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Abstract53

Detection of DNA cytosine modifications such as 5-methylcytosine (5mC) and 5-hydroxy-methylcytosine54

(5hmC) is essential for understanding the epigenetic changes that guide development, cellular lineage spec-55

ification, and disease. The wide variety of approaches available to interrogate these modifications has56

created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide57

methylome sequencing applications in clinical and basic research.58

We present a multi-platform assessment and a global resource for epigenetics research from the FDA’s59

Epigenomics Quality Control (EpiQC) Group. The study design leverages seven human cell lines that are60

publicly available from the National Institute of Standards and Technology (NIST) and Genome in a Bottle61

(GIAB) consortium. These genomes were subject to a variety of genome-wide methylation interrogation62

approaches across six independent laboratories. Our primary focus was on cytosine modifications found63

in mammalian genomes (5mC, 5hmC). Each sample was processed in two or more technical replicates by64

three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS, SPLAT),65

oxidative bisulfite sequencing (oxBS), Enzymatic Methyl-seq (EM-seq), Illumina EPIC targeted-methylation66

sequencing, and ATAC-seq. Each library was sequenced to high coverage on an Illumina NovaSeq 6000. The67

data were subject to rigorous quality assessment and subsequently compared to Illumina EPIC methylation68

microarrays. We provide a wide range of sequence data for commonly used genomics reference materials,69

as well as best practices for epigenomics research. These findings can serve as a guide for researchers to70

enable epigenomic analysis of cellular identity in development, health, and disease.71

Introduction72

DNA methylation, the addition of a methyl group to a nitrogenous base, plays a key role in the regulation of73

gene expression, disease onset, cellular development, and transposable element activity [1]. In mammalian74

genomes, a methyl group binds to the fifth carbon of cytosine, creating 5-methylcytosine (5mC) or its ox-75

idized form, 5-hydroxy-methylcytosine (5hmC) [2]. This modification most often occurs at regions in the76

genome known as CpG dinucleotides, which are characterized by a cytosine nucleotide followed immedi-77

ately by a guanine nucleotide [3]. Variations in DNA methylation levels correlate to altered gene expression78

[4], and this phenomenon holds significant implications for developmental processes [4], cancer [5], and79

biological age [6]. The prevalence, location, and dynamic methylation and hydroxy-methaylion of CpGs sites80

in the genome are areas of focus for studies seeking to examine their array of physiological effects.81

The field of epigenetics has expanded rapidly in recent decades. Since its inception in 1992 [7], the use of82

a sodium bisulfite treatment, which selectively deaminates unmethylated cytosines to uracil, has emerged83

as the dominant protocol for 5mC and 5hmC profiling. The advent of massively parallel sequencing in the84

early 2000s spurred the development of new bisulfite-based and other methods to capture DNAmethylation85

information. The scale of bisulfite analyses has expanded from specific regions to whole-genome methyla-86

tion sequencing (WMS), including preparation methods such as Swift Biosciences Accel-NGS Methyl-Seq,87

SPlinted Ligation Adapter Tagging (SPLAT) [8], Illumina TruSeq DNA Methylation, amongst others. More re-88

cently, protocols utilizing oxidative bisulfite sequencing (TrueMethyl oxBS) [9], enzymatic deamination (EM-89

seq) [10], targeted-methylation sequencing (Illumina EPIC Capture), and transposase-accessible chromatin90
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sequencing (ATAC-seq and Omni-ATAC-seq) [11, 12], among others, have further accelerated the breadth and91

rate of discovery.92

As the field of epigenomics continues to advance, there is a need to establish definitive standards and93

benchmarks reflecting the DNAmethylome of human cells and tissues. In particular, there is a need to char-94

acterize the unique biases of each library preparation, which can influence not only estimates ofmethylation,95

but sequencing qualitymetrics such as insert sizes of the libraries [8], quality scores [8], duplication rates [8],96

mapping efficiency [13], and evenness of coverage [14]. Together, these factors can contribute to unexpected97

differences in methylation calls and result in biased methylation measurements [14]. Bisulfite conversion98

also presents a computational challenge for data alignment, owing to asymmetrical C-T alignment and re-99

duced sequence complexity. Commonly used bisulfite-sensitive sequence aligners are designed either to100

work with a three-letter alphabet, or using wild-card algorithms [15]. The choice of aligner can significantly101

impact computational time, alignment efficiency and data accuracy.102

Here, the FDA’s Epigenomics Quality Control (EpiQC) Group presents a comparative analysis of targeted103

and genome-wide methylation protocols to function as a comprehensive resource for epigenetics research.104

These data come from seven publicly available human cell line genomes from the Genome in a Bottle (GIAB)105

consortium, which has developed a series of reference materials to enable reproducible genomics research106

[16]. Aliquots of cell lines were processed as two or more technical replicates across six independent labo-107

ratories. The resultant libraries were sequenced on multiple Illumina NovaSeq 6000 flowcells, quality con-108

trolled, computationally refined, and measured against Illumina methylation arrays to characterize each109

methylation assay. This reference dataset can act as a useful benchmarking tool and a reference point110

for future studies as epigenetics research becomes more widespread within genomics research111

Results112

Whole Methylome Sequencing113

Genomes were sequenced from seven well-characterized human cell lines (HG001-HG007) from the GIAB114

Consortium [17]. These seven cell lines come from one female HapMap CEU participant (HG001) and two115

Personal Genomes Project parent/son trios: an Ashkenazi Jewish trio (HG002-HG004) and a Han Chinese116

trio (HG005-HG007). Genome-wide methylation was examined using a variety of common, commercially117

available bisulfite and enzymatic conversion library preparation kits, including NEBNext Enzymatic Methyl-118

Seq (referred to here as EMSeq), Swift Biosciences Accel-NGS Methyl-Seq (referred to here as MethylSeq),119

SPlinted Ligation Adapter Tagging (referred to here as SPLAT), NuGEN TrueMethyl oxBS-Seq (referred to120

here as TrueMethyl), and Illumina TruSeq DNA Methylation (referred to here as TruSeq). Aliquots of the121
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same stock of cell lines were distributed to six independent laboratories, with one lab preparing libraries122

from each methylome assay, and two labs preparing EMSeq libraries. Biological and technical replicates of123

genomic libraries were pooled and sequenced in multiplex using paired-end 150bp chemistry across two S2124

and four S4 flow cells on Illumina NovaSeq 6000, and outputs across flow cells were combined per replicate125

for subsequent analysis (Table 1).126

Each methylome replicate was sequenced from 475M to 2.3B paired-end reads when combining all127

rounds of sequencing per replicate (Figure 1A), resulting from imbalance in library pooling. In contrast, each128

library type exhibited tight, assay-specific distributions of estimated insert sizes per read pair, as calculated129

from mapping distance of paired end reads (Figure 1B). The combination of variable sequencing depth and130

insert sizes resulted in divergent genome coverage distributions per assay type across the seven cell lines131

(Figure 1C). Generally, MethylSeq, SPLAT, and EMSeq had the deepest coverage, followed by bisulfite and132

oxidative-bisulfite replicates from TrueMethyl, and finally TruSeq, which returned an imbalanced coverage of133

genome, with the lowest percentage of the genome covered at lower depths, but a long tail of high-coverage134

sites. TruSeq also showed an imbalance of coverage of cytosines in CpG contexts, with a loweredmean and135

a longer tail, compared to more normal distributions in other assays (Figure 1D). TruSeq replicates exhibited136

GC-rich bias in genomic coverage and dinucleotide distribution (Figure 1E,F), owing to the random hexamer137

priming strategy implemented by this library preparation, in contrast to the more balanced profiles of other138

genomic assays.139

All libraries were passed through an alignment and methylation calling pipeline (see below). Reads were140

filtered out if they did not map to the reference genome, were marked as PCR or optical duplicates, or re-141

turned a mapping quality score below Q10. The number of reads filtered varied by assay, with EMSeq re-142

taining 68-85% of reads per preparation, MethylSeq retaining 80%, SPLAT retaining 75-82%, TrueMethyl143

retaining 58-62% for oxidative replicates and 65-70% for bisulfite-only replicates, and finally TruSeq retain-144

ing as low as 45% of reads (Figure 1G). As a result, different sequencing depths were required to achieve a145

given mean depth of coverage per CpG dinucleotide (Figure 1H), with EMSeq returning the greatest depth146

per base, followed by MethylSeq/SPLAT, and then TruSeq/TrueMethyl.147

Mapping and Methylation Calling Comparison148

Alignment was performed using a set of commonly available aligners for methylome read mapping, includ-149

ing Bismark [18], BitMapperBS [19], bwa-meth [20], and GemBS [21], all against a GRCh38 reference genome150

appendedwith bisulfite controls (seemethods; Figure S1). The run time of each aligner was first tested using151

one million random paired-end reads from each HG002 library. BitMapperBS was the fastest aligner, with152

an average of 550-650 read pairs processed per CPU core per second, with stable performance between153
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replicates (Supplementary Table 1). Bismark, bwa-meth, and GemBS showed equal alignment speed (about154

200 read pairs per CPU core per second). However, Bismark showed the most variability of timing between155

runs.156

Mapping rates varied between the algorithms across methylome library types. On average, bwa-meth157

and GemBS had the highest rate of reads mapping properly (forward and reverse mates aligning in proper158

orientation within an expected distance of one another), with values between 92-98%, while Bismark and159

BitMapperBS returned a rate of 78-86% (Figure 2A). Reciprocally, BitMapperBS and Bismark had a higher rate160

of unmapped reads (9-18%) than bwa-meth and GemBS (0-2%), owing to different read filtering strategies by161

the aligners. Bismark and BitMapperBS had fewer ambigious (secondary and supplementary) alignments162

for reads that were properly mapped than bwa-meth and GemBS, and all four aligners returned very similar163

read duplication estimates.164

Coverage of cytosines in CpG dinucleotide contexts also varied by caller, though callers performed con-165

sistently across assays (Figure 2B). Generally, all four aligners captured a similar, assay-specific fraction of166

CpG sites at low mean depths, while at higher depths the per-algorithm average dropped off, with Bismark167

dropping fastest, followed by GemBS, followed by BitMapperBS. Overall, bwa-meth captured the highest168

fraction of CpG sites along increasing depth cutoffs compared to other algorithms. Accordingly, all down-169

stream analyses were performed using bwa-meth methylation calls.170

In contrast to mapping and coverage rates, per-readmethylation bias (or "mBias") curves were extremely171

similar among all four algorithms, with different, strand-specific profiles seen for each assay (Figure 2C).172

EM-Seq and TrueMethyl showed hypomethylation at the 3’ OT end and 5’ OB end; MethylSeq showed hy-173

permethylation in these same regions; SPLAT is relatively flat; and TruSeq is more irregular, though overall174

hypermethylated. In line with this, the Spearman correlation of epigenome-wide methylation profiles be-175

tween assays and algorithms showed high differentiation among assays, followed by closer grouping of176

alignment strategies within assays (Figure 2D).177

Differences in sequencing depth, and thus CpG coverage, were shown to be a driver of differences in178

methylation estimates. When replicates of HG002 were compared in a pairwise manner, the coefficient of179

variation (stdev/mean) of CpG coveragewas higher in sites with 20% ormore difference in estimatedmethy-180

lation percentage, as compared to sites with 10% or less difference (Figure 2E), for all but one comparison.181

Downsampled Coverage and Methylation Estimates182

Downsampling can be used to simulate the effect of generating similar amounts of sequence data for a183

given sample when the number of reads sequenced is unbalanced, as in the data generated herein (Fig-184

ure 1). Downsampling can be done on aligned reads (BAM files) or on the methylation call files (bedGraph185
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files). As the downsampling process at the alignment level can be slow and demanding in terms of disk186

space and compute time, we set out to evaluate if downsampling methylation calls in bedGraph format re-187

capitulated downsampling aligned reads (BAMfiles) (Figure S2, Figure S3). Both downsampling approaches188

yielded similar results in methylation calls, number of CpG sites detected, and distribution of read counts189

(Figure S2B-D). We also measured the distribution of read counts between the different downsampling ap-190

proaches (Figure S2E). These data support that downsampling of bedGraph files produces equivalent DNA191

methylation calls and count distributions as downsampling BAM files, but with the added benefit that the192

targeted average coverage is more acurately estimated when downsampling bedGraphs.193

Given that downsampling bedGraphs yielded reproducible methylation calls, we evaluated the perfor-194

mance of different library preparation methods for genome-wide DNA methylation analysis using down-195

sampled, replicate-merged bedGraph files. The bedGraphs for all assays and genomes were downsampled196

along a range from 5X to 30X mean coverage. We subsequently evaluate the CpG sites covered by each197

assay and the reproducibility of methylation calls. In bedGraphs downsampled to average 10X CpG cover-198

age, 12-15M (43-54%) CpG sites across the genome are covered at 10X or greater and 20-26M (71-92%) are199

covered by at least 5X (Figure 3A). This pattern is consistent across libraries and average coverage level.200

However, the number of sites detected at each cut-off varied between the different assays, with the EM-seq201

assay capturing the greatest number (range 25.6-26.3M) and TruSeq assay capturing the lowest number202

of CpG sites (range 20.3-20.5M) in the 10X downsampled bedGraphs with a minimum cutoff of >=5 reads.203

Approximately 16M (range 15.9-16.4M) CpG sites were consistently detected by all assays (Figure 3C) and204

an additional 5M (range 4.6-5.3M) CpG sites were detected in EMSeq, MethylSeq, SPLAT, and TrueMethyl,205

but not by TruSeq. The numbers were remarkably stable between genomes (Figure S5). The different library206

types displayed differences in coverage around the transcription start site (TSS), with TrueMethyl showing207

themost even coverage, lower coverage in EMSeq followed byMethylSeq/SPLAT, whereas TruSeq displayed208

higher coverage around the TSS, likely due to its bias for high CG rich regions, which coincide with CpG is-209

lands around the TSS (Figure 3D). In pairwise comparisons, the CpG-level DNA methylation calls were gen-210

erally very reproducible (Pearson’s rho 0.87-0.92) and the average deviation from the mean was low (RMSE211

0.15 - 0.17) (Figure 3E). Each of the genome-wide methylome sequencing assays performed approximately212

equivalently, with the exception of TruSeq consistently yielding more variable DNA methylation calls than213

the other methods. The number of CpG sites captured, RMSE, and correlation coefficients for each assay214

and genome is outlined in Figure S4.215
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Differential Methylation of Family Trios Among Methylome Assays216

After downsampling to median 10X coverage, 2,227,395 CpG sites present on chromosome 1 in replicates217

from all five assays (EMSeq, MethylSeq, SPLAT, TrueMethyl, and TruSeq) were analyzed for differential218

methylation signal between assays. This analysis was done at the family level (Ashkenazi Trio HG002-219

HG004 against the Chinese Trio HG005-HG007) to avoid a one-to-one differential analysis. This also in-220

cluded a restriction to sites with 5X coverage in at least two out of three members of each family group,221

which resulted in small data reductions for EMSeq, MethylSeq, and TrueMethyl (6%, 8%, and 5%, respec-222

tively), with greater losses for SPLAT (12%) and TruSeq (27%). Coverage levels after this filtration step were223

highly correlated among MethylSeq, TrueMethyl, and SPLAT (r ≥ 0.75), while TruSeq and EMSeq were the224

least correlated assays. The correlation matrix for HG002 samples is seen in Figure S6; these correlations225

are representative of all members of the family trio.226

To assess consistency in sites identified as differentially methylated (DM) by each assay (DMA), we227

computed the fraction of DMA sites that were uniquely identified by that assay (a pseudo false-positive228

rate) (Table 2). We also computed the total number of DM sites commonly identified by three or more229

assays (DM3+), which totaled 0.15% of the common sites. We then determined the percentage of DMA230

sites that were also DM3+ sites (a measure of specificity), as well as the percentage of DM3+ sites that231

were also DMA sites (a measure of sensitivity). EMSeq and TrueMethyl produced the smallest numbers of232

DMA sites among the assays, with the lowest proportions of unique sites (35%) and the highest proportions233

of DMA sites in DM3+ sites (39%), indicating a good balance between sensitivity and specificity. MethylSeq234

and SPLAT both had higher numbers of DMA sites, associated with greater rates of unique DM sites (46%235

and 49%, respectively) but also the highest sensitivity to detect DM3+ sites (75% and 78%, respectively).236

TruSeq, which was associated with amuch larger number of DMA sites than any other assay, had the lowest237

concordancewith the other assays, with only 13%of its DMAsites in DM3+and58%of theDM3+sites among238

its DMA sites.239

We analyzed the profile of coverage variability for each assay (Figure 4), which illustrated the agreement240

with other assays for DM sites as a function of coverage, with values ranging between the 5th and 95th241

percentiles of median coverage across the six samples. For all assays, the analysis shows that agreement242

declines at higher coverage levels, but this effect is small for EMSeq, MethylSeq, and TrueMethyl. Because243

SPLAT has a heavy-tailed coverage distribution, the impact is more pronounced, while for TruSeq the cov-244

erage distribution is extremely diffuse and there is markedly poor agreement with other assays in its upper245

coverage percentiles.246
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Differential Methylation Within Microarray Sites247

Of the 82,013 probesmapping to chromosome 1 on the 850k EPIC Illuminamethylation array, 81,630 (99.5%)248

overlapped with sites common to all five assays. Of these, the number of differentially methylated assays249

(DMAs) ranged from 189 (TrueMethyl) to 729 (TruSeq). For all assays other than TruSeq, 100% of these250

DMAs had an estimated percent methylation difference (PMD) of 20% or greater between the family groups,251

and for TruSeq 725 of the 729 sites met this criterion. To analyze concordance between whole methylome252

sequencing (WMS) and microarray results, we computed the proportion of these DMAs for which a corre-253

sponding difference of at least 20% was observed for the microarrays, with these array PMDs estimated via254

ANOVA models with random intercepts for each genome. The overall agreement was comparable for four255

of the five methods with values ranging from 79.3% (MethylSeq) to 83.0% (EMSeq) and no statistically sig-256

nificant differences in proportion (Supplementary Table 2). However, for TruSeq the fraction of DMAs that257

werematched by the arraywas only 63.2%, whichwas significantly lower in comparison to every other assay.258

Similar results were observed when the results were separated into hypermethylated and hypomethylated259

sites.260

ATAC-seq Integration261

ATAC-Seq provides information about DNA organizationwithin the nucleus, which can be synthesized along-262

sidemethylation data to better understand themechanistics of epigenetic pathways. Two protocols are rou-263

tinely used to prepare ATAC-Seq libraries from cells and tissues: the Original ATAC-Seq protocol published264

by Buenrostro et al [22] and the Omni-ATAC protocol published by Corces et al [12]. In order to provide a265

complete epigenomic dataset for the 7 cell lines, we generated ATAC-Seq libraries with both protocols, on266

the same cell aliquots.267

Both ATAC and Omni-ATAC produce similar fragment profiles for all the cell lines (Figure 5a). After map-268

ping to the human genome, the Omni-ATAC protocol provided themost reads to the autosomal regionswhen269

compared to ATAC, and the least mitochondrial contamination (Figure 5b). The Omni-ATAC protocol also270

showed an improvement in enrichment around the TSS of genes compared to the ATAC protocol (Figure 5c).271

Spearman correlations between libraries for the same protocol, and between protocols, were calculated to272

provide an assessment of reproducibility. As shown in Figure 5d, the Omni-ATAC shows the best correlation273

across protocols. To evaluate the impact of the difference in data quantity and quality obtained by both pro-274

tocols, we performed a differential accessibility analysis between HG002 and HG005 cell lines. The results275

summarized in supplementary figure (Figure S7) suggest that the higher quality of the Omni-ATAC datasets276

result in more peaks significantly open.277
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The above analysis was produced with the data generated by paired-end 150 nucleotides sequencing.278

To determine if ATAC-Seq analysis would benefit from shorter reads (as ATAC-seq libraries are more com-279

monly prepared), we repeated the quality control with reads hard trimmed in silico to 3 lengths: 50, 75, and280

100bp for mates of paired end sequences. The results show that trimming the reads does not have an im-281

pact on the quality metrics obtained (Figure 5e), annotation to genomic regions (Figure 5f), or mapping to282

mitochondrial reads. Overall, both libraries are minimally impacted by experimental read length, and the283

Omni-ATAC protocol generates libraries with more reproducible replicates, which can improve the overall284

results obtained in downstream analysis.285

Multi-omic data integration is becoming an essential component of epigenomics studies. Using the286

data generated for HG001, the mean methylation at CpG sites (across all the methylomic libraries) as a287

function of chromatin accessibility measured by Omni-ATAC-Seq (open/closed) was plotted by genomic288

region. A genomic location was considered "closed" if it was not called as an accessible peak when ana-289

lyzing the Omni-ATAC-Seq data. As shown in Figure 5g, there is an overall increase in mean methylation290

across gene features starting from 5’ Regulatory/5’UTR to 3’ Downstream 5k region. It is in the 5’ region291

(Regulatory and 5’UTR) that we see the widest difference in mean methylation between the two chromatin292

conformations, with "open" chromatin showing the lowest methylation level. This lower mean methylation293

in the "open" chromatin was still observed for the 1st exon, but the difference is much smaller. First introns294

showed no difference in mean methylation between the chromatin states. The highest mean methylation295

was observed for exons and introns (i.e other than 1st) and with very little difference. Interestingly, mean296

methylation becomes slightly higher in "open" chromatin compared to "closed" chromatin in the introns and297

exons, and remains as such in the 3’UTR. Finally, integrating transcriptomic data from publicly accessible298

RNAseq sequencing of HG001 (SRA run identifier SRR1153470) shows concordance between methylation299

state, chromatin accessibility, and gene expression (Figure S8).300

Microarray Normalization and Site Filtering301

Each cell line had 3-6 biological or technical replicates with microarray data from the Illumina Methyla-302

tionEPIC Beadchip (850k array) generated from up to 3 labs. These replicates were used to assess different303

microarray normalization pipelines. We implemented 26 normalization pipelineswith different combinations304

of between-array and within-array normalization methods. The between-array normalization methods eval-305

uated were no normalization (None), quantile normalization (pQuantile) [23], functional normalization (fun-306

norm) [24], ENmix [25], dasen [26], SeSAMe [27], and GaussianMixture Quantile Normalization (GMQN) [28].307

The within-array normalization methods evaluated were no normalization (None), Subset-quantile Within308

Array Normalisation (SWAN) [29], peak-based correction (PBC) [30], and Regression on Correlated Probes309
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(RCP) [31]. All combinations were implemented with the exception of pQuantile + SWAN and SeSAMe +310

SWAN, which were not possible due to incompatible R object types.311

Wefirst performed principal component analysis (PCA) and visually inspected the first two principal com-312

ponents (PCs) for each normalization pipeline. Generally, samples from the same cell line clustered together313

more tightly after normalization, although a few pipelines (PBC alone, GMQN alone, GMQN + PBC) did not314

show obvious improvement in replicate clustering (Figure S9). Most pipelines failed to clearly distinguish315

samples from cell lines HG005 and HG006, the Han Chinese father/son pair, from one another.316

A variance partition analysis was used to compute the percentage of methylation variance explained317

by cell line at each CpG site in each normalized dataset. Funnorm + RCP had the highest median across318

the epigenome (90.4%), although many pipelines had medians in the 85-90% range Figure 6a. SeSAMe and319

RCP performed well (median>85%) no matter which methods they were combined with. While using RCP320

or SWAN usually improved performance compared to having no within-array normalization, using PBC for321

within-array normalization always reduced the median variance explained by cell line. For all downstream322

analyses, we used the funnorm + RCP normalized microarray data because this pipeline had the highest323

median variance explained by cell line. Figure 6a shows the full distribution of variance explained by cell line324

across the epigenome for each normalization pipeline. Most pipelines had a bimodal distribution, meaning325

CpG sites typically had almost no variation explained by cell line or nearly 100% of variation explained by cell326

line.327

In light of previous work that has shown that microarray data is not reliable for sites with low popula-328

tion variation [32], we investigated whether sites with poor concordance between replicates (% variance329

explained near 0) overlapped with low-varying sites. We used the 59 SNP probes on the Illumina EPIC ar-330

ray to compute a data-driven threshold for categorizing sites as low varying (Figure 6b-d, see Methods for331

details). We found that nearly all CpG sites in the normalized (funnorm + RCP) microarray data with poor332

concordance between replicates met our definition of low-varying sites (Figure 6e). When we compared333

the microarray beta values to the sequencing-based beta values for all 3 HG002 microarray replicates (Fig-334

ure S11,Figure S12,Figure S13), we observed that these low-varying sites tended to havemore extrememethy-335

lation values according to at least one platform, and there were many sites with large disrepancies (>20%)336

between methylation estimates from different platforms. This suggests that our data-driven definition of337

low-varying CpG sites, which can be applied to any Illumina 450k or 850k array dataset, may be useful for338

filtering out less reliable CpG sites before analysis.339
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Microarray Versus Sequencing Comparison340

We performed 5 additional variance paritition analyses, adding samples from one sequencing platform (EM-341

Seq, MethylSeq, SPLAT, TrueMethyl, or TruSeq) at a time, to evaluate the concordance between microarray342

and sequencing data. Because each cell line had 3-6 microarray replicates and only one (merged replicate)343

sequencing sample, these results are largely driven by the microarray data and the values may be biased344

upward by this. However, these models are a useful way to compare agreement between sequencing and345

microarray data across sequencing platforms, where a higher percentage of variance explained by cell line346

in one platform compared to another indicates better agreement with the microarray data.347

For low-varying microarray sites, cross-platform agreement was low for all sequencing platforms (Fig-348

ure S10a). This was expected, because we observed poor concordance between microarray replicates at349

these sites as well. For a small number of these low-varying sites, nearly 100% of the variation inmethylation350

was explained by platform, indicating that there were some technical artifacts introduced by platform, but351

these technical artifacts were not widespread across the epigenome (Figure S10c).352

For high-varying microarray sites, most of the variability across the epigenome was explained by cell line353

rather than platform, indicating good cross-platform concordance (Figure S10b,d). MethylSeq was most354

concordant with the microarray data, followed by SPLAT and EMSeq, which were comparable to one an-355

other, then TruSeq and finally TrueMethyl. Visual inspection of the microarray beta values compared to the356

sequencing beta values for 3 HG002 microarray replicates (Figure S11,Figure S12,Figure S13) show much357

more noise in the TruSeq and TrueMethyl comparisons.358

Discussion359

The EpiQC study provides a comprehensive resource for epigenetic research, using human cell lines already360

established as reference materials to advance genomics research from the Genome in a Bottle consortium.361

In addition to providing an epigenetic data layer to existing genomic references, we sought to generate362

datasets for a broad range of methylome sequencing assays, including whole genome bisulfite sequencing363

(WGBS) and enzymatic deamination (EMSeq). We also provided data from targeted approaches, including364

chromatin accessibility datasets (ATAC-Seq) from two protocols common to the field of epigenetics, EPIC365

Methyl Capture for a subset of genomic CpGs, and the Illumina 850k array. Finally, we provide sequence and366

epigenetic data for Oxford PromethION, an emerging third generation long read instrument.367

While most of the published and/or commercialized assays have been tested with some standard sam-368

ple (e.g. GM12878), the sample used to benchmark each assay was drawn from different DNA aliquots,369

extracted from cells grown at different passage, and potentially grown in different media. Here, aliquots of370
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the same gDNA were distributed across multiple laboratories, and used for all data generated. To remove371

additional variability, all libraries were sequenced on one instrument (then a second time all on one instru-372

ment), across multiple NovaSeq6000 flow cells. For whole methylome sequencing, libraries were produced373

in duplicates, and triplicates were generated for the ATAC-Seq protocols. In total, we are sharing with the374

scientific community over 7 Tb of epigenetic data.375

Benchmarking whole methylome sequencing technologies is important for determining which technol-376

ogy and method will achieve the best performance, and to provide recommendations and standards for377

future comprehensive methylomic studies. Large projects such as the NIH Roadmap Epigenomics Project378

[33] and the International Human Epigenome Consortium [34] have produced, compiled and analyzed a vast379

amount of WGBS data comprising tissues and cell lines from normal and neoplastic tissues. These data380

continue to provide an invaluable source of data for the epigenetics research community and have helped381

broaden our understanding of the various roles that epigenetics plays in health and disease. However, new382

methods are constantly being developed that address and circumvent issues with traditional approaches in383

terms of DNA input, resolution, and cost. Third-generation sequencing approaches are also rapidly advanc-384

ing and are emerging as a complementary method to the gold standard bisulfite conversion methods. Our385

study encompassed the most up-to-date range of assays offering to measure whole-genome DNA methy-386

lation. We were able to incorporate sample preparation protocols using the gold standard bisulfite con-387

version (Swift Accel-NGS Methyl-Seq, TrueMethyl-Seq, EPIC Methyl Capture and 850k array, and SPLAT), a388

new method utilizing enzymatic deamination (EM-Seq), and Oxford Nanopore sequencing. With the use of389

7 different cell lines, this is to our knowledge the most extensive examination of DNA methylation analysis390

methods on the most extensive set of samples.391

Cost is an important parameter to decide which library preparation method to use. Libraries with longer392

inserts benefit from less adapter contamination and overlapping reads, which increases coverage efficiency,393

especiallywhen employing cost-effective sequencing on the IlluminaHiSeqorNovaSeq systemswith paired-394

end 150 bp reads. In this study, this sequencing scheme resulted in a highly variable depth of coverage per395

library preparation. While imbalanced pools may account for some of the difference, library preparation396

methods had the biggest impact. Except for TruSeq, all the other library preparations start with shearing of397

the gDNA. For the other bisulfite-dependent protocols, the DNA fragments range between 200-400, whereas398

EM-Seq allows for longer fragments ( 550bp). TruSeq libraries tend to have short (130 bp) insert sizes and399

are therefore more suitable for 75 bp paired-end read lengths. Despite the imbalance of coverage, this400

studies provides robust recommendations for downsampling across sequencing types, showing both how401

different downsampling schemes (i.e. at the BAM level or at the methylation bedGraph level) are compara-402

ble, and how downsampled datasets can be directly compared to one another to assess the performance403
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of the assays themselves.404

The methods that have proven to have greater genome-wide evenness of coverage, namely Accel-NGS405

MethylSeq [35], SPLAT [36], and TrueMethyl [37] tend to have longer insert sizes (200–300bp), fewer PCRdu-406

plicates (down to a few percent, depending on sequencing platform), and high mapping efficiencies (>75%).407

The SPLAT libraries herein had shorter insert sizes than desired due to the use of 400 bp Covaris shearing408

prior to library preparation. To achieve insert sizes of >=300bp, the SPLAT authors now recommend using409

DNA fragmented to 500-600 bp as input and to perform final library purification at 0.8x AMPure ratio to re-410

move shorter fragments. The same recommendation would work for MethylSeq and TrueMethyl protocols.411

SPLAT is the only method in our evaluation that is not commercial/kit-based and could be comparatively412

10x cheaper per library [36]. This can be important when considering the sample preparation costalongside413

sequencing costs.414

Another important parameter is the amount of data retained from aWGBS experiment following adapter415

and quality trimming, mapping and deduplication. Here, we show the effects of each mapping step on each416

methylome assay, and how reads are filtered along each step, including the estimated number of reads417

required to achieve a certain mean coverage per CpG. Similarly, previous studies (e.g. Miura et al., 2016418

and Zhou et al., 2019) have implemented a metric to estimate the efficiency of WGBS genome coverage by419

determining the raw library size (number of PE 150 bp reads prior to filtering) required to achieve at least420

30x coverage of 50% or more of the genome. According to these studies, this corressponded to 500M421

for Accel-NGS, 900M for TruSeq DNA methylation, and 1000M for the QIAGEN QIAseq Methyl Library Kit422

[35]. Standardization and adoption of such a metric in future studies would make it significantly easier to423

compare and contrast results from different methods.424

NEB’s EM-Seq protocol [38] compares favorably to the bisulfite sequencing-based approaches analyzed425

herein. In almost all comparisons EM-Seq libraries captures more CpG sites at equal or better coverage. A426

"conventional" pre-enzymatic conversion library preparation approach is recommended in the EM-Seq pro-427

tocol (NEB), as the cytosine bases in the adapter sequences are methylated and thus preserved during the428

enzymatic APOBEC treatment. However, for some studies using low- or poor-quality DNA samples, such429

as those from FFPE or liquid biopsies that are comprised of a mix of ssDNA and dsDNA molecules, the430

EM-seq approach in combination with library preparation methods such as SPLAT or Accel-NGSMethylSeq,431

which are capable of capturing both ssDNA and dsDNA,may prove to be beneficial for creating higher quality432

libraries.433

Beyond library preparation, the use of algorithmic tools has an impact on the performance of eachmethy-434

lome assay. Asymmetrical C-T distributions between DNA strands and reduced sequence complexity make435

epigenetic sequence alignment different from regular DNA processing. Computational time, alignment ef-436
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ficiency, and accuracy are the main factors for choosing an alignment, all of which are impacted by these437

factors. We observed a general trade-off between time and efficiency and accuracy for all aligners, with438

bwa-meth providing the optimal balance of high accuracy and efficiency.439

Choice of computational algorithms is equally important in analyzingmethylationmicroarray data. In this440

study, we compared 26 different normalization pipelines. Many algorithms (SWAN, RCP, pQuantile, dasen,441

funnorm, ENmix, and SeSAMe) generally performed well in this dataset, clustering replicates from the same442

cell line (across different labs) together while preserving differences between cell lines, but all pipelines443

performed poorly at sites with low population variance, confirming previous work [32]. We proposed using444

the 59SNPs on the 850k array to calculate a data-driven threshold for classifying low-varying sites. Using our445

threshold, which can be calculated in any Illumina microarray dataset with or without technical replicates,446

we observed that low-varying sites had poor concordance across replicates from the same cell line, tended447

to have extreme (near 0% or 100%) methylation values, and showed poor agreement with sequencing data448

regardless of sequencing platform. This suggests that low-varying sites are notwell captured bymicroarrays449

and should be filtered out before analysis. It is very possible that the issue of unreliable data at low-varying450

sites is not specific to microarrays, but we were not able to address this question in the sequencing data451

because of the limited number of replicates, which were ultimately merged for analysis.452

One final caveat herein is the use of high quality DNA from cell lines. Using this highly controlled input,453

the methods examined within this study produced mostly comparable data. However, the performance of454

each kit may be more variable on less optimal input DNA (lower input, more highly fragmented, etc.) that455

mirrors real clinical samples more closely. The optimal data herein could serve as a launch point for future456

studies of more realistic inputs.457

Methods458

Library preparation459

Illumina TruSeq DNA Methylation (TruSeq): 100 ng of genomic DNA was bisulfite converted using EZ DNA460

Methylation-Gold Kit (Zymo Research). Sequencing libraries were prepared according to the manufacturer’s461

protocol (Illumina). The libraries were amplified with 10 PCR cycles using the FailSafe PCR enzyme (Illu-462

mina/Epicentre).463

464

SPlinted Ligation Adapter Tagging (SPLAT): 100 ng gDNA was fragmented to 400 bp (Covaris). Bisulfite465

conversion was performed using the EZ DNA Methylation-Gold kit (Zymo Research). SPLAT libraries were466

constructed as described previously (Raine et al., 2017). The libraries were amplifiedwith 4 PCR cycles using467
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KAPA HiFi Uracil+ PCR enzyme (Roche).468

469

Illumina EPIC Capture: 500 ng of genomic DNA was prepared according to the manufacturer’s protocol470

(Illumina). Pools of 3 and 4 libraries were amplified using KAPA Uracil+ HiFi enzyme (Roche).471

472

Swift Biosciences Accel-NGS Methyl-Seq (MethylSeq): 100 ng of genomic DNA was spiked in with 1% un-473

methylated Lambda gDNA, and fragmented to 350 bp (Covaris). Bisulfite conversion was performed using474

EZ DNA Methylation-Gold kit (Zymo Research). Libraries were prepared according to manufacturer’s in-475

structions (Swift), using dual-indexing primers. A total of 6 rounds of amplification were performed using476

the Enzyme R3 provided with the kit.477

478

NuGEN TrueMethyl oxBS-Seq (TrueMethyl): 200 ng of genomic DNA was spiked with 1% unmethylated479

Lambda gDNA and fragmented to 400 bp (Covaris). Fragmented DNA was processed for end-repair, A-480

tailing, and ligation using NEB’s methylated hairpin adapter. Ligation was performed at 16C overnight in a481

thermocycler. The USER enzyme reaction was performed the next morning, according to themanufacturer’s482

protocol, before Ampure XP bead cleanup of the ligated DNA. Each sample was then split into 2 aliquots to483

performoxidation + bisulfite conversion ormock (water) + bisulfite conversion according to theNuGenOxBS484

module instructions (Tecan/NuGen). PCR amplification was performed using NEB’s dual-indexing primers485

and KAPA Uracil+ HiFi enzyme for a total of 10 cycles.486

487

Enzymatic Methyl-Seq (EMSeq): 100, 50 and 10 ng of genomic DNA spiked in with 2 ng unmethylated488

lambda and 0.1 ng CpG methylated pUC19 was fragmented to 500 bp (Covaris S2, 200 cycles per burst,489

10% duty-cycle, intensity of 5 and treatment time of 50 seconds). EM-seq libraries were prepared using the490

NEBNext Enzymatic Methyl-seq (E7120, NEB) kit following manufacturer’s instructions. Final libraries were491

amplified with the included NEBNext Q5U polymerase using 4 cycles for 100 ng, 5 cycles for 50 ng and 7492

cycles for 10 ng inputs.493

494

MeDIP and hMeDIP-Seq: MeDIP-seq and hMeDIP-Seq were performed, with all the biological triplicates495

after DNA isolation, according to the protocol of Taiwo et al. [39], with minor adjustments. For DNA frag-496

mentation to a size of 200 bp, 300 ng of isolated DNA were sonicated on the bioruptor (Diagenode) by497

using instrument settings of 15 cycles, each consisting of 30 seconds on/off periods. After fragmentation,498

the genomic DNA size rangewas assessed using an Agilent 2100 Bioanalyzer and high-sensitivity DNA chips499

(Agilent Technologies), according to the manufacturer’s instructions. Libraries were prepared using 300 ng500
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of fragmented DNA ( 200 bp) and the NEBNext Ultra DNA Library Prep Kit for Illumina (NEB), according to501

the manufacturer’s protocol. The purified adaptor-ligated DNAs were used for Methylated DNA Immuno-502

Precipitation (MeDIP), according to the manufacturer’s instructions of the MagMeDIP kit (Diagenode) and503

IPure kit (Diagenode).504

PCR was used to amplify the MeDIP/hMeDIP adaptor-ligated DNA fragments. In brief, 25 µL NEBNext505

High Fidelity 2x PCR Master mix (NEB), 1 µL of Index primer (NEB) that was used as a barcode for each506

sample, and 1 µL of Universal PCR primer (NEB) were added to 23 µL of the MeDIP adaptor ligated DNA507

fragments. PCR was performed by using the temperature profile: 98 °C for 30 s, 15 cycles of 98 °C for508

10 s, 65 °C for 30 sec., and 72 °C for 30 s, followed by 5 minutes at 72 °C and hold on 4 °C as described509

before. Thereafter, PCR-amplified DNAs (libraries) were cleaned using Cleanup of PCR Amplification in the510

NEBNext Ultra DNA Library Prep Kit for Illumina (NEB). Fragmented DNA size and quality were checked using511

the Agilent 2200 TapeStation and High Sensitivity D5000 Screen Tape. In addition, generated libraries were512

size-selected on a 6% TBE Gel; fragments of 250–500 bp were excised and the Illumina Truseq Purify cDNA513

construct was used to extract and purify the DNA libraries. Libraries were quantified on a Qubit fluorimeter514

(Invitrogen) by using the Qubit dsDNA HS Assay kit (Invitrogen) and qualified checked using the Agilent515

2200 TapeStation and High Sensitivity D5000 Screen Tape. All kits and chips were used according to the516

manufacturer’s protocol.517

518

Illumina Infinium MethylationEPIC BeadChip (850k array): Bisulfite conversion was performed using the519

EZ DNA Methylation Kit (Zymo Research). with 250 ng of DNA per sample. The bisulfite converted DNA520

was eluted in 15 µl according to the manufacturer’s protocol, evaporated to a volume of <4 µl, and used for521

methylation analysis on the 850k array according to the manufacturer’s protocol (Illumina).522

Microarray experiments were run at three different labs, two of which included technical replicates. The523

resulting dataset consisted of 30 samples, with each of the 7 cell lines having between 3 and 6 replicates524

(both biological and technical). For all cell lines (HG001-HG007), 2 technical replicates were generated at lab525

1 and 1 biological replicate was generated at from lab 2. Additionally, 3 technical replicates were generated526

for the Han Chinese family trio cell lines (HG005-HG007) at lab 3.527

528

Preparation ofATAC-Seq libraries: ATACvsOmni-ATACprotocols: cryopreserved cellswere thawed, counted,529

and split into 2 aliquots for processing in parallel according to each protocol. Library quality control was as-530

sessed with Qubit and TapeStation HS D1000.531

532

LC-MS/MS quantification of 5mC and 5hmC: Genomic DNA from HG001-007 cell lines was used for the533
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analysis. Samples were digested into nucleosides using Nucleoside digestion mix (M0649S, New England534

Biolabs) following manufacturers protocol. Briefly, 200 ng of each sample was digested in a total volume535

of 20 µl using 1 µl of the digestion mix. Samples were incubated at 37°C for 2 hours.536

LC-MS/MS analysis was performed using two biological duplicates and two technical duplicates by in-537

jecting digested DNA on an Agilent 1290 UHPLC equipped with a G4212A diode array detector and a 6490A538

Triple Quadrupole Mass Detector operating in the positive electrospray ionization mode (+ESI). UHPLC was539

performed on a Waters XSelect HSS T3 XP column (2.1 × 100 mm, 2.5 µm) using a gradient mobile phase540

consisting of 10 mM aqueous ammonium formate (pH 4.4) and methanol. Dynamic multiple reaction mon-541

itoring (DMRM) mode was employed for the acquisition of MS data. Each nucleoside was identified in the542

extracted chromatogram associated with its specific MS/MS transition: dC [M+H]+ at m/z 228-112, 5mC543

[M+H]+ at m/z 242-126, and 5hmC [M+H]+ at m/z 258-142. External calibration curves with known amounts544

of the nucleosides were used to calculate their ratios within the analyzed samples.545

Sequencing546

NEB Sequencing: An Illumina NovaSeq 6000 was used for sequencing. Dual-unique index pools were con-547

structed from libraries made at multiple sites after quantification using an Agilent Bioanalyzer. Tomaximize548

usable reads, 5mC converted libraries were sequenced in pools containing unconverted libraries instead549

of PhiX. Pools were loaded at ~250 pM for pools with length < 500 bp (paired-end 2x100) or ~300 pM for550

longer-insert pools (paired-end 2x150). In some cases dual-unique balancing libraries were not available.551

These were sequenced in combination with the dual-unique libraries and demultiplexed using the expected552

index 2 sequence derived from the universal adapter. When too many libraries used the same indices we553

employed an Illumina XP manifold system to sequence in 4 distinct pools. Basecalling occurred on the No-554

vaSeq using RTA v3.4.4x. Demultiplexing and fastq generation was performed using Picard 2.20.6 using555

default settings except as listed below:556

picard ExtractIlluminaBarcodes MAX_NO_CALLS=0 MIN_MISMATCH_DELTA=2 MAX_MISMATCHES=2557

picard IlluminaBasecallsToFastq \558

read_structure=100T8B8B100T RUN_BARCODE=A00336 \559

LANE=<lane> FIRST_TILE=<tile> TILE_LIMIT=1 \560

MACHINE_NAME=<instrument> FLOWCELL_BARCODE=<flowcell>561

Illumina Sequencing: Aliquots of stock DNA were sent to Illumina in order to ameliorate depth of se-562

quencing for WGBS libraries. Libraries were pooled and diluted to 1.5nM (final loading concentration of563

300pM on flow cell), then sequenced on Illumina NovaSeq S4 flow cells with direct flow cell loading (Xp564
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workflow) according to manufacturer’s instructions. MethylSeq and SPLAT libraries were multiplexed on565

two lane; SPLAT libraries on their own in the third lane; and TrueMethyl libraries on their own in the fourth566

lane. Run data were uploaded to BaseSpace and fastq files were generated using default parameters.567

Alignment568

Quality Control: FastQC was used to evaluate the quality of sequencing data, including base qualities,569

GC content, adapter content, and overrepresentation analysis. Adapters were trimmed using Trim Galore570

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).571

Mapping: Sequencing replicates were mapped against a modified build of the human reference genome572

(build GRCh38) which included additional contigs representing bisulfite controls spiked within the pooled573

libraries, including lambda, T4, and Xp12 phages and pUC19 plasmid. Alignment to the genome was per-574

formedwith Bismark (v0.22.1), BitMapperBS (v1.0.2.2), BWA-METH (v0.2.1), and gemBS (v3.2.0). BS-Seeker3575

and BRAT-nova were not included after failing to build an index of the reference genome and repeated mem-576

ory errors. Alignments were run using default parameters for each software.577

For the time comparison analysis, we subsampled a random set of one million read pairs per library,578

using the same random seed for each. Each pipeline was run on the subsetted inputs a total of 10 times. All579

experiments were performed using a 24 CPU-threaded server, running Ubuntu 16.04, and the performance580

of each replicate was timed (see Supplementary Table 1). Post-alignment statistics were generated using581

samtools stats and Qualimap. Alignment files generated from the four pipelines were fed into MethylDackel582

for methylation bias (mBias) methylation calling, using the suggested trimming parameters from the mBias583

analysis for each replicate.584

CpG Characterization: We examine the number of common CpG sites of all possible combinations of585

four aligners using bedtools intersect (https://github.com/arq5x/bedtools2). The intersection attributes of586

CpGmethylation estimates fromeach alignerwere visualizedwith Intervene (https://github.com/asntech/intervene).587

Pairwise Spearman correlation was calulated to evaluate the concordance of CpG methylation calls from588

the four aligners.589

We further evaluated the performance of the four methods by comparing distribution of annotations,590

including 3’ UTR, 5’ UTR, Exon, Intergenic, Intron, Non-coding, Promoter-TSS, TSS, and unknown regions.591

Additionally, to explore the aligner’s effect on methylation level in relation to the TSS, we profile the DNA592

methylation level at each CpG site surrounding the gene’s TSS ±5kb.593
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Downsampling594

The bedGraph files generated by the BWA-meth aligner (see results for rationale to proceed with BWA-595

meth calls for secondary analyses) for each technical replicate were combined by summing up the methy-596

lated and unmethylated counts per CpG site by chromosome. Next, the strands were merged in order to597

produce one value per CpG dinucleotide using MethylDackel mergeContext. The resulting replicate-CpG-598

merged bedgraphs were downsampled using https://github.com/nebiolabs/methylation_tools/ downsam-599

ple_methylKit.py where a fraction of counts kept corresponding to the desired downsampling depth.600

To compare downsampling mapped reads (BAM files) and bedGraph files, the BAM files from all repli-601

cates representing EMSeq HG006 (Lab 1) and MethylSeq HG004 (Lab 1) were respectively merged using602

samtools merge. The merged BAMs were then downsampled using samtools view using the −s parame-603

ter, calculating the fraction of reads necessary to achieve the desired mean coverage per BAM. Methylation604

was called on these BAM files using the same methodology as above. The strands were merged by CpG605

dinucleotide using MethylDackel merge context, creating one methylation call per CpG site. The procedure606

is outlined in the Supplementary Information (Figure S2A), (Figure S3A).607

Differential Methylation Analysis608

Differential methylation between the two family groups (HG002-HG004 vs HG005-HG007) was assessed at609

each site on chromosome 1 for which at least two samples per group were covered by 5 or more reads. Fol-610

lowing aggregation of replicates, strand merging, and downsampling to median 10X coverage, analysis was611

independently conducted via logistic region for each of five platforms (MethylSeq, EMSeq, TruSeq, SPLAT,612

and TrueMethyl bisulfite replicates) using the standard “glm” function in R. p-values were adjusted using the613

Benjamini-Hochberg correction and adjusted values < 0.05 were considered statistically significant. Com-614

parisons among platforms considered only sites that were present in all datasets.615

ATACseq Processing616

Pre-Processing: Trim Galore was used both to remove adapters and, for the purpose of the read length617

titration experiment, to hard-trim reads to fixed lengths (50bp, 75bp and 100bp) starting from the five-prime-618

end. The NextSeq quality trimming option was set to 20. The hard-trimmed reads were then processed619

with the pigx-chipseq pipeline for preprocessing, peak calling and reporting for ChIP and ATAC sequencing620

experiments (https://github.com/BIMSBbioinfo/pigx_chipseq, v0.0.41).621

Alignment: Briefly, reads were aligned to the human reference genome (build GRCh38) using bowtie2622

(v2.3.4.3) with maximum fragment length for valid paired-end alignments extended to 2000 bp. Alignments623
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were subsequently filtered via samtools (v1.9) removing mappings with mapping quality below 10 and dis-624

carding duplicate alignments.625

Peak Calling: Macs2 (v2.1.1.20160309) was used to call peaks on the filtered alignments with automatic626

duplicate removal enabled (–keep-dup ’auto’), input format specified as paired-end bam (–format ’BAMPE’),627

shifting model-building disabled (–nomodel), effective genome size changed to human (–gsize ’hs’) and628

ignoring peaks with FDR less than 0.05 (-q 0.05).629

Oxidative Bisulfite Analysis630

TrueMethyl Libraries: quality of data was assessed with fastqc. Adapters were trimmed using Trim_Galore.631

Reads were aligned to the hg38 genome using Bismark/Bowtie2. CpGmethylation data was extracted using632

MethylDackel, in destranded format, and keeping sites covered by at least 5 reads. This data was loaded633

in the R/Bioconductor bsseq package [40]. CpG sites common to all replicates were obtained, and the M634

(counts for methylated C) and Cov (total count) matrices were extracted and used to generate the matrices635

required for the MLML2R package [41] to estimate the levels of 5mC, 5hmC, C from the beta values. The636

resulting estimateswere used to create bed files for further comparisonwith correspondingMeDIP/hMeDIP-637

Seq data.638

Microarray Normalization and Site Filtering639

Microarray normalization methods were divided into two broad categories: between-array normalization640

and within-array normalization. Between-array normalization is used to reduce technical variation while641

preserving biological variation between samples, while within-array normalization is used to correct for the642

two different probe designs on the Illumina methylation arrays, which have been observed to have different643

dynamic ranges [30]. The between-array normalization methods evaluated were pQuantile [23], funnorm644

[24], ENmix [25], dasen [26], SeSAMe [27], and GMQN [28]. We implemented all possible combinations of645

between-array and within-array normalization methods as well as each method individually. Samples from646

all 3 labs were normalized together as one joint dataset.647

In order to evaluate the performance of each pipeline, all 30microarray samples from 3 labs were pooled648

together in a variance partition analysis [42]. For each pipeline and at each CpG site, the percentage of varia-649

tion in DNAmethylation beta values explained by cell line and labwas calculated. Additionally, we performed650

principal components analysis (PCA) and visually inspeced clustering of technical and biological replicates651

across all normalization pipelines. A superior normalization pipeline would have more variation explained652

by cell line across the epigenome compared to other pipelines as well as clear clustering of biological and653

technical replicates.654
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After normalization, we used the 59 SNP probes on the 850k array, meant to identify sample swaps655

[43], to define a data-driven classification of low-varying sites. Previous studies have found that low-varying656

sites have poor reproducibility on the Illumina arrays [32] and have suggested data-driven probe filtering us-657

ing technical replicates [44, 45] or beta value ranges [32]. However, not all studies have technical replicates,658

and previously proposed beta value range cutoffs for one experiment may not be generalizable to another659

experiment. We first called genotype clusters based on the beta values at each of the 59 SNP probe within660

each of the 3 different labs (Figure 6b). Although we used a naïve approach for calling genotypes (<25%661

methylation=cluster 1, 25-50% methylation = cluster 2, >75% methylation = cluster 3), which was sufficient662

for the clear separation in our dataset (Figure 6b), more sophisticatedmethods [46] can be used for datasets663

with less clear separation and/or outlier values. In theory, because these 59 SNP probes are meant to mea-664

sure genotypes, cell lines with the same genotype should have exactly the same readout in an experiment665

without any technical noise. Therefore, we can use variance within genotype clusters from the same exper-666

iment as a measure of technical noise and determine the minimum population variation needed to exceed667

the observed technical variation. Within each of the 3 labs, we calculated methylation variance at each SNP668

probe within each genotype cluster, giving us a distribution of observed technical noise ((Figure 6c). To669

avoid being overly conservative due to outlier values at these 59 SNP probes, we use the 95th percentile of670

these genotype cluster variances as the threshold for defining low-varying sites (Figure 6c-d).671

Microarray Versus Sequencing Comparison672

Variance partition analyses were used to compare the microarray and sequencing datasets and assess673

cross-platform concordance. Each variance partition analysis included all microarray replicates, normal-674

ized with funnorm + RCP, and one sequencing sample per cell line from a single sequencing platform and675

lab (with replicates merged). The percent of variation in DNA methylation explained by cell line and plat-676

form (sequencing or microarray) was calculated at each overlapping CpG site. This produced 5 sets of re-677

sults, one per sequencing platform. The percentage of variation explained by cell line at each site was used678

as a measure of cross-platform concordance between each sequencing platform and the microarray data,679

and the percentage of variation expained by platform was used as a measure of platform- or experimenet-680

specific artifacts. Each variance partition analysis was performed on the same 842,965 CpG sites, which681

were present in all 6 datasets, to ensure a fair comparison.682
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Data Availability683

All data sequenced for this study is available within SRA under accession number SRR8324451. All code684

used to process data and generate files is publicly available onGithub at https://github.com/Molmed/epiqc.685
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Figure 1: Sequencing and alignment ofwholemethylome libraries. (a) Total reads captured for eachGenome
in a Bottle (GIAB) cell line across common epigenetic library preparations. Each stacked bar represents one
replicate per library (combining technical replicates), and different shades for EMSeq represent libraries pre-
pared at two sites. (b)Median insert size estimates derived fromdistance between aligned paired end reads.
(c) Cumulative coverage plot, averaged across the GIAB cell line genomes, for each genomic assay. (d) Dis-
tribution of mean coverage of cytosines in CpG contexts across assays, here shown just for chromosome
1 within HG001 replicates. (e) Normalized GC coverage bias per assay, calculated as dividing the number
of aligned bases by the number of 100bp windows in the genome that match a given %GC. (f) Nucleotide
distribution per assay, showing the log2 distribution of covered versus expected mono- and di-nucleotide
patterns. (g) Read retention rate per assay, showing the fraction of total reads that are filtered by each step
in the alignment process. (h) Mean depth of coverage per CpG dinucleotide versus the total number of reads
sequenced per assay, showing the relationship of sequencing required to achieve a certain level of capture.
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Figure 2: CpG capture across algorithms. (a) Distribution of reference mapping results, shown as fraction
of total reads per library, including properly mapped reads (both mates mapped in correct orientation within
a certain distance), ambiguously mapped reads (read pairs containing secondary or supplementary align-
ments), reads marked as duplicates, and unmapped reads. Note that ambiguous and duplicate reads can
be a subset of properly aligned reads. (b) Fraction of genome-wide CpGs (n=29,401,795) covered at a given
mean depth using CpG calls from each algorithm. (c) Methylation bias distribution, showing the percentage
of methylated cytosines per base across all reads of a library. OT=Original Top strand; OB=Original Bottom
strand. (d) Spearman correlation of CpG calls per assay and alignment algorithm. (e) Coefficient of variation
of coverage for every assay pair, showing the impact of CpG coverage in methylation calling. CpG calls from
bwa-methwere used. Gray distributions represent <10%difference inmethylation at a givenCpGbetween as-
says; blue distributions represent >20% difference in methylation. Percentages reflect sites within that com-
parison that match each condition. EM=EM-Seq; MS=MethylSeq; TM=TrueMethyl; SP=SPLAT; TS=TruSeq.
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Figure 3: Assay Comparison. (a) Number of CpG sites detected by assay and coverage. (b) CpG distribution
per library acorss downsampling regimes for HG002. (c) Upset plots showing the overlap in CpG sites cov-
ered by >= 1X coverage and >= half coverage in each downsampling regime for HG002. (d) Coverage within
5kb of Transcript Start Sites (TSS) within each downsampling regime for HG002. (e) Pair-wise comparison
of DNA methylation Beta- values of overlaping CpG sites by assay. Pearson’s correlation coefficients (r) are
indicated.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.421529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/


EM−seq

Median Coverage

N
um

be
r o

f P
la

tfo
rm

s

8 9 10 11 12 13 14 15 16

1
2

3
4

5
Methyl−seq

Median Coverage

N
um

be
r o

f P
la

tfo
rm

s

8 9 10 11 12 13 14 15 16 17

1
2

3
4

5

TrueMethyl

Median Coverage

N
um

be
r o

f P
la

tfo
rm

s

8 9 10 11 12 13 14 15 16

1
2

3
4

5

SPLAT

Median Coverage

N
um

be
r o

f P
la

tfo
rm

s

8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2

3
4

5

TruSeq

Median Coverage

N
um

be
r o

f P
la

tfo
rm

s

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27282930313233

1
2

3
4

5

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

● ● ● ●
● ● ●

● ●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

● ●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

● ●
● ●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
● ●

● ●
● ● ●

● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

EM−seq
Methyl−seq
TrueMethyl
SPLAT
TruSeq

A B C

D E F

Figure 4: Panels (A-E): Agreement in DM sites among assays, binned by median coverage levels spanning
the 5th-95th percentiles for each assay. Colored bars indicate the proportion of sites at each coverage level
identified by other assays (red indicates unique sites, while blue indicates sites common to all five). Panel
(F): Cumulative distribution functions of coverage on HG002.
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Figure 5: ATAC-Seq of GIAB cell lines. (a) Fragment length distribution per cell line, showing nucleosome
free peaks, mononucleosome peaks, dinucleosome peaks, and beyond. BUEN=original Buenrostro ATAC
protocol; OMNI=OMNI protocol, for all elements of the figure. (b) Percentage of reads assigned to autoso-
mal versus mitochondrial regions. (c) Enrichment for Transcript Start Sites (TSS) between Buenrostro and
OMNI replicates across all cell lines. (d) Spearman correlation of all replicates across protocols. (e) Read
mapping, reads in peaks, and reads assigned to mitochondria (mtDNA) from read length titration experi-
ment, hard trimming reads to 100bp, 75, and 50bp. (f) Genomic distribution of aligned reads across titrated
replicates. (g) Meta-gene plot integrating ATAC-seq and methylation data, showing the mean methylation
across genomic features for open and closed genes as defined by ATAC-seq. Average methylation across
assays is shown.
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Figure 6: Microarray normalization and low-varying site definition. (a) Densities showing the percentage
of DNA methylation variation explained by cell line across the epigenome for each normalization method,
estimated via variance partition analysis. This figure includes only the 677,520 CpG sites common to all
normalized datasets. (b) Raw beta values at each of the 59 SNP probes on the Illumina EPIC arrays, with
samples colored by lab. Cell lines with the same genotype cluster together at each of these 59 sites and
should theoretically have the same values. (c) Variance in methylation beta values (no normalization) within
each genotype cluster at the 59SNPprobes, separated and colored by lab. The dotted vertical line represents
the 95th percentile. (d) Variance in methylation beta values (normalized with funnorm + RCP) across the
epigenome. Sites in the shaded area, which have less variation than 95% of SNP probe genotype clusters,
are defined as low-varying sites. (e) Percentage of methylation (normalized with funnorm + RCP) variance
explained by cell line across the epigenome, stratified by high-varying vs. low-varying sites.
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Tables844

Targeted

Bisulfite Oxidative
Lab	1 Lab	2 Lab	1 Lab	2 Lab	1 Lab	2 Lab	1 Lab	1 Lab	1 Lab	1 Lab	1 Lab	1 Lab	1 Lab	1 Lab	2 Lab	1

CEPH	Mother/Daughter GM12878 HG001 SAMN03492678
340	
337

468	
392

652	
609

338			
437

1093	
395

514							
508

353	
329

15.584		
(4981)

142	
222	
772

580	
777	
990

452	
939	
1843

267						
326

AJ	Son GM24385 HG002 SAMN03283347
379	
357

403	
399

960	
650

351				
609

901				
504

508							
447

625	
801

41.337			
(4302)

387	
136	
705

478	
972	
594

1557	
210	
926

239						
335

AJ	Father GM24149 HG003 SAMN03283345
77	
354

397	
419

829	
838

654				
568

664				
367

272							
344

484	
1353

30.852			
(3820)

171	
228	
696

1076	
107	
793

1314	
1102	
1165

288					
337

AJ	Mother GM24143 HG004 SAMN03283346
313	
294

381	
173

959	
779

340				
733

802				
321

519									
345

453	
433

27.805			
(3958)

260	
244	
467

1314	
1102	
1165

650	
385	
1893

235					
339

Chinese	Son GM24631 HG005 SAMN03283350 89 451 430 497 313 244
796	
791

709						
514

605				
447

360									
450

922	
855

169	
152	
954

593					
85					
770

586	
494	
748

243					
321

Chinese	Father GM24694 HG006 SAMN03283348 359 451 344 422 412 186
741	
815

1012			
698

573				
631

730								
220

733	
1050

273	
109	
1063

683	
531	
568

895	
417	
737

247					
265

Chinese	Mother GM24695 HG007 SAMN03283349 352 466 365 480 387 176
714	
665

993				
312

638			
1015

575										
199

1343	
1035

99				
172	
533

713	
962	
862

188	
337	
1934

234					
243

Table	1.	Sequencing	across	all	genomes	analyzed	in	this	study.	All	genomic	and	targeted	assays	are	included.	Numbers	within	each	genome/assay	cell	indicate
millions	of	paired-end	150bp	reads	sequenced,	with	the	exception	of	PromethION,	which	indicates	millions	of	reads	and	mean	read	length	in	parentheses.
Each	number	represents	one	replicate	sequenced	for	that	genome/assay.

EM-Seq ATAC EPICOMNINIST	IDCoriell	IDGenome NCBI	BioSample Methyl
Seq

Whole	Genome

TruSeq SPLAT 	PromethION	

Transposase-Accessible
TrueMethyl

100ng 50ng 10ng
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Number	of	Common	Sites 2277395
DM	Sites	in	3	or	more	assays	(DM3+) 3379

EM-Seq Methyl-Seq SPLAT TrueMethyl TruSeq
94% 92% 88% 95% 73%
5935 8462 9675 5971 15152
35% 46% 49% 35% 73%
39% 30% 27% 40% 13%
69% 75% 78% 70% 58%

Table	2.		Comparison	of	Differentially	Methylated	(DM)	sites.	Values	are	restricted	to	the	3379	sites	that	were	differentially
methylated	in	3	or	more	assays.

Assay

Percentage	of	common	sites	with	5X	coverage
Number	of	DM	Sites	for	this	assay	(DMA)

Percentage	DMA	sites	unique	to	this	assay
Percentage	of	DMA	sites	in	DM3+
Percentage	of	DM3+	in	DMA	sites

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.421529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Comprehensive Analysis of Epigenetics: Detection, Evaluation, and845

Quality Control (EpiQC)846

847

Jonathan Foox et al.848

Supplementary Results849

EPIC Methyl Capture Targeted Methylome Sequencing850

We compared sequencing replicates of Illumina Methyl Capture EPIC, a targeted approach interrogating851

roughly 3.3 million CpGs with a preference for CpG islands and promoter regions, to methylome-wide as-852

says across all seven genomes. Results shown for HG002 are representative of all seven genomes. Concor-853

dance between biological replicates was extremely high, with >98% of captured CpGs overlapping between854

replicates (Figure S14A), and very nearly 3.3 million CpGs captured in all seven genomes ((Figure S14B).855

Some off-target CpGs were captured, representing roughly 12.5% of total bases sequenced per replicate856

(Figure S14C). Within off-target regions, nearly all were captured only at 1X depth, with very few exceeding857

5X, while themean coverage per CpGwas closer to 20X for on-target CpGs, with a long tail exceeding 50X for858

many sites (Figure S14D). Methylation percentage was more imbalanced for EPIC replicates than expected,859

with a higher proportion of sites estimated as 100%methylated than in other assays (Figure S14E). This was860

reflected in an analysis of concordance, which showed an r-value of roughly 0.68 per assay in comparison to861

EPIC when examining only targeted regions (Figure S14F), a value likely driven down by an over-estimation862

of methylation within EPIC capture.863

Hydroxy-methylcytosine Estimation864

The TrueMethyl protocol is one of the few assay allowing investigators to measure 5mC and 5hmC (and C)865

in an indirect manner. For completeness, each cell line replicate was processed using both bisulfite only (BS866

= 5mC + 5hmC) and oxidative reaction prior to bisulfite reaction (OX = 5mC). In parallel, total 5mC and 5hmC867

were measured by LC-MS/MS. Supplementary Figure Figure S15 shows that all cell lines have a higher level868

of 5mCcompared to 5hmC (Figure S15A,B). The low5hmC levelswere also observed at the single-nucleotide869

resolution level, with similar correlations between the two library preparations across all cell lines (Figure870

oxbsSuppl c), and also within each cell lines (d), where the PCA plot in figure oxbsSuppld shows little to no871

separation between libraries prepa8 ed using BS or OX protocols.872
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As stated above, preparation of BS and OX libraries in parallel allows the determination of 5mC, 5hmC873

and C. We used the MLML2R package to estimate the level of each cytosine state, for each CpG sequenced,874

using HG002 as example. The results are shown in figure Figure S15E. The top panel shows that some CpG875

sites not only show 100% of a specific cytosine mark (C = 100% unmethylated CpG, mC = 100% methylated876

CpG), but also a mixture of two (mC_C = methylated or unmethylated C; hmC_C = hydroxymethylated or877

unmethylated C; mC_hmC = methylated or hydroxymethylated C) or of all cytosine mark (mC_hmC_C). Con-878

sistent with the LC-MS/MS quantitation, hmC marks were found in low proportions at some CpG sites. The879

results observed for HG002 were representative of all the 7 cell lines.880

Input titration for EM-Seq881

In order to investigate the impact of input DNA, we generated EM-Seq libraries using 10ng, 50ng, and 100ng882

of aliquot for each replicate for each Genome in a Bottle cell line. We also randomly subsample each run in883

silico to a random set of 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp reads per input. Across this884

gradient of subsampled reads, the input amount had an effect on the number of CpGs uniquely captured at885

or below 25M read pairs, though most CpGs were covered even with 10ng of input DNA at 50M read pairs886

and above (Figure S16A). For CpGs covered across input titers, the mean coverage per CpG remained even,887

and increased linearly with numbers of reads (Figure S16B).888

Biological Insight within Sequence Data vs Microarray889

To determine the biological relevance of our results, we considered 52 CpGs on chromosome 1 that had890

been previously identified as differentially methylated in an array analysis of approximately 300 individuals891

from Caucasian-American, African-American, and Han Chinese-American populations [47]. Annotation and892

methylation results from all 52 CpGs are available within Supplementary Table 3. Of the 7 sites with reported893

|PMD|>0.2 between Chinese-Americans and Caucasian-Americans, 5 were identified as DMAs for all five894

assays as well as having |PMD|>0.2 in our arrays. Of the two remaining sites, one (on the TAS1R3 promoter)895

had insufficient read coverage for MethylSeq and TruSeq but was a DMA for the remaining assays, and the896

second (located on the C1orf100 promoter) was identified as a DMA for only SPLAT and TruSeq. In addition897

to TAS1R3, which is a sweetness taste receptor that is known to vary phenotypically between the Asian and898

Caucasian populations [48], there was strong concordance for 6 CpGs on the PM20D1 promoter, a gene899

associated with obesity and Alzheimer’s disease with demonstrated population-based variation [49, 50].900

We additionally reviewed a collection of 3379 sites that were identified as DMA for at least 3 of the five901

sequencing assays on chromosome 1. Following annotation with HOMER [51], analysis with DAVID bioin-902

formatics [52] identified a subset of 32 genes associated with osteoporosis (Benjamini-Hochberg adjusted903
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p-value < 5.5E-8) according to the GADdatabase [53] (Supplementary Table 4). These include PBX1 andWLS,904

both of which have been associated with bone mineral density in previous studies [54, 55]. These results905

are of interest not only because of the high rate of osteoporosis in the Ashkenazi Jewish population relative906

to other ethnic groups [56], but also because only 4 of the 94 CpGs associated with these 32 genes were907

present on the Illumina array, highlighting the ability of whole methylome sequencing methods to detect908

differences unobservable in array-based datasets.909

Methylation Capture in Oxford PromethION910

Aliquots of all seven cell lines were sequenced across three Oxford Nanopore PromethION R9.4 flow cells.911

Bases andmethylation valueswere called usingMegalodon 2.2.1 with Guppy 4.0 under the hood, allowing si-912

multaneous base calling and basemodification calling from raw signal data. Compared to other methylome913

data captured from more traditional sequencing, PromethION showed a normal distribution of CpG cover-914

age (Figure S17A). However, the methylation percentage distribution was much less bimodal, with far fewer915

CpGs demonstrating 100% methylation across the genome (Figure S17B), reflecting current limitations in916

uniform base modification detection across DNA strands from Nanopore data. Despite this, the correlation917

of methylation capture between Nanopore data and other sequencing assays was quite high, with r values918

raging between 0.794 compared to EM-Seq and 0.825 compared to TruSeq (Figure S17C), with most sites919

called at 0% or 100% methylation, but many sites at 100% for other assays that showed lower methylation920

in PromethION. The findings reported for HG002 are representative of findings for all other cell lines.921
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Supplementary Figures922

Pipeline I Pipeline IV

Methylation Calling

MethylDackel

Annotation

General Statistics
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Methylation to TSS

Read Trim 

Post-trim QC
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FastQC
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Mbias
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FastQC
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Figure S1: Flowchart of methods used for each alignment and methylation calling pipeline.
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a) b)

c)

d)

bedGraph
name: BAM10x TotC10x_

BAM20x
AveC10x_
BAM20x BAM20x TotC20x_

BAM44x
AveC20x_
BAM44x BAM44x

Type of
down-

sampling
BAM BAM/ 

bedGraph BAM/ bedGraph BAM bedGraph bedGraph none

Target cov 10x 10x 10x 20x 20x 20x 44x
Beta-value statistics

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1st Qu. 0.36 0.36 0.36 0.35 0.42 0.42 0.43
Median 0.77 0.77 0.77 0.76 0.79 0.79 0.79
Mean 0.64 0.64 0.64 0.63 0.66 0.66 0.66

3rd Qu. 1.00 1.00 1.00 0.94 0.94 0.94 0.93
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Coverage statistics
Min. 1 1 1 1 1 1 1

1st Qu. 7 7 7 14 16 16 33
Median 9 10 10 18 20 20 39
Mean 9.0 10.0 10.0 17.9 20.3 20.4 38.4

3rd Qu. 11 12 12 21 24 24 44
Max. 1930 1089 1130 1932 2900 2946 5478
99% 18 19 19 31 35 35 60
95% 15 16 16 27 30 30 53

e)

Figure S2: Downsampling evaluation for EMSeq / HG006. A) Outline of the downsampling procedure and
naming scheme of the downsampled libraries. B) Pairwise correlation matrix of beta-values for the EMSeq
HG006 library (lab 1). Scatter plots of the beta-values are shown in the lower left. Histograms of the beta-
values per library are shown across the diagonal. Pairwise Pearson (rho) and Spearman (p) correlation
coefficients, root mean square error (RMSE), and the number of CG dinucleotides with >= 5x coverage in
both libraries are shown in the upper right. C) Statistics over the beta-value distributions and observed read
coverage of CpG sites in the various bedGraph files. D) Pairwise RMSE and correlation coeficients calculated
(x-axis) compared to the number of CpG sites covered by five or more reads. The data are colored by target
coverage and symbols correspond to the which file the downsampling was performed on. F) Histograms of
the CG dinucelotide read coverage of each bedGraph files prior to and after downsampling.
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bedGraph
name: BAM10x TotC10x_

BAM20x
AveC10x_
BAM20x BAM20x TotC20x_

BAM52x
AveC20x_
BAM52x BAM52x

Type of
down-

sampling
BAM BAM/ bedGraph BAM/ bedGraph BAM bedGraph bedGraph none

Target cov 10x 10x 10x 20x 20x 20x 52x
N CGs >=5x 23.39 24.41 24.43 26.04 26.16 26.16 26.52

Beta-value statistics
Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1st Qu. 0.36 0.36 0.36 0.35 0.35 0.35 0.35
Median 0.77 0.77 0.77 0.76 0.75 0.75 0.75
Mean 0.64 0.64 0.64 0.63 0.63 0.63 0.63

3rd Qu. 1.00 1.00 1.00 0.94 0.94 0.94 0.93
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Coverage statistics
Min. 1 1 1 1 1 1 1

1st Qu. 6 7 7 13 15 15 39
Median 8 10 10 17 20 20 48
Mean 8.9 10.1 10.1 17.6 20.1 20.1 47.5

3rd Qu. 11 12 12 21 24 24 56
Max. 1924 1114 1127 1919 4939 4883 11500
99% 18 20 21 33 37 36 78
95% 15 17 17 27 31 31 68

a) b)

c)

d) e)

Figure S3: Downsampling evaluation for MethylSeq / HG004. A) Outline of the downsampling procedure
and naming scheme of the downsampled libraries. B) Pairwise correlation matrix of beta-values for the
MethylSeq HG004 library (lab 1). Scatter plots of the beta-values are shown in the lower left. Histograms of
the beta-values per library are shown across the diagonal. Pairwise Pearson (rho) and Spearman (p) correla-
tion coefficients, root mean square error (RMSE), and the number of CG dinucleotides with >= 5x coverage in
both libraries are shown in the upper right. C) Statistics over the beta-value distributions and observed read
coverage of CpG sites in the various bedGraph files. D) Pairwise RMSE and correlation coeficients calculated
(x-axis) compared to the number of CpG sites covered by five or more reads. The data are colored by target
coverage and symbols correspond to the which file the downsampling was performed on . F) Histograms
of the CG dinucelotide read coverage of each bedGraph files prior to and after downsampling.
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HG001 HG002

HG003 HG004

HG005 HG006

HG007

Figure S4: Comparison of the genome-wide DNA methylation assays by genome. Scatter plots of the beta-
values are shown in the lower left. Histograms of the beta-values per library are shown across the diagonal.
Pairwise Pearson (rho) and Spearman (p) correlation coefficients, root mean square error (RMSE), and the
number of CG dinucleotides with >= 5x coverage in both libraries are shown in the upper right.

S-7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.421529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/


16039427

5301812

1018423
779788 659765 657641 540611

284391 232301 189221 175279 150808 135410 132498 128993 127595 100578 88839 86284 84942 80308 71306 71111 69654 68087 63903 60007 58219 56961 42961 415050.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

EMSeq

TrueMethyl

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

16173683

4642689

11090771027042809421 667823 621022
269836 225234 173568 154585 152619 131472 129392 128711 118377 103804 91036 89496 87987 81711 77653 77388 77108 66676 58113 55058 53129 51550 42613 363080.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

EMSeq

TrueMethyl

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

HG003

15858897

4876491

13396141244688
896369 774199 665838

206871 168227 159257 149525 121089 107599 100954 91246 90054 77087 75430 63667 57633 56130 45510 44497 42476 40830 34795 31043 30761 28124 24654 182500.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

TrueMethyl

EMSeq

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

HG001 HG002

16219913

5178768

1089921887288 867810 686374 656288
240889 224035 156480 136024 131314 117799 106781 86683 85297 73668 68647 55621 55541 49468 48655 44813 41093 40996 36082 31810 28571 25607 24139 186370.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

EMSeq

TrueMethyl

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

HG004

16353673

4722736

1127601928177 814235 629590 575174
259474 240790 169460 158531 141481 121178 117982 117794 108990 95650 91638 88237 81827 78061 74713 72708 70567 62032 59462 53561 51101 48944 37425 354820.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

EMSeq

TrueMethyl

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

16336863

5036663

962462 846179 748748 614280 560360
254151 252828 182465 173473 126947 122237 119481 115858 105813 99013 86252 86015 85602 77553 77121 76580 74870 60148 59957 59531 55346 53713 40147 335150.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

EMSeq

TrueMethyl

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

HG005 HG006

16349062

5281007

1090631
867483 717812 661939 637209

248861 248506 157454 138901 119921 111636 108892 88916 83531 72939 64527 55980 52077 47763 46149 42506 38557 38139 37445 29102 26810 24618 19285 171100.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

EMSeq

TrueMethyl

MethylSeq

SPLAT

TruSeq

   

0e+001e+072e+07
N CpG sites

HG007

Figure S5: Upset plots showing the intersections of CpGs covered by each assay when randomly downsam-
pled to a mean coverage of 10X per CpG.
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Figure S6: Correlation in coverage between assays on HG002 after randomly downsampling to a mean
coverage of 10X per CpG.
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Figure S7: Comparison of ATAC vs Omni-ATAC in a differential accessibility analysis between the two sons
of the family trios analyzed in this study (HG002 versus HG005). Statistically significant peaks are colored.
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Figure S8: Integrating RNA expression data and ATAC-seq chromatin accessibility data with methylation
data for HG001. (a) Percent methylation within 5kb of transcript start sites (TSS) for unexpressed genes,
genes in the first quartile of expression, 2nd, 3rd, and 4th, across assays. (b) The same data, grouped by
expression, to show ranges for each quartile. (c) Meta-gene plot showing methylation stratified by gene
expression and integrating ATAC-seq data. FALSE = chromatin that is not differentially opening; TRUE =
regions of differentially open chromatin.
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Figure S9: PCA of all microarray samples by normalization pipeline, with samples colored by cell line.
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Figure S10: Densities of variance explained by cell line and platform (microarray or sequencing) across the
epigenome by sequencing platform.
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Figure S11: Comparison of HG002 sequencing and microarray beta values (lab 1, microarray replicate 1)
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Figure S12: Comparison of HG002 sequencing and microarray beta values (lab 1, microarray replicate 2)
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Figure S13: Comparison of HG002 sequencing and microarray beta values (lab 2, microarray replicate 1)
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Figure S14: Methyl Seq EPIC Capture for HG002 samples. (a) Percentage of CpGs covered by each replicate
individually, and overlapped. (b) Number of CpGs that were covered on-target (within the genomic regions
targeted by the assay) and off-target. (c) Relative percentage of bases sequenced with on-target and off-
target loci. (d-e) For the two replicates forHG002, depth of coverage andmethylation percentage distribution
within off-target (OFF) and on-target (ON) loci. (f) Per-CpG concordance between EPIC Methyl Capture and
other methylomic sequencing assays.
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Figure S15: Capture of 5mC and 5hmC fromTrueMethyl replicates, including bisulfite-only (bs) and oxidative
bisulfite (ox). (A) Percent of inferred 5mC among all cytosines in the genome.. (B) Percent of inferred
5hmC among all cytosines in the genome. (C) Spearman correlation of replicates across genomes between
oxidative and bisulfite replicates. (D) Unsupervised clustering of samples. (E) Bar plot shows the number of
true cytosine (C), 5-methylcytosine (5mC), and 5-hydroxymethycytosine (5hmc) across a random 1M CpGs
within HG002 TrueMethyl replicates. (F) Intersection of 5mc and 5hmC calls between TrueMethyl (TM) and
MeDIP (Methylation DNA ImmunoPrecipitation) (MD) replicates.
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Figure S16: EM-Seq read titration experiment. Replicates generated using 10ng, 50ng, and 100ng of input
DNA were randomly downsampled to 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp reads. (a) CpGs
covered at least 1X for each subset. (b) Mean depth per CpG for each subset.
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Figure S17: Methylation profiles of traditional methylome sequencing versus Oxford PromethION for HG002
replicates. (a) Depth of coverage per CpG. (b) Distribution of methylation percentage. (c) Correlation of
estimated CpG methylation per CpG between PromethION (Y-axis) and other methylome assays (X-axis). R
values are shown in top left corner for each comparison.
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Supplementary Tables923

Library Pipeline Nodes	(Cores) Input	Reads Average	Running	Time	(s) Standard	Deviation Read	Pairs/core/sec.
EMSeq_REP01 Bismark 14 1,000,000 331 79.25 216

BitMapperBS 14 1,000,000 126.39 3.75 565
BWA-Meth 14 1,000,000 357.16 21.13 200
gemBS 14 1,000,000 291.6 32.27 245

EMSeq_REP02 Bismark 14 1,000,000 327.6 81.01 218
BitMapperBS 14 1,000,000 128.85 6.95 554
BWA-Meth 14 1,000,000 346.49 3.18 206
gemBS 14 1,000,000 296.2 20.95 241

MethylSeq_REP01_Batch1 Bismark 14 1,000,000 343.1 81.51 208
BitMapperBS 14 1,000,000 133.13 3.85 537
BWA-Meth 14 1,000,000 330.69 3.51 216
gemBS 14 1,000,000 286.9 10.15 249

MethylSeq_REP01_Batch2 Bismark 14 1,000,000 343.8 83.3 208
BitMapperBS 14 1,000,000 126.27 2.63 566
BWA-Meth 14 1,000,000 318.9 5.11 224
gemBS 14 1,000,000 286.1 8.54 250

MethylSeq_REP02_Batch1 Bismark 14 1,000,000 344.7 81.94 207
BitMapperBS 14 1,000,000 127.51 3.15 560
BWA-Meth 14 1,000,000 325.5 3.57 219
gemBS 14 1,000,000 286.4 11.07 249

MethylSeq_REP02_Batch2 Bismark 14 1,000,000 344.9 82.05 207
BitMapperBS 14 1,000,000 126.7 3.67 564
BWA-Meth 14 1,000,000 311.62 1.32 229
gemBS 14 1,000,000 288.3 5.83 248

SPLAT_REP01_Batch1 Bismark 14 1,000,000 334.3 96.11 214
BitMapperBS 14 1,000,000 119.96 7.83 595
BWA-Meth 14 1,000,000 305.37 2.56 234
gemBS 14 1,000,000 275 12.86 260

SPLAT_REP01_Batch2 Bismark 14 1,000,000 328.3 77.42 218
BitMapperBS 14 1,000,000 112.87 2.97 633
BWA-Meth 14 1,000,000 291.2 2.55 245
gemBS 14 1,000,000 272.2 9.08 262

SPLAT_REP02_Batch1 Bismark 14 1,000,000 333.2 95.39 214
BitMapperBS 14 1,000,000 115.71 4.29 617
BWA-Meth 14 1,000,000 300.5 3.98 238
gemBS 14 1,000,000 270.6 10.07 264

SPLAT_REP02_Batch2 Bismark 14 1,000,000 324.7 77.23 220
BitMapperBS 14 1,000,000 110.78 2.29 645
BWA-Meth 14 1,000,000 289.61 5.22 247
gemBS 14 1,000,000 276.8 7.41 258

TrueMethyl_REP01 Bismark 14 1,000,000 309.3 85.14 231
BitMapperBS 14 1,000,000 114.14 9.44 626
BWA-Meth 14 1,000,000 305.93 2.83 233
gemBS 14 1,000,000 273.7 6.65 261

TrueMethyl_REP02 Bismark 14 1,000,000 305.3 81.7 234
BitMapperBS 14 1,000,000 110.96 2.77 644
BWA-Meth 14 1,000,000 318.16 6.86 225
gemBS 14 1,000,000 284 11.64 252

TruSeq_REP01_Batch1 Bismark 14 1,000,000 306.5 87.79 233
BitMapperBS 14 1,000,000 113.83 1.69 628
BWA-Meth 14 1,000,000 295.18 2.96 242
gemBS 14 1,000,000 286.5 14.67 249

TruSeq_REP01_Batch2 Bismark 14 1,000,000 304.2 91.84 235
BitMapperBS 14 1,000,000 112.35 2.72 636
BWA-Meth 14 1,000,000 289.44 4 247
gemBS 14 1,000,000 289.9 29.55 246

TruSeq_REP02_Batch1 Bismark 14 1,000,000 307.9 89.22 232
BitMapperBS 14 1,000,000 115.86 8.17 617
BWA-Meth 14 1,000,000 297.57 2.83 240
gemBS 14 1,000,000 281.2 19.37 254

TruSeq_REP02_Batch2 Bismark 14 1,000,000 304.2 87.43 235
BitMapperBS 14 1,000,000 111.29 2.89 642
BWA-Meth 14 1,000,000 287.26 2.15 249
gemBS 14 1,000,000 284.1 9.42 251
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EMSeq MethylSeq SPLAT TrueMethyl TruSeq
Number	of	DMAs	mapped	to	array 194 266 339 189 729

Number	DMAs	with	|PMD|	>	.2 194 266 339 189 725
%	DMAs	with	|PMD|	>.2	and	array	|PMD|	>	.2 83.0% 79.3% 80.8% 80.4% 63.2%

Number	Hypermethylated	in	HG005-HG007 151 208 266 141 512
%	Hypermethylated	DMAs	with	array	PMD	>	.2 82.1% 78.4% 81.6% 80.9% 64.5%

Number	Hypomethylated	in	HG005-HG007 43 58 73 48 213
%	Hypomethylated	DMAs	with	array	PMD	<	-.2 86.0% 82.8% 78.1% 79.2% 60.1%

Supplementary	Table	2.	Distribution	of	differentially	methylated	assays	(DMAs)	in	comparison	to	microarrays.
PMD	=	Percent	Methylation	Difference	between	sequencing	assay	and	microarray.
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TargetID African	American Caucasian	American AsianAmerican Asian-Caucasian FDR Chr. Position	(HG19) Position	(HG	38) Gene Feature Variance meQTL EMSeq MethylSeq SPLAT TrueMethyl TruSeq Microarray
cg16590012 0.84 0.85 0.62 -0.23 2.73E-29 1 1265354 1329974 TAS1R3 Promoter AS yes -0.8111 NA -1 -0.3377 NA -0.260962377
cg23611477 0.89 0.81 0.75 -0.06 4.11E-11 1 1644835 1713396 CDK11A;CDK11B Body;Promoter AF yes NA NA NA NA NA 0.053832397
cg00669623 0.28 0.15 0.14 -0.01 2.76E-17 1 1655867 1724428 CDK11B;CDK11A Promoter AF no -0.0256 0 0 -0.0227 -0.02 0.005745338
cg03396347 0.73 0.6 0.61 0.01 1.08E-05 1 1875803 1944364 AF yes -0.075 -0.1011 -0.2934 0.049 -0.0488 -0.017332191
cg00095688 0.62 0.66 0.52 -0.14 1.24E-05 1 2003864 2072425 PRKCZ Promoter AS no -0.1038 -0.2954 -0.1048 0.0172 0.2917 -0.049854464
cg10761639 0.74 0.84 0.69 -0.15 1.09E-17 1 2023794 2092355 PRKCZ Promoter CA yes 0.0083 -0.051 NA -0.1333 -0.0286 -0.042517805
cg24499605 0.45 0.32 0.43 0.11 1.76E-14 1 3142925 3226361 PRDM16 Body CA no 0.067 -0.0567 -0.2079 -0.1863 0.084 0.028062666
cg14654471 0.91 0.89 0.75 -0.14 3.57E-14 1 5937169 5877109 NPHP4 Body AS yes -0.0345 -0.08 0.0455 -0.0385 -0.0294 -0.126294083
cg13549940 0.64 0.81 0.81 0 2.30E-12 1 6390053 6329993 ACOT7 Body AF yes -0.0979 0.0928 0.0137 -0.0154 -0.2374 -0.147345073
cg23914842 0.32 0.39 0.5 0.11 1.21E-07 1 9327170 9267111 H6PD 3'UTR AS yes -0.164 0.0324 -0.1957 -0.0185 0.005 0.026883648
cg01017257 0.57 0.48 0.61 0.13 3.62E-05 1 15059738 14733242 KIAA1026/KAZN Body;Body CA yes 0.8194 0.6722 0.7075 0.5711 0.5126 0.638134684
cg04850659 0.31 0.26 0.4 0.14 1.05E-08 1 17019133 16692638 ESPNP Body AS no NA NA NA NA NA -0.000666352
cg16558994 0.3 0.21 0.36 0.15 2.37E-05 1 21023132 20696639 KIF17 Body CA yes 0 NA NA 0 0.0404 -0.017560366
cg18150584 0.57 0.5 0.64 0.14 6.28E-04 1 23887816 23561326 ID3 Promoter CA no -0.2473 0 0.2073 0.1569 0.1012 0.131310405
cg19276111 0.43 0.55 0.49 -0.06 2.33E-03 1 24229232 23902742 CNR2 Promoter AF no -0.0417 0.2487 -0.1137 -0.2111 -0.0798 -0.210237682
cg20415053 0.54 0.62 0.74 0.12 1.60E-05 1 26527928 26201437 CATSPER4 Body AS yes 0.025 0.0758 0.137 -0.1027 0.1627 0.124345312
cg02251754 0.5 0.29 0.18 -0.11 3.50E-20 1 28572299 28245788 AF/AS yes -0.3333 -0.3256 -0.4483 -0.3462 -0.6061 -0.425859931
cg14781242 0.66 0.81 0.84 0.03 9.37E-14 1 32738251 32272650 LCK Promoter AF yes 0.0277 0.2172 -0.0227 -0.0261 NA -0.015957536
cg06917450 0.29 0.27 0.54 0.27 2.31E-16 1 38156652 37690980 C1orf109 Promoter AS yes 0.4389 0.7353 0.5992 0.4383 0.4213 0.509289562
cg26038582 0.69 0.57 0.64 0.07 1.73E-02 1 42384390 41918719 HIVEP3 Promoter CA no -0.0078 -0.1695 0.0251 -0.2942 NA -0.257082006
cg02927682 0.37 0.4 0.49 0.09 1.75E-03 1 54844424 54378751 SSBP3 Body AS yes 0.4333 NA 0.256 0.1581 0.3078 0.219850053
cg10760651 0.48 0.37 0.5 0.13 1.06E-04 1 86968184 86502501 CA yes 0.4137 0.2917 0.2576 0.1738 0.1409 0.170507918
cg10631373 0.41 0.29 0.36 0.07 2.25E-04 1 89457642 88991959 RBMXL1;CCBL2 Promoter;Promoter CA yes 0.15 0.0903 0.0566 0.0925 -0.201 0.12582038
cg09408571 0.59 0.66 0.75 0.09 5.84E-07 1 101003634 100538078 GPR88 Promoter AF yes 0.0931 0.0112 0.0866 0.175 NA 0.097862582
cg06223162 0.3 0.38 0.53 0.15 5.65E-08 1 101003688 100538132 GPR88 Promoter AS yes 0.1429 -0.0706 0.1318 -0.1558 -0.0271 0.149266097
cg25210835 0.25 0.28 0.46 0.18 2.81E-09 1 110254828 109712206 GSTM5 Promoter AS yes NA 0.1906 NA 0.1504 -0.1442 -0.133860867
cg02193146 0.64 0.79 0.76 -0.03 6.37E-06 1 110752257 110209635 ncRNA	promoter AF no 0.0271 -0.1517 -0.0085 -0.2509 -0.0763 -0.028537651
cg24853868 0.51 0.49 0.66 0.17 2.26E-05 1 146555624 147084075 AS yes 0.4304 0.3366 0.0808 NA 0.1679 0.140011883
cg13502125 0.66 0.63 0.77 0.14 8.15E-05 1 147826191 148354063 AS yes -0.1624 -0.1372 -0.0375 0 0.1367 -0.061607065
cg09359103 0.45 0.41 0.22 -0.19 7.67E-15 1 154839909 154867433 KCNN3 Body AS yes -0.4656 -0.6515 -0.6462 -0.5963 -0.4793 -0.577817571
cg23915527 0.5 0.36 0.39 0.03 2.45E-05 1 161368787 161398997 AF yes 0.1214 0.0916 0.2168 0.0798 0.3758 0.221514878
cg12092579 0.38 0.23 0.29 0.06 2.07E-06 1 178380975 178411840 RASAL2 Body AF no -0.255 -0.2848 -0.3801 -0.3463 -0.3087 -0.350398547
cg21868798 0.36 0.3 0.24 -0.06 3.09E-05 1 199481399 199512271 AF yes 0.4044 0.3149 0.1774 0.1912 -0.0476 0.131486606
cg18222590 0.41 0.35 0.48 0.13 1.21E-10 1 204290972 204321844 PLEKHA6 Promoter CA yes 0.2806 0.0093 -0.016 0.2121 0.0896 0.185735095
cg20240347 0.46 0.31 0.35 0.04 1.72E-04 1 204465584 204496456 AF yes -0.1062 -0.1839 -0.0775 -0.0333 0.1599 0.081540919
cg17178900 0.28 0.5 0.24 -0.26 2.76E-10 1 205818956 205849828 PM20D1 Body CA yes -0.6818 -0.7946 -0.5114 -0.5247 -0.4531 -0.516444344
cg26354017 0.31 0.5 0.28 -0.22 1.98E-08 1 205819088 205849960 PM20D1 Promoter CA yes -0.5265 -0.6283 -0.7179 -0.5272 -0.5045 -0.490886073
cg14159672 0.3 0.48 0.26 -0.22 5.54E-11 1 205819179 205850051 PM20D1 Promoter CA yes -0.5769 -0.7037 -0.6773 -0.5614 -0.7567 -0.613414876
cg14893161 0.26 0.38 0.22 -0.16 2.00E-11 1 205819251 205850123 PM20D1 Promoter CA yes -0.5333 -0.4526 -0.3795 -0.3741 -0.539 -0.444333875
cg11965913 0.15 0.3 0.11 -0.19 9.61E-14 1 205819406 205850278 PM20D1 Promoter CA yes -0.1451 -0.1765 -0.2762 -0.1818 -0.4929 -0.20053492
cg24503407 0.25 0.43 0.21 -0.22 1.11E-13 1 205819492 205850364 PM20D1 Promoter CA yes -0.5872 -0.5594 -0.4495 -0.6111 -0.4444 -0.564846802
cg07157834 0.33 0.46 0.28 -0.18 2.78E-09 1 205819609 205850481 PM20D1 Promoter CA yes -0.4496 -0.3813 -0.5991 -0.3881 -0.6016 -0.577898833
cg06935979 0.62 0.48 0.46 -0.02 1.01E-06 1 232941706 232805960 KIAA1383/MAP10 Promoter AF yes NA -0.1009 0.5966 0.2897 0.0569 0.194209311
cg00951395 0.49 0.32 0.33 0.01 7.12E-09 1 232941775 232806029 KIAA1383/MAP10 Promoter AF yes -0.1238 0.0211 0.0655 0.2 0.0161 0.082643472
cg02889973 0.46 0.39 0.51 0.12 3.25E-04 1 234977572 234841825 CA no 0.2008 0.3351 0.3865 0.2604 -0.0397 0.338365246
cg09033006 0.4 0.46 0.22 -0.24 5.74E-19 1 244517177 244353875 C1orf100 Promoter AS yes -0.0777 -0.0982 -0.2727 -0.1812 -0.2857 -0.226790732
cg19368911 0.61 0.7 0.75 0.05 1.01E-07 1 245541456 245378154 KIF26B Body AF no 0.255 0.1074 0.5537 0.2123 NA 0.176927418
cg04134399 0.28 0.15 0.28 0.13 9.18E-09 1 246231142 246067840 SMYD3 Body CA no -0.0944 -0.0333 0.0627 -0.0954 -0.0792 -0.032604475
cg04798314 0.51 0.66 0.84 0.18 2.26E-13 1 246668601 246505299 SMYD3 Body AS yes -0.19 0.1108 -0.1389 0.0163 NA -0.03213339
cg09226051 0.42 0.4 0.3 -0.1 4.03E-03 1 247611502 247448200 NLRP3 Body AS yes -0.2002 -0.1067 -0.1418 0.0267 -0.0615 -0.207283677
cg15829088 0.33 0.37 0.45 0.08 3.36E-04 1 247802935 247639633 ncRNA	promoter AS yes 0.0655 0.0341 -0.4256 -0.1091 -0.0111 -0.005306149

Supplementary	Table	3.		Population	Variance	agreement.	A	total	of	52	CpGs	on	chromosome	1	that	had	been	identified	as	differentially	methylated	between	ethnic	populations
were	annotated	and	compared	for	concordance	of	differential	signal	between	microarray	and	sequencing	data.
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ID Gene	Name
ADCY10 adenylate	cyclase	10,	soluble
ATP1B1 ATPase	Na+/K+	transporting	subunit	beta	1
B3GALT2 beta-1,3-galactosyltransferase	2
CD247 CD247	molecule
CDC73 cell	division	cycle	73
COL24A1 collagen	type	XXIV	alpha	1	chain
CREG1 cellular	repressor	of	E1A	stimulated	genes	1
DPT dermatopontin
F5 coagulation	factor	V
FAM78B family	with	sequence	similarity	78	member	B
GPR161 G	protein-coupled	receptor	161
LMX1A LIM	homeobox	transcription	factor	1	alpha
METTL18 methyltransferase	like	18
MPZL1 myelin	protein	zero	like	1
NME7 NME/NM23	family	member	7
NR5A2 nuclear	receptor	subfamily	5	group	A	member	2
PBX1 PBX	homeobox	1
POGK pogo	transposable	element	with	KRAB	domain
POU2F1 POU	class	2	homeobox	1
RAP1A RAP1A,	member	of	RAS	oncogene	family
RERE arginine-glutamic	acid	dipeptide	repeats
SCYL3 SCY1	like	pseudokinase	3
SELE selectin	E
SELL selectin	L
SELP selectin	P
SLC19A2 solute	carrier	family	19	member	2
SSU72 SSU72	homolog,	RNA	polymerase	II	CTD	phosphatase
TADA1 transcriptional	adaptor	1
UCK2 uridine-cytidine	kinase	2
WLS wntless	Wnt	ligand	secretion	mediator
XCL1 X-C	motif	chemokine	ligand	1
ZBTB40 zinc	finger	and	BTB	domain	containing	40

Supplementary	Table	4.		A	total	of	32	genes	associated	with	osteoperosis
showed	significant	differentiation	comprising	94	differentially	methylated
CpGs	across	sequencing	assays.	Only	4	of	94	are	present	on	the	Illumina
microarray,	highlighting	differences	of	information	capture	between	arrays
and	sequencing.
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