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Abstract

Methods for remediating PCR and sequencing artifacts in 16S rRNA gene sequence collections are in con-10

tinuous development and have significant ramifications on the inferences that can be drawn. A common

approach is to remove rare amplcon sequence variants (ASVs) from datasets. But, the definition of rarity is

generally selected without regard for the number of sequences in the samples or the variation in sequencing

depth across samples within a study. I analyzed the impact of removing rare ASVs on metrics of alpha and

beta diversity using samples collected across 12 published datasets. Removal of rare ASVs significantly15

decreased the number of ASVs and operational taxonomic units as well as their diversity. Furthermore,

their removal increased the variation in community structure between samples. When simulating a known

effect size, removal of rare ASVs reduced the power to detect the effect relative to not removing rare ASVs.

Removal of rare ASVs did not affect the false detection rate when samples were randomized to simulate a

null model. However, the false detection rate increased when rare ASVs were removed using a null distri-20

bution and assignment of samples to simulated treatment groups according to their sequencing depth. The

false detection rate did not vary when rare ASVs were retained. This analysis demonstrates the problems

inherent in removing rare ASVs. Researchers are encouraged to retain rare ASVs, to select approaches

that minimize PCR and sequencing artifacts, and to use rarefaction to control for uneven sequencing effort.
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Importance25

Removing rare amplicon sequence variants (ASVs) from 16S rRNA gene sequence collections is an ap-

proach that has grown in popularity for limiting PCR and sequencing artifacts. Yet, it is unclear what impact

an abundance-based filter has on downstream analyses. To investigate the effects of removing rare ASVs,

I analyzed the community distributions found in the samples of 12 published datasets. Analysis of these

data and simulations based on them showed that removal of rare ASVs distorts the representation of mi-30

crobial communities. This has the effect of artificially making it more difficult to detect differences between

treatment groups. Also of concern was the observation that if sequencing depth is confounded with the

treatment, then the probability of falsely detecting a difference between the treatment groups increased

with the removal of rare ASVs. The practice of removing rare ASVs should stop, lest researcher adversely

affect the interpretation of their data.35
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Introduction

16S rRNA gene sequencing is a mainstay of microbial community analysis (1). Two elements that are

held in tension in the analysis of 16S rRNA gene sequence data are how to adequately remove PCR and

sequencing artifacts while decreasing the granularity of the taxonomic level that is used in the analysis.

When coarse taxonomic levels (e.g. genus level) are used, the effects of artifacts are minimized since the40

genetic breadth of the level is wider than the diversity of artifacts. Conversely, with fine taxonomic levels

(e.g. amplicon sequence variants; ASVs) the effects of artifacts are significant since each artifact may

represent a new ASV.

Numerous studies have attempted to address the problem of removing or “denoising” artifacts from data

generated using Illumina’s MiSeq platform. In one approach, paired sequence reads are aligned and any45

discrepencies between the reads are resolved based on the difference in quality score for the position in

question (2–4); quality scores are also used to curate single reads (5). In addition, a polishing step is

often used to identify ASVs based on the frequency and similarity of sequences (2, 3, 6). In a second

approach, the quality scores and types of errors are modelled to cluster sequence reads directly into ASVs

(7). Regardless of the approach, many pipelines advocate for abundance-based screening where rare50

sequences are removed from each dataset prior to outputting the sequence data as ASVs (3, 6, 7). Some

algorithms recommend removing all ASVs that appear one (i.e. singletons) (7), eight (3), or ten (6) or

fewer times; these pipelines also vary in whether the minimum abundance threshold should be applied to

individual samples (6, 7) or the pool of samples in a study (3). A notable exception, the mothur-based

pipeline discourages the practice of removing rare sequences (2). After assigning sequences to ASVs,55

ASVs are often analyzed as a taxonomic unit or clustered to generate operational taxonomic units (OTUs)

or phylotypes.

The abundance-based screening approach assumes that rare ASVs are more likely to be artifacts than

more abundant ASVs. Sequencing of mock communities confirms that artifacts tend to be rare (2, 5).

Proponents of abundance-based screening point to their ability to obtain the correct number of ASVs, OTUs,60

or phylotypes with data generated from sequencing mock communities when rare ASVs are removed (5).

However, this approach effectively overfits the curation pipeline to data generated from a phylogenetically

simple community with an atypical community distribution that is often sequenced to a coverage that is not

achieved with biological samples. It is necessary to think more deeply about the practice of abundance-

based screening.65

The minimum abundance thresholds that have been proscribed were developed and applied without regard
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for the number of sequences generated from each sample. These recommendations appear to assume

that the number of reads per sample is consistent within and between studies. However, it is common that

the number of sequences generated from each sample may vary by two or three orders of magnitude

(e.g. Table 1 and Figure S1). An ASV that appears once in a sample with 2,000 sequences is more70

trustworthy than an ASV that appears once in a sample with 100,000 sequences since it has a 50-fold

higher relative abundance. But, according to the pipeline recommendations, they are treated as being

equally trustworthy. Rather than removing rare ASVs, the approach taken by the mothur pipeline applies

the classical ecological approach of rarefaction. Each sample is rarefied to the same sequencing depth so

that the number of artifacts that appears in each sample is controlled.75

Experience sequencing biological samples also demonstrates that there are bona fide ASVs that may have

an abundance below the proscribed threshold. For example, the abundance of an ASV may be below the

threshold in some samples or time points and above the threshold in others. However, rarity, both in terms of

prevalence and incidence, is an important ecological concept (8). Removing rare ASVs likely hinders one’s

to ability to make inferences about the dynamics and nature of the populations that rare ASVs represent.80

Furthermore, removing ASVs whose abundances are below the proscribed threshold also potentially biases

the community structure of the samples.

In the current study, I used published sequence data from 12 studies to investigate the nature of rare ASVs

(i.e. those that appear 10 or fewer times) and the effect that removing them has on downstream analysis

of microbial communities. The analysis was also performed using traditional OTUs, where ASVs subjected85

to abundance-based screening were clustered such that the ASVs within an OTU were no more than 3%

different from each other. The results reject the assumptions built into abundance-based screening and

highlight the problems inherent in removing rare ASVs.

Results

Datasets. I collected 12 publicly available datasets that used the Illumina MiSeq platform to sequence90

the V4 region of the 16S rRNA gene from a variety of environments (Table 1; Figure S1). After removing

poor quality and chimeric ASVs and samples that had uncharacteristically low number of sequences for

the dataset, these datasets included between 7 and 490 samples. The median number of sequences for

each dataset ranged between 6,477 and 193,464. Strikingly, aside from the relatively small marine and

soil datasets, the difference between the sample with the fewest sequences and the sample with the most95

sequences for each dataset varied by between 7.4 and 96.6-fold.
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The nature of singletons. Removal of rare ASVs is commonly justified as a method of removing ASVs

that are artifacts. If such ASVs are artifacts, then one would expect the number of singleton ASVs to ac-

cumulate with sequencing depth. Contrary to this expectation, the median percentage of sequences that

were discarded when singleton ASVs were removed from each dataset varied between 0.42 and 22.23%100

(bioethanol and seagrass). In addition, with the exception of the samples from the marine and sediment

datasets (Spearman correlation, P>0.05), the fraction of singleton ASVs in samples was negatively cor-

related with the number of sequences in each sample with a range between -0.27 and -0.87 (rice and

bioethanol) (Figure 1A). This showed that with additional sequencing, the probability of seeing singleton

ASVs in multiple samples was greater than the probability of generating an artifact. This suggests that the105

singleton ASVs are not as likely to be artifacts as previously thought. Furthermore, if singleton ASVs were

artifacts, then one would not expect to find them in other samples from the same dataset. In fact, singleton

ASVs from samples with fewer sequences were often found in samples with more sequences. At least

50% of the singleton ASVs found in the samples from the mice, rice, seagrass, and stream datasets were

found in another sample from the same dataset (Figure 1B). Considering the likelihood of finding an ASV110

duplicated in another sample is confounded by the number of samples and inter-sample diversity, the high

coverage of singleton ASVs in these datasets was remarkable. The correlation between the number of se-

quences in a sample and the fraction of that sample’s singleton ASVs that were covered by another sample

in the dataset was significant and negative for 9 of the datasets ranging between -0.31 and -0.84 for the rice

and seagrass datasets, respectively (Figure 1C). The negative correlation indicated that the singleton ASVs115

in the smaller samples were more likely to be covered by ASVs in the larger samples. Among the three

datasets without a significant correlation (Spearman correlation, P>0.05), the marine and soil datasets had

the fewest samples in our collection and the stream dataset already had a high level of coverage regardless

of the number of sequences. Contrary to the common motivation for removing rare ASVs, these results in-

dicate that this practice disproportionately impacts samples with fewer sequences and likely removes more120

non-artifact ASVs than those that are artifacts.

The impact of removing rare ASVs on the information represented in each sample. Removing rare

ASVs will reduce the richness of ASVs (i.e. the number of ASVs per sample) and increase the relative abun-

dance of the remaining ASVs. To quantify the effect of removing rare ASVs on the information contained

within each sample, I varied the minimum abundance threshold to simulate removing ASVs of varying rarity125

from each sample. The richness of ASVs in each sample decreased by between 34.4 and 86.2% (per-

omyscus and soil) when removing those ASVs that only appeared once and by between 76.0 and 95.6%

(sediment and soil) when removing those that appeared ten or fewer times from each sample (Figure 2A).
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Similarly, the Shannon diversity decreased by between 1.8 and 15.9% (human and soil) when removing

ASVs that only appeared once and by between 5.4 and 35.4% (human and seagrass) when removing130

ASVs that appeared ten or fewer times from each sample (Figure 2B). Next, I assigned the ASVs to OTUs,

which were defined as a group of ASVs that were more than 97% similar to each other to assess the impact

of removing rare ASVs on higher level taxonomic groupings that are commonly used in microbial ecology

studies. Although pooling similar ASVs into OTUs reduced the impact of removing the rare ASVs relative

to the ASV-based analysis, the minimum abundance threshold still decreased the richness of OTUs and135

the diversity decreased relative to the full community (Figure S2AB). In contrast to the richness and diver-

sity measurements, the Kullback–Leibler divergence compares the relative abundance of specific ASVs or

OTUs between representations of the community. I calculated the Kullback–Leibler divergence between the

full communities and those where rare ASVs were removed. As the threshold for removing ASVs increased,

the amount of information lost also increased for both ASVs and OTUs (Figure 2C and Figure S2C). The140

relative loss of information was generally smaller for OTUs than than it was for ASVs. Removing rare ASVs,

regardless of abundance threshold, had profound impacts on the representation of the communities.

Removing treatment group effects from community data. Because treatment effects often affect a

sample’s diversity and inter-sample variation, I generated null distributions for each study by randomizing,

without replacement, the number of times each ASV was observed in each sample such that the total145

number of sequences in each sample and the total number of times each ASV was observed across all

samples in the study was the same as was originally observed. This effectively made every community

in a study a statistical sample of the study-wide composite community distribution. For example, after this

procedure, each of the 490 samples from the human dataset would be expected to have the same richness

and diversity of ASVs and one would not expect to find treatment-based effects between the samples.150

Because of the risk of bias if only one representation of the null distribution was generated, I generated 100

randomized datasets for each study. The trends between removing rare ASVs and the richness, diversity,

and information loss that were identified using the observed community distribution data were also identified

with the data from the null distribution; however, the losses were larger when using the null distribution data

(Figure S3). The null distribution data were used in the remainder of the study to minimize the risk of bias.155

The impact of removing rare ASVs on the information represented between samples. Considering

the loss of richness, diversity, and information when a community has its rarest ASVs removed, it seemed

likely that the relationship between communities would also be altered. To assess the impact of remov-

ing rare ASVs on measures of alpha diversity between samples I calculated the coefficients of variation

(COVs, i.e. the standard deviation divided by the mean) for richness and diversity for each study at multiple160
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abundance thresholds. The COVs for the richness of ASVs across the studies after removing singletons

were between 3.6 and 32.7-times larger than they were without removing singleton ASVs (mice and stream;

Figure 3A). Similarly, the COVs for the diversity of ASVs were between 1.8 and 20.4-times larger when sin-

gletons were removed than when they were not removed (mice and rice; Figure 3B). To assess the impact

of removing rare ASVs on measures of beta diversity between samples, I calculated the COVs of the Bray-165

Curtis distances between samples within the same study at multiple abundance thresholds. The COVs

between Bray-Curtis distances within a study when singletons were removed was between 1.3 and 18.6-

times larger than when they were not removed (mice and stream; Figure 3C). When ASVs were clustered

into OTUs the difference in COVs was less than it was for the ASVs (Figure S4). These results indicate that

removing rare ASVs increases the dissimilarity between samples, which could have a significant impact on170

the statistical power to detect differences between treatment groups.

The impact of removing rare ASVs on the ability to detect statistically significant differences be-

tween treatment groups. To test the effect of increased inter-sample variation, I randomly assigned sam-

ples to one of two treatment groups. In the first treatment group, communities were randomly sampled

from the null distribution as described above. For the second treatment group, I randomly selected 10% of175

the ASVs in the pooled study distribution to increase their abundance by 5%. I randomly generated 100

simulated sets of treatment groups and samples. I then tested the ability to detect a difference between

the two treatment groups using alpha and beta diversity metrics. The fraction of significant tests was a

measurement of the statistical power to detect the difference between the treatment groups. When con-

sidering the differences in richness and diversity, the marine dataset yielded no simulated sets that were180

statistically significant, which was likely due to the small number of samples in the study (N=7). Among the

remaining datasets, the power to detect a difference in the richness of ASVs ranged between 0.10 and 0.49

(sediment and stream) and between 0.10 and 0.53 (rainforest and stream) to detect a difference in diversity

when using a Wilcox test (Figure 4A). When singleton ASVs were removed, the power to detect a differ-

ence in the richness of ASVs dropped by between 27.3 and 92.9% (bioethanol and soil) and by between185

40.0 and 93.3% for their diversity(rainforest and soil; Figure 4B). The effect of removing rare ASVs on the

richness of OTUs and their diversity was similar (Figure S5AB). I used the Bray-Curtis dissimilarity index

to compare the simulated communities within each dataset and calculated the power to detect differences

between the two simulated treatment groups using the analysis of molecular variance (Figure 4C and S5C).

Without removing rare sequences, the power to detect a difference between the two simulated treatment190

groups varied between 0.41 and 1.00 (rainforest and rainforest). Aside from the bioethanol, human, and

mice datasets, the power to detect differences dropped by between 6.5 and 64.0% (soil and rice) when
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singletons were removed. However, when ASVs that occurred 10 or fewer times were removed from each

sample, the power to detect differences dropped by 12.0 and 97.2% (human and peromyscus); similar re-

sults were observed when ASVs were clustered into OTUs. Removing rare ASVs reduced the ability to195

detect simulated treatment effects using metrics commonly used to compare microbial communities.

The impact of removing rare ASVs on the probability of falsely detecting a difference between treat-

ment groups. I next asked whether removing rare ASVs could lead to falsely claiming that a treatment

effect had a significant effect on community diversity and structure. First, I sampled sequences from the

null distribution for each dataset and randomly assigned each sample to one of two treatment groups and200

determined the richness and diversity of ASVs and OTUs. Testing at an experiment-wise error rate of 0.05,

I expected 5% of the iterations for each dataset to yield a significant test result. Indeed, there was no

evidence that removing rare ASVs resulted in an inflated experiment-wise error rate. The average fraction

of significant tests did not meaningfully vary from 0.05 across the minimum abundance threshold, dataset,

metric of describing sample alpha-diversity, or whether the abundance of ASVs or OTUs were used (Figure205

5A and S6A). Similarly, the average fraction of significant tests did not meaningfully vary from 0.05 when

using analysis of molecular variance to compare communities using Bray-Curtis distances (Figure 5A and

S6A). Second, I again sampled sequences from the null distribution, but assigned samples to one of two

treatment groups based on the number of sequences in each sample. The samples with fewer than the

median number of sequences for the dataset were assigned to one group and those with more than the210

median were assigned to the other. This exaggerated bias has been observed in comparisons of the lung

and oral microbiota because of the larger number of non-specific amplicons that can be sequenced from

lung samples relative to those in the oral cavity leading to a significant difference in sequencing depth be-

tween treatment groups (9). When rare sequences were not removed, the fraction of significant tests did

not differ from 5% for comparing the richness, their diversity, or Bray-Curtis distances (Figure 5B and S6B).215

However, when rare taxa of any frequency were removed, the probability of falsely detecing a difference as

signifiant increased with the definition of rarity (Figure 5B and S6B). Not including the small marine dataset,

the average fraction the average fraction of falsely detecting a difference across datasets when only sin-

gletons were removed was 92.45%. If there is any relationship between the number of sequences and the

treatment group, the risk of falsely rejecting the null hypothesis is inflated when researchers use the strategy220

of removing rare sequences. The most conservative approach is to not remove low abundance sequences.
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Discussion

Removing rare sequences from 16S rRNA gene sequence data is a common practice that is used as a

heuristic to help remove residual PCR artifacts and low quality sequences. In this analysis, I have shown

that rare sequences are more common in samples with shallow sequencing than in those with deep se-225

quencing and that rare sequences are frequently observed in multiple samples. These observations sug-

gest that many of the sequences being removed are actually good sequences. Becuase rarity is often

defined by a fixed number of observations per sample (e.g. sequences that only appear once in a sample,

regardless of the size of the sample), removing rare sequences has a disproportionate impact on sam-

ples with fewer sequences. Removing rare sequences resulted in a reduction in the alpha diversity and a230

pronounced change in the structure of individual samples. The effect was an increase in the differences

observed between samples, which made it more difficult to detect differences between treatment groups

when differences actually existed. Furthermore, if the number of reads per sample was confounded with the

treatment groups, then removing rare sequences increased the probability of falsely detecting a difference

between the treatment groups. The practice of removing rare sequences from samples should be stopped.235

The practice of removing rare sequences from samples seems to be a response to researchers prioritizing

the number of reads and length of sequences over their quality (5). Previous work has shown that assembly

of fully overlapping sequence reads results in the lowest sequencing error rates (2). The studies highlighted

in this analysis sequenced the V4 region of the 16S rRNA gene using the Illumina MiSeq sequencing plat-

form with their version 2 chemistry. The resulting data consists of two 250 nt reads that span a region that is240

about 253 nt long. In contrast, there has been a movement to sequence longer regions with similar chem-

istry resulting in less overlap between the sequencing reads (10, 11). Alternatively, others have prioritized

increasing the number of sequences per sample by sequencing the V4 region, but with paired or single

reads that are 150 nt long (12, 13). Both practices result in a significantly higher error rate for the resulting

assmebly. Instead, researchers should prioritize the quality over the quantity and length of their data. For245

these reasons, this analysis did not use lower quality data generated by alternative methods.

The impacts of removing rare sequences on the representation of communities are caused by the uneven

impact of applying a single abundance threshold across all samples. The number of sequences per sample

in the datasets highlighted in this analysis varied by as much as 100-fold (Table 1; Figure S1). In practice,

I suspect this range is actually larger since researchers may have opted against depositing samples with250

fewer reads into the SRA. If the range in read coverage for a study is 100-fold, a singleton in a small

sample would have had a comparable relative abundance as a sequence that appeared 100 times in a
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more densely sequenced sample. However, it would have been removed from the smaller sample and not

the larger sample. Thus, applying a single abundance threshold disproportionately impacted the samples

with fewer sequences. This seems to contradict the purpose of removing rare sequences since a singleton255

in the smaller sample is more reliable than the singleton in the larger sample. A superior approach to

removing rare sequences is to use rarefaction to conrol for uneven sampling.

Even with the best sequencing approaches, PCR artifacts and sequencing errors persist. This may account

for some sequences not being observed other samples. Although this lack of inter-sample coverage could

have been due to treatment effects and natural variation, it is likely that some portion of the sequences that260

were unique to samples were artifacts or contained errors. Researchers are encouraged to use rarefaction

to control for uneven sampling and the presence of spurious sequences. Previous work sequencing mock

communities has shown that the number of spurious sequences increases with sequencing depth (2, 14).

By rarefying data to a common number of sequences per sample, the number of spurious sequences can

be controlled. As shown in the data I presented, which was rarefied to a common number of reads per265

sample within a dataset, when rare sequences were not removed the power to detect differences was the

highest and the false discovery rate was the expected 5% (Figures 5 and S6).

In addition to considerations of how to control for the presence of spurious sequences, researchers also

need to be mindful of how to interpret the results of their work. Because every dataset will contain residual

sequences that are spurious, measures of richness and diversity should be made on a relative basis. For270

example, pronouncements that communities from an environment or treatment contain a specific number of

taxa are problematic. Instead, we should limit ourselves to indicating that samples from one treatment group

has more taxa than another without using absolute values of richness. Furthermore, we must take caution in

interpreting rare taxa. Although the data from the studies highlighted here suggest that most rare sequences

are not spurious, it is likely that some are. Therefore, researchers must approach rare sequences with275

more skepticism than more abundant sequences. Reseachers should seek out other methods to confirm

inferences that they make about rare sequences. This is a standard that should be applied regardless of

their abundance (15).

How to curate and interpret rare sequences has been a significant challenge since microbial ecologists

transitioned away from Sanger sequencing of samples (16–18). Although the extent of the “rare biosphere”280

is still an open question, it is important to appreciate the importance of rare populations in all communities.

Populations can be numerically rare but ubuiquitous or abundant and limited in their geographic range.

Alternatively, they can be numerically rare but temporally common or abundant but present infrequently.

Removing sequences from any of these settings will limit our ability to study the role of such populations or
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the processes that drive their patchy distributions that are so common with microbial communities (8).285

Materials and Methods

Data curation and analysis. To insure the highest possible data quality, datasets were limited to those

where the 500 cycle version 2 MiSeq chemistry was used to sequence the amplicons. The paired 250

nt reads resulted in near complete 2-fold sequencing coverage of every nucleotide in the ca. 253 nt-

long region. This region and sequencing platform were selected because previous work has shown that a290

standard data analysis pipeline in mothur results in a sequencing error rate below 0.02% (2). All sequence

data were obtained from the Sequence Read Archive (SRA) and processed using a standard mothur-based

sequencing pipeline that resulted in ASVs as generated by the pre.cluster algorithm using a threshold of 2

nt (2, 19). ASVs were assigned to OTUs using a 3% distance threshold using mothur’s cluster function with

the OptiClust algorithm (20). To minimize the effects of uneven sampling effort, samples were rarefied to the295

number of sequences in the smallest sample for each dataset. Because metrics of alpha diversity did not

consistently follow a normal distribution, I used the non-parametric Wilcoxon rank test as implemented in R.

For comparisons of Bray-Curtis distances, the amova function within mothur was used, which implements

the analysis of molecular variance algorithm (21).

Reproducibility. All analyses were performed using mothur (version 1.44.1) and R (version 4.0.2) with300

the tidyverse (version 1.3.0), broom (version 0.7.0), data.table (version 1.13.4), and cowplot (version 1.1.0)

packages. All of the code that was used in this analysis as well as the Makefile for running the analysis

are available at https://github.com/SchlossLab/Schloss_Singletons_XXXXX_2019 along with the complete

version history of the project.
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Table 1. Summary of studies used in the analysis. For all studies, the number of sequences used from

each study was rarefied to the smallest sample size. A graphical represenation of the distribution of sample

sizes for each study and the samples that were removed from each study are provided in Figure S1.

Study (Ref) Samples
Total

sequences

Median

sequences

Range of

sequences

Fold-difference

between largest

and smallest sample

SRA study

accession

Bioethanol (22) 95 3,972,943 16,015 3,688-356,136 96.6 SRP055545

Human (23) 490 20,909,768 32,505 10,523-430,415 40.9 SRP062005

Lake (24) 52 3,169,868 69,041 15,347-112,871 7.4 SRP050963

Marine (25) 7 1,391,396 193,464 133,516-254,060 1.9 SRP068101

Mice (2) 348 2,813,747 6,477 1,804-30,565 16.9 SRP192323

Peromyscus (26) 111 1,555,545 12,446 4,464-33,644 7.5 SRP044050

Rainforest (27) 69 946,295 11,561 4,932-37,767 7.7 ERP023747

Rice (28) 490 22,591,168 43,216 2,776-193,464 69.7 SRP044745

Seagrass (29) 286 4,130,454 13,567 1,803-45,191 25.1 SRP092441

Sediment (30) 58 1,154,174 17,584 7,685-68,321 8.9 SRP097192

Soil (31) 18 956,656 51,844 47,806-59,956 1.3 ERP012016

Stream (32) 201 21,162,574 90,159 9,175-390,964 42.6 SRP075852

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.12.11.422279doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.422279
http://creativecommons.org/licenses/by/4.0/


345

Figure 1. Singletons are more common in samples with fewer seqeunces and tend to be shared with

samples having more sequences. For each of the 12 datasets, Spearman correlation coefficients were

calcualted between the number of sequences in each sample and the number of singletons in the sample

(A) and the fraction of its singletons that were shared with another sample (C). Those correlations that were

not statisically significant had a P-value greater than 0.05. The faction of singletons shared across samples350

(B) were calculated for each dataset. The median value is shown with a solid circle and the 95% confidence

interval is indicated by the solid line.
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Figure 2. Removing rare sequences from samples alters their representation of alpha-diversity us-

ing amplicon sequence variants (ASVs). The average difference in the richness (A), Shannon diversity355

(B), and Kullback-Leiber divergence (C) for each sample within a dataset was calculated between the origi-

nal community structures relative to applying different minimum abundance thresholds.
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Figure 3. Removing rare sequences from samples increases the inter-sample variation for amplicon

sequence variants (ASVs). The coefficient of variation in richness (A), Shannon diversity (B), and Bray-360

Curtis distances (C) for each dataset was calculated using the null distributed samples for each dataset with

varying minimum abundance thresholds.
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Figure 4. Removing rare sequences from samples reduces the statistical power to detect differences

between empirically generated treatment groups when using amplicon sequence variants (ASVs).365

The fraction of significant tests comparing the richness (A) and Shannon diversity (B) using a Wilcox test

and Bray-Curtis distances (C) using analysis of molecular variance for each dataset was calculated using

empirically generated treatment groups containing equal numbers of samples for each dataset with varying

minimum abundance thresholds. For each dataset and minimum abundance threshold, 100 randomizations

were peformed.370
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Figure 5. Removing rare sequences does not impact the false detection rate unless the number of

sequences per sample is confounded with the treatment groups when using amplicon sequence

variants (ASVs). The fraction of significant tests comparing the richness and Shannon diversity using a

Wilcox test and Bray-Curtis distances using analysis of molecular variance for each dataset was calculated.375

Empirically generated treatment groups were generated containing equal numbers of samples where the

samples represented a null distribution. In one simulation the samples were randomly assigned to a treat-

ment group (A) and in the other the samples were assigned based on the number of sequences in each

sample (B). For each dataset and minimum abundance threshold, 100 randomizations were peformed.
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Figure S1. Distribution of the number of sequences per sample in the 12 datasets included in this

study. A different minimum number of sequences per sample threshold was applied to each dataset based

on identifying natural breaks in the distribution of the number of sequences per sample.
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Figure S2. Removing rare sequences from samples alters their representation of alpha-diversity385

using operational taxonomic units (OTUs). The average difference in the richness (A), Shannon diver-

sity (B), and Kullback-Leiber divergence (C) for each sample within a dataset was calculated between the

original community structures relative to applying different minimum abundance thresholds.
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Figure S3. Removing rare sequences from samples alters their representation of alpha-diversity390

when regenerating samples using a null distribution for each dataset. The average difference in the

richness, Shannon diversity, and Kullback-Leiber divergence for each sample within a dataset was calcu-

lated between the original community structures relative to applying different minimum abundance thresh-

olds. Some values of Kullback-Leiber divergence are missing because undefined values were calculated

due to the removal of rare sequences. Data are shown for amplicon sequence variants (ASVs) and opera-395

tional taxonomic units (OTUs)
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Figure S4. Removing rare sequences from samples increases the inter-sample variation for op-

erational taxonomic units (OTUs). The coefficient of variation in richness (A), Shannon diversity (B),

and Bray-Curtis distances (C) for each dataset was calculated using the null distributed samples for each400

dataset with varying minimum abundance thresholds.
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Figure S5. Removing rare sequences from samples reduces the statistical power to detect differ-

ences between empirically generated treatment groups when using operational taxonomic units

(OTUs). The fraction of significant tests comparing the richness (A) and Shannon diversity (B) using a405

Wilcox test and Bray-Curtis distances (C) using analysis of molecular variance for each dataset was calcu-

lated using empirically generated treatment groups containing equal numbers of samples for each dataset

with varying minimum abundance thresholds. For each dataset and minimum abundance threshold, 100

randomizations were peformed.

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.12.11.422279doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.422279
http://creativecommons.org/licenses/by/4.0/


410

Figure S6. Removing rare sequences does not impact the false detection rate unless the number of

sequences per sample is confounded with the treatment groups when using operational taxonomic

units (OTUs). The fraction of significant tests comparing the richness and Shannon diversity using a Wilcox

test and Bray-Curtis distances using analysis of molecular variance for each dataset was calculated. Empir-

ically generated treatment groups were generated containing equal numbers of samples where the samples415

represented a null distribution. In one simulation the samples were randomly assigned to a treatment group

(A) and in the other the samples were assigned based on the number of sequences in each sample (B).

For each dataset and minimum abundance threshold, 100 randomizations were peformed.
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