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Abstract 1 

The human brain exhibits hierarchical modular organization, which is not depicted by 2 

conventional fMRI functional connectivity reconstruction methods such as independent 3 

component analysis (ICA). To map hierarchical brain connectivity networks (BCNs), we 4 

propose a novel class of deep (multilayer) linear models that are constructed such that each 5 

successive layer decomposes the features of the preceding layer. Three of these are 6 

multilayer variants of Sparse Dictionary Learning (SDL), Non-Negative Matrix Factorization 7 

(NMF) and Fast ICA (FICA). We present a fourth deep linear model, Deep Matrix Fitting (MF), 8 

which incorporates both rank reduction for data-driven hyperparameter determination as well 9 

as a distributed optimization function. We also introduce a novel framework for theoretical 10 

comparison of these deep linear models based on their combination of mathematical operators, 11 

the predictions of which are tested using simulated resting state fMRI data with known ground 12 

truth BCNs. Consistent with the theoretical predictions, Deep MF and Deep SDL performed 13 

best for connectivity estimation of 1st layer networks, whereas Deep FICA and Deep NMF were 14 

modestly better for spatial mapping. Deep MF provided the best overall performance, including 15 

computational speed. These deep linear models can efficiently map hierarchical BCNs without 16 

requiring the manual hyperparameter tuning, extensive fMRI training data or high-performance 17 

computing infrastructure needed by deep nonlinear models, such as convolutional neural 18 

networks (CNNs) or deep belief networks (DBNs), and their results are also more explainable 19 

from their mathematical structure. These benefits gain in importance as continual 20 

improvements in the spatial and temporal resolution of fMRI reveal more of the hierarchy of 21 

spatiotemporal brain architecture. These new models of hierarchical BCNs may also advance 22 

the development of fMRI diagnostic and prognostic biomarkers, given the recent recognition 23 

of disparities between low-level vs high-level network connectivity across a wide range of 24 

neurological and psychiatric disorders. 25 

 26 

Keywords: fMRI, Deep Learning, Functional Connectivity, Hierarchical Networks, Linear 27 
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Abbreviations 1 

 2 

ADMM: Alternating Direction Method of Multipliers 3 

BCN: Brain Connectivity Network 4 

CNN: Convolutional Neural Network 5 

CPU: Central Processing Unit 6 

DBN: Deep Belief Network 7 

DCAE: Deep Convolutional Auto Encoder 8 

Deep FICA: Deep Fast Independent Component Analysis 9 

Deep MF: Deep Matrix Fitting 10 

Deep NMF: Deep Non-negative Matrix Factorization 11 

Deep SDL: Deep Sparse Dictionary Learning 12 

DNN: Deep Neural Network 13 

fMRI: Functional Magnetic Resonance Imaging 14 

GD: Gradient Descent 15 

GLM: General Linear Model 16 

GPU: Graphics Processing Unit 17 

HD: Hausdorff Distance 18 

ICA: Independent Component Analysis 19 

IS: Intensity Similarity 20 

LASSO: Least Absolute Shrinkage and Selection Operator 21 

RBM: Restricted Boltzmann Machine 22 

RRO: Rank Reduction Operator 23 

rsfMRI: Resting-State Functional MRI 24 

SS: Spatial Similarity 25 

tfMRI: Task-Evoked Functional MRI 26 

TBI: Traumatic Brain Injury 27 

TPU: Tensor Processing Unit 28 
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1.  Introduction 1 

    Functional Magnetic Resonance Imaging (fMRI) has been widely used for the 2 

identification of brain connectivity networks (BCNs) (Bartels et al., 2005; Beckmann et al., 3 

2005; Biswal et al., 1995, 2010; Bullmore et al., 2009; Duncan et al., 2010; Stam et al., 2014). 4 

A variety of scientific investigations have already demonstrated the hierarchical modular 5 

organization of human brain networks (Bassett et al., 2008; Biswal et al., 2005; Bullmore et 6 

al., 2009; Sporns et al., 2004). The architecture of cortical BCNs is organized at different 7 

spatial scales, from both functional and structural perspectives, ranging from local circuits at 8 

the microscale to columns and layers at the mesoscale to areas and areal networks at the 9 

macroscale (Bullmore et al., 2009; Power et al., 2011; Stam et al., 2014; Sporns et al., 2004).  10 

 11 

In the last two decades, a variety of computational methods have been developed to 12 

detect BCNs, e.g., General Linear Modeling (GLM), Graph Theory, Independent Component 13 

Analysis (ICA), and Sparse Dictionary Learning (SDL) (Andersen et al., 1999; Calhoun et al., 14 

2001; Lee et al., 2011; Lee et al., 2016; Lv et al., 2015; Zhang et al., 2017; Zhang et al., 2018; 15 

Zhang et al., 2019). However, these methods are based on a ‘shallow’ framework that cannot 16 

identify in unsupervised data-driven fashion the hierarchical and spatially overlapping 17 

organization of BCNs using resting-state fMRI (rsfMRI) or task-evoked fMRI (tfMRI) signals 18 

(Hu et al., 2018; Huang et al., 2018; Zhang et al., 2019; Zhang et al., 2020). Traditionally, the 19 

hierarchical spatial organization of BCNs has been indicated by varying the number of features 20 

in shallow linear models, for example from low to high numbers of independent components 21 

in ICA (Iraji et al., 2019; Smith et al., 2009), and noting that smaller networks at the more 22 

granular decomposition tend to merge or otherwise recombine to form larger networks at the 23 

coarser decomposition. However, there is no principled, unsupervised way to map this 24 

hierarchical organization with shallow methods. 25 

 26 

    Fortunately, with the advent of deep learning, algorithms have been developed that are 27 

capable of reconstructing hierarchical network architectures, e.g., the Deep Convolutional 28 

Auto Encoder (DCAE), Deep Belief Network (DBN) and Convolutional Neural Network (CNN) 29 
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(Bengio et al., 2012; Esteva, et al., 2019; Gurovich et al., 2019; Hannun et al., 2019; LeCun  1 

et al., 2015; Plis et al., 2014; Schmidhuber et al., 2015; Suk et al., 2014; Suk et al., 2016; 2 

Zhang et al., 2020). The Restricted Boltzmann Machine (RBM) can be used to model fMRI 3 

time series signals and effectively reconstruct functional brain networks with impressive 4 

accuracy (Hu et al., 2018; Huang et al., 2018). Moreover, other recent studies reported 5 

meaningfully hierarchical temporal organization of tfMRI time series, each with corresponding 6 

task-evoked BCNs (Hu et al., 2018; Zhang et al., 2019; Zhang et al., 2020) using DCAE, RBM 7 

and DBN. In general, these machine learning techniques are considered to be deep nonlinear 8 

models, e.g., deep neural networks (DNN). Although these nonlinear models such as DBN 9 

have recently proven effective at hierarchical spatiotemporal decomposition of task-evoked 10 

fMRI data (Dong et al., 2020), there are several disadvantages: (i) large training samples; (ii) 11 

extensive computational resources, e.g., graphics processing units (GPUs) or tensor 12 

processing units (TPUs); (iii) manual tuning of hyperparameters; (iv) time-consuming training 13 

process; (v) non-convergence to the global optimum; and (vi) “black box” results that lack 14 

explainability. Deep linear algorithms can overcome all these shortcomings of nonlinear 15 

techniques, since they are fast even on conventional central processing units (CPUs) with 16 

hyperparameters that can be automatically determined and with convex optimization functions 17 

that are guaranteed to converge. Furthermore, as we show in the theoretical analysis below, 18 

important aspects of their behavior can be explained from their relatively simple mathematical 19 

structure. For fMRI research, these deep linear models can detect BCNs using data from 20 

relatively few experimental subjects compared to deep nonlinear models and may prove 21 

especially useful and efficient as the spatial and temporal resolution of fMRI continues to 22 

improve, revealing more of the hierarchy of brain organization. 23 

 24 

    For hierarchical spatial functional connectivity mapping, we adopt a compositional 25 

approach to develop multilayer versions of SDL (Deep SDL), Fast ICA (Deep FICA; Seo, 2018) 26 

and Non-negative Matrix Factorization (Deep NMF; Trigeorgis et al., 2016), as well as a novel 27 

multilayer linear model that we name Deep Matrix Fitting (Deep MF). We contrast these deep 28 

linear algorithms for fMRI functional connectivity analysis in two ways. First, we employ theory 29 

to investigate the mathematical properties of these models, in order to predict differences in, 30 
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e.g., network sparsity, connectivity strength and convergence velocity. Second, we conduct in 1 

silico connectivity reconstruction experiments using simulated fMRI signal time series to test 2 

the predictions of the theoretical analyses for the relative performance of the four deep linear 3 

models for fMRI brain network mapping. This leads to clear conclusions about the strengths 4 

and weaknesses of each method and provides a guide to the research community for applying 5 

this novel class of network reconstruction methodologies as well as for developing new ones. 6 

 7 

2.  Methods  8 

2.1 Shallow versus Deep Linear Models of fMRI Functional Connectivity 9 

    The following introductions in Sections 2.2 to 2.5 provide the fundamentals of each deep 10 

linear model. Furthermore, these descriptions are prerequisites to analyze the theoretical 11 

properties of each model in the succeeding sections. Figure 1 compares the computational 12 

steps of a deep linear model versus that of a conventional “shallow” linear model: 13 

 14 

Figure 1. Deep linear model versus shallow linear model. The shallow model has only a single layer, 15 

i.e., a single decomposition. The deep linear model is constructed via multiple layers, i.e., continuous 16 

decomposition. (a) SG represents the input fMRI signal matrix; it contains the t time points and m voxels. 17 

(b) describes the pipeline of a shallow model in which the original input signal is decomposed into the 18 

weight matrix/dictionary (shown as b1) and feature matrix, i.e. connectivity networks (shown as b2). (c) 19 

and (d) represent the 1st and 2nd layers of the linear deep model, respectively. (c1) represents the 1st 20 

layer weight matrix/dictionary identified via SG. (c2) represents the 1st layer feature matrix, i.e. 21 

connectivity networks, recognized via SG. Similarly, (d1) and (d2) represent the corresponding matrices 22 

of the 2nd layer, which are both derived from the 1st layer feature matrix. The dashed blue rectangle 23 

indicates the deeper features beyond the 2nd layer that are derived from the 2nd layer feature matrix. 24 

 25 
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2.2 Deep Matrix Fitting 1 

   We propose a novel and efficient deep linear model that we name Deep Matrix Fitting. This 2 

algorithm aims to detect the hierarchical and overlapping organization of BCNs better than 3 

previously described data-driven functional connectivity reconstruction methods, e.g., ICA, 4 

SDL, DCAE and DBN (Calhoun et al., 2001; Lv et al., 2015; Zhang et al., 2020; Hinton and 5 

Salakhutdinov, 2006; Hinton et al., 2012). Due to the constraints of spatial independence in 6 

ICA, some investigators have reported that ICA cannot easily identify extensively overlapped 7 

functional brain networks (Calhoun et al., 2001; McKeown and Sejnowski, 1998; Zhang et al., 8 

2019). Although SDL can efficiently derive spatial features, i.e., functional brain networks, 9 

based on rsfMRI and tfMRI, it is very challenging to leverage the dictionary size, sparsity trade 10 

off and even number of layers to implement a deep SDL. To be specific, one must heuristically 11 

estimate the dictionary size and number of layers. Simply utilizing the same size of dictionary 12 

and number of layers can easily result in the vanishing of spatial features of deeper layers, 13 

due to iteratively using the ℓ1  norm. Recent deep nonlinear models, such as DBN, can 14 

successfully reveal the architecture of hierarchical spatiotemporal features. Unfortunately, the 15 

probabilistic energy-based model of DBNs necessarily requires a large number of training 16 

samples to avoid overfitting. Furthermore, DBN requires extensive computational resources 17 

such as GPUs and even TPUs (Zhang et al., 2019; Zhang et al., 2020). The novel Deep MF 18 

proposed in this work successfully solves these aforementioned problems. Deep MF can 19 

automatically estimate the optimal dictionary size, sparsity trade-off and number of layers, 20 

using an operator of rank reduction (Wen et al., 2012; Shen et al., 2014). In other words, Deep 21 

MF does not require any manual hyperparameter tuning to decompose the rsfMRI signal 22 

matrix. Since Deep MF is a deep linear model, it should detect latent features faster than DBN 23 

while only requiring conventional CPUs. In general, Deep MF can be approximately 24 

considered as a deep SDL (described in Section 2.3) with the additional mechanism to 25 

automatically determine all crucial hyperparameters via rank reduction. 26 

 27 

    The equation governing Deep MF is: 28 
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𝑚𝑖𝑛𝑋𝑖,   𝑌𝑖,   𝑆∈ℝ𝑚×𝑛 ‖∏ 𝑋𝑖

𝑀−1

𝑖=1

𝑌𝑀 − 𝑆𝐺‖

𝐹

2

+  𝜇 ∑‖𝑌𝑖‖1

𝑀

𝑖=1

+ 𝜆 ∑‖𝑍𝑖‖1

𝑀

𝑖=1

 

 𝑋𝑖𝑌𝑖 ← ℛ(𝑌𝑖−1) 

 

(1) 

where {𝑋𝑖}𝑖=1
𝑀  represents the hierarchical dictionaries, e.g., 𝑋𝑖 indicates the dictionary of the 1 

i th layer. {𝑋𝑖}𝑖=1
𝑀  is also considered as the time series in GLM and the weight matrix in ICA 2 

and DBN. 𝑀  is the total number of layers. Similarly, {𝑌𝑖}𝑖=1
𝑀   represents the hierarchical 3 

spatial features, e.g., 𝑌𝑖 indicates the spatial features of ith layer. {𝑌𝑖}𝑖=1
𝑀  is also denoted as a 4 

correlation matrix. {𝑍𝑖}𝑖=1
𝑀   are the matrices of background components, which is usually 5 

treated as the noise. ℛ represents a rank reduction operator (RRO) to automatically estimate 6 

the hyperparameters and more details will be introduced in the following section. Naturally, we 7 

assume the spatial features 𝑌𝑖−1 can be decomposed as deeper dictionary 𝑋𝑖 and spatial 8 

features 𝑌𝑖, in order to implement the deep linear framework (Figure 1). Therefore, the original 9 

input data 𝑆𝐺  can be decomposed as ∏ 𝑋𝑖
𝑀−1
𝑖=1 𝑌𝑀 . In Eq. (1), 𝜆  and 𝜇  are known as the 10 

sparse trade off to control the sparsity levels of background components and spatial features, 11 

respectively. In addition, in Eq. (1), ‖∙‖𝐹 and ‖∙‖1 represent the Frobenius and ℓ1 norms, 12 

respectively. 13 

 14 

   This optimization function, shown as Eq. (1), consists of more parameters than ICA and 15 

SDL. In general, SDL includes two parameters to be optimized: dictionary and correlation 16 

matrix. Naturally, it is easier to comprehensively employ alternative optimizer and shrinkage 17 

methods (Wen et al., 2012). Before optimizing Eq. (1), we need to convert Eq. (1) to an 18 

augmented Lagrangian function. If considering the kth layer, we have: 19 

ℒ𝛽(∏𝑋𝑖

𝑘−1

𝑖=1

, 𝑌𝑘 , 𝑍𝑘 , 𝔢𝑘) ≝ ‖∏𝑋𝑖

𝑘−1

𝑖=1

𝑌𝑘 − 𝑆𝐺‖

𝐹

2

+ 〈∏𝑋𝑖

𝑘−1

𝑖=1

𝑌𝑘 − 𝑆𝐺, 𝔢𝑘〉 
(2) 

 

   For Eq. (2), for k layers (we assume the total number of layers as k), these can be solved 20 

using Alternating Direction of Method of Multipliers (ADMM) (Shen et al., 2014), and to solve 21 

∑ ‖𝑍𝑖‖1
𝑘
𝑖=1 , we jointly utilize the shrinkage method. In Eq. (2), all parameters are as discussed 22 

before, with 𝔢𝑘 defined as the multiplier. The ℓ1 norm of 𝑌𝑘 and 𝑍𝑘 shown in Eq. (1) can be 23 

solved directly using the shrinkage method (Beck et al., 2009). 24 

 25 
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    The iterative format to solve Eq. (2) using ADMM can be organized as follows: 1 

𝑋𝑘
𝑖𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑋𝑘
𝑖𝑡+1∈ℝ𝑚×ℎ𝑘  ℒ𝛽(𝑋𝑘

𝑖𝑡 , 𝑌𝑘
𝑖𝑡 , 𝑍𝑘

𝑖𝑡 , 𝔢𝑘
𝑖𝑡) 

 𝑌𝑘
𝑖𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑌𝑘
𝑖𝑡+1∈ℝℎ𝑘×𝑛  ℒ𝛽(𝑋𝑘

𝑖𝑡+1, 𝑌𝑘
𝑖𝑡 , 𝑍𝑘

𝑖𝑡 , 𝔢𝑘
𝑖𝑡) 

  𝑍𝑘
𝑖𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑍𝑘
𝑖𝑡+1∈ℝ𝑚×𝑛  ℒ𝛽(𝑋𝑘

𝑖𝑡+1, 𝑌𝑘
𝑖𝑡+1, 𝑍𝑘

𝑖𝑡 , 𝔢𝑘
𝑖𝑡) 

 𝔢𝑘
𝑖𝑡+1 =  𝔢𝑘

𝑖𝑡 + 𝛽(∏𝑋𝑖

𝑘−1

𝑖=1

𝑌𝑘 + ∑𝑍𝑘
𝑖𝑡+1

𝑘

𝑖=1

− 𝑆𝐺) 

(3-1) 

(3-2) 

(3-3) 

 

(3-4) 

    Using ADMM, in each iteration (the current iteration is represented as it), we update a 2 

single parameter independently, and finally calculate the multiplier, based on the current error. 3 

Since, in each single step, only one parameter is optimized and others are fixed, Eq (2) is 4 

considered as a convex problem and the global optimum can be obtained via a descent 5 

algorithm, e.g. gradient descent (GD) or ADMM. In Eq. (3-4), 𝛽 denotes the step length. 6 

 7 

   To automatically estimate the dictionary size and number of layers, we introduce the 8 

operator RRO. Briefly, RRO focuses on the identification of major components included in the 9 

raw data, and simultaneously determines which components are relatively weak and that will 10 

therefore be continuously merged into the background matrices. In general, RRO 11 

demonstrates that the number of units, i.e., dictionary size, should be consistently reduced, if 12 

considering deeper layers (Hinton et al., 2012; Zhang et al., 2019). In other words, the 13 

continuous increase of units in deeper layers can result in lack of convergence. If the number 14 

of units/dictionary size, i.e., the estimated rank of the matrix, is reduced to one, that indicates 15 

the decomposition should be terminated. Hence, the layer that owns a rank of unity should be 16 

considered the final layer. Deep MF employs RRO to continuously reduce the dictionary size 17 

and therefore also determine the number of layers. In fact, it does not require any manual 18 

design for the essential hyperparameters of deep learning models, such as the number of 19 

layers or unit number of each layer that are used in DBN and other peer deep models. 20 

 21 

    In detail, this rank estimator RRO employs a technique of rank-revealing by continuously 22 

using orthogonal decomposition, in this case via QR factorization (Wen et al., 2012; Shen et 23 

al., 2014). The advantage of QR is that it is faster and makes fewer requirements of the input 24 
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matrix. For example, QR performs orthogonal decomposition faster than Singular Value 1 

Decomposition (SVD) and can solve incomplete (i.e., number of features < number of samples) 2 

and over-complete (i.e., number of features > number of samples) matrices. 3 

  4 

    At the beginning, r* is denoted as the initial estimated rank of 𝑆𝑖and we denote r as the 5 

optimal rank estimation of input matrix 𝑆𝑖. If r*≥r holds, the detection of the diagonal line of 6 

the upper-triangular matrix in the QR factorization can be performed using the input matrix 𝑆𝑖. 7 

If we can determine the ideal size of QR factorization using 𝑆𝑖 in the work with permutation 8 

matrix E, the diagonal matrix R is non-increasing in magnitude (Wen et al., 2012; Shen et al., 9 

2014). The QR factorization and rank-revealing will eventually provide a reasonable solution 10 

using a proper thresholding value introduced in Eq. (2) and Eq. (3) (Wen et al., 2012; Shen et 11 

al., 2014). By detecting the diagonal line of matrix R, we compute two vectors 𝑑 ∈ ℝ𝑟 and 12 

𝑟 ∈ ℝ𝑟−1: 13 

𝑑𝑖 = |𝑅𝑖𝑖| 

𝑟𝑖 =
𝑑𝑖

𝑑𝑖+1
 

 (4) 

    And then examine the value: 14 

𝜉 =
(𝑚 − 1)𝑟(𝑝)

∑ 𝑟𝑖𝑖≠𝑝
 (5) 

where r(p) is the maximum element of the vector r (with the largest index p if the maximum 15 

value is not unique). In our current implementation, we reset the rank estimated r, if 𝜉 > 2, 16 

and this adjustment can be successfully done only once (Wen et al., 2012; Shen et al., 2014). 17 

 18 

    The mathematical definition of RRO is shown below: 19 

ℛ

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

=

[
 
 
 
 
 

𝑎1
(1)

𝑎2
(1)

⋮
𝑎𝑛−2

(1)

𝑎𝑛−1
(1)]

 
 
 
 
 

 ℛ𝑘

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

=

[
 
 
 
 
 

𝑎1
(1)

𝑎2
(1)

⋮
𝑎𝑛−𝑘−1

(1)

𝑎𝑛−𝑘
(1) ]

 
 
 
 
 

 

 

(6) 

where ℛ  denotes the RRO operator; and theoretically, we have ℛ𝑘[𝑎1, 𝑎2,⋯ , 𝑎𝑛] = [�̂�] , if 20 

𝑘 → ∞. It clearly demonstrates that the RRO can continuously maintain the vital components 21 

and reduce the dimensions of the original data. By continuously using the technique of low 22 

rank estimation, Deep MF implements automatic estimation of dictionary size and number of 23 
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layers. Also, we provide a theoretical analysis of each operator and experimental validation of 1 

Deep MF, in Sections 3 and 4 respectively, by comparing with three other deep linear models, 2 

specifically, Deep SDL, Deep FICA and Deep NMF.  3 

  4 

2.3 Deep Sparse Dictionary Learning 5 

 6 

    In the last decade, sparse dictionary learning (SDL), widely known as the algorithm Online 7 

Dictionary Learning (ODL) (Mairal et al., 2010; Liu et al., 2010), has been successfully applied 8 

to identify the concurrent BCNs of the human brain and the non-human primate brain from 9 

fMRI datasets (Lv et al., 2015; Zhang et al., 2018). In this category, to satisfy the requirements 10 

of hierarchical organization of BCNs, we propose a novel Deep SDL algorithm that is a 11 

multilayer extension of conventional shallow SDL-based methods. Briefly, fMRI signals from 12 

all voxels within the whole brain are extracted and are then organized as an extensive 2D 13 

matrix, where the number of columns represents the total brain voxels and the number of rows 14 

stands for the time points. For the first layer, the input 2D matrix is decomposed into the 15 

product of an incomplete/over-complete dictionary basis matrix (each atom representing a 16 

time series) and a feature matrix (representing this network’s spatial volumetric distribution). 17 

For each successive layer, the current features matrix is treated as an input matrix to be 18 

continuously decomposed. A particularly important characteristic of this Deep SDL framework 19 

is its ability to carry out over-complete decomposition for all layers; but, considering the finite 20 

features, the deep layers only concentrate on the incomplete decomposition. 21 

 22 

    If considering all layers, the optimization function of Deep SDL is: 23 

𝑚𝑖𝑛𝐷𝑖,   𝑌𝑖∈ℝ𝑚×𝑛 ‖∏ 𝐷𝑖

𝑀−1

𝑖=1

𝑌𝑀 − 𝑆𝐺‖

𝐹

2

+ [𝜇1 𝜇2 ⋯𝜇𝑀]⨂∑‖𝑌𝑖‖1

𝑀

𝑖=1

 

𝐷𝑖𝑌𝑖 ← 𝑌𝑖−1 

 

(7) 

In Eq. (7), {𝐷𝑖}𝑖=1
𝑀  denotes the set of dictionaries; i represents the number of current layer, 24 

and M is the total number of layers, {𝑌𝑖}𝑖=1
𝑀  defines the set of hierarchical features, i.e., BCNs. 25 

And {𝜇𝑖}𝑖=1
𝑀  represents all sparsity trade-offs for all layers, respectively. 26 

 27 
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    Deep SDL, like ODL, utilizes GD as the optimizer to update all parameters. Simple GD is 1 

an efficient optimizer, but only guarantees the convergence of convex problems. In Section 2 

3.1, we also provide the requirements of GD to be a contraction operator. Briefly, the 3 

convergence property of GD heavily depends on the step length. The following equation 4 

shows the iterative format of simple GD: 5 

𝑥𝑘+1 ← 𝑥𝑘 − 𝜆𝑓𝑥
′ 𝜆 ∈ (0,1)  (8) 

    Compared with the ADMM optimizer used in Deep MF, the iterative function GD of Deep 6 

SDL is very simple. ADMM can utilize the current optima to update, and can be faster than 7 

GD, but ADMM requires that we can obtain the derivative of the optimization function. 8 

 9 

2.4 Deep Fast Independent Component Analysis  10 

 11 

    ICA is a very popular and widely used data-driven computational technique, which was 12 

introduced to fMRI research over two decades ago (McKeown and Sejnowski 1998). In 13 

previous work, investigators have already reported that FICA using the Fixed-Point algorithm 14 

as an optimizer can be a very robust method (Hyvarinen, 1999). Inspired by Deep MF and 15 

FICA, the novel framework of Deep FICA aims to detect the hierarchically organized 16 

components. For simple shallow FICA, the original input matrix is decomposed as the weight 17 

matrix and independent component (IC) matrix. Applied to fMRI data, the ICs represent the 18 

BCNs. Similar to Deep MF and Deep SDL, in each layer of Deep FICA, the previous IC matrix 19 

is considered as the input signal matrix that will be decomposed using PCA and the Fixed-20 

Point algorithm continuously (Figure 1). Deep FICA extracts only spatially independent 21 

features and can only solve the incomplete decomposition problem and not over-complete 22 

decomposition. 23 

 24 

    The optimization function of Deep FICA is: 25 

𝑚𝑎𝑥 ∑ ∑𝐽𝐺(𝑊𝑖
𝑘)

𝑁

𝑖=1

𝑀

𝑘=1

 
(9) 

In Eq. (9), 𝑊𝑖
𝑘  represents the ith IC from the kth layer. The maximum 𝐽𝐺(∙)  indicates the 26 

independency of each potential IC. 27 
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    Considering each IC, Deep FICA and FICA both utilize an efficacy Fixed-Point algorithm 1 

to update the IC: 2 

𝑊𝑖𝑡+1
𝑘 ←

𝑊𝑖𝑡
𝑘

√‖𝑊𝑖𝑡
𝑘𝐶𝑖𝑡(𝑊𝑖𝑡

𝑘)𝑇‖

  
(10) 

    Compared with Deep MF and Deep SDL, Deep FICA is relatively easy to implement, since 3 

it does not include more complex algorithms, e.g., the RRO or the sparsity operator. 4 

 5 

2.5 Deep Non-negative Matrix Factorization 6 

 7 

    Non-negative Matrix factorization (NMF) is a particularly useful family of techniques in 8 

data analysis. Before the wide utilization of the Deep CNN, NMF was a crucial technique to 9 

identify the features of a human face (Trigeorgis et al., 2016). In recent years, there has been 10 

a significant amount of research on deep factorization methods that focus on particular 11 

characteristics of both the data matrix and the hierarchical resulting factors. The application 12 

area of the family of NMF algorithms has grown significantly during recent years. It has been 13 

demonstrated that NMF can be a successful dimensionality reduction technique over a variety 14 

of application areas including, but not limited to, environmetrics, microarray data analysis, 15 

document clustering, face recognition and more. Moreover, due to its particular non-negative 16 

constraints, NMF can also be directly utilized to analyze the fMRI data/signal (Lee & Seung, 17 

1999). Deep NMF provides an opportunity to detect the potentially hierarchical structures of 18 

BCNs. 19 

 20 

    Deep NMF focuses on the decomposition of the non-negative multivariate data matrix into 21 

hierarchical factors {𝑍𝑖}𝑖=1
𝑀  and {𝐻𝑖}𝑖=1

𝑀 , such that (Trigeorgis et al., 2016):  22 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑒𝑝 ≝
1

2
‖𝑆𝐺 − 𝑍1 ∙ 𝑍2 ∙ ⋯ ∙ 𝑍𝑀𝐻𝑀‖𝐹

2

= 𝑡𝑟[𝑆𝐺𝑇𝑆𝐺 − 2𝑆𝐺𝑇𝑍1 ∙ 𝑍2 ∙ ⋯ ∙ 𝑍𝑀 + 𝑆𝐺𝑀
𝑇 ∙ 𝑍1 ∙ 𝑍2 ∙ ⋯ ∙ 𝑍𝑀 ∙ 𝑍1

𝑇

∙ 𝑍2
𝑇 ∙ ⋯ ∙ 𝑍𝑀

𝑇 ∙ 𝐻𝑀] 

 

(11) 

    In Eq. (11), 𝑆𝐺  represents the input fMRI signal, and {𝑍𝑖}𝑖=1
𝑀   represents the weight 23 

matrix; {𝐻𝑖}𝑖=1
𝑀  denotes the sets of non-negative components. 𝑀 denotes the total number 24 
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of layers. To calculate the optimal solutions of {𝑍𝑖}𝑖=1
𝑀  and {𝐻𝑖}𝑖=1

𝑀  requires minimizing the 1 

loss function 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑒𝑝 in Eq. (11). And 𝑡𝑟 represents the trace of the matrix. 2 

 3 

    A key difference between Deep NMF versus Deep SDL and Deep MF is the updating 4 

principle. Unlike Deep SDL and Deep MF, Deep NMF employs a fast policy to update these 5 

two factors: {𝑍𝑖}𝑖=1
𝑀  and {𝐻𝑖}𝑖=1

𝑀  (Trigeorgis et al., 2016). This principle is shown as follows: 6 

𝐻𝑖𝑡+1
𝑘 ←

𝐻𝑖𝑡
𝑘

𝑓𝑚𝑎𝑥
𝐻  

𝑍𝑖𝑡+1
𝑘 ← 𝑆𝐺 ∙ (𝐻𝑖𝑡+1

𝑘 )† 

 

(12) 

where 𝐻𝑖𝑡
𝑘  and 𝑍𝑖𝑡

𝑘  represent the non-negative components and weight matrix from the kth 7 

layer, iteration number it. And operator (∙)† represents the pseudo-inverse of the input matrix 8 

(Trigeorgis et al., 2016). The 𝑓𝑚𝑎𝑥
𝐻  denotes the current maximum value of function f, related 9 

to 𝐻𝑖𝑡
𝑘 .   10 

  11 

    Intuitively, these four deep linear models are each distinctive. Deep MF can be more 12 

intelligent, and automatically determine all hyperparameters. Deep SDL can perform over-13 

complete decomposition for each layer. Deep FICA reveals the spatially independent and 14 

hierarchical components, and has a faster convergence velocity. Finally, Deep NMF could 15 

detect the non-negative components included in fMRI signals. We theoretically analyze the 16 

relative performance of each deep linear model in the following section. 17 

 18 

 19 

3.    Results: Theoretical Analyses 20 

     21 

    In this section, we employ mathematical theory, specifically real analysis, linear functional 22 

analysis and abstract algebra, to explain why different deep linear models have the distinctive 23 

characteristics that they do. In particular, we hope to explain: 24 

(i) The advantages of linear deep models over shallow models and deep nonlinear models; 25 

(ii) Why some deep linear models, e.g., Deep MF and Deep SDL, converge slowly while others, 26 

e.g., Deep NMF and Deep FICA, converge quickly; 27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Linear Modeling of fMRI Functional Connectivity 

15 

 

(iii) Why some deep linear models, e.g., Deep MF and Deep SDL, can better estimate 1 

connectivity strength, while others, e.g., Deep NMF and Deep FICA, can better estimate the 2 

spatial extent of connectivity networks.  3 

   4 

3. 1 Fundamental Interpretation of Each Linear Model  5 

   6 

    All theoretical analyses are based on the vital assumption that all 7 

mappings/operators/algorithms must be applied on a finite dimensional space. Please consult 8 

Appendix A for the mathematical details (Assumption 1.1, Lemma 1.1, Theorem 1.1). If 9 

considering any algorithm and/or process as an operator, Assumption 1.1 and Lemma 1.1 10 

demonstrate that the norm of the operator should be equivalent, in order to dramatically 11 

simplify our discussion. 12 

 13 

    According to Theorem 1.1, if considering the shallow linear, deep linear and deep 14 

nonlinear models as approximations of the original function 𝑓(𝑥) , then, obviously, deeper 15 

models can employ more items such as {𝑃𝑛(𝑥)}𝑛=1
𝑁  rather than just 𝑃(𝑥). Thus, the deeper 16 

models can more accurately approximate the original function than a shallow model. 17 

Meanwhile, nonlinear models can have: ‖ lim
𝑁→∞

{𝑃𝑛(𝑥)}𝑛=1
𝑁 − 𝑓(𝑥)‖ = 0 . But to optimize the 18 

infinite items, it will be very time-consuming or even impossible to solve a non-polynomial (NP) 19 

complexity problem. Hence, the theorem also answers why nonlinear models require a 20 

sampling technique to reduce the complexity, e.g., Gibbs sampling for DBN (Hinton and 21 

Salakhutdinov, 2006; Hinton et al., 2012). 22 

 23 

    According to the discussion in the last section, we can abstractly describe each deep 24 

linear model using the combination of several operators. All operators involved in this study 25 

are given in Table 1. 26 

 27 

 28 

 29 
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Table 1. All definitions of operators and their norms. 1 

Operator Definition Operator/Norm Definition 

𝔄 Deep MF 𝒰 Update Operator of 

Deep NMF 

𝔑 Deep NMF ℱ Operator of Fixed-

Point Algorithm 

𝔏 Deep SDL 𝒞 Consistent Operator 

𝔗 Deep FICA 𝜑 Norm of ADMM 

ℳ Initialization Operator 𝜌 Norm of GD 

𝒮 Sparsity Operator 𝜇 Norm of Fixed-Point 

Algorithm 

𝒫 Principal Component 

Analysis (PCA) 

𝛾 

 

Norm of 

Normalization in 

Deep NMF 

𝒜 ADMM 𝛿 Norm of Updating 

Deep NMF 

𝒢 GD C Norm of Input fMRI 

Matrix 

𝒩 Normalization SG Input fMRI Signal 

Matrix 

ℛ Rank Reduction 

Operator 

ℭ Set of Consistent 

Operators 

 2 

  In Table 2, we provide the definitions of sets involved in the following sections: 3 

Table 2. All definitions of space and set 4 

Space/Set Definition 

ℕ Field of Natural 

Numbers 

ℝ Field of Real Numbers  

𝕂 Field of Rational 

Numbers 

 5 

3.2 Intensity Similarity  6 

 7 

    As discussed in Sections 2.2 to 2.5, we have the following definitions: 8 

 9 

Definition 2.1 If we denote Deep MF as an operator 𝔄, based on the description of Deep MF, 10 

considering the iteration k, we can denote 𝔄 ≝ 𝑀 ∙ 𝒜𝑘 ∙ 𝒮𝑘 ∙ ℛ𝑘. 11 

Definition 2.2 If we denote Deep SDL as an operator 𝔏, based on the description of Deep 12 
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SDL, considering the iteration k, we can denote 𝔏 ≝ 𝑀 ∙ 𝒢𝑘 ∙ 𝒮𝑘. 1 

Definition 2.3 If we denote Deep FICA as an operator 𝔗, based on the description of Deep 2 

FICA, considering the iteration k, we can denote 𝔗 ≝ 𝒫 ∙ ℱ𝑘. 3 

Definition 2.4 If we denote Deep NMF as an operator 𝔑, based on the description of Deep 4 

NMF, considering the iteration k, we can denote 𝔑 ≝ 𝑀 ∙ 𝒰𝑘 ∙ 𝒩. 5 

 6 

    According to Definitions 2.1 to 2.4, as well as Corollaries 1.2 to 1.3 and Theorems 2.1 to 7 

2.11 as proved in Appendix B, using the inequality of norm, considering the iteration k, and let 8 

SG be the input matrix; for any operator applied on SG, we can derive the features as: 𝐹1, 𝐹2, 9 

𝐹3, 𝐹4; then we have:  10 

Deep MF:  ‖𝐹1‖ = ‖𝔄𝑘 ∙ 𝑆𝐺‖ ≤ ‖𝑀‖ ∙ ‖𝒜𝑘‖ ∙ ‖𝒮𝑘‖ ∙ ‖ℛ𝑘‖ ∙ ‖𝑆𝐺‖ (13-1) 

Deep SDL:  ‖𝐹2‖ = ‖𝔏𝑘 ∙ 𝑆𝐺‖ ≤ ‖𝑀‖ ∙ ‖𝒢𝑘‖ ∙ ‖𝒮𝑘‖ ∙ ‖𝑆𝐺‖ (13-2) 

Deep FICA:  ‖𝐹3‖ = ‖𝔗𝑘 ∙ 𝑆𝐺‖ ≤ ‖𝒫𝑘‖ ∙ ‖ℱ𝑘‖ ∙ ‖𝑆𝐺‖ (13-3) 

Deep NMF:  ‖𝐹4‖ = ‖𝔑𝑘 ∙ 𝑆𝐺‖ ≤ ‖𝑀‖ ∙ ‖𝒰𝑘‖ ∙ ‖𝒩‖ ∙ ‖𝑆𝐺‖ (13-4) 

 11 

   According to Lemma 1.1 and Theorems 2.1 to 2.6, operators 𝒜𝑘, 𝒰𝑘, 𝒩, 𝒢𝑘, and ℱ𝑘 12 

can be treated as contraction operators, which indicates that the norm of each operator should 13 

be larger than zero and smaller than one. Other operators are constant values, according to 14 

Theorems 2.1 to 2.11. 15 

 16 

    If we denote the norm of contraction operators as: 17 

‖𝒜𝑘‖ =  𝜑 < 1 (14-1) 

‖𝒢𝑘‖ = 𝜌 < 1 (14-2) 

‖ℱ𝑘‖ =  𝜇 < 1 (14-3) 

‖𝒰𝑘‖ = 𝛿 < 1; ‖𝒩‖ = 𝛾 < 1 (14-4) 

    Despite the fact that the norms of operators 𝒜, 𝒰, 𝒢, ℱ are not equivalent, according to 18 

Theorems 3.1 and 3.2 (see Appendix C), we consider an extreme condition 𝑘 → ∞, and then 19 

we have: 𝜑 = 𝛿 = 𝜌 = 𝜇  that indicates convergence to the global optimum. Then we can 20 

rewrite all equations 13-1 to 13-4 as: 21 
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Deep MF:  ‖𝐹1‖ ≤  𝜑 ∙ ‖𝑀‖ ∙ ‖𝒮𝑘‖ ∙ ‖ℛ𝑘‖ ∙ 𝐶 (15-1) 

Deep SDL:  ‖𝐹2‖ ≤ 𝜌 ∙ ‖𝑀‖ ∙ ‖𝒮𝑘‖ ∙ 𝐶 (15-2) 

Deep FICA:  ‖𝐹3‖ ≤  𝜇 ∙ ‖𝒫𝑘‖ ∙ 𝐶 (15-3) 

Deep NMF:  ‖𝐹4‖ ≤ 𝛿 ∙ 𝛾 ∙ ‖𝑀‖ ∙ 𝐶 (15-4) 

    Obviously, based on Eqs. (15-1) to (15-4), we have the conclusion: 1 

‖𝐹4‖ ≤ ‖𝐹3‖ ≤ ‖𝐹2‖ ≤ ‖𝐹1‖  (16) 

    Since all features {𝐹𝑖}𝑖=1
4  have the same dimensions, this inequality Eq. (16) can clearly 2 

explain why the intensity of features, i.e., the connectivity strength of voxels in the networks, 3 

varies based on the different models. In particular, 𝐹4 (the features derived from Deep NMF) 4 

should have the smallest intensity and 𝐹1 (the features obtained via Deep MF) should have 5 

the largest intensity. Meanwhile, Eqs. (15-1 to 15-4) also reveal the convergence velocity of 6 

each model. Since Deep MF contains the most operators with the complex optimization 7 

function ADMM, it should be slowest. Because Deep SDL uses a sparsity operator as well as 8 

GD, which is relatively slow, it is comparable in speed to Deep MF, even given a perfect step-9 

length. Theoretically, Deep FICA and Deep NMF should have faster convergence. 10 

  11 

3.3 Spatial Similarity 12 

      Spatial matching is another important way to measure the similarity between identified 13 

components and templates. To examine this property, we use Assumptions 3.1 to 3.2 and 14 

Lemma 3.1 to prove Theorem 3.1 in Appendix C:  15 

   16 

Theorem 3.1 If we denote the following sets: 17 

𝐷𝑒𝑒𝑝 𝑀𝐹: 𝐷 = {𝔄𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 18 

𝐷𝑒𝑒𝑝 𝑆𝐷𝐿: 𝐿 = {𝔏𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 19 

𝐷𝑒𝑒𝑝 𝐹𝐼𝐶𝐴: 𝐼 = {𝔗𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 20 

𝐷𝑒𝑒𝑝 𝑁𝑀𝐹: 𝛩 = {𝔑𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 21 
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    And considering the iteration k, and 𝑘 > 𝐾, it implies: 1 

0 <
|𝔄𝑘𝑉|

|𝑉 ∪ 𝐷|
≤

|𝔏𝑘𝑉|

|𝑉 ∪ 𝐿|
≤

|𝔗𝑘𝑉|

|𝑉 ∪ 𝐼|
≤

|𝔑𝑘𝑉|

|𝑉 ∪ 𝛩|
 

(17) 

where |∙| denotes the number of positive elements. 𝛩 represents the set that only contains 2 

the element 0. 𝑇 represents the functional regions of brain. 3 

 4 

    Since the convergence of deep models is a vital issue when solving real world problems 5 

(Topol, 2019), Eq. (16) and Theorem 3.1 can explain the convergence of all deep linear models, 6 

considering enough iterations. Clearly, if we examine the spatial similarity between two BCNs, 7 

according to Theorem 3.1, we can conclude: with the same number of iterations, Deep NMF 8 

has the best performance on spatial matching, Deep FICA has the next best performance, and 9 

Deep SDL and Deep MF have the least. That is, the norm of the operator of Deep NMF is very 10 

small, and is iteratively applied on functional regions and background noise, which causes the 11 

intensity of functional areas to decrease very rapidly. However, since the intensity of 12 

background is very small, the noise can be reduced to near zero much faster than Deep MF 13 

and Deep SDL. The performance of Deep FICA on spatial matching should be comparable to 14 

Deep NMF; since a normalization operator is involved in Deep NMF, the intensity of 15 

components identified by Deep NMF should be smaller than Deep FICA. Theorem 3.2 16 

included in Appendix C also explains that all deep linear models finally converge given enough 17 

iterations.  18 

 19 

To test these theoretical analyses, in the next section, a simulated experimental 20 

reconstruction will be introduced as the ground truth templates for the first layer BCNs. These 21 

templates will be employed to construct the simulated fMRI signal and all deep linear models 22 

will be applied on the simulated data and their 1st layer results will be compared to the 23 

templates. By examining the intensity similarity and spatial similarity to the ground truth 24 

templates, the correctness of the theoretical conclusions can be investigated. 25 

 26 

 27 
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4. Results: Experimental Validation 1 

 2 

4.1 Simulated fMRI Data 3 

 4 

    In this work, we employ an in silico fMRI simulation method proposed previously (Zhang 5 

et al., 2018, 2019), using templates of BCNs (Smith et al., 2009) to test these proposed deep 6 

linear models. Specifically, we selected 12 BCNs (Table 3) that were originally derived using 7 

conventional shallow ICA (Smith et al., 2009). 8 

Table 3. All abbreviations of BCNs in simulation 9 

Name/Number Abbreviation Name Abbreviation 

Primary Visual 

Network/1 

VIS-1 Auditory Network/7  AUD  

Perception Visual 

Shape Network/2 

VIS-2 Executive Control 

Network/8 

ECN 

Perception Visual 

Motion Network/3 

VIS-3 Left Frontoparietal 

Network/9 

FP-L 

Default Mode 

Network/4  

DMN  Right Frontoparietal 

Network/10 

FP-R 

Brainstem & 

Cerebellum Network/5 

B/C Dorsal Attention 

Network/11 

DAN 

Sensorimotor 

Network/6  

SM  Salience Network/12 SN 

     10 

    These template BCNs derived from resting-state fMRI have been released publicly and 11 

are considered to be functional brain areas covering a large part of cerebral cortex (Smith et 12 

al., 2009). Since all deep linear models should be evaluated equally using a known ground 13 

truth, we employ a simulation of resting-state fMRI signals. Following the fMRI simulation 14 

pipeline for spatially independent networks named Experiment 1 in the previous study (Zhang 15 

et al., 2019), the 12 templates (Smith et al., 2009) are collected as components/spatial 16 

features; and we adopt 12 time series, including 200 time points, derived from a previous study 17 
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(Lv et al., 2015). The final simulation data is a matrix obtained as the product of time series 1 

and components. 2 

 3 

    The detailed parameters of each template are: 91×109 matrix, 91 slices, 2.0 mm isotropic 4 

voxels. The number of mask voxels is 262,309 and the number of time points is 200. All 5 

templates are registered to standard MNI space at 2.0 mm. This pipeline contains the steps 6 

of spatial artifact cleanup, distortions removal and cortical surfaces generation. After that, 7 

different subjects are aligned to the standard MNI space (Lv et al., 2015; Zhang et al., 2019). 8 

 9 

    Table 4 provides the main hyperparameter settings of the four proposed deep linear 10 

models, including: the number of components of the 1st and 2nd layers, the number of iterations 11 

and the step length of gradient descent, where applicable. Since the 1st layer may include 12 

noise components, we choose a larger number of components than the expected number of 13 

features, which in this case is at least a dozen ground truth template BCNs. For the 2nd layer, 14 

which should have fewer high-level features, the number of components should be less than 15 

in the 1st layer. Lv et al. (2015) introduce an experimental method to search for the best number 16 

of components, but, in fact, heuristically tuning the hyperparameters of deep models is very 17 

difficult. Since Deep MF is capable of estimating all these hyperparameters automatically, only 18 

the maximum number of iterations is given. For the other three methods, the hyperparameter 19 

values were chosen heuristically based on best matching to the ground truth templates for the 20 

1st layer and for perceived quality of the derived networks for higher layers. 21 

 22 

    Table 4. Important Hyperparameter Settings of Four Deep Linear Models 23 

 Deep MF Deep SDL Deep FICA Deep NMF 

Number of Components 

of 1st layer 

N/A 15 20 30 

Number of Components 

of 2nd layer 

N/A 13 10 15 

Number of Iterations 100 100 100 100 

Step Length N/A 0.01 N/A N/A 

 24 
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4.2 Investigating the First Layer Reconstructions of Each Deep Linear Model via Intensity, 1 

Spatial and Hausdorff Distances 2 

    3 

   We can quantitatively compare the identified components, i.e., BCNs, with the original 4 

ground truth, i.e., templates, in three distinct ways. First, the similarity can be calculated 5 

spatially, largely independent of the intensity of each voxel of the identified components. The 6 

definition of spatial similarity is: 7 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑝𝑎𝑡𝑖𝑎𝑙 =
|𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∩ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒|

|𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∪ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒|
 (18) 

where |∙|  represents binarization, which represent the voxels above a given intensity 8 

threshold. The spatial similarity is measuring the ratio of intersection and union of identified 9 

component and template.  10 

    In contradistinction, only considering the intensity of each voxel of the derived 11 

components, it is useful to calculate the distance between the intensities of components and 12 

templates. The definition of intensity similarity is: 13 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = (∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖| + |𝑦𝑖|

𝑁

𝑖=1

)

−1

 

(19) 

where |∙|  represents the absolute value. Given a threshold, the intensity similarity is 14 

calculated via summed absolute value of intensity of component (denoted as 𝑥𝑖) and template 15 

(denoted as 𝑦𝑖) divided by the absolute value of their difference. 𝑁 denotes the total number 16 

of voxels. Obviously, if all intensity values of identified component and template are equal, the 17 

intensity similarity approaches infinity. 18 

 19 

    Finally, to jointly consider both spatial and intensity matching, we use the Hausdorff 20 

Distance (HD): 21 

𝑋 = ∑2 × 𝑚𝑖𝑛 (𝑥𝑖, 𝑦𝑖)

𝑁

𝑖=1

, 𝑖𝑓 𝑥𝑖,  𝑦𝑖 ∈ 𝐶 ∩ 𝑇

𝑌 = ∑𝑥𝑖 + 𝑦𝑖

𝑀

𝑖=1

,  𝑖𝑓𝑥𝑖,  𝑦𝑖 ∈ 𝐶 ∪ 𝑇

𝐻𝐷 =
𝑋

𝑌

 

 

 

(20) 

   Briefly, 𝑋 represents two times the minimum intensity value of intersection of component 22 
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and template; and 𝑌  represents the summed intensity value of union of component and 1 

template. 𝐶 and 𝑇 represent the sets of components and templates, respectively. Therefore, 2 

HD includes the influences of intensity similarity and spatial overlap simultaneously. 3 

 4 

 5 

Figure 2. Comparison of six 1st layer networks from all four deep linear models with the ground truth 6 

templates from simulated fMRI data (see Table 3 for network abbreviations). The first column presents 7 

eight representative slices from each of six representative template networks. The second to fifth 8 

columns show the corresponding slices from the networks identified via Deep MF, Deep SDL, Deep 9 

FICA and Deep NMF, respectively. (a) The AUD, B/C and VIS-3 networks illustrate better intensity 10 

matching to the templates by Deep MF and Deep SDL than by Deep FICA or Deep NMF (see color bar 11 

of intensities measuring connectivity strength on the right). (b) The VIS-1, VIS-2 and DMN networks 12 

also show this same disparity among the deep linear models for intensity matching, but also show better 13 

spatial similarity to the templates for Deep FICA and Deep NMF compared to Deep MF or Deep SDL. 14 

 15 

   The results show that Deep NMF and Deep FICA produce smaller network intensities than 16 

the templates, whereas Deep MF and Deep SDL yield larger intensities that better match the 17 

templates (Figure 2a). In contradistinction, there are generally more noisy areas detected from 18 

Deep MF and Deep SDL due to the larger norms of their iterative operators, compared to Deep 19 
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NMF and Deep FICA (Figure 2b). Hence, Deep NMF and Deep FICA have better spatial 1 

similarity to the templates than the other two methods. This illustrates the trade-off between 2 

intensity matching and spatial matching. To view reconstructions for all 12 examined BCNs 3 

and for further details, please see Figure S1 included in the Supplemental Materials. 4 

 5 

    As defined by Eq. (18) to Eq. (20) in Section 4.2, the quantitative comparisons among 6 

the four deep linear models for intensity similarity, spatial similarity and the Hausdorff distance 7 

are provided by Figure 3. These quantitative results clearly demonstrate that Deep MF and 8 

Deep SDL provide the best intensity matching (Figure 3a), since their convergence velocity is 9 

relatively slow. Therefore, Deep MF and Deep SDL can reconstruct the most accurate 10 

connectivity strengths of each component from input fMRI signals, consistent with theory 11 

(Section 3). Considering spatial similarity, due to the fastest convergence velocity and non-12 

negative normalization of Deep NMF, the intensity is reduced rapidly across iterations. Since 13 

the noise has smaller intensity than the signal, it is reduced much faster, which helps account 14 

for Deep NMF yielding the best spatial similarity results for most networks (Figure 3b). This 15 

result is also predicted by theory in Section 3. A rigorous proof is presented in the Appendices. 16 

It should be noted that Deep FICA has an inherent advantage over the other models for spatial 17 

matching since it is most similar to the shallow ICA analysis used to generate the ground truth 18 

templates for the BCNs. 19 

 20 

    All proposed deep linear models can be evaluated by HD to consider both intensity and 21 

spatial similarity (Figure 3c). Deep MF generated the best performance for all 12 BCNs with 22 

Deep SDL running close behind. Hence, the additional RRO in Deep MF does yield 23 

advantages over the other three deep linear models. Similarly, the sparsity operator of Deep 24 

SDL and Deep MF help them outperform Deep FICA and Deep NMF, which both lack that 25 

capability.   26 

 27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Linear Modeling of fMRI Functional Connectivity 

25 

 

 1 

(a)   2 

 3 

(b) 4 

 5 

(c) 6 

Figure 3. Comparisons of the twelve 1st layer networks of the four deep linear models for (a) intensity 7 

similarity to the ground truth templates; (b) spatial similarity to the ground truth templates; and (c) the 8 

Hausdorff Distance to the ground truth templates that jointly considers intensity and spatial similarity.  9 

     10 

 11 
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4.3 The 2nd Layer Networks of Each Deep Linear Model 1 

 2 

    Compared with the shallow 1st layer features, it is difficult to successfully investigate the 3 

features of deeper layers because there is no widely accepted ground truth for those more 4 

complex higher-level networks. The 2nd layer features can be comprehended as the 5 

recombination of 1st layer features. Another challenge for testing deeper networks is that the 6 

deep linear models differ with regard to how many layers can be reconstructed from a given 7 

dataset. For example, Deep FICA can only decompose the simulated fMRI into two layers, but 8 

Deep MF can decompose the simulated signal into four layers. Given these constraints, as 9 

well as the altered connectivity strengths in the 2nd layer relative to the 1st layer, we limit the 10 

analysis of deeper networks to examining the spatial similarity between 2nd layer networks of 11 

each of the four deep linear models with the shallow ground truth templates (Figure 4).  12 

 13 

 14 
Figure 4. Comparisons of BCNs from 2nd layer of Deep MF, Deep SDL, Deep FICA and Deep NMF. 15 

Each element represents the spatial similarity of the identified component and the ground truth 16 

templates; (a), (b), (c) and (d) are Deep MF, Deep SDL, Deep FICA and Deep NMF, respectively. The 17 

rows represent the identified 2nd layer BCNs and the columns represent the ground truth templates of 18 

the simulated experiment.  19 

 20 

   21 

 22 

 23 
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     Based on these preliminary comparisons, it is clear that the four deep linear models can 1 

produce different higher-level features. Most notable is that Deep SDL produces 2nd layer 2 

networks that are the most spatially similar to the shallow ground truth templates, as shown 3 

by the larger main diagonal elements in its similarity matrix and the smaller off-diagonal 4 

elements (Figure 4b). Hence, Deep SDL does relatively little recombination of the 1st layer 5 

features in its 2nd layer. In contradistinction, the first component of the Deep FICA 2nd layer 6 

(top row of its similarity matrix in Figure 4c) is very strongly correlated with 10 of the 12 ground 7 

truth templates and therefore appears to be a spatially “global” network. The 2nd layer features 8 

of Deep NMF have overall the least spatial similarity with the ground truth templates (Figure 9 

4d) whereas Deep MF produces the greatest variation in the correlations between its 2nd layer 10 

features and the ground truth templates (Figure 4a). 11 

 12 

 13 

Figure 5. Comparisons of BCNs derived from the 2nd layer of Deep MF, Deep SDL, Deep FICA and 14 

Deep NMF. Each column includes three representative 2nd layer networks from a deep linear model, 15 

matched across models in each row. 16 

 17 

Three representative 2nd layer BCNs matched for each deep linear model are presented 18 

in Figure 5. The full set of non-noise 2nd layer networks are given in Figure S2 of the 19 

Supplemental Materials. The top row of Figure 5 shows that the nodes of the ECN, including 20 

anterior cingulate cortex and medial prefrontal cortex, are represented in that 2nd layer network 21 

for all four models. For both Deep MF and Deep FICA, the ECN is combined with nodes of the 22 

SN, including the insulae, pre-supplementary motor areas (pre-SMA), and premotor areas. 23 
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For Deep NMF and Deep SDL, however, the ECN is joined instead with nodes of the DMN, 1 

including the precuneus, posterior cingulate cortex and the superior parietal lobules. This 2 

higher-level connectivity between ECN and DMN is weaker for Deep SDL than Deep NMF, 3 

whereas connectivity within ECN is stronger for Deep SDL than Deep NMF, in keeping with 4 

the observations from Figure 4 that Deep SDL preserves 1st layer networks the most of all four 5 

algorithms, whereas Deep NMF preserves 1st layer networks the least (Figures 4 & S2). It can 6 

be observed that the same 2nd layer network of Deep FICA also contains parts of the DMN, 7 

most notably the posterior cingulate cortex, although to a lesser extent than Deep NMF. 8 

Therefore, Deep FICA recombines nodes of three different 1st layer spatially independent 9 

components (DMN, ECN & SN) into a single 2nd layer independent component. Figure S3 of 10 

the Supplementary Materials provides a spatial similarity matrix for the non-noise 2nd layer 11 

networks for Deep SDL, Deep FICA and Deep NMF with reference to Deep MF. 12 

 13 

The middle row of Figure 5 shows that all four models produced a 2nd layer network 14 

consisting of VIS-1 and DAN. However, Deep NMF additionally included parts of VIS-2, VIS-15 

3 and pre-SMA whereas Deep MF additionally included VIS-3 and posterior perisylvian regions. 16 

The bottom row of Figure 5 illustrates links of the brainstem and cerebellum with visual cortex. 17 

However, Deep MF finds correlations of B/C with VIS-1 & VIS-2 whereas Deep FICA and Deep 18 

NMF finds correlations with VIS-3 instead. Both Deep MF and Deep NMF include perisylvian 19 

regions in this 2nd layer network as well. Given the relatively slow convergence of Deep SDL 20 

via gradient descent, these features might be expected in its 3rd layer instead. 21 

 22 

We also compare computation time for the four deep linear models presented in this work 23 

on our computing cluster (Figure 6), which demonstrates that Deep FICA is the fastest and 24 

Deep SDL is by far the slowest. Deep MF provides the best trade-off between speed and 25 

performance as judged by reconstruction accuracy for 1st layer networks (Figure 3). 26 
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 1 
Figure 6. Comparisons of computation time of 10 independent runs, using the same number of 2 

iterations and the same simulated fMRI dataset for Deep FICA (blue), Deep SDL (red), Deep MF (green) 3 

and Deep NMF (purple). The box plots give the mean and standard deviation of the CPU time in minutes 4 

for the 10 runs. 5 

 6 

5.  Discussion 7 

    We have introduced novel deep linear models that integrate multiple operators to extract 8 

hierarchical spatial features in fMRI data. These models bridge the gap between traditional 9 

shallow linear models (Andersen et al., 1999; Beckmann et al., 2005; Calhoun et al., 2001; 10 

Hyvarinen, 1999; Lee et al., 2011; Lee et al., 2016; Mairal et al., 2010; McKeown & Sejnowski, 11 

1999) and newer deep nonlinear models (Hu et al., 2018; Huang et al., 2018; Dong et al., 12 

2020; Zhang et al., 2020). The primary advantages of the proposed algorithms over more 13 

complex deep nonlinear models are to quickly and easily map the hierarchical organization of 14 

BCNs without requiring large amounts of fMRI data or HPC clusters with GPUs or TPUs. The 15 

behavior of deep linear models is also more explainable than are, for example, CNNs and 16 

DBNs, as we show through theoretical predictions of their relative performance (Section 3) 17 

that are validated via simulations (Section 4). Furthermore, convergence to the global optimum 18 

can be guaranteed for deep linear models with convex optimization functions, unlike deep 19 

nonlinear models where such convergence is rarely achieved in practice. This is important 20 

given the recent realization that real-world imaging applications often suffer from 21 

underspecification, resulting in wildly unpredictable performance from any particular deep 22 

nonlinear network due to convergence to different local optima from different random initial 23 

conditions despite identical training data and hyperparameters (D’Amour et al., 2020).  24 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Linear Modeling of fMRI Functional Connectivity 

30 

 

Deep MF employs ADMM, which is a distributed optimization algorithm particularly well 1 

suited to compositional analysis of hierarchical modular systems, and also utilizes RRO for 2 

data-driven determination of all hyperparameters, which can be considered an intelligent 3 

factorization method. This is a major advantage over many conventional shallow data-driven 4 

fMRI connectivity reconstruction methods and the other three deep linear models presented 5 

here, as well as more complex deep nonlinear models, all of which must be manually tuned 6 

for hyperparameter settings. Deep SDL can explore more potential components than other 7 

models, even more than the number of original time points, via over-complete decomposition. 8 

Deep NMF converges very rapidly and recognizes the non-negative constraints of BCNs in 9 

fMRI. Finally, Deep FICA efficiently maps hierarchically spatially independent BCNs and is 10 

even easier to implement than the other peer deep linear models, especially given the wide 11 

usage of shallow ICA models for unsupervised fMRI mapping. 12 

 13 

     In this research, we also introduce an innovative framework for studying the relative 14 

performance of deep linear models, both theoretically by comparing their mathematical 15 

structure as well as in silico via fMRI simulations. Evaluating the 1st layer reconstructions of 16 

these deep linear models using simulated fMRI data from widely accepted ground truth BCNs, 17 

we find that Deep MF and Deep SDL are clearly superior for computing connectivity strength 18 

whereas Deep NMF and Deep FICA are modestly better for mapping spatial extent. These 19 

results were predicted from the unique mix of mathematical operators used in each of the four 20 

methods (Section 3). Overall, Deep MF provided the most robust combination of intensity 21 

matching, spatial matching and computational efficiency of all four techniques. This can be 22 

attributed to its joint use of sparsity and rank reduction operators in conjunction with the 23 

distributed ADMM optimization function. We also discovered that deeper features such as the 24 

2nd layer BCNs are recombinations of the 1st layer networks and that these can vary among 25 

the four deep linear models. For example, Deep SDL produces the least recombination of the 26 

1st layer networks in its 2nd layer. This can be attributed to its relatively slow convergence 27 

velocity using gradient descent optimization; therefore, more low-level network recombination 28 

is seen in its 3rd layer instead. Another important factor that differs among the deep linear 29 

models is the number of spatial features that can be accommodated at each level of the 30 
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hierarchy and the maximum number of layers for any given dataset. For example, Deep FICA 1 

supports the fewest number of meaningful components at the 2nd layer (nine) and only two 2 

layers total; therefore, its 2nd layer networks would be the least sparse. This can be seen in 3 

the top row of Figure 5 in which Deep FICA combines nodes of DMN, ECN and SN into a 4 

single 2nd layer network, unlike the other models that only incorporate two of the three 1st layer 5 

networks, but which can instead generate even deeper networks beyond the 2nd layer. Hence, 6 

the choice of deep linear model matters for exploring higher-level BCNs. The mathematical 7 

evaluation framework and the fMRI simulation procedure provided in this work should enable 8 

further development of deep linear models that are optimized for different types of real-world 9 

applications in biomedical imaging, with Deep MF as the current best algorithm for fMRI 10 

hierarchical functional connectivity mapping. 11 

 12 

 One shortcoming of the current work is that the ground truth templates for testing the 1st 13 

layer networks were generated using conventional shallow ICA (Smith et al., 2009), which is 14 

currently the most widely accepted technique for data-driven analysis of functional connectivity. 15 

Aside from giving Deep FICA an inherent advantage, these spatially independent BCNs do 16 

not adequately evaluate the ability to reconstruct overlapping networks that is a property of 17 

methods such as shallow or Deep SDL. We also do not comprehensively investigate the 18 

properties of the deeper layers of these four models, which is an extensive topic that is beyond 19 

the scope of this paper, especially considering the absence of gold standards for these more 20 

complex high-level networks as well as the wide variation among deep linear models in key 21 

attributes such as convergence velocity and enforcement of sparsity.  22 

 23 

In this initial exploratory work, many of the derived 2nd layer BCNs demonstrate 24 

neurobiological face validity. For example, the SN is known to modulate the anticorrelated 25 

connectivity of the DMN and the ECN (Menon & Toga, 2015); hence the linkage of their nodes 26 

into a single higher-level network (Figure 5, top row). The functional coupling of vision 27 

networks with the DAN shown in Figure 5 (middle row) is also well known, given the role that 28 

the DAN plays in visual attention and eye movements (Vossel et al., 2014). Future 29 

neuroscientific studies will be required to empirically validate the deep features of these 30 
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models using demographic, clinical, cognitive, behavioral and/or electrophysiological data.  1 

 2 

Since these deep linear models do not require large training datasets nor specialized 3 

computing infrastructure, they can be easily applied to clinical research with the potential to 4 

generate novel functional connectivity biomarkers of neurodevelopmental, neurodegenerative, 5 

and psychiatric disorders (Parkes et al., 2020), including for diagnosis, prognosis and 6 

treatment monitoring. This is particularly significant given the recent observation that 7 

neuropathology and psychopathology often affect low-level network connectivity differently 8 

than high-level network connectivity. For example, many different psychiatric disorders have 9 

been found to decrease lower-order sensory and somatomotor network connectivity in a 10 

uniform manner across patients (Elliott et al., 2018; Kebets et al., 2019), while increasing 11 

distinctiveness among patients in networks at higher levels of the hierarchy (Kauffman et al., 12 

2017; Parkes et al., 2020). In fMRI studies of mild traumatic brain injury (TBI), altered 13 

functional connectivity has been found early after concussion both within individual BCNs, 14 

such as the SN, DMN and ECN, as well as between different BCNs (Palacios et al., 2017). 15 

Interactions of BCNs, such as that of the SN with the DMN, are thought to be especially 16 

important for outcome after TBI and can be used to guide personalized treatment (Jilka et al., 17 

2014; Li et al., 2019). Disordered coupling of the SN with the DMN and ECN has also been 18 

shown in mild cognitive impairment (Chand et al., 2017). Hence, prevalent neurological 19 

disorders such as head trauma and neurodegenerative disease are thought to affect multiple 20 

levels of the human brain’s hierarchical organization. Such high-level interactions between 21 

DMN, ECN and SN can be investigated with deeper layers of these hierarchical linear models 22 

that integrate their spatially distinct gray matter nodes into a single larger-scale network, as 23 

seen in Figure 5 (top row). These examples show how more principled data-driven 24 

characterization of this hierarchy, particularly at its higher levels, holds great promise for 25 

providing clinically actionable biomarkers of neurological and psychiatric diseases.  26 

 27 

The benefits of deep linear models gain in importance as the spatial and temporal 28 

resolution and sensitivity of fMRI continue to increase with improved MR imaging hardware 29 

and pulse sequences, e.g., the advent of SLice Dithered Enhanced Resolution Simultaneous 30 
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MultiSlice (SLIDER-SMS) imaging (Vu et al., 2018) and MultiBand MultiEcho (MBME) imaging 1 

(Boyacioğlu et al., 2015; Cohen et al., 2020). Higher fMRI sensitivity and spatial resolution will 2 

enable mesoscale functional imaging that supports more 1st layer components of deep linear 3 

models to uncover subnetworks of the BCN templates used in this work. This will also permit 4 

the use of deeper models to extract more levels of the hierarchy of functional connectivity. 5 

Whereas many widely used methods for performing time-varying fMRI analysis are heuristic 6 

rather than data-driven, such as those with arbitrary time windows (Iraji et al., 2020), advances 7 

in fMRI temporal resolution can be combined with deep linear models that perform joint 8 

spatiotemporal decomposition for principled unsupervised dynamic functional connectivity 9 

mapping that reveals ever more of the human brain’s hierarchical organization. 10 

 11 
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Appendix A 1 

Assumption 1.1 For any operator discussed in this study, we have: ∀𝒞 ∈ ℭ, 𝒞:ℝ𝑆×𝑇 → ℝ𝑆×𝑇. This 2 

assumption demonstrates that all operators are mapping from the finite dimensional space to another 3 

finite dimensional space, which is also reasonable in the real world. 4 

Lemma 1.1 (Norm Equality) Given any arbitrary norm ‖∙‖ and/or their finite linear combination 5 

∑ 𝑘𝑖‖∙‖𝑛
𝑖=1  denoted based on any finite set, this norm or their finite linear combination is equivalent to 6 

ℓ2 norm (e.g.,  ‖∙‖2).  7 

Proof:  We denote ℓ1 and ℓ2 norm in finite dimensions, such as:  8 

‖𝑎‖1 = ∑|𝑎𝑖|

𝑛

𝑖=1

 

‖𝑎‖2 = (∑𝑎𝑖
2)

𝑛

𝑖=1

1
2

 

 

𝑎 = [𝑎1, 𝑎2,⋯ , 𝑎𝑛] 

 

 

(A.1) 

 

Obviously, since all norms are non-negative, according to Eq. (A.1), we have: 9 

∑𝑎𝑖
2

𝑛

𝑖=1

≤ (∑|𝑎𝑖|)

𝑛

𝑖=1

2

 

 

(A.2) 

Eq. (A.2) implies: 10 

‖𝑎‖2 ≤ ‖𝑎‖1 (A.3) 

And, based on Cauchy-Schwarz inequality, we have: 11 

‖𝑎‖1
2 = (∑|𝑎𝑖| ∙ 1)

𝑛

𝑖=1

2

≤ ∑ 𝑎𝑖
2 ∙ ∑ 12

𝑛

𝑗=1

𝑛

𝑖=1
= ‖𝑎‖2

2 ∙ 𝑛 

(A.4) 

It implies: 12 

1

√𝑛
‖𝑎‖1  ≤ ‖𝑎‖2 (A.5) 

According to the theorem of norm equality (Rudin, 1973), given an arbitrary finite dimensional space, 13 

if and only if the following inequality holds: 14 

𝑐‖∙‖2 ≤ ‖∙‖ ≤ 𝐶‖∙‖2 

 
(A.6) 

Thus, the norm ‖∙‖ is equivalent to ‖∙‖2. Since Eq. (B.3) and Eq. (B.4) hold, we have: 15 

𝑐
1

√𝑛
‖𝑎‖1 ≤ ‖𝑎‖2 ≤ ‖𝑎‖1 (A.7) 
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It implies ‖∙‖1 and ‖∙‖2 are equivalent. Similarly, we can prove ∑ 𝑘𝑖‖∙‖𝑛
𝑖=1  is also equivalent to ‖∙‖2. 1 

 2 

Theorem 1.1 (Superiority of Deep Linear Models) Given a real function 𝑓(𝑥)  and  𝑚({𝑥 ∈3 

[𝑎, 𝑏]: |𝑓(𝑥)| = ±∞}) = 0.  If considering the series of polynomials {𝑃𝑛(𝑥)}𝑛=1
𝑁 , we have: if 𝑁 is 4 

large enough, we have: ∀휀 > 0 ‖{𝑃𝑛(𝑥)}𝑛=1
𝑁 − 𝑓(𝑥)‖ ≤ 휀; if 𝑁 → ∞, we have: lim

𝑁→∞
{𝑃𝑛(𝑥)}𝑛=1

𝑁 =5 

𝑓(𝑥); however, for any shallow model, since 𝑁 should be bounded, we only have: ‖{𝑃𝑛(𝑥)}𝑛=1
𝑁 −6 

𝑓(𝑥)‖ ≤ 𝑀. 7 

Proof: According to Лузин (Luzin) Theorem (Royden, 1968), we have a close set: 8 

𝐹𝑛 ⊂ 𝐹𝑛+1 ⊂ ⋯ ⊆ [𝑎, 𝑏] 

𝑚([𝑎, 𝑏]\𝐹𝑛) =
1

𝑛
 

𝑓 ∈ 𝐶(𝐹𝑛) 

 

(A.8) 

Then we have a consistent real function 𝑔(𝑥), and obviously we have: 9 

𝑔(𝑥) = 𝑓(𝑥) (A.9) 

Since for any continuous real function, we have: 10 

|𝑔(𝑥) − 𝑃𝑛(𝑥)| <
1

𝑛
 (A.10) 

Let ℱ = ⋃ 𝐹𝑛
∞
𝑛=1 , and obviously we have: 11 

𝑚([𝑎, 𝑏]\ℱ) = 0 (A.11) 

If 𝔉 is a real function denoted on set ℱ, it indicates:  12 

lim
𝑁→∞

|𝔉 − {𝑃𝑛(𝑥)}𝑛=1
𝑁 | < 휀 (A.12) 

then we have lim
𝑁→∞

{𝑃𝑛(𝑥)}𝑛=1
𝑁 = 𝔉, 13 

Moreover, it is easy to prove {𝑃𝑛}𝑛=1
∞  denoted on [𝑎, 𝑏] as a ring ({𝑃𝑛}𝑛=1

∞ , +,×) (Dummit, 2004; 14 

Kadison, 1997). And 𝑚(∙) represents a Lebesgue measure. 15 

 16 

Lemma 1.2 (Contraction of Operators Combination) Given two contraction mappings Φ1 and Φ2, 17 

we have the composite of two contraction mapping as  Φ2 ∙ Φ1. The composite mapping Φ2 ∙ Φ1 must 18 

be contractive. 19 

Proof: According to the definition of contraction linear operator, we have: 20 

∃휁 ∈ (0,1) 

𝜌 ≝ ‖Φ𝑥 − Φy‖ 

𝜌(Φ𝑥,Φ𝑦) ≤ 휁𝜌(𝑥, 𝑦) 

 

 

(A.13) 
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Obviously, and we have: 1 

𝜌(Φ1𝑢,Φ1𝑣) ≤ 휁𝜌(𝑢, 𝑣) ∀휁 ∈ (0,1) 

𝜌(Φ2𝑥,Φ2𝑦) ≤ 휂𝜌(𝑥, 𝑦) ∀휂 ∈ (0,1) 
(A.14) 

If we set: 2 

𝑥 = Φ1𝑢, 𝑦 = Φ1𝑣 (A.15) 

the inequality below holds: 3 

𝜌(Φ2𝑥,Φ2𝑦) ≤ 휂𝜌(Φ1𝑢,Φ1𝑣) ≤ 휁휂𝜌(𝑢, 𝑣) (A.16) 

Since the definition as  4 

∀휁, 휂 ∈ (0,1), 𝜌(Φ2Φ1𝑢,Φ2Φ1𝑦) ≤ 휁휂𝜌(𝑢, 𝑣) 

 
(A.17) 

 5 

Corollary 1.1 (General Contraction Operator) According to Lemma 1.2, if denote the operators 6 

{Φ𝑖}𝑖=1
𝐾 , ∀Φ𝑖 𝑖 ∈ ℕ, Φ𝑖: ℝ

𝑆×𝑇 → ℝ𝑆×𝑇; considering any combination of operators: Φ𝐾 ∙ ⋯ ∙ Φ2 ∙ Φ1, 7 

if at least a single operator Φ𝑖 is contraction operator, and other operators are bounded, such as ∀𝑖 ≠8 

𝑘 ‖Φ𝑖‖ ≤ 𝑀. If and only if ∏ ‖Φ𝑖‖ < 1𝐾
𝑖=1 , the combination of operator series Φ𝐾 ∙ ⋯ ∙ Φ2 ∙ Φ1 is a 9 

contraction operator. 10 

Proof: Obviously, according to Lemma 1.2, use a series as {휁𝑖}𝑖=1
𝐾  to replace 휁, 휂 ∈ (0,1), 11 

Obviously, we have:  12 

휁𝑖 ∈ (0,1) 𝑖 ∈ ℕ  

𝜌(Φ𝐾 ∙ ⋯ ∙ Φ2Φ1𝑢,Φ𝐾 ∙ ⋯ ∙ Φ2Φ1𝑦) ≤ 휁𝐾 ∙ ⋯ 휁2 ∙ 휁1 ∙ 𝜌(𝑢, 𝑣) 
(A.18) 

 13 

Since 휁𝐾 ∙ ⋯ 휁2 ∙ 휁1 < 1, we have proved this corollary. 14 

 15 

Corollary 1.2 (Iterative Contraction Operator) According to Lemma 1.2, if denote the operators 16 

{Φ𝑖}𝑖=1
𝐾 , ∀Φ𝑖 𝑖 ∈ ℕ, Φ𝑖: ℝ

𝑆×𝑇 → ℝ𝑆×𝑇; considering any combination of operators: Φ𝐾 ∙ ⋯ ∙ Φ2 ∙ Φ1, 17 

if at least a single operator Φ𝑖 is contraction operator, and other operators are bounded, such as ∀𝑖 ≠18 

𝑘, ‖Φ𝑖‖ ≤ 𝑀. If and only if lim
𝑛→∞

∏ ‖Φ𝑖‖
𝑛𝐾

𝑖=1 = 𝑐 < 1, the combination of operator series Φ𝐾
𝑛 ∙ ⋯ ∙ Φ2

𝑛 ∙19 

Φ1
𝑛. 20 

Proof: Obviously, according to Lemma 1.2 and Corollary 1.1 and 1.2, use a series as {휁𝑖}𝑖=1
𝐾  to replace 21 

휁, 휂 ∈ (0,1), 22 

And we have:  23 

∀휁𝑖 ∈ (0,1) 𝑖 ∈ ℕ  

𝜌(Φ𝐾
𝑛 ∙ ⋯ ∙ Φ2

𝑛 ∙ Φ1
𝑛𝑢,Φ𝐾

𝑛 ∙ ⋯ ∙ Φ2
𝑛 ∙ Φ1

𝑛𝑦) < 휁𝑖
𝑛 ∙ ⋯ ∙ 휁2

𝑛 ∙ 휁1
𝑛 ∙ 𝜌(𝑢, 𝑣) 

(A.19) 

 24 

Since 0 < 휁𝑖
𝑛 ∙ ⋯ ∙ 휁2

𝑛 ∙ 휁1
𝑛 < 1, we have proved this corollary. 25 

 26 
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Appendix B 1 

 2 

Definition 2.1 If we denote Deep MF as an operator 𝔄 , based on the description of Deep MF, 3 

considering the iteration k, we can denote 𝔄 ≝ 𝑀 ∙ 𝒜k ∙ 𝒮k ∙ ℛk. 4 

Definition 2.2 If we denote Deep SDL as an operator 𝔏, based on the description of Deep SDL, 5 

considering the iteration k, we can denote 𝔏 ≝ 𝑀 ∙ 𝒢k ∙ 𝒮k. 6 

Definition 2.3 If we denote Deep FICA as an operator 𝔗, based on the description of Deep FICA, 7 

considering the iteration k, we can denote 𝔗 ≝ 𝒫 ∙ ℱk. 8 

Definition 2.4 If we denote Deep NMF as an operator 𝔑, based on the description of Deep NMF, 9 

considering the iteration k, we can denote 𝔑 ≝ 𝑀 ∙ 𝒰k ∙ 𝒩. 10 

 11 

Theorem 2.1 (Contraction of ADMM Operator) ADMM could be considered as contraction operator. 12 

It can be treated as a general iterative contraction operator in finite dimensionality space. We have 13 

ADMM ≝ 𝒜. If denote the ‖𝒜𝑘+1‖ = 𝛼‖𝒜𝑘‖, and 𝛽 should be step length, i.e., penalty parameter, 14 

if 𝑛 → ∞ 0 < (𝛼𝛽)𝑛‖𝐵𝑁‖ < 1 , 𝒜 can be considered as a contraction operator. And ‖𝐵𝑁‖ denotes 15 

the norm of different residual error, considering two distinctive input matrices. 16 

Proof: X and 𝑌, represent the two input matrices.  17 

Consider the iterative format of ADMM as  18 

𝒜 𝑘+1 ← 𝒜 𝑘 − min (𝑓𝒜) (B.1) 

And it also can imply:  19 

‖𝒜 𝑘+1‖ = 𝛼‖𝒜 𝑘‖,  

0 < 𝛼 < 1 
(B.2) 

According to the definition of contraction operator, we have: 20 

‖𝒜X − 𝒜Y‖ ≤ 𝛼 ‖(𝛽( 𝔢𝑘
𝑡 + ∏𝑋𝑖

𝑘−1

𝑖=1

𝑌𝑘 + ∑𝑍𝑘
𝑡+1

𝑘

𝑖=1

− 𝑆𝐺) − 𝛼𝛽( �̂�𝑘
𝑡 + ∏�̂�𝑖

𝑘−1

𝑖=1

�̂�𝑘

+ ∑�̂�𝑘
𝑡+1

𝑘

𝑖=1

− 𝑆�̂�))‖ 

 

(B.3) 

And we also have: 21 

‖𝒜X − 𝒜Y‖ ≤ 𝛼𝛽 ‖ 𝔢𝑘
𝑡 −  �̂�𝑘

𝑡 + ∏𝑋𝑖

𝑘−1

𝑖=1

𝑌𝑘 − ∏�̂�𝑖

𝑘−1

𝑖=1

�̂�𝑘 + ∑𝑍𝑘
𝑡+1

𝑘

𝑖=1

− ∑�̂�𝑘
𝑡+1

𝑘

𝑖=1

+ 𝑆�̂� − 𝑆𝐺‖ 

 

(B.4) 
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Since  𝔢𝑘
𝑡 ,  �̂�𝑘

𝑡 , ∏ 𝑋𝑖
𝑘−1
𝑖=1 𝑌𝑘 , ∏ �̂�𝑖

𝑘−1
𝑖=1 �̂�𝑘 , ∑ 𝑍𝑘

𝑡+1𝑘
𝑖=1 , ∑ �̂�𝑘

𝑡+1𝑘
𝑖=1 , �̂�, 𝑆 ∈ ℝ𝑚×𝑛 , they are obviously 1 

bounded; and using Corollary 1.1 and 1.2, we have: 2 

‖𝒜X − 𝒜Y‖ ≤ 𝛼𝛽‖𝐵𝑁‖ (B.5) 

Obviously, it demonstrates: 3 

‖𝒜𝑛Α − 𝒜𝑛Β‖ ≤ (𝛼𝛽)𝑛‖𝐵𝑁‖ < 1 (B.6) 

If and only if 0 < (𝛼𝛽)𝑛 < 1, or 0 < 𝛼𝛽 < 1, 𝔄𝑛 is equivalent to a contraction operator. According 4 

to Lemma 1.2 and Corollary 1.1, 1.2, it also indicates: when n is large enough,  𝑛 > 𝑁, we have:  5 

lim
𝑛→∞

‖𝒜𝑛Α − 𝒜𝑛Β‖ ≤ lim
𝑛→∞

(𝛼𝛽)𝑛‖𝐵𝑁‖ (B.7) 

Obviously, if and only if lim
𝑛→∞

(𝛼𝛽)𝑛‖𝐵𝑁‖ < 1, the iterative ADMM operator can be equivalent to a 6 

contraction operator. 7 

 8 

Theorem 2.2 (Initialization Operator is bounded) If we denote the sparse operator as ℳ: ℝ𝑆×𝑇 →9 

ℝ𝑆×𝑇, we have ‖ℳ‖ < ∞. 10 

Proof: according to the definition of operator norm (Rudin 1973), ‖ℳ‖ ≤ 𝑠𝑢𝑝
‖𝑀𝑋‖

‖𝑋‖
; obviously, 11 

‖ℳ𝑋‖ and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we 12 

denote: 13 

𝑋 =

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

 ℳ =

[
 
 
 
 

𝑏1

𝑏2

⋮
𝑏𝑛−1

𝑏𝑛 ]
 
 
 
 

 ‖𝑋‖ < ∞ ‖ℳ𝑋‖ < ∞ 

 

(B.8) 

Obviously, ‖ℳ‖ < ∞.  14 

 15 

Theorem 2.3 (Sparsity Operator is bounded) If we denote the sparse operator as 𝒮: ℝ𝑆×𝑇 → ℝ𝑆×𝑇, 16 

we have ‖𝒮‖ < ∞. 17 

Proof: according to the definition of operator norm (Rudin, 1973), ‖𝒮‖ ≤ 𝑠𝑢𝑝
‖𝒮𝑋‖

‖𝑋‖
; obviously, ‖𝒮𝑋‖ 18 

and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we denote: 19 

𝒮𝑋 =

[
 
 
 
 
𝑎1

𝑎2

⋮
0
𝑎𝑛]

 
 
 
 

 𝒮𝑌 =

[
 
 
 
 

𝑏1

0
⋮

𝑏𝑛−1

𝑏𝑛 ]
 
 
 
 

 

 

(B.9) 

and we examine: 20 
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𝒮𝑋 − 𝒮𝑌 =

[
 
 
 
 

𝑎1 − 𝑏1

𝑎2

−

⋮
𝑏𝑛−1

𝑎𝑛 − 𝑏𝑛]
 
 
 
 

;  𝑋 − 𝑌 =

[
 
 
 
 

𝑎1 − 𝑏1

𝑎2 − 𝑏2

⋮
𝑎𝑛−1 − 𝑏𝑛−1

𝑎𝑛 − 𝑏𝑛 ]
 
 
 
 

, ‖𝒮𝑋 − 𝒮𝑌‖ ≤ 𝑠 ‖𝑋 − 𝑌‖,  

 

(B.10) 

Without loss of generality, and based on Lemma 1.2, we calculate the ℓ2 norm, and we have:  1 

∞ > 𝑠 ≥
∑ (𝑎𝑖 − 𝑏𝑖)

2𝑛
𝑖=𝑢 + ∑ (𝑎𝑖)

2 + ∑ (𝑏𝑖)
2𝑡

𝑖=𝑤
𝑝
𝑖=𝑣

∑ (𝑎𝑖 − 𝑏𝑖)
2𝑛

𝑖=1

  

(B.11) 

This inequality demonstrates that ‖𝒮‖ is a bounded. And 𝒮 is a bounded operator. 2 

 3 

Theorem 2.4 (Rank Reduction Operator is bounded) If we denote the sparse operator as  4 

ℛ: ℝ𝑆×𝑇 → ℝ𝑆×𝑇, we have ‖ℛ‖ < ∞. 5 

Proof: According to the definition of operator norm (Rudin, 1973), ‖ℛ‖ ≤ 𝑠𝑢𝑝
‖ℛ𝑋‖

‖𝑋‖
; obviously, ‖ℛ𝑋‖ 6 

and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we denote: 7 

𝑋 =

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

, ℛ𝑋 =

[
 
 
 
 
 
𝑏1

𝑏2

⋮
𝑏𝑘

⋮
0 ]

 
 
 
 
 

 

 

(B.12) 

Eq. (B.31) implies: 8 

𝑠𝑢𝑝
‖ℛ𝑋‖

‖𝑋‖
=

∑ 𝑎𝑖
2𝑛

𝑖=1

∑ (𝑎𝑖−𝑏𝑖)
2𝑝

𝑖=𝑢 +∑ 𝑎𝑖
2𝑞

𝑖=𝑣

< ∞. (B.13) 

 9 

Theorem 2.6 (Normalization Operator of Deep NMF is bounded) If we denote the normalization 10 

operator of Deep NMF as 𝒩: ℝ𝑆×𝑇 → ℝ𝑆×𝑇, we have ‖𝒩‖ ≤ 1. 11 

Proof: according to the definition of operator norm (Rudin, 1973), ‖𝒩‖ ≤ 𝑠𝑢𝑝
‖𝒩𝑋‖

‖𝑋‖
; obviously, 12 

‖𝒩𝑋‖ and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we 13 

denote: 14 

𝑋 =

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

 𝒩𝑋 =

[
 
 
 
 

𝑏1

0
⋮

𝑏𝑛−1

𝑏𝑛 ]
 
 
 
 

 

 

(B.14) 

 15 

According to Eq. (B.33), we need to notice: {𝑎𝑖}𝑖=1
𝐾 ⊆ [−𝑞, 𝑞] , 1 ≤ 𝑞 < ∞ ; {𝑏𝑖}𝑖=1

𝐾 ⊆ [0,1] . 16 

Obviously, ‖𝒩𝑋‖ < ‖𝑋‖. Finally, we have: ‖𝒩‖ < 1. 17 

 18 
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Theorem 2.7 (Contraction of Updating Operator Deep NMF) If we denote the updating operator as 1 

𝒰: ℝ𝑆×𝑇 → ℝ𝑆×𝑇, we have ‖𝒰‖ < 1. 2 

Proof: according to the definition of operator norm (Rudin, 1973), ‖𝒰‖ ≤ 𝑠𝑢𝑝
‖𝒰𝑋‖

‖𝑋‖
; obviously, ‖𝒰𝑋‖ 3 

and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we denote: 4 

𝑋 =

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

  𝒰𝑋 =

[
 
 
 
 

𝑏1

0
⋮

𝑏𝑛−1

𝑏𝑛 ]
 
 
 
 

 

 

(B.15) 

According to the iterative format of Deep NMF, we need to notice: 𝑏𝑖 =
𝑎𝑖

max𝑓(𝑎𝑖)
; obviously, ‖𝒰𝑋‖ <5 

‖𝑋‖. Finally, we have: ‖𝒰‖ < 1. Otherwise, if ‖𝒰‖ > 1, when 𝑘 → ∞, we have: ‖𝒰𝑋‖ = ∞. 6 

 7 

 8 

Theorem 2.8 (Contraction of GD Operator) Gradient Descent (GD) is a bounded contraction 9 

operator, if and only if the derivative of target function is bounded:  10 

|𝑓′′(𝜍)| <
1

𝜎
< ∞, 𝜎 is the step length. 11 

Proof: The standard iteration format is: 12 

𝑥𝑘+1 = 𝑥𝑘 − 𝜎𝑓′(𝑥𝑘) 

  
(B.16) 

Using the definition of operator, we have: 13 

𝜏(𝑥𝑘) = 𝑥𝑘 − 𝜎𝑓′(𝑥𝑘) ∀𝜎 ∈ (0,1) 

  
(B.17) 

And we have: 14 

𝜏‖𝜏𝑋 − 𝜏𝑌‖ = ‖(𝑋 − 𝑌) − 𝜎(𝑓′(𝑋) − 𝑓′(𝑌))‖ (B.18) 

Using Mean value theorem, we have: 15 

𝜏‖𝜏𝑋 − 𝜏𝑌‖ = |1 − 𝜎𝑓′′(𝜍)|‖𝑋 − 𝑌‖ (B.19) 

According to the definition of contraction operator (Rudin, 1973), if and only if: 16 

|1 − 𝜎𝑓′′(𝜍)| < 1, |1 − 𝜎𝑓′′(𝜍)| ∈ 𝕂 (B.20) 

It also implies, when the following inequality holds: 17 

|𝑓′′(𝜍)| <
1

𝜎
< ∞ (B.21) 

GD is considered as a contraction mapping/operator. Without generality, we can set 𝜎 <
1

|𝑓′′(𝑥)|+1
. 18 

And obviously, using multiplicative inequality, we have: 19 
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‖𝜏𝑋 − 𝜏𝑌‖ ≤ ‖𝜏‖‖𝑋 − 𝑌‖ (B.22) 

Since 𝑋 and 𝑌 both denote in finite ℓ2 space, we have: 1 

‖𝜏‖‖𝑋 − 𝑌‖ ≤ ∞ 

 
(B.23) 

Using Uniformly bounded theorem, we have: 2 

‖𝜏‖ ≤ 𝑀, 𝑀 ∈ 𝕂 

 
(B.24) 

GD is a bounded mapping/operator. 3 

According to Lemma 1.2, and Corollary 1.1-1.2, obviously, for n iterations for an operator, and if we 4 

set the accuracy level as 휀, we have: 5 

‖𝜏𝑛𝑋 − 𝜏𝑛+1𝑌‖ = 𝜎𝑛‖𝑋 − 𝜏𝑌‖ < 휀 

 
(B.25) 

Since 𝑋 and 𝑌 is both denoted in finite ℓ2 space, we have: 6 

𝜎𝑛‖𝑋 − 𝜏𝑌‖ ≤ 𝜎𝑛(‖𝑋‖ + ‖𝜏𝑌‖) (B.26) 

Obviously, ‖𝑋 − 𝑌‖ℓ2 is bounded, and we have: 7 

𝜎𝑛(‖𝑋‖ + ‖𝜏𝑌‖) ≤ 𝜎𝑛(‖𝑋‖ + ‖𝜏‖‖𝑌‖) ≤ 𝜎𝑛(‖𝑋‖ + ‖𝑌‖) ≤ 𝜎𝑛 ∙ 2‖𝑋‖ 

0 < 𝜎𝑛 ∙ 2‖𝑋‖ < 휀 

𝑛 > 𝑙𝑜𝑔
𝜀

2‖𝑋‖
 / 𝑙𝑜𝑔 𝜎 > 0 

 

(B.27) 

We provide the infimum of iteration as 𝑙𝑜𝑔
𝜀

2‖𝑋‖
 / 𝑙𝑜𝑔 𝜎 to approach the accuracy level 휀. 8 

 9 

Theorem 2.9 (Operator PCA is bounded) If we denote the updating operator as 𝒫: ℝ𝑆×𝑇 → ℝ𝑆×𝑇, 10 

we have ‖𝒫‖ < ∞. 11 

Proof: According to the definition of operator norm (Rudin, 1973), ‖𝒫‖ ≤ 𝑠𝑢𝑝
‖𝒫𝑋‖

‖𝑋‖
; obviously, ‖𝒰𝑋‖ 12 

and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we denote: 13 

𝑋 =

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

  𝒫𝑋 =

[
 
 
 
 
 

𝑏1

𝑏2

⋮
𝑏𝑛−𝑘

⋮
0 ]

 
 
 
 
 

 

 

(B.29) 

According to the dimensional reduction of PCA, we have: 𝑠𝑢𝑝
‖𝒫𝑋‖

‖𝑋‖
= 𝑠𝑢𝑝

(∑ 𝑏𝑖
2𝑛−𝑘

𝑖=1 )
1
2

(∑ 𝑎𝑖
2𝑛

𝑖=1 )
1
2

< ∞ . It 14 

demonstrates: ‖𝒫‖ < ∞. 15 

 16 
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Theorem 2.10 (Contraction of Fixed-Point Operator) If we denote the updating operator as  1 

ℱ: ℝ𝑆×𝑇 → ℝ𝑆×𝑇, we have ‖ℱ‖ < 1. 2 

Proof: according to the definition of operator norm (Rudin, 1973), ‖ℱ‖ ≤ 𝑠𝑢𝑝
‖ℱ𝑋‖

‖𝑋‖
; obviously, ‖𝒰𝑋‖ 3 

and ‖𝑋‖ is bounded, since both of norms are based on finite dimensional matrix. And if we denote: 4 

𝑋 =

[
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛−1

𝑎𝑛 ]
 
 
 
 

 ℱ𝑋 =

[
 
 
 
 

𝑏1

0
⋮

𝑏𝑛−1

𝑏𝑛 ]
 
 
 
 

 

 

(B.30) 

According to the iterative format of Deep NMF, we need to notice: 𝑏𝑖 =
𝑎𝑖

√‖𝑎𝑖‖𝐶𝑖‖𝑎𝑖
𝑇‖

; obviously, 5 

‖ℱ𝑋‖ < ‖𝑋‖. Finally, we have: ‖ℱ‖ < 1. Otherwise, if ‖ℱ‖ > 1, when 𝑘 → ∞, we have: ‖ℱ𝑋‖ =6 

∞. 7 

 8 

 9 

Theorem 2.11 (Inequality of Operator Norms) According to Theorem 2.1, 2.7, 2.8 and 3.0, if we 10 

assume: ‖𝒜𝑘+1‖ = 𝛼1‖𝒜𝑘‖ , ‖𝒢𝑘+1‖ = 𝛼2‖𝒢𝑘‖ , ‖𝒰𝑘+1‖ = 𝛼3‖𝒰𝑘‖ , ‖ℱ𝑘+1‖ = 𝛼4‖ℱ𝑘‖ , we 11 

have: 𝛼1 ≠ 𝛼3, 𝛼4; 𝛼2 ≠ 𝛼3, 𝛼4; 12 

Proof: Proof by contradiction. In general, we assume ‖𝒜‖ = ‖𝒰‖, according to the iterative formats 13 

of Deep MF and Deep NMF, and considering: 14 

𝒜 𝑘+1 ← 𝒜 𝑘 − min (𝑓𝒜) 

 
(B.31) 

If we employ the  𝛼𝒜 𝑘 = 𝒜 𝑘+1 to replace 𝒜 𝑘+1: 15 

𝛼𝒜 𝑘 = 𝒜 𝑘 − min (𝑓𝒜) 

 
(B.32) 

And we can reformat this equality as: 16 

(1 − 𝛼)𝒜 
𝑘

= min (𝑓𝒜) 

 
(B.33) 

Considering the iterative format of Deep NMF: 17 

𝔑𝑘+1 ← 𝔑𝑘/m𝑎𝑥 (𝑓𝔑) 

 
(B.34) 

Let we denote: 18 

|
1

m𝑎 𝑥(𝑓𝔑)
| ≤ 휀 

 

(B.35) 

And considering an extreme condition, ∀휀𝑖 ≤ 휀, for each iteration i, and lim
𝑖→∞

휀𝑖 = 휀; 19 
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lim
𝑖→∞

(1 − 휀𝑖)𝒜 
𝑘

= min (𝑓𝒜) 

 

(B.36) 

 1 

Then we have the conclusion: 2 

∃ 𝑛 ≪ 𝑘,𝒜 𝑘 = min (𝑓𝒜) 

 
(B.37) 

It demonstrates for the iterative format of Deep MF, before convergence, the iteration can be terminated, 3 

since a very small norm of operator 𝒜. 𝒜 cannot guarantee the convergence. It obviously disobeys 4 

the property of ADMM. 5 

Similarly, we can also prove 𝛼2 ≠ 𝛼3, 𝛼4; and 𝛼1 ≠ 𝛼4. 6 

  7 
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Appendix C 1 

 2 

Assumption 3.1 For all operators, these operators should be considered as linear operators, and we have:  3 

Φ ∙ (X + Y) = Φ ∙ X + Φ ∙ Y (C.1) 

Assumption 3.2 For any input matrix, we can successfully separate the vital information and 4 

background noise. If we denote: 𝑉 = {⋃ 𝑣𝑜𝑥𝑒𝑙𝑖
𝑃
𝑖=1 , 𝑣𝑜𝑥𝑒𝑙𝑖 ∈ 𝐵𝑁}, and 𝑁 = {⋃ 𝑣𝑜𝑥𝑒𝑙𝑖,

𝑄
𝑖=1  𝑣𝑜𝑥𝑒𝑙𝑖 ∉5 

𝐵𝑁}. BN represents the functional areas, i.e., potentially activated areas of brain. We have some crucial 6 

assumptions:  𝑉 ∩ 𝑁 = ∅, 𝑉 ≽ 0, 𝐵 ≽ 0, ‖𝑉‖ ≫ ‖𝑁‖. 7 

Lemma 3.1 (Continuous Operators) For all operators analyzed in this study, if 𝑘 > 𝐾, ∀𝑘 ∈ ℕ, these 8 

iterative operators can be considered as consistent operator. It means: if we have ‖𝑉 − �̂�‖ ≤ 휀 , 9 

‖𝔄𝑘𝑉 − 𝔄𝑘�̂�‖ → 0. 10 

Proof:  We denote:  𝔄, 𝔏, 𝔗, 𝔑 ∈ ℭ: ℝ𝑠×𝑡 → ℝ𝑠×𝑡 11 

For 𝑉, �̂� ⊆ ℝ𝑠×𝑡, we assume that: 12 

‖𝑉 − �̂�‖ ≤
휀

𝑀
 (C.2) 

If 𝑘 > 𝐾, For any operator belongs to ℭ can be considered as a contraction operator, and we have: 13 

‖𝔄𝑘𝑉 − 𝔄𝑘�̂�‖ ≤ ‖𝔄𝑘‖ ∙ ‖𝑉 − �̂�‖ ≤ 𝑀 ∙
휀

𝑀
= 휀 (C.3) 

This inequality demonstrates that all operators of ℭ, if k is large enough, can be treated as the consistent 14 

operators (Rudin, 1973). Similarly, it also demonstrates: ‖𝔄𝑘𝑉 − 𝔏𝑘𝑉‖ ≤ 휀 15 

 16 

Theorem 3.1 (Distinctive Spatial Similarity) If we denote the following set: 17 

𝐷𝑒𝑒𝑝 𝑀𝐹:𝐷 = {𝔄𝑘𝑁, 𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 

𝐷𝑒𝑒𝑝 𝑆𝐷𝐿: 𝐿 = {𝔏𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 

𝐷𝑒𝑒𝑝 𝐹𝐼𝐶𝐴: 𝐼 = {𝔗𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 ∉ 𝑇} 

𝐷𝑒𝑒𝑝 𝑁𝑀𝐹: 𝛩 = {𝔑𝑘𝑁,𝑁 ∈ ⋃𝑣𝑜𝑥𝑒𝑙𝑖,

𝑀

𝑖=1

 𝑣𝑜𝑥𝑒𝑙𝑖 → 0} 

 

 

 

(C.4) 

And considering the iteration k, it implies: 18 
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|𝔄𝑘𝑉|

|𝑉 ∪ 𝐷|
≤

|𝔏𝑘𝑉|

|𝑉 ∪ 𝐿|
≤

|𝔗𝑘𝑉|

|𝑉 ∪ 𝐼|
≤

|𝔑𝑘𝑉|

|𝑉 ∪ 𝛩|
 

(C.5) 

where |∙| denotes the number of positive elements.  1 

Proof:  Based on assumptions 3.1 and 3.2, if  ∀ 𝑘 ∈ ℕ, we have: 2 

𝔄𝑘𝐶 = 𝔄𝑘𝑉 + (𝔄𝑘𝑁) 

𝔏𝑘𝐶 = 𝔏𝑘𝑉 + (𝔏𝑘𝑁) 

𝔗𝑘𝐶 = 𝔗𝑘𝑉 + (𝔗𝑘𝑁) 

𝔑𝑘𝐶 = 𝔑𝑘𝑉 + 𝛩 

 

(C.6) 

According to Corollary 1.1 and 1.2, 𝑘 > 𝐾, we have: 3 

0 = ‖𝛩‖ ≤ ‖𝔗𝑘𝑁‖ ≤ ‖𝔏𝑘𝑁‖ ≤ ‖𝔄𝑘𝑁‖ < ∞ (C.7) 

We can also rewrite it as: 4 

0 = |𝛩| < |𝐼| ≤ |𝐿| ≤ |𝐷| (C.8) 

And, according to the spatial similarity, we also have: 5 

𝐷𝑒𝑒𝑝 𝑀𝐹𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≝
|(𝔄𝑘V ∪ 𝐷) ∩ 𝑉|

|𝑉 ∪ (𝔄𝑘A ∪ 𝐷)|
=

|𝔄𝑘𝑉|

|𝑉 ∪ 𝐷|
 

𝐷𝑒𝑒𝑝 𝑆𝐷𝐿𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≝
|(𝔏𝑘𝑉 ∪ 𝐿) ∩ 𝐴|

|𝑉 ∪ (𝔏𝑘V ∪ 𝐿)|
=

|𝔏𝑘A|

|𝑉 ∪ 𝐿|
 

𝐷𝑒𝑒𝑝 𝐹𝐼𝐶𝐴𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≝
|(𝔗𝑘𝑉 ∪ 𝐼) ∩ 𝑉|

|𝑉 ∪ (𝔗𝑘A ∪ 𝐼)|
=

|𝔗𝑘𝑉|

|𝑉 ∪ 𝐼|
 

𝐷𝑒𝑒𝑝 𝑁𝑀𝐹𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≝
|(𝔑𝑘𝑉 ∪ 𝛩) ∩ 𝑉|

|𝑉 ∪ (𝔑𝑘A ∪ 𝛩)|
=

|𝔑𝑘𝑉|

|𝑉|
 

 

 

(C.10) 

Again, considering  𝑘 > 𝐾, and Corollary 1.1 to 1.2, and Theorem 3.2, we have: 6 

|𝔑𝑘𝑉| = |𝔗𝑘𝑉| = |𝔏𝑘𝑉| = |𝔄𝑘𝑉| (C.11) 

Obviously, we have:  7 

0 < |𝑉| = |𝑉 ∪ 𝛩| ≤ |𝑉 ∪ 𝐼| ≤ |𝑉 ∪ 𝐿| ≤ |𝑉 ∪ 𝐷| < ∞ (C.12) 

Finally, the following inequality holds, such that: 8 

0 <
|𝔄𝑘𝑉|

|𝑉 ∪ 𝐷|
≤

|𝔏𝑘𝑉|

|𝑉 ∪ 𝐿|
≤

|𝔗𝑘𝑉|

|𝑉 ∪ 𝐼|
≤

|𝔑𝑘𝑉|

|𝑉 ∪ 𝛩|
 

(C.13) 

 9 

Theorem 3.2 (Bounded Iterative Operators) For all operators analyzed in this study, if 𝑘 > 𝐾, ∀𝑘 ∈10 

ℕ, these iterative operators can be considered as consistent operator. If we have: ‖�̂�‖ ≤ 휀, it means: 11 

‖𝔑𝑘𝑉 − 𝔄𝑘𝑉‖ → 0, ‖𝔏𝑘𝑉 − 𝔄𝑘𝑉‖ → 0 and ‖𝔗𝑘𝑉 − 𝔄𝑘𝑉‖ → 0. 12 

Proof:  We denote:  𝔄, 𝔏, 𝔗, 𝔑 ∈ ℭ: ℝ𝑠×𝑡 → ℝ𝑠×𝑡 13 

If 𝑘 > 𝐾, For any operator belongs to ℭ can be considered as a contraction operator, according to 14 

Lemma 3.1, and we have: 15 
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‖𝔑𝑘𝑉 − 𝔄𝑘𝑉‖ = ‖𝔑𝑘𝑉 − 𝔑𝑘�̂� + 𝔑𝑘�̂�−𝔄𝑘�̂� + 𝔄𝑘�̂� − 𝔄𝑘𝑉‖

≤ ‖𝔑𝑘𝑉−𝔑𝑘�̂�‖ + ‖𝔑𝑘�̂�−𝔄𝑘�̂�‖ + ‖𝔄𝑘�̂� − 𝔄𝑘𝑉‖ 

(C.14) 

According to Lemma 3.1, and we have:  1 

‖𝔑𝑘
𝑉−𝔑𝑘

�̂�‖ ≤
휀

3
 

‖𝔄𝑘�̂� − 𝔄𝑘𝑉‖ ≤
휀

3
 

 

(C.15) 

Considering the inequality:  2 

‖𝔑𝑘
�̂�−𝔄𝑘�̂�‖ ≤ ‖𝔑𝑘

−𝔄𝑘‖ ∙ ‖�̂�‖ (C.16) 

Obviously, ‖𝔑𝑘−𝔄𝑘‖ ≤ 𝑀, and we choose ‖�̂�‖ ≤
𝜀

3𝑀
; it implies: 3 

‖𝔑𝑘�̂�−𝔄𝑘�̂�‖ ≤
휀

3
 (C.17) 

And we have:  4 

‖𝔑𝑘𝑉 − 𝔄𝑘𝑉‖ ≤ 휀 

 
(C.18) 

 5 
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