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Abstract 19 

Human body habitats are home to a diverse array of microbes, and within these 20 

microbial ecosystems, there are exchanges of genetic material, including virulence 21 

factors (VFs). Little is known about the diversity and abundance of VFs in different 22 

body sites and different types of diseases. We developed a virulome analysis pipeline 23 

using the species-specific sequence identity inferred from intraspecies ANI values to 24 

precisely assign reads to virulence factors. We characterized the human virulome 25 

from four body habitats, including the gut, oral cavity, skin, and vagina. Specifically, 26 

the diversity and abundance of VFs in the oral cavity were significantly higher than 27 

those in other body sites, including stool. We highlight the importance of sex-specific 28 

analysis when studying the human virulome. We analyzed data from more than 4,000 29 

samples across healthy and diseased subjects and 13 types of diseases from different 30 

metagenomic sequencing studies to characterize the disease-specific virulome. 31 

Atherosclerotic cardiovascular disease (ACVD) has a more diverse virulome than 32 

other diseases tested. Notably, many VFs, including genes for secretion systems and 33 

toxins, are more abundant in diseased subjects than in healthy controls. We present, to 34 

our knowledge, the most comprehensive healthy and diseased virulome dataset yet 35 

created.  36 
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Background 37 

The human microbiome has been identified as an essential factor in many diseases, 38 

including obesity1, type 2 diabetes2, and cirrhosis3. Microbial metabolites and 39 

components influence the susceptibility of the host to many immune-mediated 40 

diseases and disorders4. Pathogen colonization is controlled by bacterial virulence and 41 

through competition with commensals5. Virulence factors (VFs) are typically defined 42 

as pathogen components whose loss specifically impairs virulence but not viability, 43 

including adhesins, toxins, exoenzymes, and secretion systems6. They are produced 44 

by pathogens that could cause diseases7. Although nonenterotoxigenic B. 45 

fragilis (NTBF) is a common component of the colon, enterotoxigenic Bacteroides 46 

fragilis (ETBF), which secretes B. fragilis toxin, could induce colonic tumors8. 47 

Recent studies suggest that colorectal cancer (CRC) is influenced by pks+ 48 

Escherichia coli, which contains the colibactin-producing pks pathogenicity island, 49 

directly impacting oncogenic mutations9,10. These results highlight the need to 50 

characterize the microbiome at the strain level and the differences in VFs between 51 

healthy and diseased individuals. Moreover, we should also pay more attention to 52 

microbial communities for evaluating pathogenicity11. With metagenome sequencing, 53 

we can observe all microbial genes present in a complex community12, including VF 54 

genes. However, the extent and diagnostic implications of virulome contributions to 55 

different types of the disease remain unknown. 56 

 57 

Currently, the virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) 58 

provides up-to-date knowledge of VFs from various bacterial pathogens. It serves as a 59 

comprehensive warehouse of bacterial pathogenesis knowledge, including a core 60 

dataset covering experimentally verified VFs13. There are also many other virulence 61 

factor databases, including Victors14, PATRIC15, and PHI-base16. Hidden Markov 62 

models17, deep convolutional neural network models18, and VFanalyzer19 are used for 63 

VF classification in bacterial genomes. Whole-genome sequencing is an effective 64 

method to comprehensively identify VFs. However, the reliable and efficient 65 

characterization of VFs in the metagenome remains a challenge. Biosynthetic gene 66 

clusters could be predicted using ClusterFinder20, which also yields false-positive 67 

results. We wish to apply a reasonable and stringent cutoff to the VF analysis to 68 

exclude potential false positive matches. 69 
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 70 

Here, we used species-specific sequence identity (SSI) inferred from the mean ANI 71 

values per species to precisely assign reads to virulence factors. As little is known 72 

about the abundances and diversity of VF profiles in different body habitats, we 73 

randomly selected 1,497 metagenome datasets from habitats within the human skin, 74 

oral cavity, gut, and vaginal from the Human Microbiome Project (HMP) cohort to 75 

carry out virulome analysis. We highlight the importance of sex-specific analysis 76 

when studying the human virulome. We analyzed data from 4,000 samples across 77 

healthy and diseased subjects and 13 types of diseases from different metagenomic 78 

sequencing studies to characterize the disease-specific virulome. We present, to our 79 

knowledge, the most comprehensive healthy and diseased virulome dataset yet 80 

created.   81 
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Results 82 

Curation of the virulence factor database and establishment of the 83 

methodology for virulome classification 84 

We curated the gene annotation of experimentally verified VFs in the VFDB, which 85 

comprises 3,228 experimentally verified gene sequences from 53 species of bacterial 86 

pathogens. Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa 87 

were the top three species based on the number of their VF gene sequences in the 88 

dataset (Table S1). We manually inspected the VF gene categories. Adherence, T4SS, 89 

T3SS, invasion, toxin, and iron uptake systems were the top six categories (Table S2). 90 

 91 

VFs are often species-specific and variably conserved between species21. The average 92 

nucleotide identity (ANI) was developed for bacterial species classification22. We 93 

performed intraspecies ANI analysis for each of the 53 species. Figure 1A shows that 94 

the ANI values range from 85.3% (Pseudomonas stutzeri) to 99.9% (Bordetella 95 

pertussis) for different species. We performed BLAST searches against the 96 

chromosome sequences in the complete bacterial genomes using species-specific 97 

sequence identity (SSI) thresholds and different fixed nucleotide identity cutoffs 98 

ranging from 99% to 90%. Barplot shows the number of pathogenic and 99 

nonpathogenic strains that hit at least one VF under different cutoffs (Figure 1B). In 100 

this experiment, SSI achieved almost the same high precision as 100% and 99% but at 101 

a markedly higher recall (Figure 1C). SSI performed the best in accuracy and F1 102 

scores since it identified a high number of TPs and did not introduce many FPs. 103 

 104 

To further confirm our method’s accuracy, we compared the sequence identity of 105 

experimentally verified VFs between strains within one species to the mean ANI 106 

value in the species. Two experimentally verified VFs, namely, VFG005177 107 

(gb|NP_664456) and VFG000959 (gb|NP_269190), were found in two strains, that is, 108 

Streptococcus pyogenes MGAS315 and Streptococcus pyogenes M1 GAS. The two 109 

genes’ sequence identity was 98.9%, which is very similar to the mean ANI (98.8%) 110 

of Streptococcus pyogenes. In addition, VF identification that relies on fixed criteria 111 

by loose cutoffs may result in misannotations. For instance, when using an 112 

80% identity cutoff, the experimentally verified gene east1 in Escherichia coli 113 

ONT:HND str. A16 can be found in many nonpathogenic strains, including the 114 
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genome of Candidatus Sodalis pierantonius str. SOPE (CP006568.1). However, no 115 

experimentally verified virulence factor has been reported in this strain. 116 

 117 

We identified a total of 2,893 VF gene sequences distributed across 5,250 strains 118 

within 74 species using a nucleotide identity cutoff value of 100% for the BLAST 119 

search against the chromosome sequences in the complete bacterial genomes. We 120 

manually inspected the newly identified species and found that all of them were also 121 

pathogens that could cause diseases, such as Mycobacterium africanum, Klebsiella 122 

aerogenes, and Pseudomonas fluorescens. This indicated that experimentally verified 123 

VFs were incomplete in the VFDB. In addition, we identified 31 prophage-124 

encoded VFs, most of which were exotoxins. 125 

 126 

We developed a virulome analysis pipeline that uses SSI inferred from the mean ANI 127 

values per species to precisely assign reads to virulence factors (Figure S1). With our 128 

expanded VF database termed VFGSSI, reference sequences of VFs were carefully 129 

chosen as seeds and integrated into the virulome analysis pipeline, making our 130 

database more comprehensive (Figure 1D). A list of pathogens in VFGSSI that can 131 

cause infections of the gastrointestinal tract or not and diseases they may cause are 132 

shown in Table S3 and Table S4. 133 

Different body sites have distinct virulomes 134 

We analyzed 1,497 metagenome datasets from habitats within the human skin, oral 135 

cavity, gut, and vagina from the HMP cohort (Figure 2A). The overall alpha and beta 136 

diversity values for each body site were similar at the microbiome and virulome levels. 137 

The Shannon diversity values of the microbiome (Figure S2A) and virulome (Figure 138 

2B) in the oral cavity were significantly higher than those in other body sites. 139 

Principal coordinate analysis of Bray-Curtis dissimilarities showed that the primary 140 

patterns of variation in the microbiome (Figure S2B) and virulome (Figure 2C) 141 

followed the major body sites (oral cavity, gut, skin, and vagina). 142 

 143 

A unique body site virulome composition was apparent. The mean VF abundances in 144 

the oral cavity were significantly higher than those in other body sites (Figure 2D). As 145 

expected, vaginal sites had the lowest VF abundance. Furthermore, the mean VF 146 

abundances in the samples at six major body sites are shown in Figure S3. 147 
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Specifically, the VF abundance in buccal mucosa was significantly higher than the VF 148 

abundance of other body sites. Hierarchical clustering of the prevalence of 106 VF 149 

genes (Figure 2E) and 15 VF functional categories (Figure 2F) is shown. In addition, 150 

we also performed LEfSe analysis to compare VFs (Figure S4). Specifically, in the 151 

oral cavity, the most differentially abundant VFs were capsular polysaccharide genes 152 

from antiphagocytosis. 153 

 154 

The shared and unique VF genes among the groups were investigated. We found that 155 

200 VFs were shared among body sites, accounting for 33.8%, 23.8%, 23.4%, and 156 

43.8% of the total VFs identified in the gut, oral cavity, skin, and vagina, respectively 157 

(Figure S5A). Interestingly, the oral cavity and skin shared more VFs (689 types) than 158 

those shared between the gut and oral cavity (443 types) or between the gut and skin 159 

(444 types) (Figure S5B). 160 

 161 

Interestingly, women showed a higher VF abundance in the skin and gut than men 162 

(ANOVA, p <0.05, Figures S6A and S6B). Specifically, females had higher VF 163 

abundances in the anterior nares. In addition, sex-specific VFs for each body site were 164 

analyzed using LEfSe (Figures S7, S8, and S9). The availability of longitudinal 165 

samples of different body sites over two years from individuals who did not take 166 

antimicrobial drugs afforded us the ability to investigate the stability of virulomes 167 

over time (Figures S6C and S6D). There was no significant difference among samples 168 

from the same individuals except for the vagina, verifying that virulomes remained 169 

stable over a long period in different body habitats. 170 

Different disease types have distinct virulomes 171 

We focused on 13 types of diseases for which the virulome is largely unknown, 172 

including colorectal carcinoma (CRC), atherosclerotic cardiovascular disease 173 

(ACVD), inflammatory bowel disease (IBD), obesity, hypertension, Parkinson’s 174 

disease (PD), non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), 175 

gastric cancer (GC), liver cirrhosis (LC), melanoma, renal cell carcinoma (RCC), and 176 

Mycoplasma pneumoniae pneumonia (MPP) (Figure 3A). As the original sequencing 177 

data of healthy individuals were missing in the NSCLC, RCC, melanoma, and HCC 178 

datasets, we developed an independent healthy cohort that served as a negative 179 
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reference using the HMP gut data as mentioned above, which made intergroup 180 

comparisons possible. 181 

 182 

First, we found that ACVD had a more diverse virulome than all the other disease 183 

types tested (P-value <0.01 for each disease, Wilcoxon rank-sum test; Figure 3B). 184 

Compared to their own healthy controls, ACVD, CRC, and LC showed a higher 185 

diversity of VFs (p <0.01, Figures S12, S13, and S14). In contrast, we did not find a 186 

more diverse virulome in obesity, IBD, PD, GC, and hypertension compared with 187 

their healthy controls. 188 

 189 

Next, VF category prevalence was compared between diseases, and a disease-190 

specific virulome composition was also clear (Figure 3C). We initially defined three 191 

groups for further VF category classification: high prevalence (>90%), medium 192 

prevalence (with prevalence ranging from 70% to 90%), and modest prevalence 193 

(<70%). VF categories including invasion, adherence, and iron uptake system 194 

composed the high prevalence group, characterized by consistently high prevalence in 195 

healthy and disease groups. Another six VF categories, including toxin, 196 

antiphagocytosis, autotransporter, T2SS, serum resistance, and T3SS, were the 197 

medium group members and were predominant in specific diseases. VF categories 198 

such as T6SS, Ig protease, exoenzyme, and regulation were divided into the modest 199 

group for their less predominant prevalence. 200 

 201 

Moreover, hierarchical clustering of the mean abundance of representative VFs for 202 

each disease type is shown in Figure 3D. The top 10% (referring to the ratio of VF 203 

type numbers) of the most abundant VF genes in each type of disease, which were 204 

considered the representative VFs, are summarized in Supplementary Table S5. 205 

Specifically, compared to HMP healthy individuals, many VFs belonging to toxins 206 

were more abundant in obese individuals, while VFs encoding the iron uptake system 207 

were more abundant in hypertensive individuals. T6SS and antiphagocytosis genes 208 

were more abundant in patients with ACVD than in their healthy controls (Figure 209 

S15). Apart from invasion, adherence, and the iron uptake system, which were the 210 

universally discovered representative VF categories in those diseases, two clusters of 211 

VFs encoding secretion systems and toxins were found in ACVD and CRC patients, 212 
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respectively, the existence of which distinguished CRC and ACVD from other 213 

diseases. 214 

 215 

We then focused on the VF genes encoding secretion systems and toxins and their 216 

pathogenic potential in ACVD and CRC. From the toxin’s perspective, 12 VF genes 217 

encoding colibactin in Klebsiella pneumoniae and two genes encoding heat-stable 218 

enterotoxin 1 and L-lysine 6-monooxygenase IucD in Escherichia coli were 219 

significantly enriched in patients with CRC, while only endotoxin genes participating 220 

in LPS and capsule biosynthesis were found in patients with ACVD. 221 

 222 

We further analyzed the average abundance of VF genes in each type of secretion 223 

system separately (Figure S10). Remarkably, the type III secretion system VFs were 224 

enriched in many diseases, not limited to ACVD and CRC, whereas T6SS genes were 225 

more abundant in ACVD than in other diseases, implying their potential in inducing 226 

ACVD. 227 

 228 

Given that the secretion systems in bacteria mediate bacterial-bacterial or host-229 

bacterial competition by injecting diverse effectors, usually cytotoxic, into 230 

prokaryotic and eukaryotic cells23, we further analyzed the distribution of effectors in 231 

different groups (Figure S11). It was evident that different sets of effector genes were 232 

enriched in CRC and ACVD. As expected, many T3SS effectors were enriched in 233 

both CRC and ACVD patients. Importantly, we found the enrichment of one T6SS 234 

effector in the ACVD group, which supports our hypothesis that T6SS may play an 235 

essential role in the pathogenicity of ACVD. 236 

 237 

In addition to fecal samples, we analyzed the respiratory tract metagenome of 238 

children, including 171 healthy children and 76 children with pneumonia. Overall, the 239 

diversity of VFs was significantly lower in healthy children’s respiratory tract 240 

microbiomes than in children with pneumonia (Figure S16). Specifically, adhesin-241 

related genes in Mycoplasma pneumoniae were more abundant in children with 242 

pneumonia (Figure S17). There were significant differences in respiratory microbial 243 

virulomes between healthy children and children with pneumonia, probably due to the 244 

differences in oropharyngeal microbial diversity24. 245 
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Gut virulome comparison in diabetes mellitus (DM) and gestational diabetes 246 

(GDM) with in-house sequenced datasets 247 

We sequenced 150 fecal DNA samples from 50 healthy Chinese adults, 50 T2D (type 248 

2 diabetes mellitus), and 50 T2D+CVD (cardiovascular disease) patients using 249 

Illumina sequencing technology. A total of ~ 11 Gb per sample was obtained. The 250 

sequencing statistics are summarized in Table S6. 251 

 252 

We found that patients with type 2 diabetes and cardiovascular diseases (T2D+CVD) 253 

had a more diverse virulome than patients with type 2 diabetes (T2D) and healthy 254 

controls (Figures 4A and 4B). Nonmetric multidimensional scaling (NMDS) analysis 255 

showed a clear separation between patients with T2D and healthy controls (Figure 256 

4D). Consistent with our observation that the VF abundances were higher than those 257 

in healthy controls (Figure 4C), we found that many VFs were significantly enriched 258 

in T2D+CVD and T2D samples compared with their healthy controls (Figure 4E). 259 

The LDA scores indicated that the abundances of autotransporter-related VFs were 260 

much more enriched in T2D, while adherence and T6SS were much more enriched in 261 

T2D+CVD. The most enriched VFs in T2D and T2D+CVD were derived from 262 

Escherichia coli and Klebsiella pneumoniae. Furthermore, we compared the 263 

abundance between mobile VFs and nonmobile VFs and found that nonmobile VFs 264 

were significantly higher than mobile VFs for each group (Figure S18). 265 

 266 

To indicate the relationship between VFs, we performed Spearman’s correlation 267 

analysis between VFs. The strong (q > 0.6) and significant (adjusted P value< 0.05) 268 

correlations between VFs are shown in Figure 4F. Two major modules were identified 269 

within the network. One module contained VFs relating to T6SS, toxin, 270 

antiphagocytosis, adherence, and the iron uptake system. The other module contained 271 

VFs relating to T3SS, T2SS, adherence, and the iron uptake system. The VF modules 272 

are of particular interest because they represent the functional relationship between 273 

VFs. They may provide a systems perspective at the community level. 274 

 275 

In contrast, we did not find a more diverse virulome in patients with GDM than in 276 

their healthy controls (Figure S19). DM showed a significantly diverse virulome over 277 

their healthy controls, while GDM had no statistically significant diverse virulome. 278 
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Therefore, GDM may represent transient DM, and the virulome appears to be relevant 279 

to DM pathogenesis but not GDM, although its underlying mechanisms are unknown. 280 

Selected samples of DM from short-read results confirmed by PacBio long-281 

read sequencing 282 

To experimentally confirm the presence of VF genes in the human gut microbiome, 283 

we sequenced 9 fecal DNA samples from 3 healthy Chinese adults, 3 patients with 284 

T2D, and 3 patients with T2D+CVD using PacBio single-molecule real-time (SMRT) 285 

long-read sequencing technology. A total of ~ 20 Gb per sample with an average 286 

subread length of 8 kb was obtained with the PacBio Sequel II system. The 287 

sequencing statistics are summarized in Table S7. The assembly of PacBio reads 288 

yielded 37 large CCs from 1 to 5 Mb in length, considered to be bacterial 289 

chromosomes. It also generated 149 CCs (73.4 to 947.4 kb) classified as plasmids and 290 

5 CCs (54.4 to 12.2 kb in size) as phages. 291 

 292 

Consistent with our findings using short-read sequencing, we found that many VF 293 

genes existed in fecal sample contigs from patients. The heatmap shows the VF 294 

distribution among the 9 human gut samples using SSI (Figure 5A). The 295 

mean numbers of VFs in T2D+CVD were significantly higher than those in the other 296 

two groups. Most of the VFs were derived from Escherichia coli and Klebsiella 297 

pneumoniae, consistent with Illumina sequencing observations. VF genes in the 298 

complete genome of the Klebsiella pneumoniae strain KP3037 are shown in Figure 299 

5B. Specifically, two distinct gene clusters encoding T6SS were identified and 300 

confirmed by VRprofile25, a web-based tool for profiling virulence traits encoded 301 

within genome sequences of pathogenic bacteria. Mobile element-like genes, 302 

including genes involved in virulence and antibiotic resistance, were the major 303 

differences between strains. 304 

  305 
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Discussion 306 

In this study, we conducted a comprehensive whole-body virulome analysis of the 307 

healthy human microbiota. We analyzed data from more than 4,000 samples across 308 

healthy and diseased subjects and 13 types of diseases from different metagenomic 309 

sequencing studies to characterize the disease-specific virulome. As the actual 310 

functions in the pathogenesis of predicted VF-related genes remain unclear, only 311 

experimentally verified VFs were involved in our study. We expanded the VF 312 

database termed VFGSSI and used species-specific sequence identity (SSI) inferred 313 

from the mean ANI values per species to precisely assign reads to virulence factors. 314 

 315 

Our findings have substantially expanded our insight into the abundance and diversity 316 

of VFs in different body sites. Differences in the environmental conditions between 317 

different body habitats may be reflected in the microbiome and, consequently, the 318 

virulome. We observed a unique body-site virulome composition in this study. These 319 

findings illustrate that the healthy human microbiota, in general, beyond the gut 320 

microbiota, is a reservoir for virulence factors. This reservoir may serve as a mobile 321 

gene pool that facilitates VF transmission. The differences in eating habits, personal 322 

care, and lifestyles between men and women may lead to sex-specific differences in 323 

the composition of VF genes. Our results highlight the importance of sex-specific 324 

analysis when studying the human microbiome and virulome. New epidemiological 325 

studies are needed to evaluate the prevalence of potentially pathogenic bacteria 326 

carrying VFs in the healthy human body. 327 

 328 

We hypothesized that the different diseases correspond to a specific virulome, 329 

especially in ACVD and CRC. Initially, the enrichment of genes encoding the type VI 330 

secretion system (T6SS) in Klebsiella pneumoniae was characteristic of the ACVD 331 

virulome, which was also discovered and then confirmed by PacBio’s single-molecule 332 

real-time (SMRT) sequencing in an independent dataset of the Diabetic 333 

Cardiovascular Complications cohort. T6SS is widely found in gram-negative bacteria, 334 

including Bacteroidetes and Proteobacteria, and is dedicated to mediating 335 

interbacterial antagonism and niche occupancy26. Recently, Verster et al. revealed the 336 

role of Bacteroides fragilis T6SS in mediating the gut microbe community27. 337 

Therefore, we assumed that the existence of T6SS genes might result in the 338 
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overgrowth of Klebsiella pneumoniae in patients with CVD, which can explain why 339 

Klebsiella pneumoniae is enriched in CVD cohorts28,29. In addition, endotoxin (LPS) 340 

components of Klebsiella pneumoniae are another signature of ACVD. As it has been 341 

reported that low-grade chronic inflammation promotes the development of CVD30, 342 

the enrichment of LPS may lead to increased inflammation; therefore, it contributes to 343 

the development of ACVD. 344 

 345 

In contrast to ACVD, patients with CRC exhibited an enrichment of genes encoding 346 

the secreted toxin colibactin (clb), which has been reported to be enriched in 347 

adenomatous polyposis (FAP) 31 and leads to CRC by inducing oncogenic mutations 348 

of enterocytes32. Although previous research has focused on the ability of colibactin 349 

production in E. coli, in our virulome analysis, clb genes were annotated to the 350 

genome of Klebsiella pneumoniae. Since colibactin genes are not present in intestinal 351 

pathogenic E. coli strains but are present in E. coli strains isolated from human feces33, 352 

it is reasonable that clb genes in E. coli were not found. In addition, the structure of 353 

clb is highly conserved among Enterobacteriaceae, including Klebsiella 354 

pneumoniae34. Thus, another assumption is that the carcinogenic potential is not 355 

limited to E. coli but may expand to other gut bacteria with clb gene clusters. Due to 356 

regional, temporal, and spatial differences, it is crucial to have matched healthy 357 

controls when studying the microbiome and virulome. Together, our results suggest 358 

that VF profiles are unique to each disease and that our approach for classifying 359 

virulomes can be applied more broadly. 360 

 361 

Understanding the impact of virulence may provide new treatment options for 362 

microbe-related diseases. The differences in VF profiles across different body sites 363 

and disease types have significant implications for verifying the virulome and finding 364 

new antibacterial treatments. This work also provides a useful reference for future 365 

virulome studies in the human microbiome.   366 
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Methods 367 

Dataset collection 368 

A total of 1,497 metagenome datasets from habitats within the human skin, oral 369 

cavity, gut, and vagina from the HMP cohort35 were downloaded from the National 370 

Center for Biotechnology Information (NCBI) Sequence Read Achieve (SRA, 371 

http://www.ncbi.nlm.nih.gov/sra). Detailed information, including the sample ID, 372 

sequencing platform, read length, read number, data size, and accession numbers for 373 

each dataset, is shown in Supporting Information Table S8. The SRA datasets were 374 

converted to fastq using the fastq-dump module in the NCBI SRA Toolkit. We 375 

collected 2,712 samples from 13 types of diseases, including colorectal carcinoma 376 

(CRC)36-39, atherosclerotic cardiovascular disease (ACVD)40, inflammatory bowel 377 

disease (IBD)3,41, obesity42, hypertension43, Parkinson’s disease (PD)44, non-378 

small cell lung cancer (NSCLC)45, hepatocellular carcinoma (HCC)46, gastric cancer 379 

(GC)47, cirrhosis48, melanoma49,50, renal cell carcinoma (RCC)45 and children 380 

with Mycoplasma pneumoniae pneumonia (MPP) 24,51. In total, we analyzed more 381 

than 4,000 metagenomic samples. 382 

DNA extraction and whole-genome sequencing. 383 

The total genomic DNA in fecal samples was extracted using a QIAamp PowerFecal 384 

DNA Kit, following the user manual. Total DNA was eluted in 200 μL of sterile 385 

water and stored at -20°C until use. A NanoDrop was used to measure the 386 

concentration and purity of the DNAs. Library preparation was carried out following 387 

the recommended protocol from BioScientific’s kit. Briefly, approximately 2 μg of 388 

DNA from each sample was used for fragmentation by Biorupter (high power: (15 s, 389 

on/90 s, off), six cycles) and end preparation by NEXT flex TM End-Repair. After 390 

PCR amplification (10 cycles), the library was purified using AMPure beads. Qubit 391 

was used to evaluate the quality and quantity of each library. For short-read 392 

sequencing of collected samples, whole-genome sequencing libraries were prepared 393 

using NexteraXT reagents (Illumina) and sequenced on an Illumina HiSeq X Ten 394 

platform. For long-read sequencing, SMRTbell libraries were sequenced on SMRT 395 

Cells (Pacific Biosciences) using magnetic bead loading and P4-C2 or P6-C4 396 

chemistry. 397 
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Virulence factor database curation 398 

The VFDB (Virulence Factors of Bacterial Pathogens) database 52 is a comprehensive 399 

warehouse for deciphering bacterial pathogenesis. The VFDB (setA) core dataset 400 

comprises genes associated with experimentally verified virulence factors (VFs) for 401 

53 bacterial species. PATRIC does not provide all the details for each VF and is not 402 

responsible for the original annotation. PHI-base focuses on plant pathogens. 403 

Although Victors includes VFs from bacteria, viruses, parasites, and fungi, VFDB 404 

focuses on human bacterial pathogens and contains more bacterial pathogens and 405 

experimentally verified VFs than Victors. This study downloaded the complete 406 

bacterial genomes from the NCBI server (accessed in Feb 2020), including 53 species 407 

of bacterial pathogens. Since the number of available genome sequences is unequal 408 

among different species, we randomly selected 100 genome sequences per species for 409 

ANI analysis and obtained averaged ANI values per species. For ANI calculations, 410 

the query organism’s genome is split into 1-kbp fragments, which are then searched 411 

against a reference organism’s whole genome. The average sequence identity of all 412 

matches having 60% overall sequence identity over 70% of their length is defined as 413 

the ANI between the two organisms22. To identify prophage-encoded VFs, we 414 

downloaded the complete virus genomes from the NCBI server (accessed in June 415 

2020) and performed BLAST searches against the downloaded virus genome using 416 

the VFDB core dataset and the complete bacterial genomes (sequence identity 99%; 417 

coverage 99%). 418 

 419 

We curated the gene annotation of experimentally verified VFs in the VFDB, which 420 

comprises 3,228 experimentally verified gene sequences from 53 species of bacterial 421 

pathogens. We identified VF gene sequences distributed across 74 species using a 422 

nucleotide identity cutoff value of 100% for the BLAST search against the 423 

chromosome sequences in the complete bacterial genomes. We performed 424 

intraspecies ANI analysis for each of the 74 species. The above-identified VF gene 425 

sequences with intraspecies ANI thresholds were used as the seeds to retrieve 426 

additional potential VF gene sequences from the complete bacterial genomes. 427 

Specifically, the complete bacterial genomes were subjected to local BLASTN against 428 

the VF gene sequences to hit potential VF sequences using species-specific sequence 429 

identity (SSI). The filtered hit sequences were extracted, and redundant sequences 430 
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were removed from the whole database. A total of 56,913 VF gene sequences with 431 

SSI (VFGSSI) serve as a reference sequence for VF gene abundance calculation, of 432 

which 6,584 were mobile VFs and 50,329 were nonmobile VFs. The mobile VF gene 433 

sequences were identified using SSI thresholds for the BLAST search against the 434 

complete bacterial genome plasmid sequences. 435 

Metagenomic analysis 436 

The virulome was determined first by aligning metagenomic reads to the dataset using 437 

BBMap with default parameters and then processed using a custom Python script to 438 

filter the mapped reads with the specific sequence identity inferred from the mean 439 

ANI values per species. For gene abundance calculation, the read counts aligned to 440 

this gene were normalized by the gene’s length and the total number of reads in the 441 

sample. We manually curated a pathogen list from a previous report53 to identify 442 

pathogenic and nonpathogenic strains. 443 

 444 

MetaPhlAn2 54 was used to perform taxonomic classification and profiling by 445 

mapping metagenomic reads against a library of clade-specific markers. PacBio 446 

sequencing reads were assembled by Canu 55. VirSorter 56 was used for the 447 

classification of CCs as phages. Categories 1, 2, 4, and 5 were considered phages, 448 

while categories 3 and 6 were excluded because they included false positives. 449 

PlasFlow 57 was used to identify plasmid-like contigs. Gene identification was 450 

performed on assembled sequences using MetaGeneMark58. The number of unique 451 

and shared VFs was calculated for the compared sample types, and Venn diagrams 452 

were drawn in Python using the Venn and matplotlib-venn packages. 453 

Statistical analysis 454 

Principal coordinate analysis (PCoA) and nonmetric multidimensional scaling 455 

(NMDS) were performed to evaluate the differences in VF profiles among samples 456 

based on the Bray–Curtis distance of VF relative abundance. Permutational 457 

multivariate analysis of variance (PERMANOVA) between different groups was 458 

performed with adonis in vegan with a similarity index using 9999 permutations. 459 

LEfSe 59 analysis was used to identify discriminative VF types between groups. 460 

Diversity and heatmaps were prepared in R with vegan and ggplot2 packages. 461 
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Figures 645 

Figure 1. Comparison of the intraspecies whole-genome average nucleotide 646 

identity and accuracy of different thresholds for VF identification. (A) Barplot 647 

depicting the average nucleotide identity values of the 53 species of bacterial 648 

pathogens. (B) Barplot showing the number of pathogenic and nonpathogenic strains 649 

that hit at least one VF under different cutoffs. (C) Precision and recall graph for 650 

pathogenic and nonpathogenic strain identification under different cutoffs. We 651 

performed intraspecies ANI analysis for each of the 53 species. Figure 1A shows that 652 

the ANI values range from 85.3% (Pseudomonas stutzeri) to 99.9% (Bordetella 653 

pertussis) for different species. We performed BLAST searches against the 654 

chromosome sequences in the complete bacterial genomes using species-specific 655 

sequence identity (SSI) thresholds and different nucleotide identity cutoffs ranging 656 

from 99% to 90%. In this experiment, SSI achieved almost the same high precision 657 

as 100% and 99% but at a markedly higher recall (Figure 1C). SSI performed the 658 

best in accuracy and F1 scores since it identified high TPs and did not introduce 659 

many FPs. (D) Schematic representation of the curation of the VF dataset. 660 

Figure 2. Different body sites have a distinct virulome. (A) Number of samples 661 

analyzed in the study. (B) Boxplot of the Shannon diversity indexes of all samples 662 

from different body sites based on VF abundance profiles. *p < 0.05, **p < 0.01, ***p 663 

< 0.001, ***p < 0.0001, Wilcoxon rank-sum test. (C) Principal coordinate analysis of 664 

Bray-Curtis dissimilarities showing the virulome. The first principal coordinate is 665 

shown by the x-axis, and the second principal coordinate is shown by the y-axis. (D) 666 

Comparison of the mean VF abundance. The centerline represents the median for 667 

each boxplot, and the boxes correspond to the 25th and 75th percentiles; all data 668 

points are shown. Hierarchical clustering of the prevalence of 106 VF genes (E) and 669 

15 VF functional categories (F) that were hit in one of the body sites and are present 670 

in 20% or more of the samples in at least one body site. For the virulome analysis, 671 

the mean VF abundances in oral samples were significantly higher than those in 672 

other body sites. As expected, the vagina had the lowest total VF abundance. 673 

Additionally, the Shannon diversity values of VFs in the oral cavity and gut were 674 

significantly higher than those of VFs in other body sites. 675 

Figure 3. Different disease types have a distinct virulome. (A) Number of 676 

samples analyzed in the study. Dashes indicate data not available. ACVD, 677 

atherosclerotic cardiovascular disease; IBD, inflammatory bowel disease; CRC, 678 
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colorectal carcinoma; NSCLC, non-small cell lung cancer; HCC, 679 

hepatocellular carcinoma; GC, gastric cancer; PD, Parkinson’s disease; RCC, 680 

renal cell carcinoma. (B) Boxplot of the Shannon diversity indexes of all samples 681 

from different types of diseases based on VF abundance profiles. (C) Hierarchical 682 

clustering of the prevalence of VF categories that were hits in one of the disease 683 

types and were present in 20% or more of the samples in at least one of the disease 684 

types. (D) Hierarchical clustering of the mean abundance of representative VFs for 685 

each type of disease. The top 10% (referring to the ratio of VF type numbers) of the 686 

most abundant VF types in each type of disease were considered the representative 687 

VFs. 688 

Figure 4. Patients with type 2 diabetes with cardiovascular diseases 689 

(T2D+CVD) had a more diverse virulome. (A) Boxplot of the number of VF genes 690 

present in each sample. (B) Boxplot of the Shannon diversity indexes of all samples 691 

based on the virulome. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, Wilcoxon 692 

rank-sum test. (C) Comparison of the mean VF abundance. For each boxplot, the 693 

centerline represents the median, and the boxes correspond to the 25th and 75th 694 

percentiles; all data points are shown. (D) NMDS of Bray-Curtis dissimilarities 695 

showing the virulome. Bray-Curtis dissimilarities were calculated from the relative VF 696 

abundance profiles. The x-axis shows the first principal coordinate, and the y-axis 697 

shows the second principal coordinate. (E) Histogram of the LDA scores (log10) 698 

computed for VFs with differential abundance in the healthy, T2D, and T2D+CVD 699 

subjects. The LDA scores indicated that the abundances of autotransporter-related 700 

VFs were much more enriched in T2D, while adherence and T6SS were much more 701 

enriched in T2D+CVD. Most of the enriched VFs in T2D and T2D+CVD were derived 702 

from Escherichia coli and Klebsiella pneumoniae. (F) Network analysis 703 

demonstrating the co-occurrence patterns between VFs. The nodes are colored 704 

according to the VF genes, with each node representing a VF subtype. The size of 705 

each node is proportional to its number of connections. An edge is a strong (q > 0.6) 706 

and significant (P-value < 0.01) connection between nodes. 707 

Figure 5. PacBio long-read sequencing confirmation of VF genes that exist in 708 

the contigs of fecal samples. (A) Heatmap shows the VF distribution among the 9 709 

human gut samples using SSI. The mean numbers of VFs in T2D+CVD were 710 

significantly higher than those in the other two groups. Most of the VFs were derived 711 

from Escherichia coli and Klebsiella pneumoniae, consistent with Illumina sequencing 712 

observations. (B) BLAST ring image of the two complete genomes of Klebsiella 713 
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pneumoniae. The Klebsiella pneumoniae strain KP3037 was used as the reference 714 

in the outermost ring. The two innermost rings represent the GC content of that area 715 

and the GC skew, respectively. The saturation of the color in these rings indicates 716 

identity by BLAST hit.  717 
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Additional Files 718 

Additional file 1 719 

Figure S1. Schematic representation of the virulome analysis pipeline. We 720 

curated the gene annotation of experimentally verified VFs in the VFDB, which 721 

comprises 3,228 experimentally verified gene sequences from 53 species of bacterial 722 

pathogens. We identified VF gene sequences distributed across 74 species using a 723 

nucleotide identity cutoff value of 100% for the BLAST search against the 724 

chromosome sequences in the complete bacterial genomes. We downloaded the 725 

complete bacterial genomes from the NCBI server (accessed on Feb 2020), including 726 

74 species of bacterial pathogens. We performed intraspecies ANI analysis for each 727 

of the 74 species. The above-identified VF gene sequences with intraspecies ANI 728 

thresholds were used as the seeds to retrieve additional potential VF gene 729 

sequences from the complete bacterial genomes. Specifically, the complete bacterial 730 

genomes were subjected to local BLASTN against the VF gene sequences to hit 731 

potential VF sequences using species-specific sequence identity (SSI). The filtered 732 

hit sequences were extracted, and redundant sequences were removed from the 733 

whole database. The final VF gene sequences with SSI serve as a reference 734 

sequence for VF gene abundance calculation. 735 

Figure S2. Different body sites have distinct microbiomes. (A) Boxplot of the 736 

Shannon diversity indexes of all samples from different body sites based 737 

on relative species abundance profiles. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 738 

0.0001, Wilcoxon rank-sum test. (B) Principal coordinate analysis of Bray-Curtis 739 

dissimilarities showing the microbiome. Bray-Curtis dissimilarities were calculated 740 

from the relative species abundance profiles. The x-axis shows the first principal 741 

coordinate, and the y-axis shows the second principal coordinate. 742 

Figure S3. Comparison of mean VF abundance in the samples at six major 743 

body sites. For each boxplot, the centerline represents the median, and the boxes 744 

correspond to the 25th and 75th percentiles; all data points are shown. 745 

Figure S4. Histogram of the LDA scores (log10) computed for VFs with 746 

differential abundance in different body sites. 747 

Figure S5. Venn diagram showing the number of shared and unique VF genes 748 

among different body sites. (A) Venn diagram of the four body sites. (B) Venn 749 
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diagram of each pair of body sites. The number of shared and unique VF genes is 750 

shown. The shared and unique VF genes among the groups were investigated. We 751 

found that a total of 200 VF genes were shared among body sites. Interestingly, the 752 

oral cavity and skin shared more VFs (689 types) than those shared between the gut 753 

and oral cavity (443 types) or between the gut and skin (444 types). 754 

Figure S6. VF gene profiles were sex-specific and relatively stable over time. 755 

Comparison of the total VF abundance between males and females in four major 756 

body habitats (A) and six major body sites (B). Comparison of the total VF 757 

abundance among samples from the same individuals over time in four major body 758 

habitats (C) and six major body sites (D). In the boxplots, the upper hinge represents 759 

the 75% quantile, the lower hinge represents the 25% quantile, and the centerline 760 

represents the median. Compared to men, women showed a higher VF abundance in 761 

the skin and gut (ANOVA, p <0.05). Specifically, females had higher VF abundance 762 

in the anterior nares. The availability of longitudinal samples of different body sites 763 

over two years from individuals who did not take antimicrobial drugs afforded us the 764 

ability to investigate the stability of virulomes over time. There was no significant 765 

difference among samples from the same individuals except for the vagina, verifying 766 

that virulomes remained stable over a long period in different body habitats. 767 

Figure S7. Histogram of the LDA scores (log10) computed for VFs with 768 

differential abundance between males and females in the gut. 769 

Figure S8. Histogram of the LDA scores (log10) computed for VFs with 770 

differential abundance between males and females in the oral cavity. 771 

Figure S9. Histogram of the LDA scores (log10) computed for VFs with 772 

differential abundance between males and females in the skin. 773 

Figure S10. Hierarchical clustering of the mean abundance of VFs encoding 774 

secretion systems for each type of disease. 775 

Figure S11. Hierarchical clustering of the mean abundance of VFs encoding 776 

effectors of secretion systems for each type of disease. 777 

Figure S12. Richness, Simpson, Shannon, and evenness diversity of VFs in 778 

ACVD samples. 779 

Figure S13. Richness, Simpson, Shannon, and evenness diversity of VFs in 780 

CRC samples. 781 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.13.403006doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.403006
http://creativecommons.org/licenses/by-nd/4.0/


 - 27 - 

Figure S14. Richness, Simpson, Shannon, and evenness diversity of VFs in LC 782 

samples. 783 

Figure S15. Histogram of the LDA scores (log10) computed for VFs with 784 

differential abundance in ACVD samples. 785 

Figure S16. Richness, Simpson, Shannon, and evenness diversity of VFs in the 786 

children’s respiratory tract metagenome samples. 787 

Figure S17. Histogram of the LDA scores (log10) computed for VFs with 788 

differential abundance in the children’s respiratory tract metagenome samples. 789 

Figure S18. Comparison of mobile and intrinsic VF abundance. “Intrinsic VFs” 790 

are VFs located only on the bacterial chromosome. “Mobile VFs” are VFs 791 

located on plasmids. Each dot represents a metagenome sample. For each boxplot, 792 

the centerline represents the median, and the boxes correspond to the 25th and 75th 793 

percentiles; all data points are shown. 794 

Figure S19. Richness, Simpson, Shannon, and evenness diversity of VFs in 795 

GDM samples. 796 

Additional file 2 797 

Table S1. The number of VF gene sequences from each species in the dataset. 798 

Table S2. Distribution of the number of sequences in the VF categories in the 799 

dataset. 800 

Table S3. List of pathogens that can cause infections of the gastrointestinal 801 

tract and the diseases they cause. 802 

Table S4. List of pathogens that cannot cause infections of the gastrointestinal 803 

tract and the diseases they cause. 804 

Table S5. The top 10% (referring to the ratio of VF type numbers) of the most 805 

abundant VF types in each type of disease, which were considered the 806 

representative VFs, are summarized. 807 

Table S6. The Illumina short-read sequencing statistics. 808 

Table S7. The PacBio long-read sequencing statistics. 809 
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Table S8. Detailed information on 1,497 metagenome datasets from habitats 810 

within the human skin, oral cavity, gut, and vagina from the HMP cohort is 811 

summarized. 812 
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