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Abstract 17 

The IUCN Red List plays a key role in setting global conservation priorities. Species are added 18 

to the Red List through a rigorous assessment process that, while robust, can be quite time-19 

intensive. Here, we test the rapid preliminary assessment of plant species extinction risk using a 20 

single Red List metric: Extent of Occurrence (EOO). To do so, we developed REBA (Rapid 21 

EOO-Based Assessment), a workflow that harvests and cleans data from the Global Biodiversity 22 

Information Facility (GBIF), calculates each species’ EOO, and assigns Red List categories 23 

based on that metric. We validated REBA results against 1,546 North American plant species 24 

already on the Red List and found ~90% overlap between REBA’s rapid classifications and those 25 

of full IUCN assessments. Our preliminary workflow can be used to quickly evaluate data 26 

deficient Red List species or those in need of reassessment, and can prioritize unevaluated 27 

species for a full assessment. 28 

 29 

  30 
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Introduction 31 

The International Union for the Conservation of Nature’s (IUCN; www.iucn.org) Red List is one of the 32 
most widely used frameworks to assess extinction risk. The representation of plants on the Red List, 33 
however, suffers from pervasive biases that plague conservation science generally (Di Marco et al., 2017; 34 
Nic Lughadha et al., 2020). For example, the proportion of described plant species added to the Red List 35 
is well below that of vertebrates (10% and 72%, respectively, as of 2020; 36 
https://www.iucnredlist.org/resources/summary-statistics, Table 1a). Assessed plants are primarily trees, 37 
taxa of particular interest to IUCN Specialist Groups, and species linked to commercial and horticultural 38 
interests, among other biases (Bachman et al., 2019; Brummitt, Bachman, & Moat, 2008; Sharrock, 39 
2020). Furthermore, research shows that the Red List may be vastly underestimating plant extinctions, a 40 
concerning finding considering that the modern rate of plant extinction is at least 500 times greater than 41 
the background extinction rate (Humphreys, Govaerts, Ficinski, Nic Lughadha, & Vorontsova, 2019). 42 
  43 
Red listing can also be hampered by features of the assessment process itself. Extant species can be 44 
placed into one of six categories: Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near 45 
Threatened (NT), Least Concern (LC), or Data Deficient (DD). The DD category lacks an explicit risk 46 
status and is meant to temporarily hold species that lacked sufficient data to be fully assessed. However, 47 
already limited conservation resources are rarely diverted to revisit DD listings (Morais et al., 2013), and, 48 
as the category has swelled, the estimated cost to fully reassess all DD species is over USD 300 million 49 
(Bland et al., 2015). Outside the DD category, many previously assessed species fail to receive mandated 50 
regular reassessments; seventeen percent of all assessments were already out of date (> 10 years old) on 51 
the 2012 Red List, with the median age of Red List assessments estimated to reach 36 years by 2050 52 
(Rondinini, Di Marco, Visconti, Butchart, & Boitani, 2014). 53 
  54 
To address these biases and limitations, several tools have been developed to facilitate rapid, preliminary 55 
assessments (Nic Lughadha et al., 2019), particularly for plants (i.e. S. Bachman, Walker, Barrios, 56 
Copeland, & Moat, 2020; Callmander, Schatz, & Lowry, 2005; Davis, Govaerts, Bridson, & Stoffelen, 57 
2006; Le Breton et al., 2019; Miller et al., 2013; Utteridge, Nagamasu, Teo, White, & Gasson, 2005). 58 
Many of these tools rely upon a single criterion from the full assessment, Criterion B, which focuses on 59 
geographic range and is cited in more than 60% of all IUCN assessments (Le Breton et al., 2019). 60 
Criterion B relies predominantly upon two measures: Extent of Occurrence (EOO) and Area of 61 
Occupancy (AOO). EOO is related to geographic range and measures “the degree to which risks from 62 
threatening factors are spread spatially across the taxon’s geographical distribution,” while AOO 63 
correlates with population size and approximates a species’ resistance to stochastic events (IUCN 64 
Standards and Petitions Committee, 2019; Le Breton et al., 2019). Both have thresholds linked to 65 
additional measures of population dynamics and trends that dictate their classification (i.e., if EOO < 100 66 
km2, a species could be classified CR). 67 
  68 
Previous efforts in this vein have measured the accuracy of an EOO-based assessment method (Miller et 69 
al., 2013), used EOO to assess the status of DD plant species (Roberts, Taylor, & Joppa, 2016), and, in 70 
one recent instance, produced a streamlined tool that draws from publicly available data sets to identify 71 
LC species and submit them to the Red List, allowing the attention of the full assessment to be redirected 72 
towards species with higher extinction risk (Bachman et al., 2020). However, few of these rapid 73 
assessment frameworks have examined the factors that might influence classification success and none 74 
have been tested on large suites of species across broad geographic scales. 75 
  76 
Here, we use a publicly available database to gather plant occurrence records for Red Listed species on a 77 
continental scale for the first time and analyze the resulting data using a rapid, EOO-based assessment 78 
(hereafter, REBA) to assign species a Red List category. We assessed the concordance between our 79 
automated classifications and the existing full IUCN classifications, classified DD species into extinction 80 
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risk categories, and fit statistical models to highlight plant traits and threats that affect the probability of 81 
“correct” classification using REBA. Ultimately, our results provide a proof-of-concept for a rapid 82 
conservation classification workflow which can be applied to a wide range of species at various scales. 83 
This method can serve as a prioritization tool for optimizing resources and effort toward producing full 84 
IUCN assessments.  85 

Methods 86 

Automated Red List Classification 87 

The REBA workflow begins by using the R package rGBIF (Chamberlain & Boettiger, 2017) to query 88 
GBIF for georeferenced occurrence records, which we cap at 50,000 per species to reduce computation 89 
time. To further clean the data, we remove records not belonging to kingdom Plantae and filter records to 90 
only include “HUMAN_OBSERVATION” or “OBSERVATION” record types to eliminate records that 91 
might be georeferenced to a museum location rather than the location of sample collection. We then use 92 
the “cc_sea()” function within the R package CoordinateCleaner (Zizka et al., 2019) to remove 93 
occurrence records that do not lie over land. Next, REBA uses the R package rCAT to conduct an EOO-94 
based Red List classification (Moat & Bachman, 2020). rCAT calculates EOO as the area of a minimum-95 
convex polygon drawn around known occurrence records (a minimum of 3 is required) and uses IUCN-96 
defined thresholds to classify species as CR, EN, VU, NT, or LC, with EOO values of < 100km2, < 97 
5,000km2, < 20,000km2, < 30,000km2, and ≥ 30,000km2, respectively. REBA relies exclusively on EOO 98 
because there is precedent for such an approach in the literature (see Davis et al., 2006; Miller et al., 99 
2013), and we believe that a metric designed to measure the spatial spread of risk itself (EOO) is more 100 
robust for this analysis than one designed to approximate a species’ insurance against that risk (AOO). 101 
 102 

Testing REBA on North American Plant Species 103 

We tested the efficacy of the REBA workflow on each of the 2,662 North American plant species on the 104 
Red List. We gathered data on extinction risk, ‘Plant Type’, and ‘Threats’ from the IUCN using the Red 105 
List’s advanced search feature (https://www.iucnredlist.org/search; accessed March 23, 106 
2020).  After removing 109 species with no GBIF occurrence points and 23 with taxonomic 107 
discrepancies, we initially harvested 13,232,845 occurrence records representing 2,530 species. While all 108 
of these species are found in North America, not all are native to the continent. Non-native species 109 
identified as part of the North American flora by the IUCN were retained for this analysis (hereafter: 110 
“North American species”).  111 
 112 
After passing through the data cleaning portion of the workflow we were left with 6,566,297 records from 113 
1,829 unique plant species. We joined this occurrence data with Red List assessment data by species and 114 
eliminated records from the year of or years following the IUCN’s assessment to ensure REBA was not 115 
influenced by data unavailable during the original Red List assessment process. After eliminating species 116 
with fewer than 3 cleaned occurrence records, REBA produced EOO-based Red List classifications for 117 
1,546 plant species.  118 
  119 
To visualize REBA’s accuracy we generated a tile plot illustrating the overlap between Red List Category 120 
classifications generated by the IUCN and by REBA. We then calculated the number of “correctly” 121 
classified species (i.e., REBA matched the existing Red List classification), over-classified species (i.e., 122 
REBA produced a higher extinction risk category than the existing Red List classification), or under-123 
classified species (i.e., REBA produced a lower extinction risk category than the existing Red List 124 
classification). We also utilized the REBA workflow to classify plant species from North America 125 
currently classified as DD. 126 

 127 
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Statistical Modeling 128 

We derived two smaller data subsets to model the effects of ‘Plant Type’ and ‘Threats’ on the probability 129 
of correct classification. The first contained all species that had ‘Plant Type’ data available from the 130 
IUCN. In this dataset, we condensed the 18 original ‘Plant Type’ categories assigned by the IUCN into 131 
ten new biologically relevant categories (Appendix 1), effectively eliminating those that would otherwise 132 
be represented by a limited sample of species. This modeling dataset contained 1,533 plant species. The 133 
second dataset represented all species that had ‘Threats’ data available from the IUCN.  ‘Threats’ 134 
categories remained unaltered, and the dataset contained 396 species. 135 
 136 
We then constructed two separate multilevel Bayesian models with a binomial outcome distribution 137 
where correct classification was the variable of interest. Both models included the number of occurrence 138 
points as a main effect. One included ‘Plant Type’ categories as varying effects, and the other included 139 
‘Threats’ categories as varying effects. These models estimate the effect of number of occurrence points, 140 
‘Plant Type’, and ‘Threats’ on REBA’s probability of correct classification. We specified and fit our 141 
models using the “map2stan()” function within the ‘rethinking’ R package (Carpenter et al., 2017; 142 
McElreath, 2016). We fit each model using four independent MCMC chains, specifying 7,500 total model 143 
iterations, 2,500 of which were considered warmup. As a result, our model inferences are based on 20,000 144 
posterior samples from each model (5,000 post-warmup samples per chain with four chains total). After 145 
model fitting, we inspected parameter trace plots and R-hat values to confirm convergence and good 146 
model fits (Gelman & Rubin, 1992). We report parameter estimates using posterior means and 99% 147 
highest posterior density intervals (HPDIs) where appropriate. 148 
 149 

Counterfactual Predictions of Classification Accuracy 150 

We visualized our model results with counterfactual plots using the full posterior probability distributions 151 
to show the implied relationships between the probability of correct classification and ‘Plant Type’ or 152 
‘Threats’, respectively. We plotted the implied probability of correct classification using four occurrence 153 
point sample sizes: 100, 1,000, 10,000, and 20,000. In effect, we imagine applying REBA for a species 154 
with a given ‘Plant Type’ or ‘Threats’ classification across a range of arbitrary sample sizes, where the 155 
implied probability of correct classification is informed by the observed data that was used to fit the 156 
model. 157 
  158 
The inference derived from our fit models can also be applied to DD species, allowing us to generate 159 
posterior distributions for the implied probability of correct Red List classification analogous to the 160 
counterfactual analyses just described. All 13 DD species with REBA-generated classifications had ‘Plant 161 
Type’ data, but only 5 had ‘Threats’ data. Therefore, we used the full posterior distributions from our 162 
‘Plant Type’ model to generate the implied probability of correct classification for each of these species, 163 
given their ‘Plant Type’ and the actual number of cleaned occurrence points available. Thus, our analyses 164 
for DD species represent the implied probability of correct classification for the exact species-level data 165 
as analyzed through REBA. 166 

Results 167 

Classification Overlap and Modeling Probability of Correct Classification 168 

REBA correctly classified 1,379 of 1,533 species (89.95%) in our dataset of North American plant 169 
species. An overwhelming majority of correct classifications (99.49%) were for LC species (Fig. 1). We 170 
under-classified 58 species (3.78%) and over-classified 96 (6.26%). 171 
  172 
‘Geophytes’ contained the highest proportion of under-classified species among ‘Plant Type’ (17.02%; 173 
Fig. 2) and exhibited the strongest negative effect on the probability of correct classification (mean effect 174 
on logit scale [99% HPDI]: -1.14 [-2.25, 0.00]; Fig. 3). ‘Annuals`, `Ferns`, and `Graminoids’ contained 175 
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no under-classified species (0%; Table S1, Fig. 2) and `Annuals` exhibited the strongest positive effect 176 
(1.13 [-0.22, 3.48]; Fig. 3). In the ‘Plant Type’ model, posterior estimates for effect of the number of 177 
points (NOP) maintained support for positive values across the entire 99% HPDI (1.60 [0.63, 3.06]). 178 
  179 
Among ‘Threats’ categories, ‘Human Intrusions and Disturbance’ had the highest proportion of under-180 
classified species (27.03%; Fig. 4), while `Residential and Commercial Development` exhibited the most 181 
negative effect on the probability of correct classification (-0.55 [-1.20, 0.03]; Fig. 5). ‘Climate Change 182 
and Severe Weather’ had the lowest proportion of under-classified species (12.62%; Table S2, Fig. 4) and 183 
exhibited the largest positive effect on correct classification (0.24 [-0.33, 0.91]; Fig. 5). In the ‘Threat’ 184 
model, posterior estimates for NOP again had support constrained to only positive values (0.99 [0.16, 185 
2.26]). 186 

 187 

Classifying Data Deficient Species 188 

Thirteen North American species classified by the IUCN as DD remained after data filtering (Table S3). 189 
REBA classified twelve as LC and one as NT. Their mean EOO was 56,612,597.68 km2, with a minimum 190 
of 22,002.41 km2 and a maximum of 162,676,407.50 km2. Their mean NOP was 4,322.80, with a 191 
minimum of 9 and a maximum of 40,298. All DD species had mean implied probabilities of correct 192 
classification above 0.70 (Table S3, Fig. 6). Ulmus glabra had the highest mean implied probability of 193 
correct classification (1.00 [.99, 1.00]) and Zingiber zerumbet had the lowest (.73 [.49, .90]; Table S3, 194 
Fig. 6). These thirteen species represent a third of the total number of North American species classified 195 
as DD (n = 39). The 26 species that were removed in our data cleaning process contained fewer than three 196 
cleaned occurrence records, precluding an EOO calculation. They remain priorities for further data 197 
collection. 198 

Discussion 199 

REBA can swiftly and accurately produce preliminary Red List assessments on a continental scale that 200 
match existing Red List assessments approximately 90% of the time. Our modeling efforts indicated that 201 
the number of points available for a species is the most important contributor to the probability of correct 202 
classification. REBA classified 13 DD species into non-threatened categories with more than 70% 203 
probability of presumed correct classification. Results from the ‘Threats’ model are less easily interpreted 204 
than those of the ‘Plant Type’ model. The mean number of ‘Plant Type’ per species was 1.29, while for 205 
‘Threats’ it was 2.35. Because many species are affected by multiple threats, it is more difficult to parse 206 
individual effects of each one.  207 

 208 
One of our most significant concerns regarding REBA came from under-classified species, which 209 
represent species of current conservation concern that would be masked under this assessment framework. 210 
REBA under-classified all seven North American species listed as CR, labelling six as LC: five Fraxinus 211 
species threatened by the Emerald Ash Borer (Agrilus planipennis), and the American Chestnut 212 
(Castanea dentata), threatened by the chestnut blight caused by Cryphonectria parasitica. These are 213 
widespread species, and their large EOOs mask the tremendous risk that invasive species and disease 214 
represent across their range. These particular threats are thus potential confounders of the REBA 215 
framework, particularly for species with large EOOs. This matches observations made in other 216 
applications of similar methods (S. Bachman et al., 2020). 217 

 218 
Another concern arises from the data itself. We found that the probability of correct classification 219 
increases substantially across all ‘Plant Types’ and ‘Threats’ with increasing NOP: REBA assessments 220 
based on > 20,000 records approach a 100% probability of correct classification (Fig. 3, Fig. 5). However, 221 
including more data may expose REBA to well-founded data quality concerns for publicly available data 222 
(see Meyer, Weigelt, & Kreft, 2016). Our data cleaning relied primarily on GBIF metadata and only 223 
implemented spatial filters to remove non-terrestrial points. Bachman et al. used a similar methodology 224 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.413906doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.413906
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

but employed a stricter spatial filter that limited occurrence data to those records that overlapped with a 225 
species’ native range (Bachman et al., 2020). However, such strict filtering potentially masks valuable 226 
occurrence records of non-native but naturalized species. Critical spatial filtering and further assessment 227 
of more rigorous cleaning methods to improve data quality is central to further refinement of rapid 228 
assessment tools. 229 

 230 
While acknowledging these concerns, REBA did produce correct classifications in ~90% of cases. The 231 
majority were for LC species, which could be a result of geographic bias in our study; North American 232 
species are well-studied and likely to have significant data available (Meyer et al., 2016), which may 233 
underlie the high number of LC classifications that REBA produced. By a similar logic, the more 234 
occurrence points a species has, the more likely it is to be of minimal conservation concern–a species 235 
with > 10,000 records is likely to be widespread. However, the identification of LC species is valuable for 236 
assessment prioritization. Once recognized, LC species can be put aside in the assessment pipeline in 237 
favor of those more likely to have a higher extinction risk that would benefit from more immediate 238 
attention (Bachman et al., 2020). 239 

 240 
REBA’s optimal function is to work alongside the full Red List assessment process, helping to focus 241 
limited human and financial capital on species in need of immediate attention by discovering species of 242 
least concern. We have demonstrated that it can accurately and rapidly leverage publicly available data to 243 
operate on a continental scale to prioritize plant conservation efforts (Antonelli et al., 2020). It can be 244 
applied to swiftly narrow the growing pool of DD species, address the growing backlog of species in need 245 
of reassessment, and provide a preliminary pass for unassessed species. Further refinement of REBA, as 246 
well as broader spatial and taxonomic applications, are necessary and welcomed. The need for action is 247 
immediate–there is little time to waste. 248 

Data Accessibility Statement 249 
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Conflict of Interest 252 

The authors declare no conflict of interest. 253 
  254 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.413906doi: bioRxiv preprint 

https://github.com/eveskew/plant_rapid_assessment
https://doi.org/10.1101/2020.12.14.413906
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Fig. 1 Below the bold line, each tile represents an intersection of IUCN threat category 255 
classifications: those assigned by the IUCN and those assigned using REBA. Green tiles along 256 
the diagonal represent matching classifications, where both the IUCN and REBA classified 257 
species into the same categories. Yellow tiles below the diagonal are those we over-classified, 258 
where REBA placed species into a higher extinction risk category than that produced by the 259 
IUCN’s classification. Red tiles above the diagonal represent those species we under-classified, 260 
where REBA placed species into a lower extinction risk category than that produced by the 261 
IUCN’s classification. Tile transparency is a function of the number of species associated with 262 
that classification combination. Grey tiles above the bold line represent the threat categories into 263 
which we classified 13 DD species using REBA. 264 

 265 
  266 
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Fig. 2 Each bar represents the total number of species assigned to a given ‘Plant Type’ by the 267 
IUCN. The proportion of those species that were classified correctly, over-classified, and under-268 
classified are represented respectively by green, yellow, and red sections. It is important to 269 
know that some species are counted across multiple plant types, as they were assigned more 270 
than one by the IUCN (i.e., Acer grandidentatum is classified as both a ‘Shrub’ and ‘Small 271 
Tree’). See Table S1 for raw data. 272 

 273 
  274 
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 10 

Fig. 3. Posterior probability distributions representing the influence of IUCN assigned ‘Plant 275 
Type’ on the probability of correct REBA classification at different sample sizes. 276 

 277 
  278 
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Fig. 4 Each bar represents the total number of species assigned to a given ‘Threats’ category 279 
by the IUCN. The proportion of those species that were classified correctly, over-classified, and 280 
under-classified are represented respectively by green, yellow, and red sections. It is important 281 
to know that some species are counted across multiple threat types, as they were assigned 282 
more than one by the IUCN (i.e., Acer rubrum is classified as threatened by ‘Natural System 283 
Modifications,’ ‘Invasive and Other Problematic Species, Genes, and Disease,’ and ‘Climate 284 
Change and Severe Weather’). See Table S2 for raw data. 285 

 286 
  287 
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Fig. 5. Posterior probability distributions representing the influence of IUCN assigned ‘Threats’ 288 
on the probability of correct REBA classification at different sample sizes. 289 

 290 
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 13 

Fig. 6. Posterior probability distributions representing the probability of correct REBA 292 
classification of 13 DD species. We employ the full posterior distributions of the ‘Plant Type’ 293 
model to produce the implied probability of correct classification for each of these species based 294 
on their ‘Plant Type’ and the actual number of cleaned occurrence points available for that 295 
species. See Table S3 for raw data. 296 

 297 
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 299 

Appendix 1: Rationale for grouping of ‘Plant Types’ 300 

We modeled the probability of correct classification among different ‘Plant Types’, which were 301 
previously defined by the IUCN (https://www.iucnredlist.org/resources/classification-schemes; Plant and 302 
Fungal Growth Forms Classification Scheme). The 1,546 species used to validate the REBA classification 303 
fell into 18 of the 24 IUCN ‘Plant Type’ categories. We combined some categories to improve statistical 304 
analysis and visualization, and these combinations are justified both biologically and by IUCN’s ‘Plant 305 
Type’ classification guidelines. For example, IUCN has multiple ‘Tree’ categories differentiated by size 306 
(i.e. ‘Tree - size unknown’, ‘Tree - large’, ‘Tree - small’), but admits that the categories based on size are 307 
“sub-types which may be dropped at some point in the future”, so we combined these categories into one 308 
‘Tree’ category. Sub-categories for both ’Succulent’ and ‘Shrub’ categories were combined for similar 309 
reasons. We combined the ‘Vine’, ‘Epiphyte’, and ’Lithophyte’ categories due to low sample sizes, which 310 
we thought was biologically reasonable because plants of these types often grow on atypical substrates 311 
and tend to display a climbing habit. 312 

 313 
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