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Abstract 12 

Automated segmentation of cellular electron microscopy (EM) datasets remains a challenge. 13 

Supervised deep learning (DL) methods that rely on region-of-interest (ROI) annotations yield 14 

models that fail to generalize to unrelated datasets. Newer unsupervised DL algorithms require 15 

relevant pre-training images, however, pre-training on currently available EM datasets is 16 

computationally expensive and shows little value for unseen biological contexts, as these 17 

datasets are large and homogeneous. To address this issue, we present CEM500K, a nimble 25 18 

GB dataset of 0.5 x 106 unique cellular EM images curated from nearly 600 three-dimensional 19 

(3D) and 10,000 two-dimensional (2D) images from >100 unrelated imaging projects. We show 20 

that models pre-trained on CEM500K learn features that are biologically relevant and resilient to 21 

meaningful image augmentations. Critically, we evaluate transfer learning from these pre-trained 22 

models on six publicly available and one newly derived benchmark segmentation task and report 23 

state-of-the-art results on each. We release the CEM500K dataset, pre-trained models and 24 

curation pipeline for model building and further expansion by the EM community. Code is 25 

available at https://github.com/volume-em/cellemnet 26 

 27 
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Introduction 31 

 32 

Accurate image segmentation is essential for analyzing the structure of organelles and cells in 33 

electron microscopy (EM) image datasets. Segmentation of volume EM (vEM) data has enabled 34 

researchers to address questions of fundamental biological interest, including the organization of 35 

neural circuits [1][2] and the structure of various organelles [3][4][5]. Truly automated EM 36 

image segmentation methods hold the promise of significantly accelerating the rate of discovery 37 

by enabling researchers to extract and analyze information from their datasets without months or 38 

years of tedious manual labeling. While supervised deep learning (DL) models are effective at 39 

the segmentation of objects in natural images (e.g. of people, cars, furniture, and landscapes) 40 

[6][7][8][9] they require significant human oversight and correction when applied to the 41 

organelles and cellular structures captured by EM [10][11]. 42 

 43 

Many of the limitations of supervised DL segmentation models for cellular EM data result from 44 

a lack of large and, importantly, diverse training datasets [12][13][14]. Although several 45 

annotated image datasets for cell and organelle segmentation are publicly available, these often 46 

exclusively consist of images from a single experiment or tissue type, and a single imaging 47 

approach [15][16][17][18][19]. The homogeneity of such datasets often means that they are 48 

ineffective for training DL models to accurately segment images from unseen experiments. 49 

Instead, when confronted with new data, the norm is to extract and annotate small regions-of-50 

interest (ROIs) from the EM image, train a model on the ROIs, and then apply the model to infer 51 

segmentations for the remaining unlabeled data [15][16][17][18][19][20][21]. Often, not only are 52 

these models dataset-specialized, reducing their utility, they often fail to generalize even to parts 53 

of the same dataset that are spatially distant from the training ROIs [16][22]. 54 

 55 

Gathering more annotated data for model training from disparate sources could certainly improve 56 

a model’s ability to generalize to unseen images, yet it is rarely feasible for typical research 57 

laboratories to generate truly novel datasets; most have expertise in a particular imaging 58 

technique, organism or tissue type. Beyond collecting the EM data, manual segmentation is time-59 

consuming and, unlike for natural images, difficult to crowdsource because of the extensive 60 

domain knowledge required to identify objects in novel cellular contexts. Promising work is 61 
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being done in the area of citizen science as it pertains to EM data, but it is clear that there are 62 

limitations to the range of structures that can be accurately segmented by volunteers [23][24]. 63 

Moreover, structure-specific annotations will not solve the generalization problem for all 64 

possible EM segmentation targets; for example, thousands of hours spent labeling neurites is 65 

unlikely to buy any gains for mitochondrial segmentation. An efficient alternative to collecting 66 

additional structure-specific data is to use transfer learning. In transfer learning, a DL model is 67 

pre-trained on a general task and its parameters are fine-tuned on more specialized downstream 68 

tasks. A well-known example is to transfer parameters learned from the ImageNet classification 69 

task [25] to other classification or object detection tasks which have fewer training examples 70 

[26]. Transfer learning, when relevant pre-trained parameters are available, is the default 71 

approach for extracting the best performance out of small training datasets [27][28]. While 72 

ImageNet pre-trained models are sometimes used for cellular EM segmentation tasks [29][30], 73 

high-level features learned from ImageNet may not be applicable to biological imaging domains 74 

[31].Building a more domain-specific annotated dataset large enough for pre-training would be a 75 

significant bottleneck, and indeed, it required multiple years to annotate the 3.2 x 106 images that 76 

form the basis of ImageNet. Fortunately, recent advances in unsupervised learning algorithms 77 

have now enabled effective pre-training and transfer learning without the need for any up front 78 

annotations; in fact, on many tested benchmarks, unsupervised pre-training leads to better 79 

transfer learning performance [32][33][34][35][36][37][38].  80 

 81 

To provide a resource for the EM community to explore these exciting advances, we constructed 82 

an unlabeled cellular EM dataset which we call CEMraw, containing images from 101 unrelated 83 

biological projects. The image data superset, comprising 591 3D image volumes and 9,626 2D 84 

images are collated from a collection of experiments conducted in our own laboratory as well as 85 

data from publicly available sources. After gathering this set of heterogeneous images, we create 86 

a pipeline where we first remove many nearly identical images and then filter out low-quality 87 

and low-information images. This results in a highly information-rich, relevant, and non-88 

redundant 25 GB image dataset comprising 0.5 x 106 images. As a proof of concept for its 89 

potential applications, we pre-trained a DL model on CEM500K using an unsupervised 90 

algorithm, MoCoV2 [39], and evaluated the results for transfer learning on six publicly available 91 

benchmarks and one newly derived benchmark that we introduce in this work. CEM500K pre-92 
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trained models significantly outperformed randomly initialized and ImageNet pre-trained 93 

models, as well as previous baseline results from benchmark-associated publications. 94 

 95 

  96 
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Results 97 

 98 

Creation of CEM500K 99 

In order to create an image dataset that is relevant to cellular EM and yet general enough to be 100 

applicable to a variety of biological studies and experimental approaches, we collected 2D and 101 

3D cellular EM images from both our own experiments and publicly available sources. These 102 

included images from a variety of imaging modalities and their corresponding sample 103 

preparation protocols, resolutions reported, and cell types imaged (Fig. 1 a-c). We selected “in-104 

house” datasets corresponding to 251 reconstructed FIB-SEM volumes from 33 unrelated 105 

experiments and 2,975 TEM images from 35 additional experiments. Other data was sourced 106 

externally; as there is currently no central hub for accessing publicly available datasets, we 107 

manually searched through databases (Cell Image Library, Open Connectome Project [40], 108 

EMPIAR [41]), GitHub repositories, and publications. A complete accounting of the datasets 109 

with relevant attribution is detailed in the Supplementary Materials. Included in this batch of 110 

data were 340 EM image volumes (some derived from video data) from 26 experiments and 111 

9,792 2D images from 14 other experiments. Among the externally gathered datasets there were 112 

disparate file types (avi, mp4, png, tiff, jpeg, mrc, nii.gz) and pixel/voxel data types (signed and 113 

unsigned, 32-bit float, 8-bit and 16-bit integer) as well as a mixture of image volumes with 114 

isotropic or anisotropic voxels, and regular or inverted intensities. These data were standardized 115 

into 2D tiff images, or patches, of 224 x 224 8-bit unsigned pixels (see Materials and Methods); 116 

the resulting set of 5.3 x 106 images constitutes what we term CEMraw (Fig. 1 d, top).  117 

 118 

Within CEMraw, however, most images were redundant. Nearly identical patches existed 119 

because of the similarity between adjacent cross-sections in high-resolution 3D volumes as well 120 

as in patches cropped from uniform intensity regions like empty resin. Duplicates are not only 121 

memory and computationally inefficient, but they may also induce undesirable biases toward the 122 

most frequently sampled features in the dataset. Therefore, we aggressively removed duplicates 123 

using an automated algorithm: we calculated and compared image hashes for each patch in 124 

CEMraw and then kept a single, randomly chosen exemplar image from each group of near 125 

duplicates (see Materials and Methods). As a result of this operation, we obtained an 80% 126 

decrease in the number of patches when compared to CEMraw; this “deduplicated” subset of 1.1 127 
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x 106 image patches we refer to as CEMdedup (Fig. 1 d, middle). Although it is currently 128 

impossible to determine a priori what data will be useful for a model, we expect that this 129 

removal of significant redundancies in the image dataset is unlikely to result in the loss of 130 

meaningful information for DL model training. 131 

 132 

Deduplication ensures that each image will make a unique contribution to our dataset, but it is 133 

agnostic to the content of the image, which may or may not be relevant to downstream tasks. 134 

Upon visual inspection, it was clear that many of the images in CEMdedup contained little 135 

information useful to the segmentation of organelles or cellular structures, e.g., images 136 

dominated by empty resin, background padding, or homogeneously stained interiors of nuclei or 137 

cytoplasm (Supplementary Figure 1a). However, while these images were uninformative for 138 

our purposes, they also represented a wide variety of image features, making them challenging to 139 

identify with simple image statistics. Instead, we separated an arbitrary subset of 12,000 images 140 

from CEMdedup into informative and uninformative classes and trained a DL model to perform 141 

binary classification on the entire dataset. Uninformative images were characterized by poor 142 

contrast, large areas of uniform intensity, artifacts, and the presence of non-cellular objects. 143 

Detailed criteria are given in Materials and Methods. The classifier achieved an area under the 144 

receiver operating characteristic (AUROC) score of 0.962 on a holdout test set of 2,000 images, 145 

as shown in Supplementary Figure 1b, suggesting that it could reliably distinguish between the 146 

informative and uninformative image classes. Classification of the remaining unlabeled images 147 

with this model yielded 0.5 x 106 patches with a visibly higher density of views containing 148 

organelles and cellular structures. We refer to this final subset of uniquely informative 2D 149 

cellular EM images as CEM500K (Fig. 1 d, bottom). Representative patches from the three 150 

datasets (CEMraw, CEMdedup and CEM500K) are shown in Supplementary Figure 2. 151 

 152 

Test of pre-training by CEM500K 153 

We then decided to test CEM500K for unsupervised pre-training of a DL model, using the 154 

MoCoV2 algorithm, a relatively new and computationally efficient approach [34]. The algorithm 155 

works by training a DL model to match differently augmented (e.g., cropped, rotated, zoomed in, 156 

brightened, etc.) pairs of images. The first batch of augmented images is called the query and the 157 

batch of their differently augmented counterparts is called the key. Before matching, the encoded 158 
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images in the key are added to a continuously updated queue containing tens of thousands of 159 

recently seen images (Supplementary Figure 3a). To be useful for other tasks, it is assumed 160 

that the model will learn features that correspond to relevant objects within the training images. 161 

Recently, models pre-trained on ImageNet with the MoCoV2 algorithm have shown superior 162 

transfer learning performance over supervised methods when applied to a variety of tasks 163 

including segmentation [39]. Before we were able to evaluate the MoCoV2 algorithm on 164 

CEM500K, it was necessary to define a set of downstream tasks to quantify and compare 165 

performance. We chose six publicly available benchmark datasets: CREMI Synaptic Clefts [42], 166 

Guay [15], Kasthuri++ and Lucchi++ [17], Perez [18] and UroCell [16]. The benchmarks 167 

included a total of eight organelles or subcellular structures for segmentation (mitochondria, 168 

lysosomes, nuclei, nucleoli, canalicular channels, alpha granules, dense granules, dense granule 169 

cores, and synaptic clefts). In Fig. 2a we show representative images and label maps from the 170 

benchmarks. Additional information about the benchmarks, including imaging techniques and 171 

sizes of the training and test sets, is given in Supplementary Table 1. 172 

 173 

Performance on each benchmark was measured using the standard Intersection-over-Union (IoU) 174 

score. Considered on their own, many of these benchmark datasets are not difficult enough to 175 

expose the gap in performance between different models: they only require the segmentation of a 176 

single organelle within a test set that is often from the same image volume as the training set. At 177 

the same time, they are an accurate reflection of common use cases for deep learning in EM 178 

laboratories where the goal is to segment data from a single experiment in order to support 179 

biological, not computational, research. To address the lack of variety within the benchmark 180 

training and test sets, we derived an additional benchmark that we call All Mitochondria, which 181 

is a combination of the training and test sets from each of the five benchmarks that contain label 182 

maps for mitochondria (Guay, Perez, UroCell, Lucchi++ and Kasthuri++; the labels for all other 183 

objects were removed). Although this benchmark is specific to a single organelle, it is 184 

challenging in that it requires a model to learn features that are general for mitochondria from 185 

image volumes generated independently and from unrelated experiments and imaging 186 

parameters.  187 

 188 
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Our overall pre-training, fine-tuning, and evaluation workflow is shown in a schematic in Fig. 189 

2b. Pre-training was performed by applying the MoCoV2 algorithm to learn parameters for a 190 

ResNet50 [43] before transferring the parameters into the encoder of a U-net [44]. A detailed 191 

schematic of the UNet-ResNet50 architecture is shown in Supplementary Figure 3b. For this 192 

section, once transferred, the parameters were frozen such that no updates were made during 193 

fine-tuning on the benchmark tasks; this enabled us to isolate the effects of pre-training from the 194 

effects of fine-tuning. As a simple baseline reference for calibrating later results, we started by 195 

measuring the performance of the proposed segmentation model with randomly initialized and 196 

frozen encoder parameters (i.e., we skipped the pre-training step in the workflow); the results for 197 

each benchmark are shown Fig. 2c. Given that in our architecture, the encoder includes 198 

approximately 23 x 106 parameters and the decoder approximately 9 x 106 parameters, some 70% 199 

of the model’s parameters were never been updated during training. Still, some benchmarks 200 

permit strikingly good performance, with IoU scores of over 0.75 on both Lucchi++ and 201 

Kasthuri++. These results emphasize the necessity of evaluating deep learning algorithms and 202 

pre-training datasets on multiple benchmarks before drawing conclusions about their quality.  203 

 204 

We next tested the influence of our curation pipeline on the quality of pre-trained parameters. 205 

We pre-trained models on the CEMraw, CEMdedup CEM500K with an abbreviated training 206 

schedule (see Materials and Methods) and compare the IoU scores achieved on the benchmarks 207 

in Fig. 2d (the actual IoU scores are shown in Table 1). We observed that pre-training on the 208 

CEM500K gave better or equivalent results than the CEMraw superset and CEMdedup subset 209 

for every benchmark. The average increase in performance of CEM500K over CEMraw was 210 

4.5%, and CEM500K over CEMdedup was 2.0%, with a maximum increase of 12.3% and 4.1%, 211 

respectively, on the UroCell benchmark (IoU scores increased from 0.652 and 0.699 to 0.729). 212 

These increases are significant. As a comparison, a 2% increase in model performance is similar 213 

in magnitude to what might be expected from using an ensemble of a few models [45]. Besides 214 

these gains, curation is valuable for reducing the computational cost of using CEM500K: the 215 

final filtered subset is 90% smaller than the raw superset (25 GB compared to 250 GB). 216 

Deduplication and filtering likely contributed to the performance gain by enabling both faster 217 

convergence and the learning of more relevant feature detectors. Duplicate images consume 218 

training iterations without presumably transmitting any new information, resulting in slower 219 
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learning. Uninformative images, on the other hand, may guide a model to discover discriminative 220 

features that are useless for most segmentation tasks. For example, a model must learn feature 221 

detectors that can distinguish between images of empty resin in order to succeed on the pre-222 

training task, but those feature detectors are unlikely to help with a common task like 223 

mitochondrial segmentation. Therefore, eliminating uninformative images may reduce the 224 

learning of irrelevant details during pre-training.  225 

 226 

We also posited that, in addition to the benefits of curation, the heterogeneity of examples in 227 

CEM500K would be essential for achieving good segmentation performance across disparate 228 

biological contexts. To test this, we considered an alternative pre-training dataset consisting 229 

exclusively of 1 x 106 images from a single large connectomics volume of mouse brain tissue 230 

(Bloss et al., 2018) [46]. Coming from a single volume of a highly homogeneous tissue type, 231 

images in this dataset show much less variation in cellular features than those in CEM500K (a 232 

random sampling of images is shown in Supplementary Figure 4). The size of the volume and 233 

the density of its content allowed us to sparsely sample patches without the need for 234 

deduplication and filtering.  235 

 236 

Compared to the Bloss pre-training dataset, CEMraw, CEMdedup and CEM500K all 237 

demonstrated significantly higher performance on four of the seven benchmarks, as shown in 238 

Fig. 2e (the actual IoU scores are shown in Table 1). The average increase in IoU scores from 239 

the Bloss baseline to CEM500K over these 4 benchmarks was 9.1%, with a maximum of 13.8% 240 

for the UroCell benchmark (increase in IoU score from 0.638 to 0.729). Tellingly, the 3 241 

benchmarks on which Bloss pre-trained models performed comparably well (Kasthuri++, 242 

Lucchi++ and Perez) were the only benchmarks that exclusively contained images from mouse 243 

brain tissue, like the Bloss dataset itself. This apparent specificity for images from the same 244 

organism and tissue type may indicate that the models learns to represent elements of the 245 

underlying biology or tissue architecture. Alternatively, it may reflect similarities in the image 246 

acquisition and sample preparation protocols, though the plausibility of this explanation is 247 

unlikely, given that each benchmark dataset was imaged with different, albeit broadly similar, 248 

technologies (Bloss with serial section TEM; Kasthuri++ with ATUM-SEM; Lucchi++ with 249 

FIB-SEM; Perez with SBF-SEM). It is clear that pre-training on large but biological narrow 250 
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datasets is insufficient for learning general-purpose features that apply equally well across a 251 

broad spectrum of contexts. To guard against potential biases our results instead suggest that the 252 

pre-training dataset ought to include image examples from as many different tissues, organisms, 253 

sample preparation protocols, and EM techniques as possible. Furthermore, a set of diverse 254 

benchmark datasets is essential for identifying such biases when they do arise. 255 

 256 

CEM500K models are largely impervious to meaningful image augmentations 257 

Having established CEM500K as the EM dataset for pre-training and transfer learning, we 258 

investigated the qualities of the model pre-trained by the MoCoV2 algorithm on CEM500K and 259 

compare it to a model pre-trained by the MoCoV2 algorithm on ImageNet (IN-moco). We note 260 

that unlike the abbreviated training used to evaluate pre-training on various subsets of CEM, here 261 

we trained the model for the complete schedule, and henceforth refer to the fully trained model 262 

as CEM500K-moco. In general, good DL models have neurons that are both robust to distortions 263 

and are selective for particular features [47]. In the context of EM images, for example, a good 264 

model must be able to recognize a mitochondrion as such irrespective of its orientation in space, 265 

its size, or some reasonable variation in resolution of its membrane. On the other hand, the same 266 

model must also be able to discern mitochondria, no matter how heterogeneous, from a variety of 267 

other organelles or cellular features. First, we attempted to evaluate the robustness of CEM500K-268 

moco neurons by measuring their invariances to transformations of input images. Specifically, 269 

we considered the average activations of the 2,048 neurons in the last layer of the ResNet50s’ 270 

encoders, pre-trained by either CEM500k-moco or IN-moco, to input images. Broadly following 271 

the approach detailed in Goodfellow et al [47] we defined invariance based on the mean firing 272 

rates of neurons in response to distortions of their inputs. Plots showing changes in mean firing 273 

rates with respect to rotation, Gaussian blur and noise, brightness, contrast and scale are shown 274 

in Fig. 3a. These six transforms that we choose account for much of the variation observed 275 

experimentally in cellular EM datasets, and we expect that models in which many neurons are 276 

invariant to these differences would be better suited to cellular EM segmentation tasks.  277 

 278 

We observed that neurons in CEM500K-moco models had consistently stronger invariance to all 279 

tested transformations (Fig. 3a). The two exceptions were a reduction in invariance when 280 

contrast was very high and a smaller reduction when scale factors were very large (Fig. 3a, v 281 
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and vi, respectively). First, with regards to rotation, virtually all the neurons in the CEM500K-282 

moco model were remarkably invariant to rotation compared to about 70% of the neurons in the 283 

IN-moco model, reflecting the fact that orientation matters for representing images in ImageNet 284 

but, appropriately, not for CEM500K. Next, neurons in the CEM500K-moco model fire more 285 

consistently when presented with increasingly blurry and noisy images, in both cases falling off 286 

significantly later as compared to IN-moco, when, presumably, meaningful information in the 287 

images has been lost. Further, while both of the tested pre-trained models responded comparably 288 

to increasing image brightness, the CEM500K-moco model had a noticeably greater invariance 289 

to both more brightened and more darkened images. For contrast adjustments, there was a similar 290 

robustness to decreased contrast. This was indicative of the distribution of images in CEM500K, 291 

and cellular EM data more broadly: very low-contrast images are common, very high-contrast 292 

images are not. On the other hand, the gap between CEM500K-moco and IN-moco pre-trained 293 

models in the high-contrast regime not only reinforce this observation but also suggest more 294 

relevant learning by the former. CEM500K-moco neurons show an invariance to a 295 

transformation only insofar as that transformation mimics real variance in the data distribution, 296 

and the firing rate decreases when the high contrast becomes no longer plausible. Similarly, there 297 

is some evidence that the results for scale invariance follow the same logic. In CEM500K, the 298 

most common reported image pixel sampling was 15-20 nm and the highest was 2 nm. Extreme 299 

scaling transformations (greater than 5x) would exceed the limits of features commonly sampled 300 

in CEM500K, rendering invariance to such transformations useless. We expect that the superior 301 

robustness to variations in cellular EM data baked into CEM500K-moco should simplify the 302 

process of adjusting to new tasks. For example, when fine-tuning a U-Net on a segmentation 303 

task, the parameters in the decoder will receive a consistent signal from the pre-trained encoder 304 

regardless of the orientation and other typical variations of the input image, presumably easing 305 

the learning burden on the decoder. For the same reason, we expect models to gain robustness to 306 

rare and random events such as artifacts generated during image acquisition.  307 

 308 

CEM500K models learn biologically relevant features 309 

Next, we assessed selectivity for objects of interest, that is, do these models learn something 310 

meaningful from cellular EM images? We created feature maps by appropriately upsampling the 311 

activations of each of the 2,048 neurons in the last layer of the pre-trained ResNet50 and 312 
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correlated these maps to the ground truth segmentations for three different organelles. In Fig. 3b, 313 

activations of the 32 neurons most positively correlated with the presence of the corresponding 314 

organelle were averaged, scaled from 0-1 (displayed as a heatmap), and then binarized with a 315 

threshold of 0.3 (displayed as a binary mask). We observed that these derived heatmaps from the 316 

CEM500K-moco model shared a higher correlation with the presence of an organelle than 317 

features from the equivalent IN-moco model, irrespective of whether the organelle interrogated 318 

was ER, mitochondria, or nucleus. For the CEM500K-moco model, Point-Biserial correlation 319 

coefficients were 0.418, 0.680, and 0.888 for ER, mitochondria, and nucleus compared to 0.329, 320 

0.608, and 0.803 for the IN-moco model. The segmentations created by binarizing the mean 321 

responses also have a greater IoU with ground truth segmentations (CEM500K-moco: 0.284, 322 

0.517, and 0.887 for ER, mitochondria, and nucleus; IN-moco: 0.208, 0.325, and 0.790, 323 

respectively) for the model. Unexpectedly, features learned from ImageNet displayed some 324 

selectivity for mitochondria and nuclei, emphasizing the surprising transferability of features to 325 

domains that are seemingly unrelated to a model’s training dataset. Nevertheless, it is clear that 326 

relevant pre-training, as is the case with CEM500K-moco, results in the model learning features 327 

that are meaningful in a cell biological context. The link between these results and the 328 

subsequent model’s performance on downstream segmentation tasks is self-evident.  329 

 330 

Pre-training on CEM500K encouraged the learning of representations that encode information 331 

about organelles. We analyzed how the model completed the MoCoV2 training task of matching 332 

differently transformed views of the same image. We first generated two different views of the 333 

same image by taking random crops and then randomly rescaling them. Then we took one of the 334 

images in the pair and sequentially masked out small squares of data and measured the dot 335 

product similarity between the model’s output on this occluded image and its output on the other 336 

image in the pair. Using this technique, called occlusion analysis, we were able to detect the 337 

areas in each image that were the most important for making a positive match [48]. Results are 338 

displayed as heatmaps overlaid on the occluded image (Fig. 3c), and show, importantly, that 339 

without any guidance, the model spontaneously learned to use organelles as “landmarks” in the 340 

images, visible as “hot spots” around such features. This behavior mirrors how a human 341 

annotator would likely approach the same problem: identify a prominent object in the first image 342 

and look for it in the second image. That these prominent objects should happen to be organelles 343 
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is not coincidental as sample preparation protocols for electron microscopy are explicitly 344 

designed to accentuate organelles and membranes relative to other content. Thus, representations 345 

learned by CEM500K-moco pre-training display robustness to EM-specific image variations and 346 

selectivity for objects of interest, demonstrating that they should be well-suited to any 347 

downstream segmentation tasks. 348 

 349 

With this understanding for how a model pre-trained with MoCoV2 on an EM-specific dataset 350 

might confer an advantage for EM segmentation tasks as compared to similar pre-training on a 351 

natural image dataset (ImageNet), we quantified this advantage by evaluating IoU improvements 352 

across the benchmark datasets. In addition to the CEM500K-moco and IN-moco pre-trained 353 

encoders we also considered two alternative parameter initializations: ImageNet Supervised (IN-354 

super)[34] and, as a baseline, random initialization. In contrast to results in Fig. 2c, all encoder 355 

parameters for randomly initialized models were updated during training. Pre-trained models, as 356 

before, had their encoder parameters frozen to assess their transferability. 357 

 358 

Fully trained CEM500K models achieve state-of-the-art results on EM benchmarks 359 

 360 

Results showing the measured percent difference in IoU scores against random initialization are 361 

shown in Fig. 4a. For each benchmark, we applied the number of training iterations that gave the 362 

best performance for CEM500K-moco pre-trained models (see Table 2). Across the board, 363 

CEM500K-moco was the best initialization method with performance increases over random 364 

initialization ranging from 0.5% on the Lucchi++ benchmark to a massive 63% on UroCell; the 365 

mean improvement (excluding CREMI Synaptic Clefts) was 27%. The baseline random 366 

initialization IoU score on the CREMI Synaptic Clefts benchmark was 0.000, making any % 367 

measurements of performance improvements meaningless. For ease of visualization, we assigned 368 

an IoU score of 0.2 for this dataset and calculated improvements based off of this score. Example 369 

2D and 3D segmentations on the UroCell benchmark test set are shown in Fig. 4b; we also 370 

display representative segmentations for selected labelmaps from all of the 2D-only benchmarks 371 

in Fig. 4c. On the UroCell test set, all of the initialization methods except CEM500K-moco 372 

failed to accurately segment mitochondria in an anomalously bright and low-contrast region 373 

(example marked by a black arrow in Fig. 4b). Indeed, CEM500K-moco also correctly identified 374 
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features that the human annotator appears to have missed (example of missed mitochondrion, red 375 

arrow in Fig. 4c). On average, IN-super and IN-moco achieved 6.6% and 7.8% higher IoU scores 376 

than random initialization, respectively. Parameters pre-trained with the unsupervised MoCoV2 377 

algorithm thus appear to generalize better to new tasks than parameters pre-trained on the 378 

ImageNet supervised classification task [34]. Crucially, the 16% average increase in IoU scores 379 

from CEM500K-moco over IN-moco reveals the advantage of pre-training on a domain-specific 380 

dataset. Thus, while it is clear that some of CEM500K-moco’s improvement over random 381 

initialization is explained by pre-training with the MoCoV2 algorithm in general, most of the 382 

improvement comes from the characteristics of the pre-training data. 383 

 384 

In addition to better IoU performance, pre-trained models converged more quickly. We found 385 

that models pre-trained with the MoCoV2 algorithm converged the fastest (Fig. 4d, top). Within 386 

just 500 iterations, these models reach over 90% of their performance at 10,000 training 387 

iterations, and within only 100 iterations, they achieve over 80%. For context, 100 iterations on 388 

the hardware used here with an Nvidia P100 GPU required less than 2 minutes per model, 389 

making this approach more feasible for resource limited work. We posit that the faster training 390 

associated with the MoCoV2 algorithm stems from the much lower magnitudes of feature 391 

activations, as observed in [32], which facilitates training with higher learning rates. CEM500K-392 

moco models trained marginally faster than IN-moco models. This speedup may have stemmed 393 

from CEM500K-moco’s better robustness to the chosen data augmentations, reducing variance 394 

in the feature maps received by the trainable U-Net decoder. Overall, these results suggest a 395 

suitability of CEM500K-moco models for applications where rapid turnarounds for, say, a 396 

roughly accurate segmentation may be desired. In cases where more accurate segmentations are 397 

required, faster training as we see in Fig. 4d reduces the amount of time needed for 398 

hyperparameter optimization. 399 

 400 

Finally, the plot of average IoU scores over a range of training iterations showed that the 401 

performance of randomly initialized models leveled off after 5,000 iterations, Fig. 4d, bottom. 402 

Previously, it has been observed that granted enough time to converge, randomly initialized 403 

models can often achieve comparable results to pre-trained models [49], and we did observe this 404 

for the easiest benchmarks (Perez, Lucchi++, and Kasthuri++, data not shown). After 30,000 405 
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iterations of training on these benchmarks, the performance of randomly initialized models 406 

effectively reached parity with CEM500K-moco models. However, for the hard benchmarks, 407 

randomly initialized models never reached the average IoU scores measured at even just 500 408 

training iterations for CEM500K-moco models. ImageNet pre-trained models, on the other hand, 409 

had the lowest average IoUs on easy benchmarks, but were better than random initialization for 410 

hard benchmarks. All of these observations align with expectations. Pre-trained models with 411 

frozen encoders only have 9 x 106 parameters to fit to the data. On easy benchmarks where 412 

overfitting is not a concern, this reduction in trainable parameters hurt ImageNet pre-trained 413 

models, but not CEM500K-moco models, since the latter were already pre-trained to EM data. 414 

On hard benchmarks, the regularization effects of having fewer trainable parameters are an 415 

advantage. Randomly initialized models continued to decrease training loss on hard benchmarks, 416 

yet those gains did not translate to increases in test set IoU, a signature of overfitting (data not 417 

shown). Overfitting may be avoided by smaller models with fewer trainable parameters, similar 418 

to the pre-trained models, however this would require costly and slow additional engineering and 419 

hyperparameter optimization for each benchmark. Our results show that regardless of whether 420 

benchmarks are easy or hard, CEM500K-moco pre-trained models trained the fastest and 421 

achieved the best IoU scores. Indeed, these models outperformed the customized algorithms and 422 

training schemes presented as baselines for 4 of the benchmarks that we tested (by 5.8% on 423 

Guay, 8.6% on Kasthuri++, 1.2% on Lucchi++, and 10% on Perez), see Table 2. The All 424 

Mitochondria benchmark is a newly derived dataset and therefore has not been previously 425 

evaluated, but we show that it is a relatively challenging benchmark and suggest its use as a 426 

baseline for future comparisons. The remaining two benchmarks (CREMI Synaptic Clefts and 427 

UroCell) used special evaluation methods that were incompatible with our work (see Materials 428 

and Methods); instead, we present a representative visual comparison of our best results with 429 

those from the UroCell publication (Supplementary Figure 5) showing a marked improvement 430 

in mitochondria (blue) and lysosome (red) 3D reconstructions. While ImageNet pre-trained 431 

models are broadly useful, our results show that for some EM segmentation tasks they perform 432 

worse than random initialization. For all the available benchmarks and the newly derived All 433 

Mitochondria benchmark, CEM500K-moco pre-training uniformly performed better than the 434 

current alternatives and we demonstrate here its reliability and effectiveness for EM-specific 435 

transfer learning. 436 
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  438 
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Discussion 439 

 440 

CEM500K is a diverse, relevant, information-rich, and non-redundant dataset of unlabeled 441 

cellular EM images designed expressly to aid in the development of more robust and general DL 442 

models. Above all, two features distinguish CEM500K from other larger, publicly available EM 443 

datasets that make it superior for DL applications. First, it is derived from a far greater variety of 444 

tissue types, experimental conditions and imaging techniques, resulting in models with less bias 445 

toward such specific variables. Second, it is condensed by aggressively deleting redundant and 446 

uninformative images; this improves model performance and renders CEM500K more accessible 447 

to users. By evaluating on seven benchmarks that represent different segmentation tasks and 448 

biological contexts, we demonstrate that, on average, models pre-trained on CEM500K 449 

performed better than those pre-trained on a dataset extracted from a single large EM volume 450 

(Bloss). Remarkably, the targeted removal of 90% of the images from the original corpus of data 451 

to generate CEM500K returned a significant increase in the quality of pre-trained parameters as 452 

measured by segmentation IoU scores. 453 

 454 

This raises the question of what the nature and extent of dataset curation should be: If a target 455 

segmentation task contains data from a particular biological context, should the pre-training 456 

dataset be curated specifically for that context? And would pre-training on the task data alone 457 

result in adequate models? Our results suggest that the benefits from curating the pre-training 458 

dataset for a particular context are minimal. Pre-training exclusively on images of mouse brain 459 

tissue (Bloss) did not improve performance over CEM500K on benchmarks from that same 460 

tissue (see Fig. 2e). The effect of pre-training exclusively on images from a target dataset (say, 461 

for a segmentation task) is unclear – in our case, it was impossible to fairly measure pre-training 462 

on any of the individual benchmark datasets. The MoCoV2 algorithm requires a training dataset 463 

with tens of thousands of images (65,536 in our experiments), many more than any of the 464 

benchmark datasets at our disposal. We speculate that as dataset size decreases, it becomes more 465 

likely that a model will overfit to the pre-training task and learn image features that are irrelevant 466 

for other downstream tasks [50][51]. Other unsupervised pre-training algorithms that work for 467 

smaller datasets and/or larger benchmark datasets would be needed to determine the appropriate 468 

curation approach. 469 
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 470 

Regardless, we have shown here that parameters trained on CEM500K are a strong and general-471 

purpose starting point for improving downstream segmentation models. U-Nets pre-trained on 472 

CEM500K significantly outperformed randomly initialized U-Nets on all of the segmentation 473 

benchmarks that we tested, with the largest improvements corresponding to the most difficult 474 

benchmarks. Impressively, such pre-trained models achieved state-of-the-art IoU scores on all 475 

benchmarks for which comparison with previous results was possible. The only variables tuned 476 

were the number of training iterations and data augmentations. Use of CEM500K pre-trained 477 

models by the EM community may reveal that further tuning of hyperparameters or unfreezing 478 

of the U-Net’s encoder parameters could further boost performance. 479 

 480 

Our work focused on the application of CEM500K for transfer learning. This decision was 481 

informed by the current status of DL research for cellular EM, where, typically, segmentation 482 

tasks are performed by models trained on a few labeled examples [21][15][18][16][17][42]. In 483 

general, pre-trained parameters have been shown to guide downstream models to converge to 484 

more general optima than they would from random initialization [27][52][53]. As the number of 485 

examples in the training dataset increases the generalization benefits from transfer learning start 486 

to diminish (gains in training speed are retained)[54][49]. Therefore, while unsupervised pre-487 

training on CEM500K for transfer learning has demonstrably high utility for the common 488 

paradigm of “train on labeled ROIs / infer labels for the whole dataset”, currently it cannot solve 489 

the problem of creating general segmentation models that reliably segment features of interest 490 

for data generated by novel experiments. However, using CEM500K as seed data provides a path 491 

forward for tackling this much more difficult challenge. With 0.5 x 106 uniquely informative 492 

images representing approximately six hundred 3D and ten thousand 2D images corresponding 493 

to more than 100 completely unrelated biological projects, CEM500K is to our knowledge the 494 

most comprehensive and diversified resource of cellular EM images. Annotating images from 495 

CEM500K (or identifying them as negative examples) will enable the creation of new task-496 

specific training datasets with substantially more variety than previously available. Models 497 

trained on such datasets will likely be better equipped to handle data from new microscopes, 498 

biological contexts, and sample preparation protocols. Moreover, each image chosen for 499 

annotation from CEM500K is likely to be uniquely informative for a model because of the 500 
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extensive deduplication and filtering pipeline that we have created and used here, and which we 501 

share for future work by the community. 502 

 503 

The available benchmark datasets that we chose are a reflection of common applications of DL 504 

to cellular EM data, but they do not cover the full scope of possible segmentation tasks. In 505 

particular, all but one of the benchmarks involved the annotation of mitochondria and three of 506 

the seven were from mouse brain tissue. We observed that benchmark variety is essential to 507 

identify biases in pre-trained parameters and that difficult tasks are a necessary and stringent test 508 

of pre-training algorithms or datasets. For example, visual inspection of the label maps in Fig. 4c 509 

makes it obvious that our results leave little room for improvement on relatively easy (and 2D 510 

only) benchmarks like Lucchi++, Kasthuri++, and Perez, suggesting that going forward, new and 511 

more challenging benchmarks will be required.  512 

 513 

Additionally, we only tested semantic and not instance segmentation (i.e. all objects from one 514 

class share one label). We made this decision in order to avoid the more complex model 515 

architectures, postprocessing and hyperparameters that usually accompany instance segmentation 516 

[55][56][20]. Focusing on simple end-to-end semantic segmentation tasks emphasizes the effects 517 

of pre-training and eliminates the possibility that non-DL algorithms could confound the 518 

interpretation of our results. Applying pre-training for instance segmentation, an important and 519 

common task in cellular EM connectomics research, would require extension to 3D models. We 520 

chose to operate in 2D for practical reasons. 2D models work well for semantic segmentation in 521 

both 2D and 3D (our 2D models beat the state-of-the-art results set by 3D models on some of the 522 

benchmarks, see Table 2), whereas 3D models cannot be applied to 2D images. From a 523 

computational standpoint, 2D models have far fewer parameters than their 3D counterparts and 524 

run efficiently on a single GPU; these savings are particularly valuable for laboratories with 525 

limited access to high performance computing resources. Therefore, at this current moment, we 526 

believe that 2D pre-trained parameters are the most broadly useful for cellular EM researchers. 527 

Unsupervised pre-training on 3D data is currently an underexplored research area, although in 528 

principle, there is no reason why an algorithm like MoCoV2 should not work in 3D if a 529 

sufficiently large dataset can be constructed. 530 

 531 
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The goal of this work is to begin the process of creating a data ecosystem for cellular EM images 532 

and datasets. CEM500K will be a valuable resource for experimenting with and taking advantage 533 

of the latest developments in DL research, where access to troves of image data is usually taken 534 

for granted. To further increase its utility, more data from uncommon organisms, tissue and cell 535 

types, sample preparation protocols and acquisition parameters will be needed. In the current 536 

state, the dataset is still heavily skewed to a few common organisms like mice and tissues like 537 

brain, and it is clear that there is much room for greater sampling and heterogeneity 538 

(Supplementary Figure 6). We hope that other researchers will consider using the curation tools 539 

that we developed in this work to contribute to CEM500K. The massive reduction in dataset size 540 

from curation makes the sharing of data relatively quick and easy; moreover, the elimination of 541 

3D context from volume EM datasets ensures that the shared data can only reasonably be used 542 

for DL applications. Similar to pre-training on natural images, we expect that the quality of the 543 

pre-trained parameters for transfer learning will improve logarithmically as CEM500K grows 544 

[57]. In the meantime, the pre-trained parameters that we release here can serve as the foundation 545 

for rapidly prototyping and building more general segmentation models for cellular EM data. 546 

 547 
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Methods  563 

 564 

Dataset standardization 565 

 566 

Datasets generated from microscopes in our lab were already in the desired standardized format: 567 

8-bit unsigned volumes or 2D tiff images. Publicly available EM data are in a variety of file 568 

formats and data types; these datasets were individually reformatted as needed to match the 569 

formatting of our internal datasets. Importantly, data from each of the seven benchmarks we 570 

tested were included as well but comprised less than 0.1% of the dataset. To reduce the memory 571 

requirements of large 3D volumes, datasets were downsampled such that no individual dataset 572 

was larger than 5GB (affecting only 7 of the total 591 image volumes). The majority of 3D 573 

datasets included metadata of their image resolutions; isotropic and anisotropic volumes were 574 

thus automatically identified and processed differently. For all isotropic voxel data and for any 575 

anisotropic voxel data in which the z resolution was less than 20% different from the x and y 576 

resolutions, 2D cross-sections from the xy, xz, and yz planes were sequentially extracted. 577 

Anisotropic voxel data with a greater than 20% difference in axial versus lateral resolutions were 578 

only sliced into cross-sections in the xy plane. At this point, all of the gathered image data was in 579 

the format of 2D tiff images, though with variable heights and widths. These images were 580 

cropped into 224x224 patches without any overlap. If the image’s width or height was not a 581 

multiple of 224, then crops from the remaining area were discarded if either of their dimensions 582 

were less than 112.  583 

 584 

Separately, additional 2D images available through the Open Connectome Project were 585 

collected. As these volumes were too large to reasonably download and store (tens of TB), Cloud 586 

Volume API was used to randomly sample 1,000 2D patches from the xy planes of each 587 

available dataset. These extracted patches were already of the correct size and format, therefore 588 

no further processing was required. This corpus of 5.3 x 106 2D patches constitutes “CEMraw”. 589 

Certain datasets were not accessible with this method and were therefore not included in the final 590 

version of CEMraw (see Supplementary Materials). The “Bloss baseline” dataset [46] was also 591 

extracted and generated with this method; however, 1x106 patches were collected from that 592 
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single data volume to roughly match the number of images in CEMraw (Supplementary Figure 593 

4).  594 

 595 

Deduplication 596 

 597 

To remove duplicate patches, image hashes for all 5.3x106 images in CEMraw were calculated. 598 

Difference hashes gave the best results of all the hashing algorithms tested [58]. A hash size of 8 599 

results in a 64-bit array to encode each 224x224 image. The similarity of two images was then 600 

measured by the Hamming distance between their hashes. A pairwise comparison of all 5.3x106 601 

hashes was not computationally feasible or meaningful. Instead, hashes belonging to the same 602 

2D or 3D source dataset were compared. For a 64-bit hash, distances range from 0 to 64. Sets of 603 

hashes with a distance < 12 (distance cutoff chosen by visual inspection of groups) between them 604 

were considered a group of near-duplicates. All but one randomly chosen image from each group 605 

were dropped (Fig. 1b). Together, the resulting 1.1x106 images constitute a deduplicated dataset 606 

or “CEMdedup”.  607 

 608 

Uninformative Patch Filtering 609 

 610 

A random subset of 14,000 images from CEMdedup were manually labeled either informative or 611 

uninformative. The criteria for this classification process were informed by the hyperparameters 612 

of the MoCoV2 pre-training algorithm, which takes random crops as small as 20% of an area of 613 

an image. For an image that is only 20% informative, there is a 30% chance that such a randomly 614 

drawn crop will be completely uninformative, and this fraction increases exponentially for 615 

images less than 20% informative (Supplementary Figure 7). Therefore 20% was chosen as the 616 

cutoff for manual labeling. Concretely, this means that images with 80% or more of their area 617 

occupied by uniform intensity structures like nuclei, cytoplasm, or resin are classified as 618 

uninformative. Other criteria included whether the image was low-contrast, displayed many 619 

artifacts, or contained non-cellular objects as determined by a human annotator. A breakdown of 620 

the frequency of traits present in a subset of uninformative patches is shown in Supplementary 621 

Figure 1a. 622 

 623 
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2,000 labeled images were set aside as a test set and the remaining 12,000 were used as training 624 

data for a model classifier: a ResNet34 pre-trained on ImageNet. The fourth layer of residual 625 

blocks and the classification head of the model were fine-tuned for 30 epochs on a P100 GPU 626 

with the Adam optimizer and a learning rate of 0.001. A Random Forest classifier trained on four 627 

image-level statistics (the standard deviations of the local binary pattern [59] and image entropy, 628 

the median of the geometric mean, and the mean value of a canny edge detector [60]) was also 629 

tested. These features were chosen from a larger superset based on their measured importance. 630 

The performance for the two classifiers is shown in Supplementary Figure 1b. The DL model 631 

was used to create CEM500K with a confidence threshold set at 0.5. 632 

 633 

Momentum Contrast Pre-training 634 

 635 

For unsupervised pre-training, the Momentum Contrast (MoCoV2) algorithm [31, 32] was used. 636 

A schematic of a single step in the algorithm is shown in Supplementary Figure 3a. Pre-training 637 

was completed on a machine with 4 Nvidia V100 GPUs using a batch size of 128 and queue 638 

length of 65,536. The initial learning rate was set to 0.015 and divided by 10 at epochs 120 and 639 

160. In addition, 360° rotations and Gaussian noise with a standard deviation range of 1x10-5 to 640 

1x10-4 were added to the data augmentations. All other hyperparameters and data augmentations 641 

were left as the defaults presented in [32]. For pre-training comparisons between different EM 642 

datasets, i.e. the three subsets of CEM plus Bloss (Fig. 2d, e), 4.5x105 total parameter updates 643 

(iterations) were run for each model, which is equivalent to 120 passes (epochs) through all the 644 

images in CEM500K. The average training time for each of these models was 2.5 days. The final 645 

pre-trained parameters generated for results shown in Fig. 4b, c were trained on CEM500K for 646 

an additional 80 epochs: a total of 200 epochs and 4 days of training.  647 

 648 

U-Net Segmentation Architecture 649 

 650 

Our implementation was similar to the original implementation of the U-Net, except that the 651 

encoder was replaced with a ResNet50 model (Supplementary Figure 3b). When using pre-652 

trained models in these experiments all parameters in the encoder were frozen such that no 653 

updates were made during training. Randomly initialized encoders were tested with both frozen 654 
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and unfrozen parameters. The random number generator seed was fixed at 42 such that any 655 

randomly initialized parameters in either the U-Net encoder or decoder would be the same in 656 

every experiment. 657 

 658 

Benchmark Segmentation Tasks 659 

 660 

The One Cycle Policy and AdamW optimizer with maximum learning rate 0.003, weight decay 661 

0.1, batch size 16, and (binary) cross entropy loss were used for all benchmarks [61][62]. For the 662 

Guay and Urocell benchmarks, which required multiclass segmentation, the cross-entropy loss 663 

was weighted by the prevalence of each class; this yielded better IoU scores. Classes that 664 

accounted for less than 10% of all pixels in the dataset were given a weight of 3, those that 665 

accounted for more than 10% were given a weight of 1, and all background classes were given a 666 

weight of 0.1. Data augmentations included randomly resized crops with scaling from 0.08 to 1 667 

and aspect ratio from 0.5 to 1.5, 360° rotations, random 30% brightness and contrast 668 

adjustments, and horizontal and vertical flips. For the Guay benchmark, and consequently the All 669 

Mitochondria benchmark, Gaussian Noise with a variance limit of 400 to 1200 and Gaussian 670 

Blur with a maximum standard deviation of 7 were also added. The decision to add more data 671 

augmentations for these benchmarks was made in response to observed overfitting on the Guay 672 

benchmark validation dataset. Lastly, different crop sizes were used for each benchmark: 512 x 673 

512 for Guay, CREMI, Synaptic Cleft, Kasthuri++ and Lucchi++, 480 x 480 for Perez, and 224 x 674 

224 for UroCell and All Mitochondria. 675 

 676 

To create 3D segmentations for the UroCell, Guay, and CREMI Synaptic Cleft test sets we used 677 

either orthoplane or 2D stack inference following [63]. Briefly, in 2D stack inference the model 678 

only makes predictions on xy cross-sections; in orthoplane inference, the model makes 679 

predictions on xy, yz, and xz cross-sections and the confidence scores are averaged together. 680 

Orthoplane inference was used for the UroCell test set because its test volume has isotropic 681 

voxels. Because both the Guay and CREMI Synaptic Cleft test volumes are anisotropic we used 682 

2D stack inference instead. 683 

 684 
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Evaluation generally followed the details given in the publication that accompanied the 685 

benchmark. First, test images in the Perez datasets did not have labels for all instances of an 686 

object e.g. only 1 nucleus was labeled in an image containing 2 nuclei. To circumvent this 687 

problem, we ignored areas in the predicted segmentations that did not coincide with a labeled 688 

instance in the ground truth. Second, the UroCell benchmark was evaluated in previous work by 689 

averaging K-Fold cross-validation results on 5 unique splits of the 5 training volumes such that 690 

each training volume was used as the test set once. The authors also excluded pixels on the 691 

boundary of object instances both when training and when calculating the prediction’s IoU with 692 

ground truth. Here, a simpler evaluation was run on a single split of the data with 4 volumes used 693 

for training and 1 volume used for testing. To eliminate small regions of missing data we 694 

cropped 2 of the 5 volumes along the y axis (fib1-0-0-0.nii.gz, the test volume, by 12 pixels and 695 

fib1-1-0-3.nii.gz by 54 pixels). Third, for the CREMI Synaptic Cleft benchmark the training and 696 

test datasets did not have an official evaluation metric, and the ground truth segmentations were 697 

not publicly available. Therefore, volumes A and B were used exclusively for training and IoU 698 

scores were evaluated on volume C. 699 

 700 

Mean Firing Rate 701 

 702 

Following [47] neuron firing thresholds were determined by passing 1,000 images of randomly 703 

sampled noise through each pre-trained ResNet50 model and calculating the 99th percentile of 704 

responses. In our experiments, only the neurons in the output of the global average pooling layer 705 

were considered such that there were 2,048. Responses to 100 randomly selected images from 706 

CEM500K were then recorded over a range of distortion strengths. For each neuron, the set of 707 

undistorted images that activated the neuron near maximally (over the 90th percentile), called Z, 708 

was determined. A set containing versions of all images in Z with a particular distortion applied 709 

is called Z’. Any neuron that responded to images in Z less strongly than the neuron’s firing 710 

threshold were ignored as they are not selective for features observed in the test images. 711 

However, for all remaining neurons, the firing rate at a particular distortion strength is calculated 712 

as the number of images in Z’ that activate the neuron over its firing threshold divided by the 713 

number of images in Z. The mean firing rate to a particular distortion is then the average of firing 714 

rates for any of the 2,048 neurons that were selective enough to be considered. 715 
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 716 

 717 

Feature selectivity 718 

 719 

To measure feature selectivity, we first manually segmented 3 organelles (ER, mitochondria, 720 

nucleus) in 3 images. By construction, the ResNet50 architecture downsamples an input image 721 

by 32. For thin and small organelles like ER, the final feature maps were too coarse to accurately 722 

show the localization of responses. Therefore, we eliminated the last 4 downsampling operations 723 

such that the output feature map was only 2x smaller than the input. Following similar logic, we 724 

eliminated the last 2 downsampling operations for mitochondria and the last downsampling 725 

operation for nuclei -- 8x and 16x smaller than the input images, respectively. For all organelles, 726 

these differently downsampled feature maps were resized to match the dimensions of the input 727 

image (224x224) and then each feature map was compared against the ground truth labelmap by 728 

Point Biserial correlation. A simple average of the 32 most correlated feature maps was then 729 

overlaid on the original image as the mean response. Drawing a threshold at 0.3 yielded the 730 

binary segmentations. 731 

 732 

Occlusion Analysis 733 

 734 

Typically, occlusion analysis measures the importance of regions in an image to a classification 735 

task [48]. In our experiments, importance was measured as a function of the dot product 736 

similarity between the feature vectors output by the global average pooling layer of a ResNet50 737 

for an image and its occluded copy. Sequential regions of 61x61 pixels spaced every 30 pixels 738 

(in both x and y dimensions) were zeroed out in each image. Region importance to the similarity 739 

measurement was then normalized to fall in the range 0 to 1 and overlaid on the original image. 740 

 741 

  742 
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Figure Legends 902 

 903 

Figure 1: Preparation of a deep learning appropriate 2D EM image dataset rich with 904 

relevant and unique features. (a) Percent distribution of collated experiments grouped by 905 

imaging technique TEM, transmission EM; SEM, scanning EM. (b) Distribution of imaging 906 

plane pixel spacings in nm for volumes in the 3D corpus. (c) Percent distribution of collated 907 

experiments by organism and tissue origin. (d) Schematic of our workflow: 2D EM image stacks 908 

(top left) or 3D EM image volumes sliced into 2D cross-sections (top right) were cropped into 909 

patches of 224 x 224 pixels, comprising CEMraw. Nearly identical patches excepting a single 910 

exemplar were eliminated to generate CEMdedup. Uninformative patches were culled to form 911 

CEM500K. 912 

 913 

Figure 2: CEM500K pre-training improves the transferability of learned features. 914 

 (a) Example images and colored label maps from each of the six publicly available benchmark 915 

datasets: clockwise from top left: Kasthuri++, UroCell, CREMI Synaptic Clefts, Guay, Perez, 916 

and Lucchi++. The All Mitochondria benchmark is a superset of these benchmarks and is not 917 

depicted. (b) Schematic of our pre-training, fine-tuning and evaluation workflow. Gray blocks 918 

denote trainable models with randomly initialized parameters; blue block denotes a model with 919 

frozen pre-trained parameters. (c) Baseline IoU scores for each benchmark achieved by skipping 920 

MoCoV2 pre-training. Randomly initialized parameters in ResNet50 layers were transferred 921 

directly to UNet-ResNet50 and frozen during training. (d) Measured percent difference in IoU 922 

scores between models pre-trained on CEMraw vs CEM500K (red) and on CEMdedup vs 923 

CEM500K (blue). (e) Measured percent difference in IoU scores between a model pre-trained on 924 

CEM500K over the mouse brain (Bloss) pre-training dataset. Benchmark datasets comprised 925 

exclusively of EM images of mouse brain tissue are highlighted. 926 

 927 

Figure 3: Features learned from CEM500K pre-training are more robust to image 928 

transformations and encode for semantically meaningful objects with greater selectivity. (a) 929 

Mean firing rates calculated between feature vectors of images distorted by i. Rotation, ii. 930 

Gaussian blur, iii. Gaussian noise, iv. Brightness, v. Contrast, vi. Scale. Dashed black lines show 931 

the range of augmentations used for CEM500K + MoCoV2 during pre-training. For transforms 932 
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in the top row, the undistorted images occur at x= 0; bottom row, at x=1. (b) Evaluation of 933 

features corresponding to ER (left), mitochondria (middle) and nucleus (right). For each 934 

organelle, the panels show: input image and ground truth label map (top row), heatmap of 935 

CEM500K-moco activations of the 32 filters most correlated with the organelle and CEM500K-936 

moco binary mask created by thresholding the mean response at 0.3 (middle row), IN-moco 937 

activations and IN-moco binary mask (bottom row). Also included are Point-Biserial correlation 938 

coefficients (rpb) values and IoUs for each response and segmentation. All feature responses are 939 

rescaled to range [0, 1]. (c) Heatmap of occlusion analysis showing the region in each occluded 940 

image most important for forming a match with a corresponding reference image. All 941 

magnitudes are rescaled to range [0, 1]. 942 

 943 

Figure 4: Models pre-trained on CEM500K yield superior segmentation quality and 944 

training speed on all segmentation benchmarks. (a) Plot of percent difference in segmentation 945 

performance between pre-trained models and a randomly initialized model. (b) Example 946 

segmentations on the UroCell benchmark in 3D (top) and 2D (bottom). The black arrows shows 947 

the location of the same mitochondrion in 2D and in 3D. (c) Example segmentations from all 948 

2D-only benchmark datasets. The red arrow marks a false negative in ground truth segmentation 949 

detected by the CEM500K-moco pre-trained model. (d) Top, average IoU scores as a percent of 950 

the average IoU after 10,000 training iterations (ii); bottom, absolute average IoU scores over a 951 

range of training iteration lengths.  952 

 953 

Table 1: Comparison of segmentation IoU results for benchmark datasets from models randomly 954 

initialized and pre-trained with MoCoV2 on the Bloss dataset, and CEMraw, CEMdedup and 955 

CEM500K. * denotes benchmarks that exclusively contain EM images from mouse brain tissue. 956 

The best result for each benchmark is highlighted in bold and underlined. 957 

 958 

Table 2: Comparison of segmentation IoU results for different weight initialization methods 959 

versus the best results on each benchmark as reported in the publication presenting the 960 

segmentation task.  961 

 962 

Supplementary Table 1: Characteristics of the benchmark datasets. 963 
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 964 

Supplementary Figure 1: Deduplication and image filtering. (a) Breakdown of fractions(top) 965 

and representative examples (bottom) of patches labeled “uninformative” by a trained DL model 966 

based on defect (as determined by a human annotator) (b) Receiver operating characteristic curve 967 

for the DL model classifier and a Random Forest classifier evaluated on a holdout test set of 968 

2,000 manually labeled patches (1,000 informative and 1,000 uninformative). 969 

 970 

Supplementary Figure 2: Randomly selected images from CEMraw, CEMdedup and 971 

CEM500K. 972 

 973 

Supplementary Figure 3: Schematics of the MoCoV2 algorithm and UNet-ResNet50 model 974 

architecture. (a) Shows a single step in the MoCoV2 algorithm. A batch of images is copied; 975 

images in each copy of the batch are independently and randomly transformed and then shuffled 976 

into a random order (the first batch is called the query and the second is called the key). Query 977 

and key are encoded by two different models, the encoder and momentum encoder, respectively. 978 

The encoded key is appended to the queue. Dot products of every image in the query with every 979 

image in the queue measure similarity. The similarity between an image in the query and its 980 

match from the key is the signal that informs parameter updates. More details in [34]. (b) 981 

Detailed schematic of the UNet-ResNet50 architecture. 982 

 983 

Supplementary Figure 4: Randomly selected images from the Bloss et al. 2018 pre-training 984 

dataset. 985 

 986 

Supplementary Figure 5: Visual comparison of results on the UroCell benchmark. The 987 

ground truth and Authors’ Best Results are taken from the original UroCell publication [16]. The 988 

results from fine-tuning the CEM500K-moco pre-trained model have been colorized to 989 

approximately match the originals; 2D label maps were not included in the UroCell paper. 990 

 991 

Supplementary Figure 6: Images from source EM volumes are unequally represented in 992 

the subsets of CEM. The line at 45° shows the expected curve for perfect equality between all 993 

source volumes (i.e. each volume would contribute the same number of images to CEMraw, 994 
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CEM deup or CEM500K). Gini coefficients measure the area between the Lorenz Curves and the 995 

line of perfect equality, with 0 meaning perfect equality and 1 meaning perfect inequality. For 996 

each subset of CEM, approximately 20% of the source 3D volumes account for 80% of all the 997 

2D patches. 998 

 999 

Supplementary Figure 7: Plot showing the percent of random crops from an image that 1000 

will be 100% uninformative based on the percent of the image that is informative. 1001 
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