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Abstract

The advent of single-cell Hi-C (scHi-C) technologies offers an unprecedented opportunity to un-
veil cell-to-cell variability of 3D genome organization. However, the development of computational
methods that can effectively enhance scHi-C data quality and extract 3D genome features in single
cells remains a major challenge. Here, we report Higashi, a new algorithm that achieves state-of-
the-art analysis of scHi-C data based on hypergraph representation learning. Extensive evaluations
demonstrate that Higashi significantly outperforms existing methods for embedding and imputation
of scHi-C data. Higashi is uniquely able to identify multiscale 3D genome features (such as com-
partmentalization and TAD-like domain boundaries) in single cells, allowing markedly refined delin-
eation of cell-to-cell variability of 3D genome features. By applying to a scHi-C dataset from human
prefrontal cortex, Higashi reveals complex cell types as well as new connections between 3D genome
features and cell type-specific gene regulation. Higashi provides an end-to-end solution to scHi-C
data analysis and is applicable to studying single-cell 3D genomes in a wide range of biological
contexts.
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Introduction

The rapid development of whole-genome mapping methods such as Hi-C (Lieberman-Aiden et al., 2009)
for probing the three-dimensional (3D) genome organization inside the nucleus has revealed multiscale
higher-order chromatin structures (Kempfer and Pombo, 2020), including A/B compartments (Lieberman-
Aiden et al., 2009), more refined nuclear compartmentalization (Rao et al., 2014; Xiong and Ma, 2019;
Wang et al., 2021), topologically-associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012),
and chromatin loops (Rao et al., 2014). These 3D genome features in different scales are interconnected
with vital genome functions such as gene transcription and DNA replication (Dekker et al., 2017; Mar-
chal et al., 2019), yet the variation of 3D genome structures and its functional implication in single cells
remain mostly unclear (Misteli, 2020). The emerging single-cell Hi-C (scHi-C) technologies have en-
abled genomic mapping of 3D chromatin structures in individual cells (Nagano et al., 2013; Stevens et al.,
2017; Flyamer et al., 2017; Ramani et al., 2017; Nagano et al., 2017; Tan et al., 2018) and, more recently,
joint profiling of chromosome conformation with other epigenomic features (Lee et al., 2019; Li et al.,
2019). These exciting scHi-C assays have the potential to comprehensively reveal fundamental genome
structure and function connections at single-cell resolution in a wide range of biological contexts.

However, computational methods that can fully leverage the sparse scHi-C data to analyze the cell-to-
cell variability of 3D genome features are significantly lacking. To account for the sparseness of scHi-C
data, methods have been developed for embedding the datasets (Liu et al., 2018; Kim et al., 2020) and
the imputation of the contact maps (Zhou et al., 2019). However, the current state-of-the-art imputation
methods based on “random walk with restart” such as scHiCluster (Zhou et al., 2019) have much room
for improvement for more reliable single-cell 3D genome analysis. Current imputation methods also
require storage and calculation on dense matrices with the size of the contact maps in memory, which
is impractical when analyzing scHi-C data at relatively high resolutions. It also remains unclear how
to reliably compare TAD-like domain boundaries and A/B compartments across single cells to analyze
their cell-to-cell variability and functional connections. Therefore, new algorithms are urgently needed
to fill these important gaps.

Here, we report Higashi, a new computational method for multiscale and integrative single-cell Hi-
C analysis using hypergraph representation learning. Using the embeddings and the imputed scHi-C
contact maps produced by Higashi, we identified cell-to-cell variability of A/B compartment scores and
TAD-like domain boundaries that are functionally important. Application to a recent scHi-C dataset
of human prefrontal cortex demonstrated the unique ability of Higashi to reveal cell type-specific 3D
genome features in complex tissues. As a new and the most systematic method to date, Higashi enables
much improved analysis of scHi-C data with the potential to shed new light on the dynamics of 3D
genome structures and their functional implications in different biological processes.

Results

Overview of Higashi

The key algorithmic design of Higashi is to transform the scHi-C data into a hypergraph (Fig. 1a). Such
transformation preserves the single-cell resolution and the 3D genome features from the scHi-C con-
tact maps. Specifically, the process of embedding the scHi-C data is now equivalent to learning node
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embeddings of the hypergraph, while imputing the scHi-C contact maps becomes predicting missing
hyperedges within the hypergraph. In Higashi, we leverage our recently developed Hyper-SAGNN ar-
chitecture (Zhang et al., 2020), which is a generic hypergraph representation learning framework, with
substantial new development specifically for scHi-C analysis (see Methods).

Higashi has five main components. (1) We represent the scHi-C dataset as a hypergraph, where each
cell and each genomic bin are represented as cell node and genomic bin node, respectively. Each non-
zero entry in the single-cell contact map is modeled as a hyperedge connecting the corresponding cell and
the two genomic loci of that particular chromatin interaction (Fig. 1a). Importantly, this novel formalism
integrates embedding and data imputation for scHi-C. (2) We train a hypergraph neural network based on
the constructed hypergraph (Fig. S1). (3) We extract the embedding vectors of cell nodes from the trained
hypergraph neural network for downstream analysis. (4) We use the trained hypergraph neural network
to impute single-cell Hi-C contact maps with the flexibility to incorporate the latent correlations between
cells to enhance overall imputation, enabling more detailed and reliable characterization of 3D genome
features. (5) With a number of new computational strategies, we reliably compare A/B compartment
scores and TAD-like domain boundaries across individual cells to facilitate the analysis of cell-to-cell
variability of these large-scale 3D genome features and its implication in gene transcription. In addition,
we have developed a visualization tool to allow interactive navigation of the embedding vectors and the
imputed contact maps from Higashi to facilitate discovery. The details are described in Methods.

Higashi embeddings reflect cell types and cellular states

We sought to demonstrate that Higashi effectively captures the variability of 3D genome structures from
the sparse scHi-C data with the embeddings. We first tested our method on three scHi-C datasets with
multiple cell types or known cell state information at 1Mb resolution. These datasets include: 4DN
sci-Hi-C dataset (Kim et al., 2020), Ramani et al. dataset (Ramani et al., 2017), and Nagano et al.
dataset (Nagano et al., 2017). See Methods for data processing and Tables S1 and S2 for statistics of
theses datasets. After training, the Higashi embeddings are projected to a two-dimensional space with
UMAP (McInnes et al., 2018) for visualization. We found that the Higashi embeddings exhibit clear
patterns that correspond to the underlying cell types and cellular states (Fig. S2a-c).

We then quantified the effectiveness of the embeddings by various evaluation settings and made direct
comparisons to three existing scHi-C embedding methods, HiCRep/MDS (Liu et al., 2018), scHiClus-
ter (Zhou et al., 2019), and LDA (Kim et al., 2020) (Supplementary Methods B.1). The quantitative
results based on unsupervised evaluation suggest that the Higashi embeddings consistently outperform
other methods (Fig. 1b). our evaluation shows that the Higashi embeddings can consistently achieve the
best performance on scHi-C datasets with either categorical cell types or continuous cell states under
various evaluation settings (Fig. S2d-f). Although all results in this section are based on the embedding
with dimension size 64, our sensitivity analysis on the embedding dimension shows that Higashi is more
robust to the choice of dimension size (Supplementary Results A.1 and Fig. S4a).

The emerging new technologies that jointly profile chromosome conformation and other epigenomic
features have provided unique opportunities to directly analyze 3D genome structures and other modal-
ities at single-cell resolution (Lee et al., 2019; Li et al., 2019). Higashi has the versatility to incorporate
the co-assayed signals into the hypergraph representation learning framework as compared to separate
analysis of two modalities, thereby taking full advantage of the co-assayed data (see Methods). We ap-
plied Higashi to a recently generated co-assayed dataset called single-nucleus methyl-3C (sn-m3C-seq)
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that jointly profiles Hi-C and DNA methylation in individual human prefrontal cortex cells (Lee et al.,
2019). We found that the Higashi embeddings trained only on scHi-C (referred to as “Higashi (hic)”)
can already resolve complex cell types in this dataset (Detailed results will be discussed in a later sec-
tion). Importantly, when using Higashi to jointly model both signals (the embeddings referred to as
“Higashi (joint)”), it reaches the overall best performance as compared to the embeddings based on only
one modality (Fig. 1c). Higashi (joint) shows clearer patterns in the UMAP with cells being aggregated
according to their cell types (Fig. 1d). Note that here the co-assayed methylation profiles are not part of
the input but serve as the targets to approximate (see Methods).

Taken together, these results demonstrate that the Higashi embeddings effectively capture the cell-to-
cell variability of 3D genome structures based on scHi-C data to reflect the underlying cellular states. In
addition, the unique capability of Higashi for the joint modeling of both scHi-C and methylation profiles
further enhances the scHi-C embeddings.

Higashi robustly imputes scHi-C contact maps

In addition to dimension reduction of scHi-C data for cell type identification, Higashi can also impute
sparse scHi-C contact maps. Here, we sought to demonstrate the imputation accuracy with several eval-
uations. For comparisons, we included the imputed results from scHiCluster. Note that scHiCluster rep-
resents each scHi-C contact map as an individual graph, whereas Higashi represents the whole scHi-C
dataset as a hypergraph, allowing imputation to be potentially coordinated across different cells. Specif-
ically, in Higashi, when imputing the contact map of cell i, its k-nearest neighbors in the embedding
space would contribute to the imputation by taking advantage of their latent correlations (see Methods).
To demonstrate the advantages of this important design employed in Higashi, we included the imputed
results from Higashi with k as 0 and 4 (referred to as “Higashi(0)” and “Higashi(4)”, respectively). Im-
portantly, we performed sensitivity analysis on the hyperparameter k and showed that Higashi is highly
robust to the choice of k (Supplementary Methods A.1 and Fig. S4b).

We developed a novel simulation evaluation method to make use of the multiplexed 3D genome imag-
ing data, which provides high-resolution physical views of 3D organization of genomic loci in individual
cells (Bintu et al., 2018). Specifically, we turned the imaging data of a 2.5Mb region on chr21 from
11,631 cells at 30Kb resolution into scHi-C contact maps with various simulation coverage (Supplemen-
tary Methods B.2). We found that Higashi(0), i.e., no information sharing among different cells, can
already consistently outperform scHiCluster. In addition, we found that Higashi(4) improves the impu-
tation most significantly (30%-43% improvement on the median similarities across multiple metrics on
the dataset with the lowest coverage). To illustrate why using neighboring cells in the embedding space
improves imputation, we show a typical example from the simulated data with contact maps before and
after imputation (Fig. 2 and Fig. S6). Consistent with the quantitative evaluation, Higashi(4) reveals the
clearest patterns and especially domain boundaries across all coverage (Fig. 2 and Fig. S6). Importantly,
the neighboring cells in the embedding space that contribute to the imputation indeed have similar 3D
chromatin interactions compared with the selected cell, while the furthest cells do not. We carried out
a similar set of evaluation using the more recent multiplexed imaging data of 3D genome structure (Su
et al., 2020) (3,029 simulated contact maps of chr2 at 1Mb resolution) and reached the same conclusion
of Higashi’s clear advantage (22%-50% improvement on the median similarities across multiple metrics
on the dataset with the lowest coverage; see Fig. S7).

We performed additional evaluation via downsampling the existing scHi-C datasets with relatively
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higher coverage (Supplementary Methods B.2). We used the WTC-11 scHi-C dataset (personal com-
munication with Bing Ren) of chr1 at 1Mb resolution and downsampled the sequencing reads of each
cell at different rate (Methods; Table S1 and Table S4). We again observed clear advantage of Higashi
for imputation with the strongest performance achieved by Higashi(4) (consistent advantages with up to
89% improvement on the distance stratified Spearman correlation; Fig. S8).

Together, these evaluations demonstrate that Higashi achieves much improved imputation of scHi-
C contact maps robustly. The performance is further empowered by the unique mechanism of sharing
information among neighboring cells in the embedding space. The improved imputation enables more
reliable analysis of 3D genome structural features of each individual cell with higher accuracy.

Higashi reveals compartmentalization variability at single-cell resolution

Next, we explored how the enhanced contact maps produced by Higashi facilitate new multiscale 3D
genome analysis at single-cell resolution. A/B compartments reflect large-scale chromosome spatial
segregation with distinct connections to genome function (Lieberman-Aiden et al., 2009). To date, little
progress has been made for systematic A/B compartment annotation using scHi-C data primarily because
of the data sparseness. Here, we applied Higashi to impute the WTC-11 scHi-C data at 50Kb resolution
(see examples of the imputation results in Fig. S9). We designed a new method to calculate continuous
compartment scores such that the scores are directly comparable across the cell population and reflect
detailed cell-to-cell variation (Supplementary Methods B.3).

Fig. 3a shows the merged correlation matrices (Pearson correlation of the merged contact maps)
before and after Higashi imputation as well as the compartment scores from the pooled scHi-C (i.e.,
bulk) and the single-cell compartment scores of chr21. After imputation, the merged scHi-C correlation
matrix has much clearer checkerboard patterns that correspond to A/B compartments. The calculated
single-cell compartment scores are overall consistent with the bulk compartment scores while showing
cell-to-cell variability. Note that we identified one cluster of cells in the heatmap that have distinct
patterns and are likely near the mitosis stage (marked with “*” in the bottom panel of Fig. 3a).

We explored the connection between the variability of compartment scores across the cell population
and the transcriptional activity in different cells. We compared the compartment scores with the scRNA-
seq from WTC-11 (Friedman et al., 2018). For this analysis, the cells that are likely near the mitosis
stage were removed. For each gene, the transcriptional variability was calculated using the coefficient of
variation (CV) (Supplementary Methods B.4). We quantified the compartment variability as the standard
deviation of the single-cell compartment scores and further classified expressed genes as compartment
variable or stable with a cutoff 50% based on the quantile. Compared with the transcriptional variabil-
ity within these two groups (Fig. 3b), we observed that the genes in more variable compartments have
higher transcriptional variability (P-value<0.001). We then used the 50Mb window resolution to assess
if such structure-function variability correlation can also be observed at a finer scale. We used a 50Mb
sliding window with a 1Mb step size on each chromosome and calculated the log difference of the me-
dian transcriptional variability between the variable and stable compartment regions within this window.
As shown in Fig. 3c, among all windows, 71% of them follow the trend that genes in compartment vari-
able regions have higher transcriptional variability. As a comparison, ∼76% of the genomic windows
exhibit that the bulk compartment A correlates with higher expression levels (Lieberman-Aiden et al.,
2009) (Fig. S11d). In addition, we made a step further to increase the resolution to individual genes. We
classified genes as locally variable or stable by identifying the local minima/maxima of the transcrip-
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tional variability. We found that for the genes that are locally variable in terms of transcription, their
compartment variability scores also tend to be the local maximum (Fig. 3d).

To confirm the robustness of these observations, in addition to using CV to measure transcriptional
variability, we used another metric based a variance stabling algorithm (Supplementary Methods B.4)
and reached similar observations (Fig. S11). These results further demonstrate the reliability of Higashi
imputations, revealing cell-to-cell variability of compartment scores that are also functionally correlated.

Higashi unveils TAD-like domain boundary variation across single cells

Recent work based on multiplexed STORM imaging of chromatin conformation revealed the existence
and cell-to-cell variability of TAD-like structures in single cells (Bintu et al., 2018). However, the iden-
tification of TAD-like domains remains extremely challenging for sparse scHi-C data. We developed a
new approach to reveal TAD-like domain boundary variability from single cells based on the Higashi
imputations (Supplementary Methods B.5 and B.6). The analysis was conducted on the WTC-11 scHi-C
dataset at 50Kb resolution.

We calculated single-cell insulation scores in which the local minima correspond to TAD-like domain
boundaries (Crane et al., 2015) (Fig. 3e). We again observed a cluster of cells likely near the mitosis stage
showing unidentifiable domain boundaries (marked with “*” in the bottom panel of Fig. 3e). We also
observed that the local minima of the single-cell insulation scores often center around the domain bound-
aries observed in the merged imputed scHi-C, while the exact locations of the single-cell boundaries vary
across the cell population (Fig. 3e). The dynamics of the single-cell domain boundaries have two main
patterns: (1) present/absent across the population (marked with a yellow box in Fig. 3e); and (2) slid-
ing along the genome (marked with an orange box in Fig. 3e). The first pattern reflects that a domain
boundary does not occur in all cells. The second pattern manifests the shift of domain boundary along
the genome, suggesting more gradual cell-to-cell variability. Comparison with scRNA-seq following the
same approach used for single-cell compartment scores reached similar conclusions that domain bound-
ary variability is strongly correlated with transcriptional variability at different scales (Fig. S11e-j).

Next, we made direct comparisons of TAD-like domain boundaries (Supplementary Methods B.6).
As shown in Fig. 3f, where each dot corresponds to a single-cell domain boundary, we observed a
negative correlation between the occurrence frequency of a domain boundary with its median single-
cell insulation scores. This suggests that the more stable domain boundaries (i.e., higher occurrence
frequency) from the cell population tend to be “stronger” boundaries in single cells associated with lower
insulation scores. We also found positive correlation between the occurrence frequencies of domain
boundaries and the number of CTCF binding peaks as well as the average CTCF peak intensity in the
boundaries (Fig. 3g and Supplementary Results A.2). This result is consistent with the observation based
on multiplexed STORM imaging (Bintu et al., 2018).

As an iPS cell type, WTC-11 can undergo cell differentiation. We identified differentially ex-
pressed genes (DEGs) from a scRNA-seq dataset of WTC-11 cells at 5 differentiation stages (Friedman
et al., 2018) (Supplementary Methods B.7). Using hypergeometric test, we found that DEGs are over-
represented in genes located near more variable domain boundaries in WTC-11 (top 50% of the insulation
score std, P-value ≤ 7.9× 10−8) (Fig. 3h). In addition, we compared the variability of insulation scores
between DEGs and non-DEGs and found that DEGs have markedly higher standard deviation (one-sided
t-test, P-value<0.001) (Fig. 3i). This suggests that the cell-to-cell variability of domain boundaries in
WTC-11 may indicate important functional implication in cell differentiation.
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Taken together, by analyzing the TAD-like domain boundaries across single cells enabled by Higashi,
we revealed the correlation between domain boundary variability and gene regulation at single-cell res-
olution. These results further demonstrate the robustness and applicability of Higashi to facilitate the
analysis of structure-function connections of 3D genome organization in single cells.

Higashi reveals cell type-specific 3D genome features in human prefrontal cortex

To demonstrate Higashi’s ability to analyze single-cell 3D genome structures for complex tissues, we
applied it to the aforementioned single-nucleus methyl-3C (sn-m3C-seq) data from the human prefrontal
cortex (Lee et al., 2019). In this section, we present results from the Higashi framework trained only
by the chromatin conformation information in sn-m3C-seq to evaluate its unique strength in analyzing
scHi-C data.

We found that the Higashi embeddings (with scHi-C only) are able to resolve the differences among
the neuron subtypes (separating Pvalb, Sst, Vip, Ndnf, L2-3, and L4-6), while maintaining clear separa-
tion with non-neuron cell types (Fig. 4a-b). This suggests that, empowered by Higashi, scHi-C alone has
sufficient information to distinguish complex neuron subtypes. In contrast, scHiCluster cannot clearly
distinguish these neuron subtypes using scHi-C (Fig. 5c in Lee et al. (2019)). Note that such advantage
is confirmed by quantitative evaluation where the Higashi embeddings from scHi-C (“Higashi (hic)”)
outperform the scHiCluster embeddings (Fig. 1c). In addition, a recent approach has been proposed to
separate neuron subtypes on a dataset based on Dip-C with much higher coverage per cell (Tan et al.,
2021). However, we found that for the sn-m3c-seq dataset, the method developed in Tan et al. (2021)
cannot distinguish neuron subtypes (Fig. S13 and Supplementary Results A.3), further confirming the
advantages of Higashi.

Next, we sought to identify cell type-specific TAD-like domain structures with the Higashi imputed
contact maps. We found that the TAD-like domain boundaries show cell type-specific correlations with
important known marker genes. For instance, the single-cell insulation scores of the region surrounding
the transcription start site (TSS) of the maker gene GAD1 in inhibitory neuron subtypes reflect much
stronger TAD-like domain boundaries (Fig. 4c). Note that such cell type-specific patterns are obscured
in the pooled population contact maps (Fig. S14a). The cell type-specific domain boundary pattern is
further manifested by comparison to the contact maps and methylation profiles (Fig. 4d and Fig. S15;
light purple bars indicate cell type specific domain boundaries). In addition, we found that SULF1, which
is a marker gene to distinguish subtypes L6 from the rest excitatory neuron subtypes (L2/3, L4, L5), has
strong correlation with the surrounding cell type-specific TAD-like domain boundaries and methylation
profiles (Fig. S14b, Fig. S16). Specifically, the TAD-like domain boundary is present in 93.2% of L6
cells but only in 65.3% of the rest excitatory neuron subtypes. These results provide new insights into
the marker gene regulation of human prefrontal cortex cell types and the connection between 3D genome
structure and function.

We next asked whether the genes near cell type-specific TAD-like domain boundaries identified by
Higashi have distinct functional roles. We found that genes close to the ODC (oligodendrocyte) specific
domain boundaries (784 in total) are strongly enriched with synapse-related GO terms as top hits (Fig. 4e;
using GREAT (McLean et al., 2010)), suggesting the important role of ODC-specific domain boundaries
in regulating synaptic functions (Allen and Lyons, 2018). To further analyze the connection between the
ODC-specific domain boundaries and the regulation of the nearby genes, we further investigated the gene
THBS2 which appears in four of the top five GO term categories we identified. THBS2 is known to be
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expressed in glial cells and is key to the regulation of synaptic functions (Allen and Eroglu, 2017). The
visualization of the pooled contact maps of the 4Mb region surrounding THBS2 shows that ODCs have a
TAD-like domain boundary upstream of the TSS of THBS2 (light purple bar in Fig. 4f, Fig. S17), which
can be elucidated by single-cell insulation scores of this region (Fig. S14c). Importantly, the TAD-like
domain boundary near THBS2 is obscured in the insulation score calculated from the population contact
map (Fig. S14c), further supporting the importance of scHi-C analysis enabled by Higashi. Note that
THBS2 has cell type-specific high expression in ODC (fold-change 8.6 compared with the population
average) (Hawrylycz et al., 2012). Therefore, the ODC-specific TAD-like domain boundaries may offer
new perspectives for understanding the cell type-specific gene regulation of THBS2.

Taken together, these results demonstrate the distinct ability and advantages of Higashi to effectively
identify cell types and cell type-specific 3D genome features in complex tissues using scHi-C data.
Crucially, this analysis shows the strong potential of Higashi in revealing cell type-specific TAD-like
domain boundaries, greatly facilitating the analysis of the roles of 3D genome structure in regulating cell
type-specific gene function.

Discussion

In this work, we developed Higashi for multiscale and integrative scHi-C analysis. Our extensive evalu-
ation demonstrated the advantage of Higashi over existing methods for both embedding and imputation.
Additionally, enabled by the improved data enhancement of scHi-C contact maps, we developed new
methods in Higashi to systematically analyze variable multiscale 3D genome features (A/B compartment
scores and TAD-like domain boundaries), revealing their important implications in gene transcription.
By applying to a scHi-C dataset from human prefrontal cortex, Higashi is able to identify complex cell
types and reveal cell type-specific TAD-like boundaries that have strong connections to cell type-specific
gene regulation.

The key algorithmic innovation of Higashi is the transformation of scHi-C data into a hypergraph,
which has unique advantages as compared to existing methods. First, this transformation preserves
the single-cell precision and 3D genome features from scHi-C. Second, modeling the whole scHi-C
datasets as a hypergraph instead of modeling each contact map as individual graphs allows information
to be coordinated across cells to improve both embedding and imputation by taking advantage of the
latent correlations between cells. Third, although we mainly focused on scHi-C data, the hypergraph
representation in Higashi is highly generalizable to other single-cell data types. As a proof-of-principle,
we showed that Higashi can be extended to analyze co-assayed scHi-C data with methylation in an
integrated manner, showing markedly improved performance as compared to separate analysis of the
two modalities. In addition, to achieve more comprehensive delineation of 3D genome organization at
single-cell resolution, Higashi can be potentially extended to analyze single-cell assays of higher-order
chromatin structures, e.g., the recently developed scSPRITE (Arrastia et al., 2020) that probes multi-way
chromatin interactions.

It is anticipated that many exciting new scHi-C data will become widely available in the coming
years. Higashi is a robust and powerful new framework that can serve as an essential tool to effectively
analyze such data, providing uniquely new insights into nuclear genome structure and function at single-
cell resolution in various biological contexts.
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Methods

scHi-C data and other genomic data processing

In this work, we used several publicly available single-cell Hi-C datasets. We refer to them as: Ra-
mani et al. (Ramani et al., 2017), Nagano et al. (Nagano et al., 2017), 4DN sci-Hi-C (Kim et al.,
2020) (4DN Data Portal: 4DNES4D5MWEZ, 4DNESUE2NSGS, 4DNESIKGI39T, 4DNES1BK1RMQ,
4DNESTVIP977). We also used a new scHi-C dataset generated from the WTC-11 iPSC line (4DN Data
Portal: 4DNESF829JOW, 4DNESJQ4RXY5).

For all scHi-C datasets, we only kept the cells with more than 2,000 read pairs that have genomic
span greater than 500Kb. At a given resolution, we define the number of contacts per cell as the number
of interaction pairs (read count) assigned to the non-diagonal entries of the intrachromosomal contact
maps. The Ramani et al. dataset and the 4DN sci-Hi-C dataset used single-cell combinatorial indexed
Hi-C (sci-Hi-C). After filtering, the Ramani et al. dataset contains 620 cells of four human cell types
(GM12878, HAP1, HeLa, K562) with 7,800 median contacts per cell, while the 4DN sci-Hi-C dataset
contains 6,388 cells of five human cell types (GM12878, H1ESC, HAP1, HFFc6, IMR90) with 3,800
median contacts per cell. The Nagano et al. dataset used a different protocol with 1,171 cells and
56,800 median contacts per cell. The WTC-11 scHi-C data (188 cells in total) was generated using
single-nucleus Hi-C with 144,800 median contacts per cell. The co-assayed single-cell methylation and
Hi-C dataset (sn-m3C-seq) was from Lee et al. (2019). We followed the same processing pipeline as
sn-m3C-seq for processing the methylation signals.

We also used other publicly accessible genomic datasets in this work. The scRNA-seq of WTC-11
was from Friedman et al. (2018). The details on calculating transcriptional variability based on scRNA-
seq can be found in Supplementary Methods B.4. We also analyzed the CTCF binding near the identified
single-cell TAD-like domain boundaries in WTC-11 cells. We used the WTC-11 CTCF ChIA-PET data
(4DN Data portal: 4DNES8MZ76GP) and called peaks based on the singleton reads from the dataset
following the ENCODE ChIP-seq peak calling pipeline (Moore et al., 2020). Specifically, peaks were
generated for individual replicates and merged by keeping only the reproducible peaks.

Overall structure of the hypergraph neural network in Higashi

A hypergraph G is a generalization of graph and can be formally defined as a pair of sets G = (V,E),
where V = {vi} represents the set of nodes in the graph, and E = {ei = (v

(i)
1 , ..., v

(i)
k )} represents the

set of hyperedges. For any hyperedge e ∈ E, it connects two or more nodes (|e| ≥ 2). Both nodes or
hyperedges can have attributes reflecting the associated properties such as node type or the strength of a
hyperedge. The hyperedge prediction problem aims to learn a function f that can predict the probability
of a group of nodes (v1, v2, ..., vk) forming a hyperedge or the attributes associated with the hyperedge.
For simplicity, we refer to both cases as predicting the probabilities of forming a hyperedge.

The core part of Higashi is a hypergraph representation learning framework, extending our recently
developed Hyper-SAGNN (Zhang et al., 2020), that models higher-order interaction patterns from the
hypergraph constructed from the scHi-C data. The overall structure of the hypergraph neural network
is illustrated in Fig. S1. We use xi to represent the attributes of node vi. The input to the model is
a triplet, i.e., (x1, x2, x3) consisting of attributes of one cell node and two genomic bin nodes. We do
not differentiate between these two types of nodes in this section for simplicity. Each node within a
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triplet passes through a neural network (NN), respectively, to produce (s1, s2, s3), where si = NN1(xi).
The structure of NN1 used in this work is a position-wise feed-forward neural network with one fully
connected layer. By definition, each si remains the same for node vi independent to the given triplet,
and is thus called the “static embedding”, reflecting the general topological properties of a node in the
given hypergraph. In addition, the triplet as a whole also passes through another transformation, leading
to a new set of vectors (d1, d2, d3), where di = NN2(xi | (x1, x2, x3)). The structure of NN2 will be
discussed later. The definition of di depends on all the node features within this triplet that reflects the
specific properties of a node vi in a particular hyperedge and is thus called the “dynamic embedding”.

Next, the model utilizes the difference between the static and dynamic embeddings to produce ŷi by
passing the Hadamard power of di − si to a fully-connected layer. Additional features, including the
genomic distance between the bin pair, one hot encoded chromosome ID, and also the total read number
per cell, are concatenated and sent to a multi-layer perceptron with output ŷext. All the output ŷi and ŷext

are further aggregated to produce the final result ŷ, i.e., the predicted probability for this triplet to be a
hyperedge:

ŷ = ŷext +
3∑
i=1

ŷi = ŷext +
3∑
i=1

FC
[
(di − si)◦2

]
(1)

where FC is the fully-connected layer.
In the following sections, we describe how the node attributes are generated, the structure of NN2,

the model training, and how we incorporate co-assayed signals into Higashi.

Node attribute generation in Higashi

As mentioned, the input to the hypergraph neural network model is a triplet consisting of attributes of
one cell node and two genomic bin nodes. For the bin nodes, we use the corresponding rows of the
merged scHi-C contact maps as the attributes. For the cell nodes, we calculate a feature vector based on
its single-cell contact maps as its attributes. This process is as follows:

1. Each contact map is normalized based on the total read count.
2. Contact maps are flattened into 1D vectors and concatenated across the cell population.
3. (optional SVD (singular value decomposition) is used to reduce dimensions for computational

efficiency.
4. The corresponding row in the feature matrix is used as the attributes for the corresponding cell.

Cell dependent graph neural network with self-attention for dynamic embeddings

Here, we introduce the neural network NN2 (mentioned above) that transforms the attributes of a node
given a node triplet to the corresponding dynamic embeddings. In the original Hyper-SAGNN, this was
accomplished by the multi-head self-attention layer (Vaswani et al., 2017) (see Zhang et al. (2020)).
However, the representation capacity of using self-attention layers to calculate dynamic embeddings is
constrained by the embedding dimensions and the depth of self-attention layers, which would lead to
high computational cost and increased training difficulty.

To increase the expressiveness of this neural network for generating dynamic embeddings while
maintaining small embedding dimensions and fewer layers, we developed a cell dependent graph neural
network (GNN) (Hamilton et al., 2017) that transforms the attributes of bin nodes before passing to the
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self-attention layer. For a node triplet (ci, bj, bk), where ci corresponds to a cell node and bj, bk are bin
nodes, a graph G(ci) (where both bj, bk are nodes in it) is constructed by taking ci as input. Details on
the construction of G(ci), which is shared for all triplets that contain the cell node ci, is discussed in the
next section. For each layer in the GNN, to generate the output vector for bin node bj , the information of
its neighbors in the graph NG(ci)(bj) is aggregated:

H
(n)
NG(ci)

(bj)
= Average

(
{H(n−1)

u e(u, bj|ci), u ∼NG(ci)(bj), u 6= bk}
)

(2)

H
(n)
bj

= σ
{
W

(n)
GNN · Concat

[
H

(n−1)
bj

, H
(n)
NG(ci)

(bj)

]}
(3)

where H(n)
bj

is the output vector of the node vi at the n-th layer of the GNN and H(0)
bj

is the attributes of

the node bj before passing to the GNN. W (n)
GNN represents the weight matrix to be optimized at the n-th

layer and σ is the non-linear activation function. We call this GNN cell dependent because the structure
of the graph depends on the cell, although the weight matrix W (n)

GNN is shared across all cells. This cell
dependent GNN can improve the expressiveness of the neural network by incorporating a large amount
of single-cell information (contact maps) into the structure of the model instead of entirely relying on the
embeddings of the cell nodes. The GNN is trained to reconstruct the interaction between a pair of bin
nodes by using only information of themselves and their neighborhood (but not including each other).
The attributes of both bj and bk are transformed by this cell dependent GNN into b̂j and b̂k, respectively,
and the triplet of (ci, b̂j, b̂k) passes through the aforementioned self-attention layer to generate the final
dynamic embeddings.

Information sharing among cells with similar genome structures

Higashi has a unique capability for cells to share information with each other in the embedding space
to enhance imputation by taking advantage of the latent correlations between cells. Specifically, we
first train Higashi until convergence without the cell dependent GNN to allow the self-attention layer to
capture cell-type specific information and reflect in the embeddings through back-propagation. We then
calculate the pairwise distances of cell embeddings that indicate the similarities among cells. Given a
hyperparameter k, we construct a graphG(ci) based on the contact maps of ci and its k-nearest neighbors
in the embedding space. It is crucial to clarify that, when we mention the neighbor of a cell N (ci), we
are referring to other cells that have small pairwise distances of embedding vectors instead of other nodes
that have connections to the cell in the hypergraph. We name the contact maps of ci as M(ci). The new
G(ci) is constructed as the weighted sum of M(u), u ∈ {ci} ∪N (ci), where the weight is calculated
based on the pairwise distance d(u, ci) in the embedding space, i.e.,

G(ci) ∼
∑
u

w(u, ci)M(u), u ∈ {ci} ∪N (ci) (4)

w(u, ci) ∝ exp [−d(u, ci)] (5)

Each embedding is normalized by the maximum `2 norm. Note that although contact maps of different
cells are mixed in this step, we do not mix the prediction results from different cells or directly use the
mixed contact maps as output. This differentiates our method from the k-NN based smoothing methods
fundamentally. The Higashi model is trained with only the observed interactions in each single cell,
together with the interactions in cells that share overall similar structures serving as auxiliary information
for synergistic prediction in a cell population.
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Model training details in Higashi

The hypergraph neural network within Higashi would produce a score ŷ for any triplet (ci, bj, bk). The
neural network is trained to minimize the difference between the predicted score ŷ and the ground truth
score y, indicating the probability of the pairwise interaction between bin nodes bj and bk in cell ci. In
Higashi, we offer two choices of loss function for scHi-C datasets with different coverage. For scHi-C
datasets with relatively low sequencing depths or the analysis resolution is high (hence fewer reads in
each genomic bin), the model is trained with a binary classification loss (cross entropy) where the triplets
corresponding to all non-zero entries in the single-cell contact maps are treated as positive samples and
the rest are considered as the negative samples (i.e., y(ci, bj, bk) ∈ {0, 1}). The classification loss is:

Lossclass = −
∑
i,j,k

y(ci, bj, bk) log ŷ(ci, bj, bk) + [1− y(ci, bj, bk)] log [1− ŷ(ci, bj, bk)] (6)

For datasets with relatively high sequencing depths or when the analysis resolution is low (hence more
reads in each genomic bin), we further differentiate among the non-zero values by training the model
with a ranking loss, which maintains consistent ranking of predicted scores versus the continuous ground
truth scores (i.e., y(ci, bj, bk) ∈ R). The ranking loss can be described as a binary classification problem
aiming to identify the triplet with larger ground truth score in a pair of selected triplets. For simplicity,
we denote two triplets as ti, tj and the corresponding ground truth scores as y(ti), y(tj). The ranking loss
is:

lij = I [y(ti) > y(tj)] (7)

pij = Sigmoid [ŷ(ti)− ŷ(tj)] (8)

Lossrank = −
∑

|y(ti)−y(tj)|≥α

lij log pij + (1− lij) log (1− pij) (9)

where α defines whether the order of y(ti), y(tj) can be reliably called and is set to 2 in this work. Note
that lij , pij are intermediate variables only used in this definition.

Using either the classification loss or the ranking loss requires negative samples in the training data.
We designed an effective negative sampling approach. Specifically, at each epoch, we randomly sample
a batch of triplets and make sure that these triplets do not overlap with the positive samples. To reflect the
similarity of 3D genome structures of flanking genomic bins, we also exclude triplet (ci, bj, bk) from the
negative samples if triplets such as (ci, bj+1, bk) belong to the positive samples. The number of negative
samples generated for each batch is guided by the sparsity of the input data. When studying a scHi-C data
where s% of the contact map entries are zeros, for a batch of n positive triplets, min [s/(100− s), 5]n
negative samples will be generated. The number of negative samples is no more than 5 times of the
number of positive samples for computational efficiency. The model is optimized by the Adam algo-
rithm (Kingma and Ba, 2014) with learning rate of 1e-3. We train Higashi for 80 epochs with batch size
of 192 or until the model converges on an individual validation set before 80 epochs.

Incorporating co-assayed signals in Higashi

The unique design of Higashi allows joint modeling of co-assayed scHi-C and the corresponding one
dimensional signals (e.g., from sn-m3C-seq (Lee et al., 2019)). We add an auxiliary task for Higashi
by using the learned embeddings for cell nodes ci to accurately reconstruct the co-assayed signals mi
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through a multi-layer perceptron (MLP). The auxiliary loss term is added to the main loss function and
optimized jointly. The model thus builds an integrated connection between chromatin conformation and
the co-assayed signals, guiding the embedding of the scHi-C data, i.e.,

Lossauxi = MSE [mi,MLP(ci)] (10)

where MSE refers to the mean squared error between the ground truth of co-assayed signals and the
estimate.

Methods for the analysis of variable compartment and domain boundary from scHi-C

In Higashi, we have developed new strategies for reliable analysis of 3D genome features in different
scales across the cell population. We developed a method to calculate continuous compartment scores
for the imputed single-cell contact maps such that these scores are directly comparable across different
cells in the population to assess variability (see Supplementary Methods B.3). For single-cell TAD-like
domain boundary analysis, we developed a new calibration method with a novel optimization scheme to
achieve comparative analysis of domain boundary variability from single cells based on insulation scores
(see Supplementary Methods B.5 and B.6). These algorithms greatly enhance the analysis of variable
multiscale 3D genome structures at single-cell resolution.

Visualization tool for integrative scHi-C analysis

In Higashi, we developed a new visualization tool that allows interactive navigation of the scHi-C anal-
ysis results. Our tool enables the navigation of the embedding vectors and the imputed contact maps
from Higashi in a user-friendly interface. Users can to select individual or group of cells of interest
in the embedding space and explore the corresponding single-cell or pooled contact maps of interest.
Fig. S18 shows a screenshot of the visualization tool. See the GitHub repository of Higashi for detailed
documentation of this visualization tool: https://github.com/ma-compbio/Higashi.
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Code Availability

The source code of Higashi can be accessed at: https://github.com/ma-compbio/Higashi.
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Figure 1: Overall design of Higashi and the evaluation of Higashi embeddings on real data. a. Overview of the Higashi framework for
scHi-C analysis. The input scHi-C dataset is transformed into a hypergraph where each hyperedge connects one cell node and two bin
nodes. A hypergraph neural network is trained to capture high-order interaction patterns within the constructed hypergraph. The trained
neural network is able to generate embeddings for scHi-C data and impute the sparse scHi-C contact maps. The imputed contact maps and
the embeddings allow detailed characterization of multiscale 3D genome features and also multiomic integrative analysis. b. Quantitative
evaluation of Higashi on the three public scHi-C datasets by comparing to HiCRep/MDS (Liu et al., 2018), scHiCluster (Zhou et al., 2019),
and LDA (Kim et al., 2020). The performances are measured by Adjusted Rand Index (ARI), and also ACROC scores from the unsupervised
cell type identification tasks. See also Fig. S2. c. Quantitative evaluation of different embeddings of the sn-m3C-seq data (Lee et al., 2019)
using Micro-F1, Macro-F1, and Adjusted Rand Index (ARI) scores. d. UMAP visualization of the Higashi embeddings of the joint modeling
of both chromatin conformation and methylation of the sn-m3C-seq data (Lee et al., 2019).
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Figure 2: Evaluation and visualization of different imputation methods on scHi-C data simulated from multiplexed STORM 3D genome
imaging data (Bintu et al., 2018). For Higashi, results by using information from four neighboring cells (4 nbr) or without using neighboring
cell information (0 nbr) in the embedding space are both included. Each row corresponds to one set of simulation data with a chosen range
of read numbers. The boxplots illustrate the quantitative evaluation of the similarities between the raw (input), the scHiCluster enhanced,
and the Higashi enhanced contact maps versus the ground truth (inverse distance map). The heatmaps visualize the contact map before
and after imputation as well as the ground truth. The contact maps of both the neighboring cells (in the embedding space) that contribute
to the imputation and the cells that are furthest (in the embedding space) are shown. See also Fig. S6.
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Figure 3: Higashi enables detailed characterization of 3D genome features and their connections to gene transcription at single-cell
resolution. a. Compartment score annotations for WTC-11 scHi-C data at 50Kb resolution. The merged scHi-C correlation matrix on chr21
before and after imputation as well as compartment scores called from the pooled WTC-11 scHi-C data and each single-cell contact map
are visualized. The cells that are likely near the mitosis stage are marked with “*” in the single-cell PC1 heatmap. b. Global comparisons
of transcriptional variability on regions with variable and stable compartment annotations (*** indicates P-value<1e-3). There are 5,075
genes that have stable single-cell compartment scores with average transcription activity variability equal to 86.0. There are 5,071 genes
that have dynamic single-cell compartment score with average transcription activity variability equal to 77.4. The one sided t-test P-value =
1.34×10−7. c. Log2 difference of transcriptional variability of genes with variable versus stable compartment annotations within a Mb scale
window. d. Visualization of standard deviation of compartment scores around genes with variable or stable transcriptional level. In b,c,d, the
transcriptional variability is quantified as the coefficient of variation of the imputed scRNA-seq data. e. TAD-like domain boundary calling for
WTC-11 scHi-C at 50Kb resolution. The merged scHi-C contact maps at chr10:2,500,000-12,500,000 and the calculated insulation scores
are shown. The cells that are likely near the mitosis stage are marked with “*” in the single-cell insulation score heatmap. Regions that
represent the present/absent dynamics of single-cell domain boundaries are marked with a yellow box. Regions that represent the sliding
dynamics of single-cell domain boundaries are marked with an orange box. f. Scatter plot of the single-cell insulation scores versus the
occurrence frequency in the cell population of shared domain boundaries. For each cell, only the insulation scores of presented shared
boundaries are visualized, i.e., each dot corresponds to a single-cell domain boundary. g. CTCF binding at domain boundaries from
different occurrence frequency groups. h. Venn diagram of the overlap between genes near variable domain boundary in WTC-11 (light
red) and differentially expressed genes during cell differentiation (light blue). i. Comparison of cell-to-cell variability of insulation scores
between differentially expressed genes (DEGs) and non-DEGs. The high variance of insulation scores of DEGs indicates that the DEGs are
enriched near domain boundaries with higher variability (*** indicates P-value<1e-3). Day 2 vs. day 0: 3,205 DEGs and 10,262 non-DEGs
with mean insulation score standard deviation equal to 2.83× 10−2 and 2.74× 10−2, respectively. One-sided t-test P-value = 2.23× 10−9.
Day 30 vs. day 0: 4,308 DEGs and 9,159 non-DEGs with mean insulation score standard deviation equal to 2.80× 10−2 and 2.74× 10−2,
respectively. One-sided t-test P-value = 4.16× 10−6.
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Figure 4: Higashi identifies complex cell types and cell type-specific TAD-like domain boundaries using scHi-C data from human prefrontal
cortex. a. UMAP visualization of the Higashi embeddings using scHi-C only. b. UMAP visualization of the Higashi embeddings of the
neuron subtypes in (a). c. Hierarchical clustering based on the average single-cell insulation scores of the flanking regions (+/- 2Mbp) of
the marker gene GAD1 for inhibitory neuron subtypes Sst, Pvalb, Ndnf, and Vip. Note that the single-cell insulation scores are calculated
based on the Higashi imputed contact maps trained using only scHi-C data. d. Pooled imputed contact maps, average single-cell insulation
scores, and methylation profiles of the same region in (c) for selected cell types. The methylation profile is calculated as the average
CG/non-CG methylation percentage of a specific cell type minus the average CG/non-CG methylation percentage of the whole population.
Light purple bar shows a TAD-like domain boundary specific to inhibitory neuron subtypes. e. Top five enriched gene ontology (GO) terms
near ODC-specific TAD-like domain boundaries. f. Pooled imputed contact maps, insulation scores, and methylation profiles near the gene
THBS2, which is in four of the top five most enriched GO terms with ODC-specific high expression. Light purple bar shows an ODC-specific
TAD-like domain boundary. Cell type abbreviations in the legend (consistent with Lee et al. (2019)): L2/3, L4, L5 and L6: excitatory neuron
subtypes; Ndnf, Vip, Sst, and Pvalb: inhibitory subtypes; Astro: astrocyte; ODC, oligodendrocyte; OPC, oligodendrocyte progenitor cell;
MG, microglia; NN1, non-neuronal cell type 1; Endo, endothelial cell.
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