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Summary 
The UK Biobank (UKB) represents an unprecedented population-based study of 502,543 

participants with detailed phenotypic data and linkage to medical records. While the 

release of genotyping array data for this cohort has bolstered genomic discovery for 

common variants, the contribution of rare variants to this broad phenotype collection 

remains relatively unknown. Here, we use exome sequencing data from 177,882 UKB 

participants to evaluate the association between rare protein-coding variants with 10,533 

binary and 1,419 quantitative phenotypes. We performed both a variant-level phenome-

wide association study (PheWAS) and a gene-level collapsing analysis-based PheWAS 

tailored to detecting the aggregate contribution of rare variants. The latter revealed 911 

statistically significant gene-phenotype relationships, with a median odds ratio of 15.7 for 

binary traits. Among the binary trait associations identified using collapsing analysis, 83% 

were undetectable using single variant association tests, emphasizing the power of 

collapsing analysis to detect signal in the setting of high allelic heterogeneity. As a whole, 

these genotype-phenotype associations were significantly enriched for loss-of-function 

mediated traits and currently approved drug targets. Using these results, we summarise 

the contribution of rare variants to common diseases in the context of the UKB phenome 

and provide an example of how novel gene-phenotype associations can aid in therapeutic 

target prioritisation.  
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Introduction 
Identifying genetic variants that contribute to human disease has facilitated the 

development of highly efficacious and safe therapeutics.1–3 It is now recognised that 

human genetic evidence supporting a drug target increases the likelihood of approval by 

at least two-fold.4,5 The UK Biobank (UKB), which integrates genetic data with phenotypic 

data linked to electronic health records for approximately 500,000 individuals, has 

provided a medical research resource of unprecedented scale. The release of genotyping 

array data for this cohort has ushered in a new era of genomic discovery through genome-

wide association studies (GWAS) focused on common variants.6,7 However, there are 

two factors that make it challenging to directly translate such genetic associations into 

potential therapeutic opportunities. First, most common variants only have a modest 

effect on phenotype compared to rare variants. Second, it is difficult to precisely map 

complex disease associations to causal genes due to linkage disequilibrium and the fact 

that the implicated variants are often non-coding, which complicates efforts to translate 

such genetic associations into potential therapeutic opportunities. 

It is well-recognised that rare functional variants tend to have larger phenotypic 

effects,8 enhancing their value for gleaning biological insight into disease. However, due 

to a lack of large-scale clinico-genomic datasets, the contribution of rare variants has until 

recently only been assessed for a subset of complex traits. The genome Aggregation 

Database (gnomAD), which includes exome and genome sequencing data of 141,456 

individuals, constitutes the largest publicly available next-generation sequencing 

resource to date.9,10 While this resource has undeniably transformed our ability to interpret 

rare variants and characterise disease-associated genes, it is unsuited for the systematic 

assessment of the contribution of rare variation to human disease because of a lack of 

linked phenotypic data. Recent analyses of smaller sequenced collections with linked 

phenotypic data, including the first release of exome sequencing data for 50,000 UKB 

participants, have indicated an important role of rare variation in complex disease, 

highlighting a need for larger sample sizes to better understand this contribution.11,12 

In this study, we analyse exome sequence data from 177,882 unrelated European 

ancestry UKB participants to evaluate the association between protein-coding variants 

with 10,533 binary and 1,419 quantitative phenotypes. First, we present the diversity of 
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phenotypes and sequence variation captured in this cohort. We then perform variant- and 

gene-level association tests to identify protein-coding genetic risk factors across the allele 

frequency spectrum for thousands of clinical and quantitative traits. To illustrate the value 

of this approach, we perform molecular studies to interrogate the biological effects of a 

novel association between hemicentin 1 (HMCN1) expression and lung function. These 

analyses collectively provide a comprehensive catalogue of the contribution from protein-

coding variation to the genetic architecture of a broad range of complex human diseases 

and biomarkers. 

Results 

Clinical and demographic characterization of the cohort 
We analysed exome sequence data from 200,593 UKB participants, totalling more than 

665 terabytes of raw sequencing data, which was processed through a standardised, 

cloud-based bioinformatics pipeline (methods). We performed stringent quality control to 

remove samples with low sequencing quality, and we restricted cohort analyses to 

unrelated index samples (methods).  

Participant data includes periodically updated health records, self-reported survey 

information, linkage to death and cancer registries, quantitative biomarkers, imaging data 

and other phenotypic endpoints.7 Due to the variable categorisation modes, scaling, and 

follow-up responses inherent to this data, we created a modified version of the previously 

introduced PHESANT package (see methods),13 in order to systematically harmonise 

phenotypes. In total, we considered 10,533 binary traits and 1,419 quantitative traits, 

which we categorised into 22 distinct ICD-10-based chapters (Fig. 1a, b, Supplementary 
Table 1). Due to the correlative structure among the binary traits, we also introduced a 

union mapping approach, in which we attempted to group similar phenotypes together 

(methods, Supplementary Table 1). Therefore 4,817 of the 10,533 binary phenotypes 

are union phenotypes. 

The average age at recruitment for sequenced individuals was 56.7 years and 55% 

of the sequenced cohort were female. All variant- and gene-level association tests were 

performed in individuals of European genetic ancestry (methods). The median number 

of cases per binary union phenotype is 132 (interquartile range: 49-527) (Fig. 1c, d) and 
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the median number of binary union-mapped traits per participant is 25 (interquartile range: 

12-45) of the possible 4,817 (Fig. 1e).  

 
Figure 1. Phenotypic and demographic diversity of the sequenced UK Biobank cohort. (a) The 
percentage of binary union traits assessed in the cohort that correspond to the chapter. (b) The 
percentage of quantitative traits assessed in the cohort per chapter. (c) The median number of cases 
of European ancestry per binary union phenotype stratified by chapter. (d) The median number of 
participants of European ancestry tested for quantitative traits stratified by chapter. (e) Histogram 
depicting the number of binary union phenotypes per patient. The x-axis was capped at 200 for visual 
clarity. (f) The distribution of represented genetic ancestries in the sequenced cohort. EUR = 
European, SAS = South Asian, AFR = African, EAS = East Asian, AMR = American. (g) The 
distribution of the number of ultra-rare (MAF < 0.005%) qualifying variants (QVs) in OMIM-derived 
Mendelian disease genes per ancestral group. Error bars in (c, d) represent the interquartile range. 
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 As we sequence more individuals from a given population, our resolution to 

evaluate variants across the allele frequency spectrum increases. When one considers 

ultra-rare (MAF<0.005%) non-synonymous variants among OMIM disease-associated 

genes, individuals of European ancestry (Fig. 1f) have a substantially higher number of 

such candidate variants (Fig. 1g). This indicates that the dearth of available sequencing 

data in non-European ancestries reduces our ability to effectively detect pathogenic 

variants in those ancestries, as has also previously been observed.14 It is therefore crucial 

that global biobanks that represent individuals of diverse genetic ancestries work towards 

providing reference data similar to the UKB for the benefit of the international medical 

community.  

 
Variant-level exome-wide association studies  
Exome sequencing allows us to test for the association between phenotypes and 

individual protein-coding variants across the allele frequency spectrum. The tendency of 

rare variants to have a larger effect on disease risk underscores the value of this dataset 

in assessing their contribution on a phenome-wide scale. Protein-truncating variants 

(PTVs), which are predicted to shorten the coding sequence of genes, constitute one 

class of variation that has revealed much about human biology and disease 

mechanisms.10,15 Furthermore, these variants hold promise for drug discovery since 

identifying PTVs that protect against human disease could provide direct human 

validation of potential therapeutic targets.3,16 By surveying sequence data from 191,022 

UKB participants of any ancestry, we observed that 96% of human protein-coding genes 

had at least one heterozygous putative PTV carrier, 40% had at least one putatively 

compound heterozygous or homozygous PTV carrier, and 18% of the 18,741 studied 

genes had at least one homozygous/hemizygous PTV carrier (Fig. 2a). Among the 

191,022 UKB participants, only 899 genes (4.7%) harboured a PTV with a MAF > 0.5%, 

a threshold comfortably captured via microarray technology (Fig. 2a), further emphasizing 

the power of exome-sequencing in studying this crucial class of genetic variation.  
We performed an exome-wide association study (ExWAS) across all phenotypes 

to test for genetic associations with variants that were observed among at least 6 of the 

177,882 European ancestry participants (equivalent to a MAF lower limit of 0.001%) 
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(methods). Adopting a p-value threshold of P<1×10-8 (methods), we identified a total of 

2,719 distinct genotype-phenotype associations for binary traits and 28,465 distinct 

associations for quantitative traits, outside of the MHC region as defined here by 

chr6:25Mbp-35Mbp (Table 1 and Supplementary Table 2). The variant with the lowest 

allele frequency that achieved study-wide significance was a Uromodulin (UMOD) 

frameshift variant associated with Chronic kidney disease, stage 5 (cohort MAF of 

0.0019%) (Table 1). Overall, we found that many of the significant ExWAS signals were 

explained by variants with a MAF<0.5% (Fig 2b). For the dominant model in particular, 

variants with a MAF<0.5% account for 27.5% of all statistically significant variant-level 

associations.  

We investigated direction of effect consistency by selecting quantitative trait 

phenotypes with at least five individually significant rare non-synonymous variants 

(MAF<0.1%) in a given gene. For all the quantitative trait gene-phenotype relationships 

(17/17), we observed that ³80% of the individually significant variants had the same 

direction of effect (Fig 2e). This observation indicates that it is uncommon to observe both 

negatively- and positively-associated rare variants for a specific gene-phenotype 

relationship (Fig 2e). 
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Figure 2. Summary of variant-level exome-wide association study results. (a) The number of 
genes (y-axis) with at least N protein-truncating variant (PTV) carriers (x-axis) in the cohort. The 
dotted line corresponds to (MAF > 0.5%, i.e. 2,873 carriers), the number of carriers typically reliably 
detected via array technologies. Colours correspond to heterozygous (Het), putative compound 
heterozygous (comp. het), and homozygous/hemizygous carriers (recessive). (b) The MAF 
distribution of genome-wide significant ExWAS variants across all binary phenotypes assessed. (c) 
The distribution of effect sizes for common (MAF≥0.5%) compared to rare (MAF < 0.5%) significant 
ExWAS variants. In plots b and c, we display the variants with the largest effect sizes achieved per 
gene. (d) Percentage of ExWAS study-wide significant PTVs or missense variants that were 
previously reported in ClinVar or the GWAS catalogue (including GWAS Catalogue variants within 
50kbp flanking sequence either side of the index variant). (e) Distribution of the directions of effect 
for the rare non-synonymous variant associations for the significant gene-phenotype relationships. 
Only quantitative phenotypes with at least five significant non-synonymous variant associations (p < 
1 x 10-8) in a given gene were considered.  
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As expected, effect sizes observed for the collection of rare variants that were 

significantly associated with disease were substantially higher when compared to the 

collection of common variants (Wilcox P = 2.4 x 10-40) (Fig. 2c). While some of the ExWAS 

variants significantly associated with disease reflect linkage with nearby causal variants, 

the associated PTVs and missense variants themselves often, but not universally, 

represent functional candidates for such associations.15 Notably, 22% (65 out of 302) of 

the study-wide significant non-synonymous variants were either unreported in prior 

GWAS studies (including 50kbp flanking windows) or not labelled as Pathogenic / Likely 

Pathogenic in ClinVar (Fig. 2d, Supplementary Table 2). Collectively, these analyses of 

rare protein-coding variants introduce novel statistically significant genetic associations, 

many of which have higher effect sizes than previously established variants in existing 

catalogues. 

 

Rare variant collapsing analyses 
In addition to variant-level association studies, we performed gene-level collapsing 

analyses. Rather than studying the effect of individual variants on disease, collapsing 

analysis assesses the effect of a class of variation on disease by comparing the aggregate 

number of cases to the aggregate number of controls that carry qualifying variants (QVs) 

in a given gene. This procedure produces one statistical test per gene instead of one per 

variant. Collapsing analysis has been shown to substantially increase the power to detect 

genetic risk in phenotypes driven by an allelic series.17–20 We performed collapsing 

analyses across 18,741 genes for 11,952 phenotypes and adopted 12 different QV 

classes (methods and Supplementary Table 3). This collection equated to 2.7 billion 

gene-phenotype tests. The 12 QV classes included 10 dominant models, one recessive 

model, and one synonymous variant model, akin to an empirical negative control. For 

each QV class, the proportion of cases is compared to the proportion of controls carrying 

QVs in each gene. The exception is the recessive model, in which a subject must carry 

two QVs or be hemizygous for a single QV (methods). 

 Due to high correlation among the 12 QV classes and among the assessed 

phenotypes, defining a significance threshold for this analysis poses a challenge. With a 

priority placed on avoiding false claims, we defined two null distributions: an empirical null 
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distribution using the synonymous collapsing model, and an n-of-1 permutation based 

null distribution. These two null distributions independently converged on a study-wide 

significance threshold of P £ 5 ×10-9 (methods). Adopting this threshold as collapsing 

study-wide significance, we identified 424 significant gene-phenotype relationships for 

binary traits and 487 for quantitative traits (Fig 3a, b, Supplementary Table 4). The 

majority of these signals emerged from the PTV QV classes (76.4% of significant binary 

associations; 58.3% of significant quantitative associations), with the remaining signals 

attributable to classes expanding beyond PTVs, thus emphasising the importance of 

studying variant types beyond PTVs in a gene-based approach.  
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Figure 3. Summary of gene-level collapsing analysis results. (a, b) Manhattan plot depicting 
significant gene-phenotype associations for quantitative and binary traits, respectively. Only the 
strongest effect size association per collapsing model is displayed. The dashed line represents the 
genome-wide significant p-value threshold (5 x 10-9). The plots are capped at -log10p=50. (c) 
Depiction of select strong effect gene associations per disease area. Genes with the highest OR for 
a chapter or with OR>100 are labelled. (d) Illustration of large effect gene-phenotype associations 
for select disease-related biomarkers. (e) Distribution of lambda (inflation factor) values across all 
collapsing models for binary and quantitative traits. (f) Forest plot demonstrating enrichment for 
known drug targets stratified by statistical significance (Tier 1: statistically significant genes (P < 5x10-

9); Tier 2: statistically suggestive genes (5x10-9 < P < 1x10-7)) achieved across all collapsing models 
for binary and quantitative traits. (g) Percentage of suggestive binary gene-phenotype associations 
that became significant (sig) (P < 5x10-9), non-significant (non-sig) (P > 1x10-7) or remained 
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suggestive (sugg) (5x10-9 < P < 1x10-7) with each successive UKB tranche release for binary traits 
(supplementary methods) (h) Bar chart depicting the proportion of distinct gene-phenotype 
relationships detected either exclusively via collapsing analyses (coll) or through both single variant 
and collapsing analyses (ExWAS/coll).  
  

 The gene-level collapsing analyses identified a plethora of large effect signals 

across most disease areas and disease-relevant quantitative traits (Fig. 3c, d). The 

median genomic inflation factor (λ) across the collapsing analysis PheWAS was 1.002 for 

binary traits (range: 0.64-1.41) and 1.010 for quantitative traits (range: 0.92-1.33), 

indicating that our test statistics are highly robust to any systematic bias or other sources 

of inflation (Fig. 3e). The majority of the associations for binary phenotypes (84.9%) are 

supported by OMIM or as Pathogenic/Likely Pathogenic in ClinVar, providing further 

validation that our collapsing analysis paradigm captures robust rare variant-driven 

signals with high confidence (Supplementary Table 4). This includes well-established 

rare germline variants in genes associated with monogenic disease (for example, PTVs 

in polycystin 1 (PKD1) with chronic kidney disease and HBB with thalassemia), but also 

some genes with expanded phenotypes beyond those reported in OMIM. For example, if 

we look at the 12.0% of the European population who are carriers of a filaggrin (FLG) 

PTV, we find those carriers have significantly higher risk for well-known associations, 

such as dermatitis (P=3.9x10-63; OR: 1.95 [95%CI: 1.81 – 2.10]) and asthma (P=2.9x10-

18; OR: 1.21 [95%CI: 1.16 – 1.27]),21 as well as additional diseases like melanoma 

(P=2.0x10-7; OR: 1.18 [95%CI: 1.11 – 1.26])22. Concomitant increases in vitamin D levels 

(P=4.8x10-80; β: 0.14 [95%CI: 0.13 – 0.16])23 suggest risk of melanoma and basal cell 

carcinoma in FLG PTV carriers could be attributable to increased sensitivity to ultraviolet 

B radiation. Such a resource presents the community with a powerful opportunity to 

investigate a wide spectrum of phenotypes associated with high-impact genetic 

aberrations in any given protein-coding gene of research interest.  

Given the genotype-first approach employed across this large population-based 

dataset, penetrance estimates for gene-phenotype relationships can be generated with 

less ascertainment bias and greater confidence than those reported previously from case-

based approaches. Penetrance estimates for rare (MAF<0.1%) PTVs in FLG with respect 

to asthma (15.5% [95% CI: 14.9% - 16.0%]) or eczematous dermatitis (4.5% [95% CI: 

4.2% - 4.8%]) diagnoses contrast to penetrance estimates derived from gene-phenotype 

relationships of larger effects, such as PTVs in HBB and thalassaemia diagnoses (69.0% 
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[95% CI: 49.2% - 84.7%]). It is foreseeable that through careful variant curation and more 

refined clinical phenotyping beyond simple ICD-10 codes, the UK Biobank dataset can 

potentially provide population-level penetrance estimates for established gene-disease 

relationships, not only for individual variants, but also for an aggregated class of variants 

(e.g., PTVs) in the gene. This might be limited to indications for which the prevalence in 

UK Biobank is consistent with that reported in literature. 

Despite adopting a germline-tuned bioinformatics pipeline, seven study-wide 

significant genes were found to associate with haematological malignancies and this 

detection of somatic blood mutations was attributable to the blood-based sequencing 

nature of this dataset (Supplementary Table 5 and Supplementary Table 6). We also 

identified several genes that achieved study-wide significance for putatively protective 

PTVs, including classical examples of APOB and PCSK9 (Supplementary Table 7) and 

more in the suggestive p-value range (Supplementary Table 4). Such signals provide 

validation for existing therapeutic strategies and may stimulate future therapeutic 

development opportunities.  

Collectively, these rare-variant based findings reflect biological insight into 

common complex diseases and provide substrate for future therapeutic development 

opportunities. This is supported by the data that, for both binary and quantitative traits, 

UK Biobank derived statistically significant gene-phenotype associations were enriched 

for FDA approved drugs (binary OR: 5.60 [95% CI: 2.60-10.6]; P: 1.31x10-6; quantitative 

OR: 3.65 [95% CI: 2.22-5.66]; P: 5.18x10-8) (Fig. 3f, methods). Compared to two smaller 

ground-breaking UKB PheWAS’s that also applied gene-based aggregate statistics,11,12 

we identified a 1.2 and 5.6-fold increase in unique statistically significant gene-trait 

associations using the same first tranche of 50K UKB data  –– this can be attributed to 

the depth of outcomes studied and the differences in methodologies (Supplementary 
Figure 1). 

It is also expected that many statistically suggestive (i.e., within 5 x 10-9 < P < 1 x 

10-7 range) gene-phenotype associations represent true positive associations that remain 

relatively underpowered. We looked at the patterns across three UKB exome sequencing 

tranches and found that the proportion of suggestive associations for binary traits that 

achieve statistical significance in subsequent tranche is consistently high. For instance, 
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approximately half of the suggestive associations reported in the 150K UKB exomes 

tranche achieved statistical significance in the 200K UKB exomes tranche (Fig. 3g).  

We also found demonstrable complementarity between the variant-level ExWAS 

and gene-level collapsing analyses. Among the distinct gene-phenotype relationships 

identified through the collapsing analyses for the binary phenotypes, only 16.5% (70/424) 

were also detected using ExWAS, indicating that the remaining 83.5% were undetectable 

by traditional variant-level association tests applied on the same cohort (Fig. 3h). A 

noteworthy higher overlap was observed for quantitative phenotypes where 63.9% 

(311/487) of the collapsing analysis associations were detectable using variant-level 

ExWAS (Supplementary Table 8). This highlights that, particularly in the case-control 

scenario, a gene-based collapsing framework can identify associations that are currently 

undetectable by single variant-based approaches in an identical test setting, exemplifying 

the value of collapsing analyses for identifying additional biological insight and potentially 

novel drug targets. Focusing on the PTV models, we also examined the proportion of the 

statistically significant gene-trait associations identified using a more generous MAF filter 

of 5% (“ptv5pcnt” model) that were missed by both a stricter MAF threshold of 0.1% (“ptv” 

model) and the ExWAS analyses. We observe that 7.5% (21/281) and 10.2% (33/324) of 

gene-trait associations captured by the “ptv5pcnt” model were not captured by either the 

“ptv” model or ExWAS for quantitative and binary traits, respectively (Supplementary 
Table 9).  

 

Rare PTVs in HMCN1 are associated with an increased FEV1/FVC ratio 
Previously unreported PTV collapsing signals that emerge from quantitative physiological 

traits provide potential opportunities as novel therapeutic targets, but often require further 

functional investigation to understand their precise mechanism and disease relevance. 

One novel gene-phenotype signal emerging from the collapsing analysis was for the gene 

HMCN1, encoding Hemicentin 1 (Fig. 4a).  Carriers of rare PTVs in HMCN1 appear to 

have a significantly higher Forced Expiratory Volume in 1 second (FEV1) / Forced Vital 

Capacity (FVC) ratio z-score compared to non-carriers (Fig. 4b) (p = 2.0 x 10-21; beta = 

0.55). Abnormalities in FEV1/FVC ratio may be seen in serious lung diseases, such as 

idiopathic pulmonary fibrosis (IPF), a fatal disorder characterised by progressive, 
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destructive lung scarring, and rapid decline in FVC is associated with worsening 

survival.24 This disease process is thought to result from recurrent microinjury in alveolar 

epithelial cells that leads to aberrant repair and excess collagen and matrix production by 

myofibroblasts.25 

 To better understand the biological mechanism underlying the HMCN1-lung 

function association, we leveraged RNA microarray data derived from 167 individuals with 

IPF and 50 non-diseased controls (GSE32537).26 We found that HMCN1 expression was 

significantly increased in tissue derived from IPF patients and ranked among the top 150 

out of 835 significantly upregulated genes. This is consistent with the human genetic data 

(Fig. 4 c,d). Patients with the highest HMCN1 expression exhibited a distinct gene 

expression pattern when compared to patients with low HMCN1 expression (Fig. 4e). We 

performed a pathway level analysis to predict regulators of the genes differentially 

expressed between these two groups. Among the top 15 predicted up-stream regulators, 

four were directly related to TGFꞵ signalling: TGFB1, TGFB2, SMAD3, and SMAD7 (Fig. 
4e). TGFB1 had an enrichment z-score of 3.64 (p=3.3x10-12), suggesting that differential 

expression patterns in individuals with high HMCN1 expression may be driven by TGFꞵ 

signalling (Fig. 4e).  

To test for a direct association between TGFꞵ signalling and HMCN1 expression, 

we treated human foetal lung fibroblasts with TGFꞵ and found that HMCN1 expression 

increased in a dose-dependent manner (Fig. 4f). Previous evidence indicates that TGFꞵ 

plays an important role in differentiating fibroblasts into myofibroblasts by stimulating the 

expression of alpha-smooth muscle actin (αSMA). We found that upon siRNA knockdown 

of HMCN1 (Fig. 4g), treatment with TGFꞵ1 resulted in significantly reduced αSMA 

expression compared to controls (Fig. 4h). HMCN1 knockdown also resulted in reduced 

expression of collagen 1 (COL1A1), an important component of extracellular matrix 

deposition seen in IPF (Fig. 4i). Thus, HMCN1 may be required for this profibrotic process 

regulated via the TGFꞵ signalling axis.  
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Figure 4. Functional evaluation of PTVs in HMCN1. (a) Locations of rare HMCN1 PTVs among 
the UK Biobank participants. (b) The distribution of FEV1/FVC ratio Z-scores among HMCN1 PTV 
carriers versus non-carriers. (c) Volcano plot depicting differentially expressed genes in IPF tissue 
versus control tissue. HMCN1 is labelled. Red points indicate genes with an FDR < 0.05 and absolute 
log fold change > 0.5. (d) Expression of HMCN1 in lung tissue derived from healthy controls versus 
patients with IPF. (e) Gene expression patterns of healthy lung tissue versus IPF tissue with high 
HMCN1 expression and low HMCN1 expression. Enriched up-stream regulators of genes 
differentially expressed between HMCN1high and HMCN1low IPF tissue are shown on the right. Bolded 
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regulators are directly involved in TGFꞵ signaling. (f) HMCN1 expression in HFL1 (human foetal lung 
fibroblast) cells treated with TGFꞵ for 24h at different doses. (g) TGFꞵ- induced expression of 
HMCN1 in HFL1 cells treated with either HMCN1 siRNA or scrambled RNA control (scrRNA). (h) 
Alpha-smooth muscle actin (aSMA) expression in cells treated with HMCN1 siRNA versus scrRNA. 
(i) Expression of COL1A1 in cells treated with siRNA versus scrRNA. 
 

 

Collectively, our results begin to unravel how the presence of PTVs in HMCN1 may affect 

lung function and that the increased expression of this gene may be involved in IPF 

pathogenesis. PTVs in HMCN1 are not significantly associated with other disease-related 

traits among our UKB PheWAS, suggesting that inhibiting this gene could be a tolerable 

therapeutic intervention for IPF and potentially other disorders of the lung.   

Discussion 
Using exome sequencing of 177,882 unrelated European ancestry UKB participants 

combined with records of 11,952 phenotypes, we have performed a pheWAS of 

unprecedented scale and identified 31,184 variant- and 911 gene-level statistically 

significant phenotypic relationships. The latter offers the advantage of providing a clearer 

link between causal gene(s) and phenotype(s). Our variant-level association tests include 

variants that are not frequent enough to be captured by previous microarray-based 

genotyping studies. We also applied gene-level collapsing analyses to test the aggregate 

effect of private-to-rare functional variants for which single-variant approaches are 

inadequate. The majority of significant gene-level associations were not captured by 

variant-level analysis, demonstrating the complementarity of the two approaches. Many 

of the study-wide significant associations have been previously reported, supporting the 

robustness of our results. Furthermore, in all instances where a particular gene harboured 

multiple rare variants significantly associated with a quantitative trait phenotype, majority 

(³80%) of those variants had the same direction of effect. 

Using 177,882 UKB samples has increased (12-fold) our ability to detect study-

wide significant associations compared to when adopting the original 50K UKB exomes. 

The scale of the study also presents challenges like defining an appropriate significance 

threshold. Here we show how this could be addressed using an empirical null distribution 

as a negative control model alongside an n-of-1 permutation. 
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We found that the study-wide significant gene-phenotype associations are 

significantly enriched for targets of FDA-approved drugs. Additionally, among our novel 

findings is the association of PTVs in HMCN1 with lung function, suggesting that HMCN1 

could become a potentially promising candidate drug target for respiratory disease. These 

two findings highlight the utility of mining UK Biobank PheWAS outputs as a source of 

high impact genetic support for target identification and evaluation, which when followed 

up with functional investigation to understand the underlying biological and disease 

mechanisms, can help improve the efficiency of pharmaceutical pipelines.5,27 

As a consequence of the recruitment criteria for the UKB, the richest yields of this 

study relate to common human diseases and routinely measured quantitative traits such 

as biomarkers rather than severe early-onset diseases. Beyond the PheWAS setting, 

future refinement of phenotypic definitions by combining binary and/or quantitative 

phenotypic information, alongside any temporal data, may better reflect disease 

heterogeneity. Moreover, this study is currently limited to SNVs and indels, although the 

utility of evaluating copy number variants has been demonstrated by others.28 While our 

dataset is limited to individuals of European ancestry, we also highlight the need to use 

UK Biobank as a gold standard and establish equivalent resources for other global 

populations. Furthermore, the exogamous nature of this cohort meant that we detected 

homozygous PTVs—which can provide an in vivo model to study the phenotypic effect of 

gene knockout29—for only ~18% genes. 

Altogether, this PheWAS evaluating the genetic architecture of human disease 

yields a rich resource of statistically robust high-impact gene-phenotype associations at 

an unprecedented scale, with the potential to elucidate novel disease mechanisms, 

identify phenotypic expansions for known disease genes and enable the continued 

development of novel human genetics-validated drug targets.  
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Methods 
1. UK Biobank Resource 

The UK Biobank is a prospective study of approximately 500,000 participants aged 40-

69 years at recruitment. Participants were recruited in the UK between 2006-2010 and 

continuously followed.30 Participant data includes health records that are periodically 

updated by the UK Biobank, self-report survey information, linkage to death and cancer 

registries, collection or urine and blood biomarkers, imaging data, accelerometer data 

and various other phenotypic endpoints.7 

2. Phenotypes  
We studied two main phenotypic categories: binary and continuous traits taken from the 

February 2020 data release that was accessed on March 27th 2020 as part of UKB 

application 26041. We then updated Hospital Episode Statistic (HES) and death registry 

data using the ad hoc release by the UK Biobank on July 2020. 

To parse the UKB phenotypic data we adopted a modified version of the PHESANT 

package that can be located at https://github.com/astrazeneca-cgr-

publications/PEACOK. The adopted parameters are available in Supplementary 
Methods and have been previously introduced in PHESANT 

(https://github.com/MRCIEU/PHESANT).13  

For UK Biobank tree fields, such as the ICD10 hospital admissions (Field 41202), we 

studied each leaf individually, and also studied as separate phenotypic entities each of 

the groupings up to the highest level of the ICD10 root chapter phenotypes. 

Furthermore, for the tree-related fields (Fields: 20001, 20002, 40001, 40002, 40006 and 

41202), to reduce the potential contamination of potentially genetically-related 

diagnoses among controls we restricted controls to subjects who did not have a positive 

diagnoses in that corresponding chapter. A minimum of 20 cases were required for a 

binary trait to be studied.  

In addition to studying UK Biobank algorithmically-defined outcomes, we also 

constructed a union phenotype for each ICD10 phenotype. These union phenotypes are 

denoted by a “Union” prefix and the applied mappings are available in Supplementary 
Table 1. 
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In total, we studied 10,533 binary and 1,419 continuous phenotypes. For all binary 

phenotypes we gender matched controls when the % female cases was significantly 

different (Fisher’s exact p < 0.05) to the % available female controls. This included sex-

specific traits where, by design, all controls would be same sex as cases. Finally, to 

allow for more compartmentalised ICD10 chapter-based analyses, all 11,952 binary and 

quantitative trait phenotypes were mapped to a single ICD10 chapter including manual 

mapping for the non ICD10 phenotypes. These chapter mappings are provided in 
Supplementary Table 1. It is acknowledged that chapter mapping may have greatest 

utility for diagnostic, rather than procedural, ICD10 codes. For procedural codes, 

genetic associations could be incorrectly interpreted if chapter mappings are relied on. 

For example, surgical procedures commonly performed for oncology patients are 

categorized within the dermatology chapter. Genetic associations reported for these 

procedures would be categorized within the dermatology chapter, but the underlying 

disease process is instead most likely reflective of an oncology aetiology.  

3. Sequencing 
Whole-exome sequencing (WES) data for UK Biobank participants were generated at 

the Regeneron Genetics Center (RGC) as part of a pre-competitive data generation 

collaboration between AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-

Myers Squibb, Pfizer, Regeneron and Takeda with the UK Biobank.31 Genomic DNA 

underwent paired-end 75bp whole exome sequencing (WES) at Regeneron 

Pharmaceuticals using the IDT xGen v1 capture kit on NovaSeq6000 machines. Exome 

sequences from 200,593 UK Biobank participants were made available to the Exome 

Sequencing consortium. Initial QC was performed by Regeneron and included sex 

discordance, contamination, unresolved duplicate sequences and discordance with 

microarray genotyping data checks, as previously described.12 

4. AstraZeneca Centre for Genomics Research (CGR) 
Bioinformatics Pipeline 

The 200,593 UKB exome sequences were processed at AstraZeneca from their 

unaligned FASTQ state. We adopted an in-house cloud compute platform running 

Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 to align the reads to the 
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GRCh38 genome reference and perform small variant SNV and indel calling. SNVs and 

indels were annotated using SnpEFF v4.3 against Ensembl Build 38.92. We further 

annotated all variants with their gnomAD minor allele frequencies (gnomAD v2.1.1 

mapped to GRCh38).10 

An additional two bioinformatic scores were adopted specifically for missense variants. 

We adopted missense tolerance ratio (MTR) scores to permit focused analyses of 

missense variants occurring in the most missense constraint regions of individual 

human protein-coding genes, as calculated based on the gnomAD reference cohort.32 

We also adopted the REVEL score as bioinformatic tool to support further prioritisation 

of deleterious predicted missense variants.33 

5. Additional Quality Control 
In addition to what had already been QC flagged, we excluded from our analyses 77 

(0.04%) sequences that achieved a VerifyBAMID freemix (contamination) level >4%,34 

and an additional five sequences (0.002%) where <94.5% of the consensus coding 

sequence (CCDS release 22) achieved a minimum of 10-fold read-depth.35 

To mitigate against possible bias driven by relatedness, we performed pair-wise 

relatedness checks across all remaining UK Biobank exome sequenced participants. 

This was achieved by estimating pairwise kinship coefficients using the --kinship 

algorithm of KING v2.2.236 and exome sequence-derived genotypes for 43,889 biallelic 

autosomal SNVs located in coding regions. 

The ukb_gen_samples_to_remove() function from the R package ukbtools37 was used 

to choose a subset of individuals within which no pair had a kinship coefficient 

exceeding 0.0884. This function aims to choose a maximal set using a greedy algorithm 

that iteratively selects for removal among pairs of relatives above this threshold the 

member of each pair with the highest number of relatives above the threshold. Through 

this process, an additional 9,489 (4.73%) sequences were removed from downstream 

analyses. 

This process resulted in a remaining collection of 191,022 (95.2%) UK Biobank 

unrelated sequences of any genetic ancestry that were available for analyses presented 

in this work. 
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6. Genetic Ancestry 
For case-control cohort analyses we further restricted the statistical tests to reflect a 

homogeneous European genetic ancestry test cohort. This was achieved by running the 

exomes through PEDDY v0.4.2 with the ancestry labelled 1K Genomes Project 

reference sequence data for genetic ancestry predictions. Of the above 191,022 UK 

Biobank unrelated sequences, 12,784 (6.4%) achieved a Pr(European) ancestry 

prediction <0.99. Focusing on the remaining 178,238 UK participants we further 

restricted the European cohort to those within ±4 standard deviations across the top 

four principal component means resulting in an additional 356 (0.2%) outlier 

participants. The remaining collection of 177,882 (88.7%) unrelated European ancestry 

UK Biobank participants were adopted for all case-control analyses reported in this 

manuscript. 

7. ExWAS Analyses 
We tested variants observed among at least six individuals from the 177,882 unrelated 

European UK Biobank exomes. Variants were required to pass the following QC criteria: 

minimum coverage 10X; percent of alternate reads in heterozygous variants ≥ 0.2; 

binomial test of alternate allele proportion departure from 50% in heterozygous state p > 

1x10-6; genotype quality score (GQ) ≥ 20; Fisher’s strand bias score (FS) ≤ 200 (indels) 

≤ 60 (SNVs); mapping quality score (MQ) ≥ 40; quality score (QUAL) ≥ 30; read position 

rank sum score (RPRS) ≥ -2; mapping quality rank sum score (MQRS) ≥ -8; DRAGEN 

variant status = PASS; variant site is not frequently missing (i.e., <10X coverage) in ≥ 

10% of sequences; variant did not fail any of the aforementioned QC in ≥ 5% of 

sequences; variant site achieved 10-fold coverage in ≥ 30% of gnomAD exomes, and if 

variant was observed in gnomAD exomes, ≥50% of the time those variant calls passed 

the gnomAD QC filters (gnomAD exome AC / AC_raw ≥ 50%). 

To account for large case-control imbalances and permit the robust study of extremely 

rare occurring variants (as low as 6 allele observations, i.e., MAF > 0.0017%), variant-

level p-values were generated adopting a Fisher’s exact test. Three distinct genetic 

models were studied for the binary traits: allelic (A vs B allele), dominant (AA+AB vs BB) 

and recessive (AA vs AB+BB), where A denotes the alternative and B denotes the 
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reference allele. For the continuous traits, the allelic model is replaced with a genotypic 

(AA vs AB vs BB) test. For ExWAS analysis we adopted the significance cutoff of 

p<1x10-8. 38 

8. Collapsing Analyses 
To perform collapsing analyses, we aggregate variants within each gene that fit a given 

set of criteria, identified as “qualifying variants” (QVs).20 Overall, we performed 11 non-

synonymous collapsing analyses, including 10 dominant and one recessive model, plus 

an additional synonymous variant model as an empirical negative control. In each 

model, for each gene, the proportion of cases is compared to the proportion of controls 

carrying one or more qualifying variants in that gene. The exception is the recessive 

model, where a subject must have two qualifying alleles, either in homozygous or 

potential compound heterozygous form. Hemizygous genotypes for the X chromosome 

were also qualified for the recessive model. The criteria behind the QV classifications 

for each collapsing analysis model are in Supplementary Table 3. To account for large 

case-control imbalances and permit the robust study of sparse observations, collapsing 

analysis p-values were generated adopting a Fisher’s exact test. 

For all models (Supplementary Table 3) we applied the following QC filters: minimum 

coverage 10X; annotation in CCDS transcripts (release 22; ~34Mb); percent of alternate 

reads in heterozygous variants ≥ 0.25 and ≤ 0.8; binomial test of alternate allele 

proportion departure from 50% in heterozygous state p > 1x10-6; genotype quality score 

(GQ) ≥ 20; Fisher’s strand bias score (FS) ≤ 200 (indels) ≤ 60 (SNVs); mapping quality 

score (MQ) ≥ 40; quality score (QUAL) ≥ 30; read position rank sum score (RPRS) ≥ -2; 

mapping quality rank sum score (MQRS) ≥ -8; DRAGEN variant status = PASS; variant 

site achieved 10-fold coverage in ≥ 25% of gnomAD exomes, and if variant was 

observed in gnomAD exomes the variant achieved exome z-score ≥ -2.0 and exome 

MQ ≥ 30. 

9. Defining the study-wide significant cut-offs for collapsing 
analyses  

Given the high degree of correlation among the studied phenotypes and also the high 

degree of similarity among the multiple collapsing models applied there was a need to 
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define a more appropriate study-wide significance threshold for gene-level PheWAS as 

Bonferroni correction is inappropriate in this PheWAS context. We took two approaches 

to define the study-wide significance thresholds for the gene-based collapsing PheWAS. 

One of the collapsing analysis models that was applied as an empirical negative control 

was the synonymous model. Here, it is expected that in general, synonymous variants 

will not have a significant contribution to disease risk and could thus act as a useful 

empirical negative control for study-wide p-value thresholding. Surveying across the 

10,533 studied binary phenotypes and considering the 18,741 studied genes we had a 

distribution of 197,398,953 Fisher’s Exact test statistics corresponding to the 

synonymous collapsing model. Among the tail of this distribution for binary traits we 

observe a tail of p-values beginning from p=3.8x10-9 (Supplementary Table 10). 

Similarly for the 1,419 quantitative phenotypes we had a distribution of 26,593,479 

Fisher’s Exact test statistics corresponding to the synonymous collapsing model. 

Among the tail of this distribution we identify a single genuine relationships: MACROD1 

synonymous variants correlating with decreased levels of ‘Urate’ (p=8.6x10-15).39 

Following this known relationship, we see a trail of p-values beginning from p=1.3x10-7 

(Supplementary Table 10). 

Given this magnitude of test statistics generated in PheWAS scale another proposal has 

been the utility of a n-of-1 permutation.40 Here, we shuffled the case-control (or 

quantitative measurement) labels once for every phenotype while maintaining the 

participant-genotype structure and performed an n-of-1 permutation across all 11 non-

synonymous collapsing models for the binary traits (2,171,388,483 tests) and the 

quantitative traits (292,528,269 tests). Reviewing the tails of these two n-of-1 

permutation-based p-value distributions the lowest permutation-based p-value achieved 

was 4.2x10-9 (binary tests) and 9.6x10-9 (quantitative tests). 

Given the scale and correlations among this dataset, we found both these approaches 

provide suitable alternatives to the Bonferroni p-value threshold, which in this case 

would be p<2.0x10-11. Guided by both empirical and n-of-1 permutation based null p-

value distributions we define a study-wide significance cut-off of p£5x10-9 for the non-
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synonymous collapsing analysis results presented in this manuscript (Supplementary 

Table 10). 

Finally, for each of the 143,424 exome-wide collapsing analyses comprising the 

collapsing PheWAS (12 models * [10,533 + 1,419] studied phenotypes) we calculated 

the lambda genomic inflation factor (λ) after excluding genes achieving exome-wide 

significance p<2.6x10-6 for that phenotype. 

10.  Collapsing analysis enrichment for approved drug targets 
Drug target analysis was performed using a publicly available list of genes (n=387) 

considered to represent drug targets (source: 

https://raw.githubusercontent.com/ericminikel/drug_target_lof/master/data/drugbank/dru

g_gene_match.tsv), that were originally derived from DrugBank.41 For each gene, the 

most statistically significant collapsing analysis phenotypes were identified, before being 

partitioned into three categories (significant (P < 5x10-9) (binary n=87, quantitative 

n=291), suggestive (5x10-9 < P < 1x10-7) (binary n=108, quantitative n=104), or non-

significant (P > 1x10-7) (binary n=18,551, quantitative n=18,351)). The relationship 

between drug target status and gene-phenotype significance was assessed using a 

logistic regression model in R v3.5.1. 
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Table 1 – Top PTV ExWAS signals 

Gene Variant Most 
Damaging Model Phenotype p-value OR Case 

MAF 
Ctrl 
MAF 

ClinVar 
ClinSig 
Simple 

OMIM 

ABO 9-133257521-T-TC splice 
acceptor dom 

41202#I802#I80.2 Phlebitis and 
thrombophlebitis of other deep 

vessels of lower extremities 
2.82E-22 1.8 0.432 0.3347 NA [Blood group; ABO 

system] 

HBB 11-5226774-G-A stop 
gained dom Union#D56#D56 Thalassaemia 1.05E-18 3497.8 0.0448 1.4E-05 1 Delta-beta thalassemia 

MYOC 1-171636338-G-A stop 
gained dom Union#H409#H40.9 Glaucoma| 

unspecified 1.52E-17 6.2 0.0078 0.0013 1 Glaucoma 1A; primary 
open angle 

COL4A4 2-227052367-G-C stop 
gained dom Union#R31#R31 Unspecified 

haematuria 2.15E-16 5.6 0.0026 4.7E-04 1 Hematuria; familial benign 

FLG 

1-152312600-
CACTG-C frameshift rec 20002#1452#eczema|dermatitis 1.75E-14 9.7 0.0459 0.0235 1 Ichthyosis vulgaris 

1-152313385-G-A stop 
gained rec 20002#1452#eczema|dermatitis 6.27E-14 10.5 0.0454 0.0229 1 Ichthyosis vulgaris 

UMOD 

16-20349020-CA-C frameshift dom Union#N185#N18.5 Chronic 
kidney disease| stage 5 7.14E-13 1933.8 0.0074 3.9E-06 NA 

Glomerulocystic kidney 
disease with 

hyperuricemia and 
isosthenuria 

16-20349017-G-
GA frameshift dom 

Union#D638#D63.8 Anaemia in 
other chronic diseases 
classified elsewhere 

6.42E-11 1403.5 0.0088 6.4E-06 NA 
Glomerulocystic kidney 

disease with 
hyperuricemia and 

isosthenuria 

16-20349015-C-A stop 
gained dom 41202#N185#N18.5 Chronic 

kidney disease| stage 5 2.16E-10 1036.6 0.0097 9.5E-06 0 

Glomerulocystic kidney 
disease with 

hyperuricemia and 
isosthenuria 

CHEK2 22-28695868-AG-A frameshift dom 20001#1002#breast cancer 4.90E-12 3.5 0.0059 0.0017 1 {Breast and colorectal 
cancer; susceptibility to} 

MROH2A 2-233823665-G-A splice 
donor dom 

Source of report of E80 
(disorders of porphyrin and 

bilirubin metabolism) 
1.25E-11 1.8 0.2393 0.1577 NA NA 

MUC1 1-155192276-C-T splice 
acceptor allele Union#K317#K31.7 Polyp of 

stomach and duodenum 2.30E-10 1.2 0.4262 0.463 NA Medullary cystic kidney 
disease 

FES 15-90885291-CT-C frameshift rec 
6150#4#Vascular/heart 

problems diagnosed by doctor| 
High Blood Pressure 

2.37E-10 1.1 0.3375 0.3222 NA NA 

TSPAN10 17-81647906-T-
TTAAC frameshift rec Source of report of H26 (other 

cataract) 2.65E-10 1.2 0.3737 0.356 NA NA 

NOD2 16-50729867-G-
GC frameshift rec Union#K509#K50.9 Crohn's 

disease| unspecified 6.25E-10 31.5 0.0415 0.0179 0 {Inflammatory bowel 
disease 1; Crohn disease} 
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PALB2 16-23621362-C-T stop 
gained dom 

41202#BlockC50-C50#C50-
C50 Malignant neoplasm of 

breast 
6.85E-10 6.9 0.0019 2.7E-04 1 {Breast cancer; 

susceptibility to} 

IL33 9-6255967-G-C splice 
acceptor allele 20002#1111#asthma 1.02E-09 0.57 0.0026 0.0047 NA NA 

GCSAML 1-247556467-G-A splice 
donor allele Union#L50#L50 Urticaria 1.84E-09 1.3 0.0855 0.0678 NA NA 

BRCA2 13-32337160-
TAAAC-T frameshift dom 41202#Z40#Z40 Prophylactic 

surgery 2.37E-09 565.1 0.0054 9.7E-06 1 Multiple cancers 

APOBEC3B 22-38984097-C-T stop 
gained allele Union#B029#B02.9 Zoster 

without complication 2.90E-09 297.4 0.01 3.4E-05 NA NA 

CCDC198 14-57481662-T-C splice 
acceptor allele Union#G43#G43 Migraine 3.62E-09 0.90 0.2828 0.2625 NA NA 

CLECL1 12-9733111-A-
ATAAGT frameshift allele Union#E07#E07 Other 

disorders of thyroid 8.79E-09 0.92 0.4748 0.4962 NA NA 

 
Restricting to ExWAS protein-truncating variant signals that achieved a p-value < 1x10-8 in at least one of the three studied genetic 
models for binary traits (allelic, dominant or recessive). Not including variants within the MHC region, defined here as chr6:25Mbp–
35Mbp. For table brevity only the phenotype with the greatest effect size is presented for each unique variant. Shaded lines = control 
MAF < 0.5%. ClinSigSimple data is provided by ClinVar where 0 = no current value of Likely pathogenic or Pathogenic and 1= at 
least one current record submitted with an interpretation of Likely pathogenic or Pathogenic (independent of whether that record 
includes assertion criteria and evidence).
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