11 

0.24 

(±0.16); 

0.09 

(±0.10); 

0.15 (±0.08); 

0.13 

0.17 (±0.09); 

0.18 
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0.26 0.09 

Amplitude  
0.23(±0.14); 

0.22 

0.12 

(±0.11); 

0.12 

0.11 

(±0.10); 

0.12 

-0.01 (±0.13); 

-0.04 

-0.04 (±0.14); -

0.08 

Area under 
the curve 

0.13 (±0.14); 

0.12 

0.08 

(±0.10); 

0.07 

0.03 

(±0.11); 

0.03 

-0.03 (±0.09); 

-0.04 

-0.06 (±0.10); -

0.07 

Onset delay  
0 (±0.09); -

0.01 

0.01 

(±0.09); 0 

0 (±0.10); 

0 

0 (±0.08); 

0.01 
-0.01 (±0.10); 0 

Rise decay  0 (±0); 0 0 (±0); 0 0 (±0); 0 0 (±0); 0 0 (±0); 0 

Height  
0.08 (±0.10); 

0.09 

0.21 

(±0.15); 

0.23 

0.13 

(±0.12); 

0.14 

0.16 (±0.12); 

0.17 

0.18 (±0.12); 

0.23 

Patients 

Canonical 
amplitude 

0.09(±0.11); 

0.11 

0.22 

(±0.16); 

0.23 

0.08 

(±0.14); 

0.08 

0.10 (±0.12); 

0.07 

0.14 (±0.15); 

0.12 

Amplitude 
0.22 (±0.15); 

0.22 

0.11 

(±0.13); 

0.11 

0.10 

(±0.13); 

0.11 

-0.06 (±0.15); 

-0.07 

-0.08 (±0.14); -

0.08 

Area under 
the curve 

 
0.13(±0.14); 

0.12 

0.6 

(±0.12); 

0.03 

0.03 

(±0.13); 

0.04 

-0.08 (±0.13); 

-0.08 

-0.10 (±0.13); -

0.09 

Onset delay  
-0.01 (±0.12); 

-0.01 

0.01 

(±0.12); 0 

-0.01 

(±0.13); -

0.01 

0.02 (±0.11); 

0.02 

0.01 (±0.12); 

0.05 

Rise decay  0 (±0); 0 0 (±0); 0 0 (±0); 0 0 (±0); 0 0 (±0); 0 

Height  
0.09 (±0.12); 

0.08 

0.22 

(±0.16); 

0.23 

0.12 

(±0.15); 

0.13 

0.16 (±0.17); 

0.18 

0.17 (±0.17); 

0.21 

Mean (±standard deviation); median 497 
 498 
Table 5a: Table of Kruskal Wallis tests’ output for each sample, reactivity model 499 

with and without covariates, and ROI with Bonferroni correction applied. 500 

Population Amygdala DLPFC rACC 
sgACC 
liberally 

thresholded 

sgACC 
conservatively 

thresholded 
Controls & 

patients 
H(11)=1414.67, 

p<0.001 
H(11)=12717.07, 

p<0.001 
H(11)=4794.14, 

p<0.001 
H(11)=206.47, 

p<0.001 
H(11)=118.32, 

p<0.001 
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Patients 
H(11)=1233.13, 

p<0.001 
H(11)=10371.75, 

p<0.001 
H(11)=4477.55, 

p<0.001 
H(11)=240.89, 

p<0.001 
H(11)=136.93, 

p<0.001 

Note: Applying Bonferroni correction for 6 reactivity models with and without 501 

covariates (p<0.05/12=0.004). 502 

 503 

Table 5b: Table of Kruskal Wallis tests’ output for each sample, reactivity model 504 

with and without covariates, and ROI with Bonferroni correction applied, without 505 

rise decay. 506 

Population Amygdala DLPFC rACC 
sgACC liberally 

thresholded 

sgACC 
conservatively 

thresholded 
Controls & 

patients 
H(9)=285.88, 

p<0.001 
H(9)=4876.99, 

p<0.001 
H(9)=644.19, 

p<0.001 
H(9)=58.90, 

p<0.001 
H(9)=40.55, 

p<0.001 

Patients 
H(9)=25.68, 

p=0.002 
H(9)=1588.15, 

p<0.001 
H(9)=190.42, 

p<0.001 
H(9)=108.21, 

p<0.001 
H(9)=67.20, 

p<0.001 

Note: Applying Bonferroni correction for 6 reactivity models with and without 507 

covariates (p<0.05/10=0.005). 508 

 509 

3.2.3. Clinical and Design Related Measures 510 

The addition of covariates never resulted in significantly higher average ranks 511 

for semi partial correlations in any ROI, in the whole sample or just the patients (Figure 512 

S1). In other words, adding covariates did not improve the reliability, and in some 513 

instances made it worse. 514 

 515 

4. EVALUATION OF SUGGESTED OPTIMIZATIONS IN AN EMPIRICAL 516 

NEUROFEEDBACK DATASET 517 

To further support the feasibility of applying these recommendations and to 518 

evaluate the consistency of their performance in a second dataset, we consider a 519 

published fMRI neurofeedback dataset (Young, Siegle, et al., 2017, code available 520 

from https://github.com/PICANlab/Reliability_toolbox in the folder named “rtfMRI-521 

nf_reliability”). 522 

 523 

4.1. Method 524 

This dataset constituted 18 patients in the experimental group who received 525 

amygdala neurofeedback and 16 patients in the control group who received parietal 526 
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neurofeedback. Briefly, participants completed two training scans on different days 527 

within 2 weeks, each including a “baseline” and “transfer” runs during which no 528 

feedback was presented. The analyzed task was a 40-second per block design during 529 

which participants alternately rested, worked to upregulate a target region during recall 530 

of positive memories, and did a distraction (counting) task (see supplement Box 5 for 531 

details of this dataset). Here, we focus on a) the baseline data on the two training days 532 

in control-feedback participants during recall of positive autobiographical memories 533 

prior to neurofeedback training. As their amygdala signal did not change over the 534 

course of the study at the group level (Young et al., 2017b), this allows us to examine 535 

test-retest reliability of the left amygdala signal without the influence of neurofeedback. 536 

b) the left amygdala signal during the two transfer runs in the experimental group, as 537 

this represents the effect of neurofeedback training. Activity during the two post-538 

training transfer runs did not differ at the group level, allowing us to examine the test-539 

retest reliability of the amygdala signal after neurofeedback training. Because this 540 

dataset only included patients with MDD, only the first 3 principles (i.e., optimization of 541 

the BOLD signal, computation of voxelwise reliability, and inclusion of clinical and 542 

design related measures) are evaluated in this dataset.  543 

Feedback signal 544 

To analyze the feedback signal averaged over the left amygdala we used the 545 

output of the script used in Young, Siegle, et al. (2017) that allowed computation of the 546 

feedback signal in real-time before considering the voxel-wise signal. 547 

Voxel-wise 548 

As rtfMRI-nf involves real-time preprocessing of the data, we sought to examine 549 

whether this kind of preprocessing could affect the test-retest reliability of the signal. 550 

We therefore performed data preprocessing emulating the real-time data processing 551 

performed by the commercially available neurofeedback software Turbo BrainVoyager 552 

(BrainVoyager, The Netherlands; henceforth “TBV style”) and a more classic 553 

contemporary post-hoc preprocessing stream (here referred to as “standard 554 

preprocessing”). Both streams were implemented using AFNI. 555 

- TBV style preprocessing 556 

Turbo BrainVoyager performs the following functions in real-time: 3D motion 557 

correction, spatial smoothing, and drift removal via the design matrix. We used AFNI 558 

to approximate these steps. After spatially transforming the anatomical then functionals 559 

to the International Consortium for Brain Mapping 152 template, we then rescaled them 560 
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to conform to the Talairach atlas dimensions and then performed motion correction to 561 

the first image, spatial smoothing 4mm FWHM smoothing kernel and fourth order 562 

detrend for drift removal.  563 

- Standard preprocessing 564 

MRI pre-processing included despiking, volume registration and slice timing correction 565 

for all EPI volumes in a given exam. After applying an intensity uniformity correction 566 

on the anatomical, the anatomical was spatially transformed to the International 567 

Consortium for Brain Mapping 152 template and rescaled to conform to the Talairach 568 

atlas dimensions. Then, the fMRI data for each run were warped nonlinearly and the 569 

same spatial transformations were applied. The fMRI run was spatially smoothed 570 

within the grey matter mask using a Gaussian kernel with full width at half maximum 571 

(FWHM) of 4 mm. A first standard GLM analysis was then applied separately for each 572 

of the fMRI runs. The following regressors were included in the GLM model: six motion 573 

parameters and their derivatives as nuisance covariates to take into account possible 574 

artifacts caused by head motion, white matter and cerebrospinal fluid signals, and five 575 

polynomial terms for modeling drift. 576 

4.1.1. Optimize the BOLD Signal 577 

4.1.1.1. Amygdala signal 578 

From each participant’s real-time left amygdala signal we calculated an 579 

“amygdala signal” for each positive recall block minus the mean of the preceding rest 580 

block from the output of previously used scripts for real-time preprocessing (Young et 581 

al., 2017b), and recreated the feedback signal by taking the amount of activation at 582 

every TR during the experimental condition minus the mean activation in the previous 583 

rest condition, on the baseline run of control participants at visits 1 and 2 (signal without 584 

training) and on the transfer run of experimental participants at visits 1 and 2 (signal 585 

with training), independently. We then averaged the time course of the feedback signal 586 

over all happy blocks. We summarized the activation for each participant for each visit 587 

by either a mean of the amygdala signal or by fitting the time course with a gamma 588 

variate model with parameters for onset-delay, rise-decay-rate, and height (see 589 

Methodological choice to fit gamma variates in Supplement Box 2 for more information 590 

of this methodological choice).  591 

ICC(3,1) estimates were computed (Shrout and Fleiss, 1979) independently on the 592 

estimates of the feedback signal with and without training. 593 

4.1.1.2. Voxelwise signal 594 
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The same reactivity models as in the treatment outcome dataset were applied (see 595 

part 3.2.1.1) to data preprocessed with both types of preprocessing but adapted to this 596 

design (AFNI tent parameters to accommodate 40 s blocks as BLOCK(40,1), and area 597 

under the curve across entire blocks). 598 

4.1.2. Compute Voxelwise Reliability  599 

As in the treatment outcome data set, to measure the benefit of identifying 600 

reliable voxels, we calculated the mean, median and standard deviation of the ICCs in 601 

the left amygdala for each model, group, and additionally for both preprocessing 602 

pipelines. 603 

4.1.3. Include Clinical and Design Related Measures 604 

As in the treatment outcome data set, semi partial correlations were computed 605 

with and without covariates. We included indices of depressive symptomatology (Beck 606 

Depression Inventory; BDI, Beck et al., 1996), state and trait anxiety (Spielberger, 607 

1983), sleepiness and drowsiness administered on the scan day, and the scanner on 608 

which data were acquired coded as dummy variables, as covariates. There was no 609 

missing data. We then compared the semi-partial correlations across all models of 610 

individual responses with and without covariates for each group and preprocessing 611 

pipeline as in section 3.1.3, to understand which models offered adequate test-retest 612 

reliability and whether there were differences between them. 613 

4.1.4. Type 1 error control 614 

As discussed in section 3.1.5, cluster correction was applied on voxelwise 615 

statistics (further details in supplement table S4). 616 

4.2. Results and discussion 617 

4.2.1. Optimizing the BOLD signal 618 

4.2.1.1. Amygdala signal 619 

The mean amygdala signals with and without training showed poor reliability 620 

(ICCs<0.1). When the amygdala signal within the left amygdala was fit using a gamma 621 

variate function, the onset-delay and height parameters showed fair reliability for the 622 

signal without training (ICC=0.54 and ICC=0.47, respectively), with all other models, 623 

including those with training, showing minimal reliability (ICC<.1). Therefore, it appears 624 

that the shape of the signal without training is consistent across sessions and that the 625 

signal in the left amygdala is more reliable when unchanged by training, which is 626 

consistent with the assumption that training is changing the signal over time. 627 

4.2.1.2. Voxel-wise signal 628 
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Kruskal Wallis tests suggested there were differences between the parameters 629 

in reliability (Tables 6a and 6b). In particular, reliability for the height parameter (as well 630 

as amplitude for the signal without training) was higher than for other parameters 631 

(Figure S1). The height parameter also yielded a large enough cluster to infer 632 

significance for “excellent” (ICC>.7) reliability in both samples (Table 7, Figure 1 for 633 

illustration). 634 

The use of the standard preprocessing stream had non-significantly-different  635 

reliabilities from the stream emulating the real-time preprocessing run by Turbo 636 

BrainVoyager over all parameters with or without covariates, with the exception of the 637 

height parameter without covariates, which showed higher reliability with TBV style 638 

preprocessing than with standard preprocessing in the signal without training (see 639 

Figure S1). 640 

 641 

Table 6a: Table of Kruskal Wallis tests’ output for each sample, reactivity model 642 

with and without covariates in the left amygdala with Bonferroni correction 643 

applied. 644 

Population Amygdala 

Without training - Control - Baseline 
H(23)=2964.56, 

p<0.001 

With training - Experimental - Transfer 
H(23)=3142.17, 

p<0.001 

Note: Applying Bonferroni correction for 6 reactivity models with and without 645 

covariates (p<0.05/12=0.004). 646 

Table 6b: Table of Kruskal Wallis tests’ output for each sample, reactivity model 647 

with and without covariates in the left amygdala with Bonferroni correction 648 

applied, without rise decay. 649 

Population Amygdala 

Without training - Control - Baseline 
H(19)=1397.84, 

p<0.001 

With training - Experimental - Transfer 
H(19)=1702.57, 

p<0.001 

Note: Applying Bonferroni correction for 6 reactivity models with and without 650 

covariates (p<0.05/10=0.005). 651 

 652 
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Table 7: Table of number of voxels reaching different reliability thresholds for 653 

each sample, preprocessing, and first level parameter with cluster correction 654 

applied. 655 

ROI Amygdala (214 voxels)  
Preprocessing BV style Standard  

Population First level model 
ICC thresholds 

ICC 
thresholds 

 

0.4 0.6 0.7 0.75 0.4 0.6 0.7 0.75 

Without training - Control - 
Baseline 

Canonical 
amplitude 

0 0 0 0 0 0 0 0 

Amplitude 52 16 6 2 35 0 0 0 

Area under the 
curve 

0 0 0 0 40 0 0 0 

Onset-delay 0 0 0 0 0 0 0 0 

Rise-decay 0 0 0 0 0 0 0 0 

Height 78 26 13 13 53 24 9 5 

With training - Experimental - 
Transfer 

Canonical 
amplitude 

0 0 0 0 0 0 0 0 

Amplitude 66 4 2 2 42 11 3 2 

Area under the 
curve 

0 0 0 0 0 0 0 0 

Onset-delay 0 4 4 4 0 5 5 5 

Rise-decay 0 0 0 0 0 0 0 0 

Height 159 81 25 16 73 47 24 21 

 656 

4.2.2. Voxelwise reliability 657 

Some voxelwise ICC values obtained were higher than those computed on the 658 

real-time signal covering the entire left amygdala or mean or median ICC values 659 

computed over the entire left amygdala (Table 5 vs statistics reported in 4.2.1.1 and 660 

Table 6), with some clusters achieving an excellent level of reliability (ICC>.7, see 661 

Table 5) for standard and TBV-like preprocessing both for the trained and untrained 662 

signals, which did not occur for the region as a whole. 663 

 664 

Table 8: Table of mean, standard deviation and median values of ICCs for each 665 

sample, preprocessing, and first level parameter with cluster correction applied. 666 

Preprocessing TBV style Standard 
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Without training - 
Control - Baseline 

Canonical 
amplitude 

-0.07 (±0.21); -

0.09 

0.01 (±0.24); 

0 

Amplitude 0.29 (±0.2); 0.3 
0.26 (±0.22); 

0.27 

Area under the 
curve 

0.02(±0.21); 

0.01 

0.21 (±0.23); 

0.18 

Onset-delay 
-0.03 (±0.23); -

0.05 

-0.11 (±0.20); 

-0.14 

Rise-decay NA (±NA); NA NA (±NA); NA 

Height 
0.36 (±0.23); 

0.33 

0.17 (±0.38); 

0.24 

With training - 
Experimental - Transfer 

Canonical 
amplitude 

-0.11 (±0.21); -

0.12 

0.08 (±0.21); 

0.09 

Amplitude 
0.3 (±0.18); 

0.31 

0.26 (±0.21); 

0.25 

Area under the 
curve 

0.06 (±0.20); 

0.07 

0.13 (±0.18); 

0.13 

Onset-delay 
0.02 (±0.24); -

0.02 

-0.05 (±0.24); 

-0.13 

Rise-decay NA (±NA); NA NA (±NA); NA 

Height 
0.52 (±0.19); 

0.56 

0.35 (±0.28); 

0.34 

Mean (±standard deviation); median 667 
 668 

4.2.3. Clinical and Design Related Measures 669 

4.2.3.1. Amygdala signal 670 

Adding covariates when computing semi-partial correlations over the mean 671 

amygdala signal improved descriptively reliability estimates for the signal without 672 

training (from sr=0.11 to sr=0.14) as well as parameters tested to fit the signal with 673 

training (mean: from sr=0.06 to sr=0.12, onset-delay: from sr=0.14 to sr=0.21, rise-674 

decay: from sr=0.03 to sr=0.14, height: from sr=0.16 to sr=0.29) although in no case 675 

we did achieve a fair level of reliability (sr<0.4). 676 

4.2.3.2. Voxelwise signal 677 

The addition of covariates in never resulted in higher average ranks of 678 

semipartial correlation distributions on the untrained or trained signal preprocessed 679 

with the TBV-like or standard pipeline (Figure S1). 680 

 681 
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5. GENERAL DISCUSSION 682 

As stated in a recent meta-analysis (Elliott et al., 2020), task fMRI reliability is not 683 

systematically evaluated and when it is, task-related fMRI measures show poor 684 

reliability. Our literature review shows that both prognostic and interventional fMRI 685 

studies in MDD, which might otherwise be poised for clinical translation, also do not 686 

attend to reliability. We demonstrate that by attending to some fairly simple principles, 687 

we can achieve fair to good reliability in a clinical prediction outcome dataset and 688 

excellent reliability in a neurofeedback fMRI study dataset (Figure 1). These principles 689 

include careful modeling of the BOLD signal, identification of reliable voxels within 690 

regions of interest, and calculation of reliability in the population for which translational 691 

applications are being considered. Across both datasets, the height parameter from a 692 

gamma variate function was the most reliable way to model the BOLD signal, 693 

especially among patients with MDD, in some regions of interest, and was, in some 694 

combinations of region and population or training condition, more reliable than 695 

canonical amplitude, though in other cases the reverse was true (Table 3 and 5 and 696 

Figure S1). Consequently, we recommend that researchers explore multiple ways of 697 

modeling the BOLD signal, particularly including gamma variate modeling in MDD, 698 

before concluding their experiment has low reliability. It may also be helpful for 699 

software for real-time analysis of fMRI data to implement alternative, potentially more 700 

reliable ways of characterizing BOLD responses in real-time. 701 

Increasingly, functional differentiation of sub-regions of subcortical structures 702 

such as the amygdala has been acknowledged as important for fMRI (Balderston, 703 

Schultz, Hopkins, & Helmstetter, 2014; Ball et al., 2007; Michely, Rigoli, Rutledge, 704 

Hauser, & Dolan, 2020; Roy et al., 2009). The comparison of test-retest reliability 705 

estimates obtained on the feedback signal averaged over the whole amygdala versus 706 

these same estimates computed voxelwise in the neurofeedback dataset suggest non-707 

uniformity across the amygdala in signal reliability as well; the extent to which these 708 

differences explain previous results localizing function to subregions is unclear. Thus, 709 

we suggest it may be useful to use a voxel-wise or subregion approach to estimating 710 

test-retest reliability. Indeed, this method reveals significantly large clusters of voxels 711 

with excellent test-retest reliability in the left amygdala which could be used as masks 712 

for neurofeedback targets; our method is easily feasible for new studies. Such 713 

excellent reliability, which is a prerequisite for clinical translation, was not attained in 714 
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our dataset, using the more common computation of median ICCs for each ROI (e.g., 715 

as recommended by Caceres et al., 2009) (see Tables 4 and 6).  716 

Contrary to our hypotheses, we did not find that adding covariates to the model, 717 

including the scanner on which participants were run and severity, which did change 718 

as a function of intervention, improved test-retest reliability in these datasets (Figure 719 

S1) in ROI-based or whole-brain analyses (see Figure S2). That said, covariates may 720 

still be useful to include in other datasets – we recommend exploring this option further 721 

before dismissing their utility.  722 

Reliability did vary by whether the entire sample or only patient’s data were 723 

included and by whether or not participants were trained on the task, supporting the 724 

potential utility of quantifying reliability on tasks and populations that are relevant for 725 

the clinical application intended (Tables 3 and 5 and Figure S1).  726 

There are several limitations of this review and analyses. As we have focused 727 

only on MDD, it is unclear whether our conclusions apply transdiagnositically. 728 

Improving reliability may require different strategies in other diseases, such as 729 

Parkinsons, due to age-related atrophy, increased movement, and differences in 730 

neurovascular coupling (Lecrux et al., 2019; Paek et al., 2019). There are many fMRI-731 

based metrics we could have examined, including functional connectivity, volumetric 732 

measures, and resting state designs, which all provoke unique considerations for 733 

optimizing test-retest reliability, some of which have been explored elsewhere (e.g., 734 

Noble et al., 2019). Here, we focused on regional BOLD activity as it is a common 735 

feature of prediction and neurofeedback studies. Our published data sets had relatively 736 

small number of subjects. This is typical for most clinical fMRI studies, but does raise 737 

the concern that the sample is too small and underpowered. Therefore, we strongly 738 

encourage the replication of these results and that is also why we have applied these 739 

suggestions to two different data sets.  740 

 741 

6. CONCLUSIONS 742 

To summarize, demonstrating that mechanistic indices are reliable is important 743 

before their clinical adoption in prediction or treatment-development. The literature in 744 

these areas has implicitly accepted this assumption without testing it. Other non-clinical 745 

fMRI studies have shown many of the regions targeted in clinical fMRI studies have 746 

fairly low test-retest reliability, which was largely replicated using the most common 747 

analytic techniques in our datasets. Yet, we have suggested a few principles that 748 
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appear to improve the test-retest reliability of the obtained mechanistic signals, have 749 

shown their feasibility in two previously published fMRI data sets, and have made code 750 

publicly available so that researchers with minimal mathematical and programming 751 

knowledge can implement them. Wider adoption of these methods could help to realize 752 

the potential of clinical fMRI and could extend to improving psychometrics for other 753 

time-varying mechanistic indices.  754 
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