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Abstract  1 

Acquiring accurate single-cell multiomics profiles often requires performing unbiased in silico 2 

integration of data matrices generated by different single-cell technologies from the same 3 

biological sample.  However, both the rows and the columns can represent different entities in 4 

different data matrices, making such integration a computational challenge that has only been 5 

solved approximately by existing approaches. Here, we present bindSC, a single-cell data 6 

integration tool that realizes simultaneous alignment of the rows and the columns between data 7 

matrices without making approximations. Using datasets produced by multiomics technologies as 8 

gold standard, we show that bindSC generates accurate multimodal co-embeddings that are 9 

substantially more accurate than those generated by existing approaches.  Particularly, bindSC 10 

effectively integrated single cell RNA sequencing (scRNA-seq) and single cell chromatin 11 

accessibility sequencing (scATAC-seq) data towards discovering key regulatory elements in 12 

cancer cell-lines and mouse cells. It achieved accurate integration of both common and rare cell 13 

types (<0.25% abundance) in a novel mouse retina cell atlas generated using the 10x Genomics 14 

Multiome ATAC+RNA kit. Further, it achieves unbiased integration of scRNA-seq and 10x 15 

Visium spatial transcriptomics data derived from mouse brain cortex samples. Lastly, it 16 

demonstrated efficacy in delineating immune cell types via integrating single-cell RNA and 17 

protein data. Thus, bindSC, available at https://github.com/KChen-lab/bindSC, can be applied in 18 

a broad variety of context to accelerate discovery of complex cellular and biological identities and 19 

associated molecular underpinnings in diseases and developing organisms.  20 
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Introductions 21 

Advances in high-throughput single-cell technology such as single-cell RNA-sequencing (scRNA-22 

seq) 1 and mass cytometry 2 have enabled systematic delineation of cell types based on thousands 23 

to millions of cells sampled from developing organisms or patient biopsies. For example, recent 24 

application of combinatorial indexing based technology has generated the transcriptomic and 25 

chromatin accessibility profiles of millions of cells in developing human fetus samples 3. Rare cell 26 

types and complex cellular states, however, remain challenging to discover, which necessitates the 27 

development of multiomics technologies to simultaneously measure other cellular features, 28 

including DNA methylation 4,5, chromatin accessibility 6-8 and spatial positions 9,10 in the same 29 

cells. Although available single-cell multiomics technologies 8,11-14 can profile thousands to 30 

millions of cells per experiment, the cost of the experiments is still quite high 15; and the data 31 

generated are often of lower throughput than those generated by unimodal technologies. These 32 

restrictions necessitate the development of computational approaches that can accurately integrate 33 

multiple data matrices generated by different technologies from the same biological samples to 34 

acquire an accurate characterization of cellular identity and function.  35 

 36 

However, different technologies create data matrices of different rows and columns, which 37 

correspond to different sets of cells and different types of features. How to align cells and features 38 

simultaneously across matrices is a core computational challenge. When the two sets of cells are 39 

sampled uniformly from the same biological sample, it is safe to assume that there exists an optimal 40 

way to align together cells of similar identities and features associated with these identities. This 41 

is mathematically challenging, however, as there are many possible ways to simultaneously align 42 

a large number of cells and features. To address this challenge, existing computational approaches 43 
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followed two directions: 1) aligning features empirically before aligning cells 16-19; 2) obtaining 44 

separate embeddings for each modality, followed by performing unsupervised manifold alignment 45 

20-22. Taking integration of scRNA-seq and singe cell assay for transposase accessible chromatin 46 

sequencing (scATAC-seq) as an example, the first category of methods require constructing a 47 

“gene activity matrix” from scATAC-seq data by counting DNA reads aligned near and within 48 

each gene 23. This strategy considers only the basic cis-regulatory relations and ignores long-range, 49 

trans-regulatory relationship established via other regulatory elements such as enhancers 6, which 50 

are often critical to decipher cell identities. It also substantially simplifies (or loses) multifactorial 51 

relations between transcription factors (TF) and target genes 24. Based on pre-aligned features 52 

generated by such empirical rules, Seurat applies canonical correlation analysis (CCA) and mutual 53 

nearest neighbors (MNNs) to identify cells anchoring the two data matrices 17; LIGER uses an 54 

integrative non-negative matrix factorization (iNMF) to delineate shared and dataset-specific 55 

features 19; Harmony projects cells onto a shared embedding using principle components analysis 56 

(PCA) and removes batch effects iteratively 18. All these programs suffer from the aforementioned 57 

limitations and thereby cannot yield a comprehensive, unbiased gene regulatory network, 58 

particularly when chromatin changes are asynchronous from RNA transcriptions in cells 59 

undergoing state transitions 25. The second category of methods 20-22 do not require prior feature 60 

alignment and are fully unsupervised. However, they depend heavily on the assumption that 61 

feature variation across cells is driven by a few latent variables in both modalities 22. This 62 

assumption can get violated easily in datasets of complex biology involving dynamic processes 63 

such as differentiation, reprogramming and transdifferentiation 22.  64 

 65 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.11.422014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.422014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

In this study, we develop a novel computational tool called bindSC (bi-order integration of single-66 

cell data). The key algorithm implemented in bindSC is called bi-CCA (bi-order canonical 67 

correlation analysis). Bi-CCA learns the optimal alignment among rows and columns from two 68 

data matrices generated by two different experiments.  The alignment matrix derived from bi-CCA 69 

can thereby be utilized to derive in silico multiomics profiles from aligned cells. 70 

 71 

We assess our method on several challenging multimodality integration tasks between 1) 72 

transcriptomic and chromatin accessibility data, 2) transcriptomic and spatial transcriptomic data, 73 

and 3) transcriptomic and proteomic data. We validate scRNA-seq and scATAC-seq integration 74 

accuracy using datasets obtained directly from multiomics technologies, including a novel mouse 75 

retina cell atlas created by the 10x Genomics Multiome ATAC+RNA kit. We show that bindSC 76 

enables comprehensive characterization of epigenetic regulatory states in a lung adenocarcinoma 77 

cell-line A549 in response to dexamethasone treatment. And bindSC can align mouse retina cell 78 

types accurately, for multi-subtype bipolar cells and rare horizontal cells. Moreover, bindSC 79 

enables unbiased integration of spatial transcriptomics data with scRNA-seq data on mouse brain 80 

cortex samples, as well as single-cell RNA data with protein data from peripheral blood 81 

mononuclear cells. BindSC is implemented as an open-source R package available at 82 

https://github.com/KChen-lab/bindSC. 83 

 84 

Results 85 

 86 

Bi-order integration of multi-omics data 87 
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BindSC takes as input two single-cell data matrices (X and Y) generated uniformly from the same 88 

cell population by two different technologies (Fig. 1a). In most single-cell multi-omics integration 89 

tasks, neither the alignment between the cells in X and those in Y, nor the alignment between the 90 

features in X and those in Y is known.  BindSC employs a bi-CCA algorithm developed in this 91 

study to address this challenge (Fig. 1b). Briefly, bi-CCA introduces a gene score matrix Z to link 92 

X and Y. The gene score matrix has the same rows as does X and the same columns as does Y. To 93 

reduce computational cost, Z can be initialized based on prior knowledge. Taking integration of 94 

scRNA-seq and scATAC-seq as an example, the gene score matrix can be initialized using the 95 

“gene activity matrix” estimated by other programs such as Seurat. Bi-CCA then iteratively 96 

updates Z to find an optimal solution which maximizes the correlation between X and Z and 97 

between Y and Z in the latent space simultaneously. Details about this iterative procedure can be 98 

found in Methods and Supplementary Fig. 1a. 99 

 100 

Bi-CCA outputs canonical correlation vectors (CCVs), which project cells from two datasets onto 101 

a shared latent space (referring below as “co-embedding”). A K-nearest neighbor (KNN) graph is 102 

constructed based on Euclidean distances observed in the latent space, followed by modularity 103 

optimization techniques to partition the KNN into highly interconnected subgraphs, each of which 104 

corresponds to a putative cell type or state (Fig. 1c). Within each cluster, sub-clustering using 105 

similar strategies is further performed to derive what we call pseudo-cells (Methods). Each 106 

pseudo-cell encloses tens of cells from both datasets and thus has a consensus multiomic profile 107 

summarized from constituting cells (Fig. 1c-d). The joint multiomic profiles thus enable 1) 108 

characterizing gene and chromatin-accessibility relations from aligned scRNA-seq and scATAC-109 

seq data; 2) associating transcriptomic profiles with spatial locations from aligned scRNA-seq and 110 
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spatial transcriptomic data; 3) associating transcriptomic profiles with proteomic profiles from 111 

aligned scRNA-seq and CyTOF data, and so on (Fig. 1e).  112 

 113 

Benchmarking bindSC performance on simulation datasets  114 

Existing integration methods such as Seurat, LIGER, and Harmony require pre-aligning features 115 

across modalities, i.e., compressing cell-peak matrices obtained from scATAC-seq onto cell-gene-116 

activity matrices based on reference genome annotations. BindSC overcomes that restriction: its 117 

generic mathematical formulations allow free alignment amongst features to be established from 118 

data.  119 

 120 

Under our formulation (Methods), Z has features (rows) aligned with X and cells (columns) 121 

aligned with Y. The introduction of Z enables bi-order alignment of the cells and the features, 122 

respectively. 123 

 124 

To quantify how much this step matters to overall integration accuracy, we performed a set of 125 

simulation experiments. We started by creating a dataset X consisting of 3 cell clusters (types), 126 

each having 333 cells and 1,000 genes  using Splatter 26 (Supplementary Fig. 2a). We created a 127 

second dataset Y and made it identical to X: X = Y. We then constructed a gene score matrix Z 128 

from Y by permuting a fraction of features (rows), termed misalignment rate (MR), into different 129 

orders. The features between Z and Y are perfectly aligned if MR equals 1 and are independent if 130 

MR equals 0. We further added white noise on all the entries of Z at a given signal-noise-ratio 131 

(SNR) level. 132 

 133 
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We then provide (X, Z) as input to the other methods (Supplementary Fig. 2b), mimicking how 134 

they perform integration, while provide both (X, Z) and (Y, Z) to bindSC (Supplementary Fig. 135 

2c). As described, rather than taking Z as it is from the input, bindSC will iteratively update Z 136 

until reaching convergence.  137 

 138 

Since we know the true cell type and dataset origin of the cells in these experiments, we can assess 139 

the integration performance in terms of cell type classification accuracy and dataset alignment 140 

accuracy in the co-embeddings. It is necessary to measure both types of accuracy, as a high cell 141 

type classification accuracy can be achieved by simply projecting cells onto local clusters without 142 

achieving uniform mixing of the two datasets. Similarly, a high dataset alignment accuracy can be 143 

achieved by uniformly mixing cells from the datasets, regardless of their cellular identity. We used 144 

Silhouette score for measure cell type classification accuracy and alignment mixing score to 145 

measure the dataset alignment accuracy (Methods). We compared bindSC, CCA, Seurat, LIGER 146 

and Harmony under default settings (Supplementary Note 1).  147 

 148 

We obtained results from a range of MRs under SNR = 0.25 (Fig. 2). When there was no feature 149 

misalignment (MR = 0), all methods achieved good performance. Even under this ideal scenario, 150 

bindSC achieved the highest Silhouette score (> 0.75) (Fig. 2a). The worse performance of other 151 

methods can be explained by the noise introduced to distort the manifold structures between X and 152 

Z. CCA showed better performance than Seurat, which may be due partly to label transferring 153 

errors introduced by Seurat’s empirical anchor-based alignment approach.  As MR increased from 154 

0 to 0.9, the Silhouette score for bindSC remained stable (> 0.7), while all the other methods 155 

showed a decreasing trend, especially for LIGER and Harmony. Harmony worked well when MR  156 
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£ 0.15 (Fig. 2a-b) but had a substantial drop on Silhouette score (< 0.1) when MR > 0.15. In 157 

addition, its alignment mixing score dropped to 0 when MR > 0.2, with no mixing of cells from X 158 

and Z in the co-embedding UMAP (Fig. 2b; MR = 0.5). Harmony takes cell coordinates from a 159 

reduced dimensional PCA space and runs an iterative algorithm to adjust for dataset-specific 160 

effects. When MR > 0.15, cells from X and Z already formed two dis-joint groups, which made 161 

the downstream integration impossible for Harmony. The Silhouette score of LIGER showed 162 

fluctuations but was always lower than 0.4. LIGER utilizes an integrated nonnegative matrix 163 

factorization (iNMF) method to identify shared and dataset-specific metagenes across two datasets. 164 

If it worked as designed, the errors caused by feature misalignment should be contained within 165 

dataset-specific modules. However, variance explained by the data-specific modules appeared to 166 

be small (< 1%). When MR ³ 0.95, all methods including bindSC failed to achieve reasonable 167 

integration. That was expected as X and Z (as well as Y and Z) became nearly independent.  168 

 169 

As expected, increasing SNR level worsened the integration performance for most of the methods 170 

except bindSC. For example, both CCA and Seurat had acceptable performance under MR = 0.5 171 

and SNR = 0 (Supplementary Fig. 3a), but Seurat failed to separate cell type 2 and 3 accurately 172 

when SNR = 0.25 or 0.5 (Supplemental Fig. 4a; Fig. 2). For SNR = 0.5, Harmony failed in both 173 

alignment mixing (< 0.2) and classification (= 0) accuracy, even when MR was as low as 0.1 174 

(Supplementary Fig. 4).  175 

 176 

We repeated the above experiments by increasing the number of cells to 5,000 and 10,000, 177 

respectively.  Similarly, bindSC showed robust performance regardless of MR and SNR levels, 178 

which was not achieved by other methods (Supplementary Tables S2-3).  Overall, the simulation 179 
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results demonstrated that bindSC is robust to bias introduced by noise in the data and via pre-180 

aligning features, thanks to its ability to align both cells and features simultaneously.  181 

 182 

Integrating single cell epigenomic data with single cell transcriptomic data 183 

Integrating single cell epigenomic data with single cell transcriptomic data obtained from 184 

unimodal technologies provides an opportunity to decipher epigenetic regulatory mechanisms 185 

underpinning cell transcriptomic identity. We examined the performance of bindSC in integrating 186 

the scRNA-seq and scATAC-seq data derived from lung adenocarcinoma (A549) cells after 0, 1, 187 

and 3 hours of  dexamethasone (DEX) treatment 6. This dataset was generated using a 188 

combinatorial indexing-based coassay (sci-CAR), which enabled jointly measurement of 189 

chromatin accessibility and transcriptome in the same cells. In this dataset, 6,005 cells have sci-190 

RNA-seq profiles and 3,628 cells have sci-ATAC-seq profiles. Among them, 1,429 cells have both 191 

RNA-seq and ATAC-seq profiles, which can be used as a gold standard for evaluating integration 192 

accuracy of various methods (Methods). 193 

 194 

For comparison, we ran the 4 methods on the same data and derived in silico co-embeddings. There 195 

was relatively clear separation between cells acquired at 0 hour and those at 1 or 3 hours in the co-196 

embeddings (Fig. 3a). In terms of classifying cells by time, bindSC achieved the highest Silhouette 197 

score and Harmony the second, whereas Seurat had the lowest score with many sub-clusters in its 198 

co-embedding (Fig. 3a-b). As to alignment accuracy, bindSC and Harmony had similar scores, 199 

whereas Seurat received a relatively low score (Fig. 3b). Similar trends were observed in a 200 

previous study analyzing the same dataset 27. As suggested by simulation, the low alignment 201 

mixing score of Seurat was likely attributable to bias introduced in its anchor-based integration.  202 
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 203 

A perfect integration method would place the two instances of the 1,429 co-assayed cells onto 204 

identical locations in the co-embeddings. We leveraged this expectation to compare the accuracy 205 

of various methods. We defined a metric, called anchoring distance that measures the normalized 206 

Euclidean distance between the two instances of a co-assayed cell in the co-embeddings 207 

(Methods). BindSC achieved substantially shorter anchoring distances than the other methods (p 208 

< 2.2e-16; Student t-test; Fig. 3b).  209 

 210 

We further compared how accurately TF (or peak) -gene correlations can be inferred from the co-211 

embeddings produced by each method. For a fair comparison, we applied the same bindSC 212 

workflow to derive pseudo-cells for the 4 methods (Methods; Supplementary Note 2).  213 

 214 

For each TF-gene (and peak-gene) pair, we calculated a Spearman rank correlation coefficient 215 

(SRCC) between the TF activity (and normalized peak) level and the gene expression level in the 216 

pseudo-cells (Methods). We repeated the same calculation in the co-assayed cells to create a gold 217 

standard. For each of the 4 methods in 3 types of relations: TF-gene, cis- peak-gene and trans- 218 

peak-gene, we calculated a summary SRCC between the SRCCs obtained from the pseudo-cells 219 

and the SRCCs obtained from the co-assayed cells.  The summary SRCCs resulting from bindSC 220 

were consistently higher than those obtained from Seurat, LIGER and Harmony in all the 221 

categories of comparison, indicating that the bindSC multiomic profile had the highest accuracy. 222 

 223 

We further examined the peak-gene association identified from the co-assayed cell profiles and 224 

found 585 trans- peak-gene pairs being supported by isogenic Hi-C data generated in an 225 
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independent study 28. Compared with other approaches, bindSC derived peak-gene SRCCs of the 226 

highest level of agreement with those observed in the co-assayed cells (Supplementary Fig. 5). 227 

Among the 585 trans- peaks, 470 appeared more strongly correlated with the corresponding gene 228 

expression levels than did the corresponding cis- peaks. One example was the gene CFLAR and a 229 

trans- peak at chr2:201,770,437-201,770,992, which is 200-kb upstream of CFLAR transcription 230 

start site, spanning over three genes (Fig. 3e). The SRCC of this pair was 0.32 in the co-assayed 231 

cells. It was lower but comparable (0.23) in the bindSC pseudo-cells, however, became 232 

substantially lower (< 0.11) in the pseudo-cells generated by the other methods (Supplementary 233 

Fig. 5).  234 

 235 

The DEX treatment specifically targets the glucocorticoid receptor encoded by NR3C1, a TF that 236 

activates the mRNA transcription of a handful of downstream genes. BindSC accurately 237 

reconstructed the gene expression and TF activity kinetics of NR3C1 (Fig. 3d),  consistent with 238 

what was depicted in the original study 6 using the co-assayed cells: the NR3C1 expression level 239 

decreased over time while its activity level increased; Even the slowing down trend of NR3C1 240 

activity was captured. 241 

 242 

We further evaluated the performance of bindSC in integrating scRNA-seq and scATAC-seq on 243 

another available multi-omics dataset generated recently by SHARE-seq technology14. There were 244 

a total of 37,774 cells from mouse skin tissues that had paired RNA and ATAC profiles. Compared 245 

with other methods, bindSC again achieved significantly shorter anchoring distances 246 

(Supplementary Fig. 7; Supplementary Note 4). 247 

 248 
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Comprehensive evaluation using a novel mouse retinal cell atlas  249 

For comprehensive evaluation and comparison, we generated a novel multi-omics dataset from 250 

single nuclei of wild type mouse retina. Mouse retina is heterogeneous, composed of multiple 251 

neuronal and non-neuronal cell types, including five major neuron classes: photoreceptors (rods 252 

and cones), retinal ganglion cells (RGC), horizontal cells (HC), bipolar cells (BC), amacrine cells 253 

(AC), and a non-neuronal Müller glial cell (MG) 4,29,30. While we 29 and others 31-33 have provided 254 

high-resolution single cell transcriptomic profiles of whole retina or specially sorted cell types on 255 

mouse and human retina tissue, little is known on the single-cell chromatin landscape of mouse 256 

retina tissue. Numerous studies 34-36 demonstrate the importance of transcription factors (TFs) on 257 

establishing or maintaining the chromatin landscapes that define retina cell identity. Therefore, 258 

integration of ATAC and RNA profiles at single cell resolution provides an exciting opportunity 259 

to comprehensively characterize cell types and rare cell subtypes in mouse retina.  260 

 261 

We applied the newly released 10x Genomics Multiome ATAC+RNA kit on nuclei suspension 262 

acquired from adult mice retina samples.  After performing standard quality control, we obtained 263 

an atlas of 9,383 nuclei of high-quality ATAC+RNA profiles. To define cell types, we first 264 

clustered the RNA and the ATAC data individually. Nineteen (19) clusters were identified from 265 

the RNA data alone, which included all the known major cell types with some subtypes identified: 266 

rod, BC (BC1~BC10), AC, RGC, cone, HC, MG and retina progenitor cells (RPC) (Fig 4a and 267 

Supplementary Fig. 8). Nineteen (19) clusters were also identified from the peak files of the 268 

ATAC data alone (Fig. 4b). Although known cell types appeared to be well separated in both 269 

modalities, there were some noticeable differences. For example, RGC cells and rod cells were 270 

separated clearly in the RNA data but partly blended together in the ATAC data, whereas ACs and 271 
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RGC cells were blended in the RNA data but well separated in the ATAC data. Interestingly, all 272 

the 10 BC cell subtypes, defined based on RNA expression levels, were well separated in the 273 

ATAC data except for BC1 and BC6.  However, after reducing ATAC data to gene level in a gene 274 

activity matrix, the cell types became considerably harder to delineate (Fig. 4c). 275 

 276 

To obtain in silico multiomics profiles, we ran bindSC together with three other methods on the 277 

data without using the known cell correspondence. As shown in the co-embedding UMAP 278 

(Fig.4d-e), bindSC successfully aligned cell types across modalities, with most cell types well 279 

separated out (Fig. 4d-f). Interestingly, bindSC successfully aligned the HCs, which is quite rare 280 

in the dataset (23 cells, <0.25% abundance). None of the other methods aligned the HCs correctly 281 

as it was already difficult to separate the HCs from the ACs in the gene-level chromatin profiles 282 

(Fig. 4c and Supplementary Fig. 9), the input to the other methods. Overall, the anchoring 283 

distances in the co-embeddings generated by bindSC were considerably smaller than those 284 

generated by the other methods in all the cell types assessed (Fig. 4f). 285 

 286 

Note that bindSC aligned the 10 BC subtypes reasonably well (Fig. 4g), although separations in 287 

the ATAC modality were not as clean as they were in the RNA modality. In comparison, Seurat 288 

and LIGER failed to generate meaningful alignments among the BC subtypes (Fig. 4h-j and 289 

Supplementary Fig. 9) while Harmony aligned a few subtypes successfully. These were due 290 

partly to the fact that these methods used the low precision gene-level chromatin accessibility 291 

profiles as the input (Fig. 4c).  292 

 293 
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Overall, our study demonstrated the power of multiomics in delineating rare cell types and proves 294 

that bindSC can generate in silico multiomics profiles that are considerably more accurate than do 295 

existing tools.  296 

 297 

Integrating scRNA-seq data with spatial transcriptomics (ST) data  298 

BindSC can integrate scRNA-seq data with spatial transcriptomics data to 1) assign spatial 299 

locations to cells in the scRNA-seq data and 2) associate additional RNA features to the spatial 300 

data for higher resolution delineation. For demonstration, we applied bindSC to integrate the 301 

SMART-Seq2 data with the in situ spatial transcriptomics data generated by 10x Visium from the 302 

same mouse frontal cortex tissue. These two datasets differ widely in number of cells: 1,072 spots 303 

in the ST data versus 14,249 cells in the scRNA-seq data (Supplementary Fig. 10a). The spots 304 

on the Visium assay are at ~50 um resolution and each spot can contain tens of cells. There were 305 

6 clusters identified from the ST data alone, which linked to distinct layers in the corresponding 306 

histology images (Supplementary Fig. 10b-c) and 23 cell types from the scRNA-seq data alone 307 

(Supplementary Fig. 10d).  308 

 309 

We used bindSC and other programs to derive co-embeddings containing datapoints from both 310 

datasets (Fig. 5a). BindSC achieved evidently higher alignment mixing scores than the other 311 

programs (Supplementary Fig. 11c) while the Silhouette scores were similar (Supplementary 312 

Fig. 11b). For each pseudo-cell in the scRNA-seq data, we calculated its probability to map to a 313 

spatial location in the histology image. We then overlaid these cells on the histology image 314 

coloring by their probability scores (Methods).  Noticeably, several cell types in the scRNA-seq 315 

data mapped to distinct spatial layers in the histology image, which is consistent with the known 316 
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cellular anatomy of mouse cortex, particularly for the laminar excitatory neuron cell types such as 317 

L2.3 IT, L4, L5.IT, L5.PT, L6.IT, L6.CT, L6B and NP (Fig. 5b). Consistent with previous 318 

observations, the oligodendrocyte-rich white matter (oligo cells) was mapped below the cortex. 319 

BindSC and Seurat were also able to map inhibitory clear cell types such as Lamp5, Vip, Pvalb 320 

and Sst in the scRNA-seq data to the histology image, but these cell types did not form distinct 321 

spatial patterns. LIGER and Harmony, which had worse alignment mixing scores (Supplementary 322 

Fig. 11c), failed to map these cells (Supplementary Figs. 13-14), especially the Vip cells. The 323 

poor mapping of the inhibitory cells may also be attributable to the limited resolution of the Visium 324 

technology.  325 

 326 

Given that each spot in the ST data may encompass multiple cells from multiple cell types, we 327 

hypothesized that the probability scores calculated from the co-embeddings can reveal the 328 

composition of the cell types at each spot. Fig. 5c showed the relationship between cell type 329 

abundance in the scRNA-seq data and abundance estimated based on probability scores in the ST 330 

data. Results from bindSC achieved the best correlation (Pearson’s R = 0.9). L6.IT, Sst and Vip 331 

cell types were the top 3 most abundant cell types in both the scRNA-seq data and the ST data. 332 

Seurat also performed reasonably well (Pearson’s R = 0.83) while LIGER and Harmony performed 333 

worse. Note that Lamp5 was the cell type that showed the largest discordance in the bindSC result. 334 

In examining the spatial distributions of Lamp5 specific gene expressions such as Lsp1, Npy2r, 335 

and Dock5, we could not find any spatial patterns (Supplementary Fig. 11 d-e). This finding may 336 

indicate that Lamp5 does not have a characteristic spatial distribution.  337 

 338 

Integrating single-cell RNA with protein data 339 
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Complex interplay exists between mRNAs and proteins 37. Single-cell proteomic methods such as 340 

mass cytometry (CyTOF) 2,38 measure abundance of a small set of (often 10-50) surface proteins 341 

(epitopes) and provide functional quantification of various cell populations. Integrating single-cell 342 

RNA and protein data from the same sample can potentially achieve higher resolution 343 

characterization and enable discovery of novel cellular states and associated features. BindSC can 344 

be applied for such a task. Notice that this task cannot be achieved by any of the existing tools 345 

because the mRNA and protein expression levels derived from the same genes are not well 346 

correlated, due to complex post-transcriptional modifications and technological limitations 39. 347 

CITE-seq 40 performs jointly profiling of epitope and mRNA levels in the same cells and can be 348 

used to evaluate the results of in silico integration.  349 

 350 

We used a CITE-seq dataset consisting of 30,672 human bone marrow cells with a panel of 25 351 

antibodies 17. We split the data into an RNA matrix and a protein matrix. Unsupervised clustering 352 

of the RNA matrix revealed cell types largely consistent with those in the protein matrix, except 353 

for some noticeable differences (Fig. 6a-b). CD8+ and CD4+ T cells were partly blended together 354 

in the RNA data but separated clearly in the protein data. On the other hand, conventional dendritic 355 

cells (cDC2) were separated from other clusters in the RNA data but were intermixed with other 356 

cell types in the protein data. In contrast, unsupervised clustering of the gene expression levels of 357 

the 25 protein-homologous RNAs could not yield meaningful classification (Fig. 6c). 358 

Consequently, Seurat, LIGER and Harmony, which work with only data matrix of 25 homologous 359 

features, failed to produce meaningful co-embeddings (Supplementary Fig. 15): the cells from 360 

the protein data were well clustered, but those from the RNA data were not meaningfully 361 

distributed in the co-embeddings.  362 
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 363 

We then tested bindSC on this task. The matrix X was set as the protein matrix, Y the RNA matrix 364 

of 3,000 highly variable genes, and Z the RNA matrix containing only the 25 protein-homologous 365 

genes. Remarkably, the majority of the cells from the two modalities became well aligned in the 366 

co-embedding (Fig. 6d-e), as they are expected to be. Similar to our previous experiments, we 367 

calculated the anchoring distance between the protein and the RNA cells deriving from the same 368 

original cells in the co-embeddings. The overall anchoring distance for bindSC was significantly 369 

lower than those obtained by Seurat, LIGER, Harmony, or random guesses (p-value < 2.2e-16; 370 

Student t-test; Fig. 6f). Notably, the bulk of CD4+ and CD8+ T cells in the RNA data became well 371 

separated in the co-embedding (Fig. 6d-e), thanks to the power of integration. Moreover, the 372 

anchoring distances revealed the extent of differences between the levels of the RNAs and those 373 

of the homologous proteins in individual cell types (Fig. 6g). Interestingly, relatively rare cell 374 

types such as HSC, Prog/NK, LMPP, and CD16+ Mono appeared relatively well anchored, 375 

whereas relatively common cell types such as CD8 naïve, CD8 memory, B progenitor, Treg, etc. 376 

appeared less well anchored. This indicates that there are higher degrees of post-transcriptional 377 

heterogeneity in cell types conducting adaptive immune surveillance 41. 378 

 379 

Discussion 380 

Despite the ground-breaking advances in single-cell technologies, including multiomics 381 

technologies, there always exists a need to computationally integrate multiple data matrices of 382 

different modalities from the same biological samples to derive a more comprehensive 383 

characterization of cellular identities and functions.  384 

 385 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.11.422014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.422014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Our method bi-CCA and tool bindSC appeared to have addressed this important analytical 386 

challenge without compromising biological complexity in the data. In our experiments, bindSC 387 

successfully integrated data obtained from a wide variety of vastly different technologies covering 388 

transcriptomes, epigenomes, spatial-transcriptomes and proteomes, and clearly outperformed 389 

existing tools such as Seurat, LIGER and Harmony, when being evaluated objectively using true 390 

single-cell multiomics data derived from the same cells. In particular, Seurat, LIGER, and 391 

Harmony are essentially first-order solutions that can be applied to only rows or columns but not 392 

both simultaneously. That approach introduced biases in the results and restricted the utility of 393 

those tools in discovering complex cell-type relations and molecular interactions. For instance, 394 

they consider only the basic cis-regulatory relations and ignores trans-regulatory relations 6 395 

established via distal enhancers, as exemplified in the interaction between CFLAR and a 200 kbps 396 

upstream putative enhancer site discovered by bindSC and validated by Hi-C in the DEX-treated 397 

A549 data. Other scATAC-seq analysis pipelines such as MAESTRO 16 and ArchR 42 have similar 398 

restrictions.  399 

 400 

Similarly, bindSC was able to meaningfully associate the expression levels of mRNAs with those 401 

of the surface proteins, a very challenging task due to complexity in post-transcriptional 402 

modification.  The resulting co-embedding offered deeper biological insights than embeddings 403 

derived from single modality or by using other existing approaches.  For example, CD4+ T cells 404 

became evidently separated from CD8+ T cells and so did pDC cells from other cell types.  405 

 406 
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BindSC also achieved meaningful mapping of scRNA-seq data to spatial locations in the brain 407 

cortex samples, after integrating with the ST data.  Even though the two datasets were not both at 408 

single-cell resolution, bindSC was still able to achieve a meaningful integration.   409 

 410 

Bi-CCA made two assumptions: 1) the two sets of cells are sampled uniformly from the same 411 

biological sample; 2) the features of the two datasets are linearly correlated. These two 412 

assumptions are met under many scenarios of current investigations, however, could be violated 413 

when there are insufficient number of cells obtained from a rapidly developing cell population. 414 

Consequently, the accuracy of the co-embedding could vary, depending on the sampling density 415 

and the complexity of the population. We measured accuracy with respect to data complexity in 416 

the simulation experiments, however, accuracy on a real dataset could be complex to gauge a 417 

priori and will require case by case investigation in the context of a specific study, followed by 418 

necessary experimental validation.  Nonetheless, in this study we clearly proved based on objective 419 

ground truth data that bi-CCA substantially avoided bias introduced by existing methods and that 420 

bindSC is a robust implementation that can be applied to derive meaningful results on most recent 421 

datasets containing thousands to tens of thousands cells (Supplementary Table 1). 422 

 423 

BindSC is efficiently implemented in R. The major computational cost for bindSC is from 424 

calculating cell/feature co-embedding coordinates using singular value decomposition (SVD) 425 

(Methods); It typically requires O(MNL) floating-point operations to construct MN cell-cell 426 

distance matrix as input to SVD decomposition, where M and N are cell number of the two 427 

modalities, respectively. To address this computational challenge, bindSC implements the “divide-428 

and-conquer eigenvalue algorithm”. The divide part first splits cells into different blocks specified 429 
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by users, which can be solved in parallel with lower memory usage (Supplementary Fig. 1b). The 430 

conquer part then merges results from each block recursively. Therefore, the maximal memory 431 

usage of bindSC is independent of the total cell number.  432 

 433 

Taken together, we believe that bindSC is likely the first tool that has achieved unbiased integration 434 

of data matrices generated by different technologies and can be applied in broad settings. In the 435 

single-cell domain, bindSC can clearly be applied to align cells and features simultaneously, which 436 

are important for ongoing investigations in the Human Cell Atlas 43, the NIH HubMap 44, the 437 

Human Tumor Cell Network 45 and on remodeling of tumor microenvironment 46.  Further, bindSC 438 

can potentially be applied to other domains, such as integrating patient sample mRNA profiles 439 

with cell-line drug-sensitivity data 47.  440 
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Methods  441 

BindSC workflow 442 

BindSC workflow for creating in silico single cell multi-omics embeddings consists of five steps:  443 

1. individual dataset preprocessing including variable feature selection and cell clustering, 444 

2. initializing feature matching across modalities (i.e., constructing gene score matrix), 445 

3. identifying cell correspondence using the bi-CCA algorithm, 446 

4. jointly clustering cells between two modalities in the co-embedding latent space and 447 

constructing pseudo-cell level multi-omics profiles, and 448 

5. downstream analysis for various integration tasks. 449 

We formulate our method for the case of two modalities. Let 𝑿 ∈ ℝ!×# be a single-cell dataset of 450 

features 𝑔$, 𝑔$, ⋯ , 𝑔!  by cells 𝑐$, 𝑐$, ⋯ , 𝑐#  and 𝒀 ∈ ℝ%×&  be a single-cell dataset of feature 451 

𝑝$, 𝑝', ⋯ , 𝑝% by cells 𝑑$, 𝑑$, ⋯ , 𝑑&. 𝑀	and 𝑁	are the numbers of features (e.g., gene expression, 452 

chromatin accessibility, protein abundance level) in the two datasets.  𝐾	and 𝐿	are the number of 453 

cells in the two datasets. Without loss of generality, we assume that features 454 

𝑔$, 𝑔$, ⋯ , 𝑔!represent the gene expression levels and 𝑀 ≤ 𝑁. The important component of each 455 

step is described as follows. 456 

 457 

1. Individual modality preprocessing  458 

For each modality, we follow standard processing pipeline, which includes variable feature 459 

selection and unsupervised cell clustering. The cluster information derived from each modality is 460 

used for downstream parameter optimization.  461 

 462 

2. Initializing feature matching across modalities 463 
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Because features in the two datasets are generally different, bindSC requires one additional 464 

transition matrix 𝒁 ∈ ℝ!×& as input for bridging the integration of  𝑿 and 𝒀. The transition matrix 465 

𝒁 can be understood as the projection of 𝒀 to the feature space of the first dataset 𝑿. Taking the 466 

integration of scRNA-seq and scATAC-seq as an example, the matrix 𝒁 can be derived from 467 

scATAC-seq profiles by summing reads in gene bodies 17,19,23. This can also be input from the 468 

regulatory potential (RP) model in MAESTRO 16. In a simpler case where 𝑿 and 𝒀 have matched 469 

features, the integration tasks fall into two categories: 1) batch correction for scRNA-seq data 470 

across individuals, species, or technologies; 2) integration of scRNA-seq with spatial 471 

transcriptome data. In those cases, the transition matrix 𝒁 is initialized as 𝒀. In bi-CCA, 𝒁 is 472 

updated iteratively. In the following text, the initial value of 𝒁 is denoted by 𝒁(𝟎).  473 

 474 

3. Bi-order canonical correlation analysis (Bi-CCA)   475 

The key algorithm implemented in bindSC is Bi-CCA, the concept of which extends traditional 476 

CCA17,24,48 to both rows and columns to enable capturing of correlated variables in cells and 477 

features simultaneously. Bi-CCA introduces two cell-level projection matrices 𝑼 ∈ ℝ#×+ , 𝑺 ∈478 

ℝ&×+ such that the correlations between indices 𝑿𝑼 and 𝒁𝑺 are maximized, and two feature-level 479 

projection matrices 𝑻 ∈ ℝ!×+, 𝑽 ∈ ℝ%×+ such that the correlations between indices 𝒁,𝑻 and 𝒀,𝑽 480 

are maximized. The optimization framework can be formulated as:  481 

argmax
𝑼,𝑺,𝑻,𝑽,𝒁

𝒕𝒓{(𝑿𝑼),𝒁𝑺 + 	(𝒁,𝑻),	𝒀,𝑽}                                                (1) 482 

subject to 	(𝑿𝑼),𝑿𝑼 = 𝑰	, 	(𝒁𝑺), 𝒁𝑺 = 𝑰, 		(𝒁,𝑻),	𝒁,𝑻 = 𝑰	, 		(𝒀,𝑽), 	𝒀,𝑽 = 𝑰. 483 

 484 

If the transition matrix 𝒁 is known, the objective (1) can be divided into two disjoint traditional 485 

canonical correlation analysis (CCA) problems. The left term is performed to identify cells of 486 
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similar (aligned) features, while the right term is performed to identify features shared by the 487 

(aligned) cells, each of which can be solved in the CCA framework. However, it is difficult to 488 

update transition matrix 𝒁 in equation (1) even when matrices 𝑼, 𝑺, 𝑻, 𝑽 are available. This is 489 

because: a) left optimization problem requires 𝒁 as input and the right optimization problem 490 

requires 	𝒁, as input, leading (1) to a non-linear optimization problem; b) transition matrix Z shows 491 

up in constraints.  492 

 493 

Therefore, we modify equation (1) in a much more practical way. First, we standardize 𝑿 to let it 494 

have 𝑿,𝑿 = 𝑰, and standardize 𝒀 so that 𝒀𝒀, = 𝑰. The standardization process can be seen in 495 

Algorithm 1. Thus, equation (1) could be simplified as 496 

argmax
𝑼,𝑺,𝑻,𝑽,𝒁

𝒕𝒓{(𝑿𝑼),𝒁𝑺 + (𝒁,𝑻),𝒀,𝑽}                                                   (2) 497 

subject to 	𝑼,𝑼 = 𝑰	, 	(𝒁𝑺), 𝒁𝑺 = 𝑰, 		(𝒁,𝑻),	𝒁,𝑻 = 𝑰	, 	𝑽, 𝑽 = 𝑰. 498 

                       499 

To eliminate transition matrix Z from constraints, we introduce two transition matrices 𝒁3 ∈ ℝ!×& 500 

and 𝒁4 ∈ ℝ!×& and optimize the following problem:  501 

argmax
𝑼,𝑺,𝑻,𝑽,𝒁!,𝒁"

𝒕𝒓{(𝑿𝑼),𝒁3𝑺 + (𝒁4, 𝑻),	𝒀,𝑽} + ‖𝒁3 − 𝒁4‖𝟐                              (3) 502 

subject to 	𝑼,𝑼 = 𝑰	, 	𝑺, 𝑺 = 𝑰, 	𝑻,𝑻 = 𝑰	, 	𝑽, 𝑽 = 𝑰, 		𝒁3𝒁3, = 𝑰, 		𝒁4, 𝒁𝒓 = 𝑰	. 503 

 504 

To solve equation (3), we also standardize 𝒁(𝟎) to let 𝒁(𝟎),𝒁(𝟎) = 𝑰, and initialized with 𝒁3: = 𝒁(𝟎).  505 

The standard singular value decomposition (SVD) can be implemented to obtain the canonical 506 

correlation vectors (CCVs) at cell levels. We used a user-defined number (𝐸) of singular vectors 507 

that approximate the CCVs (Algorithm 2). Here we term 𝐸  to represent the cell-level 508 
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“dimensionality” in the latent space, which is a parameter required to be optimized (Details seen 509 

in Parameter optimization).  510 

 (𝑼, 𝑺) : = 	 argmax
𝑼,𝑺

	𝑡𝑟(𝑼, 𝑿,𝒁3𝑺) subject to 	𝑼,𝑼 = 𝑰	, 	𝑺, 𝑺 = 𝑰.                   (4) 511 

 512 

Having CCV pair (𝑼, 𝑺) obtained, we have cell correspondence in the latent space between two 513 

datasets. The left transition matrix 𝒁3 can be updated by: 514 

 (𝒁3) : = 	 argmax
𝒁!

	𝑡𝑟(𝑼,	𝑿, 𝒁3𝑺) subject to 	𝒁3𝒁3, = 𝑰.                       (5) 515 

 516 

The details of solving optimization problem (5) is in Algorithm 2. 517 

 518 

We then set  519 

(𝒁4) :=𝒁3.              (6) 520 

The similar SVD algorithm (Algorithm 2) is used to approximate CCVs:  521 

 522 

 (𝑻, 𝑽):= 	 argmax
𝑻,𝑽

	𝑡𝑟(𝑻, 𝒁4𝒀,𝑽) subject to 	𝑻,𝑻 = 𝑰	, 	𝑽, 𝑽 = 𝑰.                   (7) 523 

 524 

Once CCV pairs  (𝑻, 𝑽) are obtained, the features are matched in the latent space between two 525 

datasets. The right transition matrix 𝒁4 could be updated as: 526 

 527 

 (𝒁4): = argmax
𝒁"

𝒕𝒓{(𝒁4, 𝑻),𝒀,𝑽}	subset	to	 𝒁4, 𝒁𝒓 = 𝑰	.                      (8) 528 

Next, we set  529 

(𝒁3) :=𝒁4 ,              (9) 530 
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The update process (4) ~ (9) are repeated until convergence.  Because each of the subproblems is 531 

convex with respect to the block variables being optimized, the algorithm is guaranteed to 532 

converge to a fixed point (local minimum).  533 

 534 

In the above framework, the transition matrix 𝒁 (represented by 𝒁3 and 𝒁4) is updated based on 535 

original observed matrices 𝑿 and 𝒀. In practice, we introduce the couple coefficient a (0≤ a ≤ 1) 536 

to assign weights on initialized matrix  𝒁(𝟎) on transition process (6) and (9).  537 

(𝒁4): = (1 − a)𝒁(𝟎) + a𝒁3                                               (10) 538 

and 539 

(𝒁3): = (1 − a)𝒁(𝟎) + a𝒁4                                               (11) 540 

The couple coefficient a can reflect the contribution of initial 𝒁(𝟎)  on linking two modalities. 541 

Equations (10) and (11) will be reduced to Equations (6) and (9) if a = 1. The bi-CCA algorithm 542 

will be reduced to traditional CCA if a = 0. Selection of coefficient a can be seen in Parameter 543 

optimization. Notably, the final 𝒁4 and 𝒁3 will be converged to different matrices if a < 1. The 544 

workflow of the iterative process is shown in Supplementary Fig. 1a.  545 

 546 

Jointly clustering cells across datasets in shared latent space and constructing pseudo-cell 547 

level multi-omics profiles 548 

Equation (4) projects cells of two datasets into a correlated E-dimensional space with cell 549 

coordinates  𝑼 = (𝒖$, 𝒖', … , 𝒖#)  and 𝑺 = (𝒔$, 𝒔', … , 𝒔&) , respectively. L2-normalization is 550 

performed to remove global differences in scale, therefore 551 

𝒖V7 = 𝒖7 ‖𝒖7‖'⁄ , 𝑖 = 1,2, … , 𝐾,                      (12) 552 

					𝒔Z7 = 𝒔7 ‖𝒔7‖'⁄ , 𝑖 = 1,2, … , 𝐿.         553 
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 554 

The shared nearest neighbor (SNN) graph is constructed by calculating the l-nearest neighbors (20 555 

by default) based on the Euclidean distance of L2-normlized latent space. The fraction of shared 556 

nearest neighbors between the cell and its neighbors is used as weights of the SNN graph. The 557 

modularity optimization technique Leiden algorithm 49 is used to group cells into interconnected 558 

clusters (termed meta-cluster) based on constructed SNN graph with a resolution parameter setting 559 

by users (default 0.5).  560 

 561 

To understand the molecular-level interaction among modalities, we construct the pseudo-cell 562 

level multi-omics profiles. Briefly, for cells in each meta-cluster identified, the Leiden algorithm 563 

is further performed based on SNN graph with a higher resolution (default = 2). In this way, cells 564 

in each meta-cluster are further grouped into highly interconnected sub-clusters. We term such 565 

sub-clusters as pseudo-cells. Only pseudo-cells that consist of at least n cells (default = 10) are 566 

kept for downstream analysis, while the others are considered data-specific and discarded. Profiles 567 

of the pseudo-cells are constructed by aggregating the cells included. We denote by  𝑿89:;<= ∈568 

ℝ!×>be pseudo-cell profiles of feature 𝑔$, 𝑔$, ⋯ , 𝑔! and 𝒀89:;<= ∈ ℝ%×> be pseudo-cell profiles 569 

of feature 𝑝$, 𝑝', ⋯ , 𝑝%. 𝑃 is the number of pseudo-cells.  570 

 571 

Algorithm 1. Standardizing inputs 572 

For input matrix 𝑿, we denote 𝚺𝑿#𝑿
@$  as the generalized inverse of matrix 𝑿,𝑿, and redefine 𝑿:=573 

∑ 𝑿@$/'
𝑿#𝑿 . For input matrix 𝒀, we denote 𝚺𝒀𝒀#

@$  as the generalized inverse of matrix 𝒀𝒀,, and redefine 574 

𝒀:= 𝒀Σ𝒀𝒀
@$/'. The standardization of 𝒁4 and 𝒁3 is the same as above.  575 

 576 
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Algorithm 2. Calculating CCVs using SVD 577 

Take subproblem from the Equation (4) as an example, the goal of this module is to find projection 578 

matrix 𝑼 ∈ ℝ#×+  and 𝑺 ∈ ℝ&×+  such that the correlations between two indices 𝑿𝑼 and 𝒁3𝑺 are 579 

maximized.  580 

argmax
𝑼,𝑺

	𝒕𝒓(𝑼,	𝑿, 𝒁3𝑺)  subject to 	𝑼,𝑼 = 𝑰	, 	𝑺, 𝑺 = 𝑰.                        (A1) 581 

We define  Σ𝑿#𝒁!: = 𝑿,𝒁3 . Let 𝑼 ∈ ℝ#×C  and 𝑺 ∈ ℝ#×C  be the matrices of the first 𝐸 left- and 582 

right singular vectors of Σ𝑿#𝒁!. Then the optimum in Equation (A1) is solved. 583 

 584 

Algorithm 3. Updating transition matrix with orthogonality constraints  585 

Take subproblem from the Equation (5) as an example, the goal of this module is to optimize 𝒁3.  586 

(𝒁3) : = 	 argmax
𝒁!

	𝑡𝑟(𝑼,	𝑿, 𝒁3𝑺), subject to 	𝑺,𝒁3,𝒁3𝑺 = 𝑰                          (A2) 587 

Equation (A2) is maximized when  𝒁3𝑺 = 𝑿𝑼. Therefore, we can update 𝒁3 as 588 

(𝒁3): = 𝑿𝑼	𝑺,𝚺𝑺𝑺#
@$ ,                                                                   (A3) 589 

where 𝚺DD#
@$  denotes the generalized inverse of matrix 𝑺𝑺,. 590 

 591 

Parameter optimization  592 

There are two key hyperparameters when running bindSC for integration. The first one is the 593 

dimensionality E in the latent space and the second one is the couple coefficient 𝛼. Similar with 594 

previous integration methods, the number of dimension E is very important on cell type 595 

classification. We provide heuristics to guide the selection of E based on integration metrics 596 

defined below, though sometimes helpful, are not substitute for biological insights. As a general 597 

suggestion, we recommend starting with a value of E the same with the minimal number of 598 
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principle components (PCs) used on single modality clustering. The selection of couple coefficient 599 

𝛼 depends on whether initialized 𝒁(𝟎) can represent the gene score of 𝒀. We devise two metrics to 600 

aid in selecting 𝛼, which measure integration performance on accuracy (no mixing of cell type) 601 

and alignment (mixing of datasets) as defined below. 602 

 603 

1) Silhouette score 604 

To measure integration accuracy, we use the Silhouette score.  Cluster for each cell is defined 605 

using the cell type labels assigned from single dataset clustering. The Silhouette score assesses the 606 

separation of cell types, where a high score suggests that cells of the same cell type are close 607 

together and far from cells of a different type. The Silhouette score 𝑠(𝑖) for each cell is calculated 608 

as following. Let 𝑎(𝑖) be the average distance of cell 𝑖 to all other cells within 𝑖’s cluster and 𝑏(𝑖) 609 

the average distance of 𝑖 to all cells in the nearest cluster, to which cell 𝑖 does not belong. Cell-cell 610 

distance is computed in the L2-normalized co-embeddings (Equation 12).  𝑠(𝑖) can be computed 611 

as: 612 

𝑠(𝑖) =

⎩
⎪
⎨

⎪
⎧1 −

𝑎(𝑖)
𝑏(𝑖)

				𝑖𝑓	𝑎(𝑖) < 𝑏(𝑖)

0																		𝑖𝑓	𝑎(𝑖) = 𝑏(𝑖)
𝑏(𝑖)
𝑎(𝑖)

− 1				𝑖𝑓	𝑎(𝑖) > 𝑏(𝑖)

 613 

Notably, given accurate correspondence between two modalities unknown, calculating s(𝑖) for cell 614 

𝑖 in above equation only includes cells from the same dataset. We average values across all cells 615 

to obtain an overall silhouette score for integration task.  616 

 617 

2) Alignment mixing score 618 
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To measure integration mixing level, we use an alignment mixing score similar to those of previous 619 

studies 50. We first build a 20-nearest neighbor graph for each cell from L2-normalized co-620 

embeddings (Equation 12). For cell 𝑖, assuming proportions of cells from two modalities are   𝑝$7 621 

and 𝑝'7, respectively, the alignment mixing score is calculated as 622 

𝐻(𝑖) = −𝑝$7 log' 𝑝$7 − 𝑝'7 log' 𝑝'7 623 

This corresponds to a mixing metric per cell, and we average values across all cells to obtain an 624 

overall mixing metric. 625 

 626 

We run bindSC by ranging 𝑎 from 0 to 1 (with step size 0.1).  Silhouette score and alignment 627 

mixing score is calculated for each scenario. We select appropriate 𝑎  that generally has best 628 

performance in Silhouette score and alignment mixing score. Parameter values used in this study 629 

can be seen in Supplementary Table S1.  630 

 631 

Performance and benchmarking 632 

In our evaluation, in addition to Silhouette score and alignment mixing score, we also consider 633 

anchoring distance for evaluation datasets from multi-omics technologies, in which each cell has 634 

paired profiles. For cell 𝑖 from the first data, we calculate its distance (Euclidean distance) with all 635 

cells in the second data as 𝑫7, and its distance with cell 𝑖 in the second data as 𝑑7. The anchoring 636 

distance for cell 𝑖  is calculated as 2𝑑7/𝑚𝑎𝑥(𝑫7). We then average anchoring distance across all 637 

cells to obtain an overall anchor distance metric. The anchoring distance of cell 𝑖  is 0 when it is 638 

anchored correctly. The overall anchoring distance is 1 if we randomly layout cells on co-639 

embeddings. 640 

 641 
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Simulation dataset  642 

We generated simulation dataset to evaluate method performance in integrating two modalities 643 

assuming accurate feature matching unknown. We used Splatter tool 26 to simulate dataset 𝑿 with 644 

1,000 genes and  cells with different sizes (from 1,000 to 10,000). The whole population is 645 

consisted of three batches (cell types). To mimic the feature unmatching case, we first generated 646 

dataset 𝑿$ by randomly permutating genes of 𝑿 under specified misalignment rates (MR). MR 647 

ranges from 0 to 1 with step size being 0.05 in this study. 𝑿$  is the same as 𝑿 if MR = 0. Half of 648 

genes are matched between 𝑿$ and 𝑿 if MR = 0.5. No genes are matched between 𝑿$ and 𝑿 if MR 649 

= 1. Then we generated matrix 𝒁 by adding 𝑿$ with white noise at certain level (i.e., Signal-Noise-650 

Ratio; SNR). SNR is set to be three levels (0, 0.25 and 0.5).  651 

 652 

For method comparison, previous methods including traditional CCA, Seurat 17, Liger 19, and 653 

Harmony tools 18 take 𝑿  and 𝒁  as input assuming that cell correspondence between them is 654 

unknown. bindSC takes two parts as input: 1) 𝑿 and 𝒁 with cell correspondence unknown; 2) 𝑿 655 

and 𝒁 with feature-level matching unknown (Supplementary Fig. 2).  656 

 657 

Preparation of dexamethasone (DEX) treated A549 cell dataset  658 

To investigate the ability of bindSC in integrating scRNA-seq and scATAC-seq profiles, we 659 

explored the DEX-treated A549 dataset generated from sci-CAR technology, which uses 660 

combinatorial indexing-based assay to jointly profile chromatin accessibility and mRNA on same 661 

cell 6. In the A549 dataset, DEX is a synthetic corticosteroid which activates glucocorticoid 662 

receptor (GR),  binds to thousands of locations, and alternates the expression of hundreds of genes 663 

51.  The human lung adenocarcinoma derived A549 cells after 0, 1, or 3 hours of 100nM DEX 664 
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treatment are assayed. The sci-RNA-seq dataset was from GSE117089 665 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089) and sci-ATAC-seq data was 666 

from GSM3271041 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3271041 ). The 667 

original A549 data includes sci-RNA-seq profiles for 6,150 cells and sci-ATAC-seq profiles for 668 

6,260 cells. There are 1,429 cells co-assayed. Following Cao et al., pre-processing pipeline 669 

(https://github.com/KChen-670 

lab/bindSC/blob/master/vignettes/A549/A549_preprocess.ATAC.Rmd), we binarized peak count 671 

matrix for cells from both ATAC-seq only and co-assay.  Loci present in less than 5 cells and cells 672 

with less than 300 accessible loci were removed. Peaks within 1kb were merged and reads in 673 

merged peaks were aggregated to generate a merged peak matrix, leading to 3,628 cells with 674 

32,791 loci. Each locus’ accessibility in each cell was calculated by dividing the cell’s raw read 675 

count by cell specific size factor using estimateSizeFactors function in Monocle 2 52. For RNA-676 

seq data, cells with expression counts less than 500 and more than 9100 were removed. The gene 677 

expression in each cell was also calculated by dividing the cell’s raw read count by cell specific 678 

size factor, followed by log2 normalization. Genes with no variation in expression across cells 679 

were further removed. The gene activity matrix was collapsed from the peak matrix by summing 680 

all counts with the gene body plus 2kb upstream using CreateGeneActivityMatrix function in 681 

Seurat3 17. We then picked top 10,000 variable genes in both sci-RNA-seq data and gene activity 682 

data and used the overlapped 4,759 genes between them for integration. Finally, the sci-RNA-seq 683 

matrix was composed of 6,005 cells with 4,759 genes, the gene activity matrix was composed of 684 

3,628 cells with 4,758 genes, and the sci-ATAC-seq matrix was composed of 3,628 cells with 685 

24,953 loci. There were 1,429 cells co-assayed.  686 

 687 
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Preparation of the mouse skin cell data  688 

We examined the performance of bindSC in integrating the scRNA-seq and scATAC-seq data 689 

derived from mouse skin tissue. This dataset was generated using SHARE-seq (3) which included 690 

34,774 cells that have joint profiles of RNA and ATAC profiles. The RNA data was downloaded 691 

from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156608. The ATAC data was 692 

downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156597. The final 693 

ATAC-seq matrix includes 25,594 cells on 74,161 peaks after quality control (including removing 694 

cells with less than 350 genes expressed; peaks that exist in less than 500 cells). In addition, 4,894 695 

genes were identified that were highly variable in both gene expression and gene activity profiles. 696 

For this evaluation, we only focused on the third metric (e.g., anchoring distance) that represents 697 

the chance for the two instances of a co-assayed cell to appear in the co-embeddings.  698 

 699 

Preparation of the mouse retina 10x Genomics Multiome ATAC+RNA data 700 

One mouse retina was dissociated by papain-based enzymatic digestion as described previously 53 701 

with slight modifications. Briefly, 45 U of activated papain solution (with 1.2 mg L-cysteine 702 

(Sigma) and 1200U of DNase I (Affymetrix) in 5ml of HBSS buffer) was added to the tissue and 703 

incubated at 37 °C for 20 minutes to release live cells. Post-incubation, papain solution was 704 

replaced and deactivated with ovomucoid solution (15 mg ovomucoid (Worthington biochemical) 705 

and 15 mg BSA (Thermo Fisher Scientific) in 10 ml of MEM (Thermo Fisher Scientific)). The 706 

remaining tissue clumps were further triturated in the ovomucoid solution and filtered through a 707 

20nm nylon mesh. After centrifugation at 300g 10min at 4C, the singe cells were resuspended PBS 708 

with 0.04% BSA and checked for viability and cell count. About 1 million cells were pelleted and 709 

resuspend in chilled lysis buffer (10x Genomics), incubate for 2 minutes on ice while monitored 710 
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under microscope. 1ml of chilled wash buffer (10x Genomics) was added and sample was spun 711 

down at 500g 5min at 4C and washed before resuspended in Diluted Nuclei Buffer (10x Genomics). 712 

Nuclei concentration was determined using countess and proceed with transposition according to 713 

manufacturer’s recommendation (10x Genomics). After incubation for one hour at 37C, the 714 

transposed nuclei were combined with barcoded gel beads, RT mix and partition oil on Chromium 715 

to generate gel beads in Emulsion (GEMs). Single cell ATACseq library and 3’RNAseq library 716 

were subsequently generated following recommended protocol from 10x Genomics. Libraries 717 

were quantified and loaded on Novaseq 6000 and run with the following parameter: 151, 8, 8, 718 

151bp. Data was analyzed using bcl2fastq (to generate fastq files) and cellranger pipeline (10x 719 

Genomics). 720 

 721 

Preparation of the mouse frontal cortex cell data  722 

We investigate bindSC ability in integrating spatially resolved transcriptomic (ST) with 723 

dissociated scRNA-seq. For the ST dataset, we used sagittal mouse brain slices generated from the 724 

Visium v1 chemistry. The dataset was downloaded from https://support.10xgenomics.com/spatial-725 

gene-expression/datasets. The pre-processing workflow was guided by the Seurat3 726 

(https://satijalab.org/seurat/v3.2/spatial_vignette.html). Briefly, cells were subset from anterior 727 

region, followed by sctransform 54. We then proceed to run dimensionality reduction and clustering 728 

using standard workflow as did for scRNA-seq. Cluster ID 1,2,3,5,6,7 was extracted, followed by 729 

segment based on exact position (Details in Subset out anatomical regions part in Seurat3 730 

tutorial), leading to 1,072 cortical cells left for the ST data. One cortical scRNA-seq data composed 731 

of ~14,000 adult mouse cortical cell taxonomy from the Allen Institute was collected 732 

(https://www.dropbox.com/s/cuowvm4vrf65pvq/allen_cortex.rds?dl=1). This dataset was 733 
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generated using the SMART-Seq2 protocol 55. The sctransform normalization was performed 734 

based on 3,000 variable genes. We used the cell type annotation provided by published meta data 735 

available. There was a total of 14,294 cortical cells with 34,617 genes for the scRNA-seq data. 736 

Integration of scRNA-seq and ST is based on 2,316 variable genes overlapped between two 737 

datasets.  738 

 739 

To predict locations of each cell type from scRNA-seq in the histological images, we built a 740 

support vector machine (SVM) that trained on cell profiles from scRNA-seq data. In the training 741 

model, features were identified as cell coordinates in co-embeddings and labels were 742 

corresponding cell types. The trained SVM was applied to ST data and output predicted probability 743 

of each cell type at each spot. The SpatialFeaturePlot function in Seurat3 was used to overlay 744 

predicted probabilities for each cell type on top of tissue histology.  745 

 746 

Preparation of human bone marrow cell dataset  747 

We examined the performance of bindSC in integrating the single-cell RNA and protein data 748 

derived from human bone marrow tissue.  This dataset was generated using the CITE-seq 749 

technology 40,  which included 30,672 cells that have joint profiles of RNA and a panel of 25 750 

antibodies. The dataset was downloaded from 751 

https://satijalab.org/seurat/v4.0/weighted_nearest_neighbor_analysis.html. We extracted the 25 752 

protein-homologous gene expression profile from the RNA data and kept cells that have total 753 

expression count > 2. The final protein matrix includes 28,609 cells with 25 protein abundance 754 

levels. The gene expression matrix includes 28,609 cells with 3,000 genes. The protein-755 

homologous RNA matrix includes 28,609 cells with the RNA levels of the 25 genes homologous 756 
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to the 25 proteins. To measure anchoring accuracy for each cell type, we used the third metric, 757 

anchoring distance, which measures the distance of protein and gene expression for each cell in 758 

co-embeddings.  759 

 760 

Motif-based Transcription Factors (TFs) activity estimation 761 

To estimate transcription factor activity from scATAC-seq data, we used default settings in 762 

chromVAR 56 package. This approach quantifies accessibility variation across single cells by 763 

aggregating accessible regions containing a specific TF motif. It calculated motif-based TF activity 764 

by comparing the observed accessibility of all the peaks containing a TF motif to a background set 765 

of peaks normalizing against known technical confounders.   766 
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Figure Legends 908 

Fig. 1 Overview of bindSC. BindSC takes as input two data matrices produced by different modalities 909 

from the same cell population (a). The modalities may include transcriptomes, epigenomes, spatial 910 

transcriptomes and proteomes. Bi-order integration of two modalities (X and Y) with unpaired cells and 911 

unmatched features using Bi-CCA algorithm (b). In the data matrices, each row represents one gene/locus, 912 

and each column represents one cell. The gene score matrix Z that links the first modality with the second 913 

one is initialized by prior gene activity modeling (see Methods). Bi-CCA algorithm aims to update gene 914 

score matrix Z iteratively by maximizing the correlation of between X and Z and between Y and Z 915 

simultaneously. Based on canonical correlation vectors (CCVs) in the derived latent space, K-nearest 916 

neighbor (KNNs) clustering is performed to define cell types in both modalities (c). Within each cell-type 917 

cluster, KNN clustering is further performed at a higher resolution to define pseudo-cells consisting of 10s 918 

cells from both modalities. In silico multimodal profiles are constructed from cells assigned to the same 919 

pseudo-cell (d). The color in each box indicates the relative level of each feature, with white corresponding 920 

to missing values. The multiomics feature profiles enable us to 1) link genes to regulatory elements, 2) map 921 

RNA expressions to spatial locations and 3) delineate cells by both RNA and protein signatures (e). 922 

 923 

Fig. 2 Benchmarking bindSC performance on simulation datasets. Comparison of bindSC to CCA, 924 

Seurat, LIGER, and Harmony based on Silhouette score and alignment mixing score (a). The dataset 925 

contains 1,000 genes and 1,000 cells equally distributed in 3 cell types. Signal-to-noise ratio (SNR) was set 926 

at 0.25. X-axes denote the misalignment rates (MR) between features in the two datasets, which ranges 927 

from 0 to 1. The features between two datasets have perfect match if MR = 0 and are unrelated if MR = 1. 928 

UMAP views of the co-embeddings generated by bindSC, CCA, Seurat, LIGER, and Harmony (b). From 929 

top to bottom are results with MR = 0.1, 0.5, and 0.9, respectively. Each point denotes one cell that is 930 

colored based on its true cell type label (red, green, or cyan). 931 
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Fig.3 Benchmarking bindSC performance on the DEX-treated A549 cell-line data. UMAP of cells 933 

from DEX-treated A549 cell-line data for bindSC, Seurat, LIGER and Harmony respectively, colored by 934 

collection time (red: 0 hour, green: 1 hour and blue: 3 hour) on the top panel and by technologies (grey: sci-935 

RNA and brown: sci-ATAC) on the bottom panel (a). Comparison of the 4 methods based on Silhouette 936 

score (top), alignment mixing score (middle) and anchoring distance (bottom) (b). Also included for 937 

comparison are metrics from randomly selected cells. Accuracy of in silico multiomics profile in pseudo-938 

cells (c). The TF-gene correlation is quantified in each pseudo-cell (top panel) by calculating for each TF-939 

gene pair (1.8 million pairs total) a Spearman's rank-order correlation coefficient (SRCC) between the TF 940 

activity level, inferred based on motif enrichment in the ATAC data, and the gene expression level in the 941 

RNA data. The peak-gene correlation is quantified by calculating for each peak-gene pair a Spearman's 942 

rank-order correlation coefficients (SRCC) between a normalized ATAC peak level and a gene expression 943 

levels for the cis-peaks (middle panel, 7,833 pairs) and the trans-peaks (bottom panel, 118.7 million pairs), 944 

respectively. X-axes are the SRCCs estimated from the co-assayed cells, which serve as the gold standard, 945 

while Y-axes are the SRCCs estimated from the pseudo-cells generated by each method. The overall 946 

concordance between X and Y are further quantified using a single SRCC shown on the up-left corner of 947 

each subfigure. Cis is defined as gene bodies plus 2,000 bps upstream. Reconstructing the gene expression 948 

and the TF activity level (Y-axes) of NR3C1 using bindSC pseudo-cells (d). X-axis is the averaged 949 

treatment time of the cells in each pseudo-cell. A genome browser view showing putative regulatory 950 

relations between an accessible distal site chr2:201770437-201770992 and the gene CFLAR (e). The 6 951 

tracks at the top show ATAC peak levels and gene expression levels at six time points. The track in the 952 

middle shows chromatin interactome from published Hi-C data. The bottom track shows the NR3C1 binding 953 

targets (ChIP-Seq) peaks published in an independent study 28. 954 

 955 

Fig. 4 Integrating single-cell RNA-seq and ATAC-seq on a mouse retinal cell atlas.  UMAP views of 956 

9,383 mouse retina cells based on gene expression levels in the RNA-seq data (a), chromatin accessibility 957 

peak profiles in the ATAC-seq data (b), gene-level collapsed chromatin accessibility profiles (c). The cells 958 
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are colored by cell types annotated based on RNA expression levels (Supplementary Fig. 8). BindSC co-959 

embeddings for the cells in the RNA-seq data (d) and those in the ATAC-seq data (e).  Anchoring distances 960 

resulting from bindSC, Seurat, LIGER and Harmony (f). The median anchoring distance for each cell type 961 

was highlighted as a bold horizonal bar in the middle of each box in each panel. The dotted line denotes the 962 

anchoring distance based on random guesses. Zoomed out UMAP views for the BC cells in the co-963 

embeddings generated by bindSC (g), Seurat (h), LIGER (i), and Harmony (j). Integration results for all 964 

the cell types can be seen in Supplementary Fig. 9. RGC: retinal ganglion cells; HC: horizontal cells; BC: 965 

bipolar cells; AC: amacrine cells; MG: Müller glial cell. 966 

 967 

Fig. 5 Integrating spatially resolved transcriptomic (ST) data with scRNA-seq data from mouse 968 

frontal cortex. UMAPs of the gene expression levels for the 14,249 cells profiled by SMART-Seq2 and 969 

for the 1,072 spots profiled by the 10x Visium technology (a). Cell type labels are from the original 970 

publication57. Predicted locations of each cell type in the histological images (b). Color gradient 971 

corresponds to the probability score of a cell being mapped to a particular spatial location. Comparison of 972 

cell type frequencies estimated from the ST data (Y-axis) to those estimated from the scRNA-seq data (X-973 

axis) (c). Correlation coefficients (R) and P values are calculated based on Pearson’s correlation analysis. 974 

Each dot corresponds to a cell-type (labeled in different colors).  The blue line and the grey shade represent 975 

regression lines and 95% confidence intervals from performing linear regressions. 976 

 977 

Fig. 6 Integrating single-cell RNA with protein data produced by a CITE-seq assay. The UMAP of 978 

30,672 human bone marrow cells based on 25 surface protein levels (a), 3,000 highly variable gene 979 

expression levels (b) and 25 protein-homologous gene expression levels (c). The cell type labels are from 980 

the original study 17. UMAP of the protein (d) and the RNA (e) expression data in the co-embedding 981 

generated by bindSC. Comparison of anchoring distances generated by bindSC, Seurat, LIGER and 982 

Harmony (f). The red dotted line denotes the anchoring distance from random guesses. Anchoring distances 983 

for each cell type in the bindSC co-embedding (g). 984 
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Fig. 1 Overview of bindSC. BindSC takes as input two data matrices produced by different modalities from the
same cell population (a). The modalities may include transcriptomes, epigenomes, spatial transcriptomes and
proteomes. Bi-order integration of two modalities (X and Y) with unpaired cells and unmatched features using Bi-
CCA algorithm (b). In the data matrices, each row represents one gene/locus, and each column represents one
cell. The gene score matrix Z that links the first modality with the second is initialized by prior gene activity
modeling (see Methods). Bi-CCA algorithm aims to update gene score matrix Z iteratively by maximizing the
correlation of between X and Z and between Y and Z simultaneously. Based on canonical correlation vectors
(CCVs) in the derived latent space, K-nearest neighbor (KNNs) clustering is performed to define cell types in both
modalities (c). Within each cell-type cluster, KNN clustering is further performed at a higher resolution to define
pseudo-cells consisting of 10s cells from both modalities. In silico multimodal profiles are constructed from cells
assigned to the same pseudo-cell (d). The color in each box indicates the relative level of each feature, with
white corresponding to missing values. The multiomics feature profiles enable us to 1) link genes to regulatory
elements, 2) map RNA expressions to spatial locations and 3) delineate cells by both RNA and protein signatures
(e).
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Fig. 2 Benchmarking bindSC performance on simulation datasets. Comparison of bindSC to CCA, Seurat, LIGER, and
Harmony based on Silhouette score and alignment mixing score (a). The dataset contains 1,000 genes and 1,000 cells
equally distributed in 3 cell types. Signal-to-noise ratio (SNR) was set at 0.25. X-axes denote the misalignment rates
(MR) between features in the two datasets, which ranges from 0 to 1. The features between two datasets have
perfect match if MR = 0 and are unrelated if MR = 1. UMAP views of the co-embeddings generated by bindSC, CCA,
Seurat, LIGER, and Harmony (b). From top to bottom are results with MR = 0.1, 0.5, and 0.9, respectively. Each point
denotes one cell that is colored based on its true cell type label (red, green, or cyan).
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Fig.3 Benchmarking bindSC performance on the DEX-treated A549 cell-line data. UMAP of cells from DEX-
treated A549 cell-line data for bindSC, Seurat, LIGER and Harmony respectively, colored by collection time (red:
0 hour, green: 1 hour and blue: 3 hour) on the top panel and by technologies (grey: sci-RNA and brown: sci-
ATAC) on the bottom panel (a). Comparison of the 4 methods based on Silhouette score (top), alignment mixing
score (middle) and anchoring distance (bottom) (b). Also included for comparison are metrics from randomly
selected cells. Accuracy of in silicomultiomics profile in pseudo-cells (c). The TF-gene correlation is quantified in
each pseudo-cell (top panel) by calculating for each TF-gene pair (1.8 million pairs total) a Spearman's rank-
order correlation coefficient (SRCC) between the TF activity level, inferred based on motif enrichment in the
ATAC data, and the gene expression level in the RNA data. The peak-gene correlation is quantified by calculating
for each peak-gene pair a Spearman's rank-order correlation coefficients (SRCC) between a normalized ATAC
peak level and a gene expression levels for the cis-peaks (middle panel, 7,833 pairs) and the trans-peaks
(bottom panel, 118.7 million pairs), respectively. X-axes are the SRCCs estimated from the co-assayed cells,
which serve as the gold standard, while Y-axes are the SRCCs estimated from the pseudo-cells generated by
each method. The overall concordance between X and Y are further quantified using a single SRCC shown on
the up-left corner of each subfigure. Cis is defined as gene bodies plus 2,000 bps upstream. Reconstructing the
gene expression and the TF activity level (Y-axes) of NR3C1 using bindSC pseudo-cells (d). X-axis is the averaged
treatment time of the cells in each pseudo-cell. A genome browser view showing putative regulatory relations
between an accessible distal site chr2:201770437-201770992 and the gene CFLAR (e). The 6 tracks at the top
show ATAC peak levels and gene expression levels at six time points. The track in the middle shows chromatin
interactome from published Hi-C data. The bottom track shows the NR3C1 binding targets (ChIP-Seq) peaks
published in an independent study 28.
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Fig. 4 Integrating single-cell RNA-seq and ATAC-seq on a mouse retinal cell atlas. UMAP views of 9,383 mouse retina cells
based on gene expression levels in the RNA-seq data (a), chromatin accessibility peak profiles in the ATAC-seq data (b),
gene-level collapsed chromatin accessibility profiles (c). The cells are colored by cell types annotated based on RNA
expression levels (Supplementary Fig. 8). BindSC co-embeddings for the cells in the RNA-seq data (d) and those in the ATAC-
seq data (e). Anchoring distances resulting from bindSC, Seurat, LIGER and Harmony (f). The median anchoring distance for
each cell type was highlighted as a bold horizonal bar in the middle of each box in each panel. The dotted line denotes the
anchoring distance based on random guesses. Zoomed out UMAP views for the BC cells in the co-embeddings generated by
bindSC (g), Seurat (h), LIGER (i), and Harmony (j). Integration results for all the cell types can be seen in Supplementary Fig.
9. RGC: retinal ganglion cells; HC: horizontal cells; BC: bipolar cells; AC: amacrine cells; MG: Müller glial cell.
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Fig. 5

Fig. 5 Integrating spatially resolved transcriptomic (ST) data with scRNA-seq data from mouse frontal cortex.
UMAPs of the gene expression levels for the 14,249 cells profiled by SMART-Seq2 and for the 1,072 spots profiled by
the 10x Visium technology (a). Cell type labels are from the original publication57. Predicted locations of each cell
type in the histological images (b). Color gradient corresponds to the probability score of a cell being mapped to a
particular spatial location. Comparison of cell type frequencies estimated from the ST data (Y-axis) to those estimated
from the scRNA-seq data (X-axis) (c). Correlation coefficients (R) and P values are calculated based on Pearson’s
correlation analysis. Each dot corresponds to a cell-type (labeled in different colors). The blue line and the grey
shade represent regression lines and 95% confidence intervals from performing linear regressions.
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Fig. 6 Integrating single-cell RNA with protein data produced by a CITE-seq assay. The UMAP of 30,672 human
bone marrow cells based on 25 surface protein levels (a), 3,000 highly variable gene expression levels (b) and 25
protein-homologous gene expression levels (c). The cell type labels are from the original study 17. UMAP of the
protein (d) and the RNA (e) expression data in the co-embedding generated by bindSC. Comparison of anchoring
distances generated by bindSC, Seurat, LIGER and Harmony (f). The red dotted line denotes the anchoring distance
from random guesses. Anchoring distances for each cell type in the bindSC co-embedding (g).
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