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» Abstract

s« Detection of DNA cytosine modifications such as 5-methylcytosine (5mC) and 5-hydroxy-methylcytosine
s (5hmC) is essential for understanding the epigenetic changes that guide development, cellular lineage spec-
ss ification, and disease. The wide variety of approaches available to interrogate these modifications has
s» created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide
ss methylome sequencing applications in clinical and basic research.

59 We present a multi-platform assessment and a global resource for epigenetics research from the FDA's
« Epigenomics Quality Control (EpiQC) Group. The study design leverages seven human cell lines that are
s publicly available from the National Institute of Standards and Technology (NIST) and Genome in a Bottle
s (GIAB) consortium. These genomes were subject to a variety of genome-wide methylation interrogation
s approaches across six independent laboratories. Our primary focus was on cytosine modifications found
« in mammalian genomes (5mC, 5hmC). Each sample was processed in two or more technical replicates by
e three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS, SPLAT),
s oOxidative bisulfite sequencing (oxBS), Enzymatic Methyl-seq (EM-seq), lllumina EPIC targeted-methylation
& sequencing, and ATAC-seq. Each library was sequenced to high coverage on an lllumina NovaSeq 6000. The
¢ data were subject to rigorous quality assessment and subsequently compared to lllumina EPIC methylation
s Mmicroarrays. We provide a wide range of sequence data for commonly used genomics reference materials,
7 as well as best practices for epigenomics research. These findings can serve as a guide for researchers to
n enable epigenomic analysis of cellular identity in development, health, and disease.

» Introduction

7 DNA methylation, the addition of a methyl group to a nitrogenous base, plays a key role in the regulation of
4 gene expression, disease onset, cellular development, and transposable element activity [1]. In mammalian
75 genomes, a methyl group binds to the fifth carbon of cytosine, creating 5-methylcytosine (5mC) or its ox-
7% idized form, 5-hydroxy-methylcytosine (5hmC) [2]. This modification most often occurs at regions in the
7 genome known as CpG dinucleotides, which are characterized by a cytosine nucleotide followed immedi-
s ately by a guanine nucleotide [3]. Variations in DNA methylation levels correlate to altered gene expression
7 [4], and this phenomenon holds significant implications for developmental processes [4], cancer [5], and
s biological age [6]. The prevalence, location, and dynamic methylation and hydroxy-methaylion of CpGs sites
s inthe genome are areas of focus for studies seeking to examine their array of physiological effects.

82 The field of epigenetics has expanded rapidly in recent decades. Since its inception in 1992 [7], the use of
es a sodium bisulfite treatment, which selectively deaminates unmethylated cytosines to uracil, has emerged
& as the dominant protocol for SmC and 5hmC profiling. The advent of massively parallel sequencing in the
s early 2000s spurred the development of new bisulfite-based and other methods to capture DNA methylation
s information. The scale of bisulfite analyses has expanded from specific regions to whole-genome methyla-
& tion sequencing (WMS), including preparation methods such as Swift Biosciences Accel-NGS Methyl-Seq,
s SPlinted Ligation Adapter Tagging (SPLAT) [8], lllumina TruSeq DNA Methylation, amongst others. More re-
s cently, protocols utilizing oxidative bisulfite sequencing (TrueMethyl oxBS) [9], enzymatic deamination (EM-

% seq) [10], targeted-methylation sequencing (lllumina EPIC Capture), and transposase-accessible chromatin
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a  sequencing (ATAC-seq and Omni-ATAC-seq) [11, 12], among others, have further accelerated the breadth and
o2 rate of discovery.

o As the field of epigenomics continues to advance, there is a need to establish definitive standards and
a benchmarks reflecting the DNA methylome of human cells and tissues. In particular, there is a need to char-
s acterize the unique biases of each library preparation, which can influence not only estimates of methylation,
s but sequencing quality metrics such as insert sizes of the libraries [8], quality scores [8], duplication rates [8],
«» mapping efficiency [13], and evenness of coverage [14]. Together, these factors can contribute to unexpected
s differences in methylation calls and result in biased methylation measurements [14]. Bisulfite conversion
o also presents a computational challenge for data alignment, owing to asymmetrical C-T alignment and re-
w00 duced sequence complexity. Commonly used bisulfite-sensitive sequence aligners are designed either to
0 work with a three-letter alphabet, or using wild-card algorithms [15]. The choice of aligner can significantly
02 impact computational time, alignment efficiency and data accuracy.

103 Here, the FDA's Epigenomics Quality Control (EpiQC) Group presents a comparative analysis of targeted
s and genome-wide methylation protocols to function as a comprehensive resource for epigenetics research.
ws These data come from seven publicly available human cell line genomes from the Genome in a Bottle (GIAB)
s consortium, which has developed a series of reference materials to enable reproducible genomics research
w7 [16]. Aliquots of cell lines were processed as two or more technical replicates across six independent labo-
s ratories. The resultant libraries were sequenced on multiple Illumina NovaSeq 6000 flowcells, quality con-
0o trolled, computationally refined, and measured against Illumina methylation arrays to characterize each
n methylation assay. This reference dataset can act as a useful benchmarking tool and a reference point

m for future studies as epigenetics research becomes more widespread within genomics research

» Results

w Whole Methylome Sequencing

n  Genomes were sequenced from seven well-characterized human cell lines (HG001-HG007) from the GIAB
w5 Consortium [17]. These seven cell lines come from one female HapMap CEU participant (HG001) and two
ne Personal Genomes Project parent/son trios: an Ashkenazi Jewish trio (HG002-HG004) and a Han Chinese
w trio (HG005-HG007). Genome-wide methylation was examined using a variety of common, commercially
ns available bisulfite and enzymatic conversion library preparation kits, including NEBNext Enzymatic Methyl-
n  Seq (referred to here as EMSeq), Swift Biosciences Accel-NGS Methyl-Seq (referred to here as MethylSeq),
o SPlinted Ligation Adapter Tagging (referred to here as SPLAT), NUGEN TrueMethyl oxBS-Seq (referred to

= here as TrueMethyl), and lllumina TruSeq DNA Methylation (referred to here as TruSeq). Aliquots of the
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122 same stock of cell lines were distributed to six independent laboratories, with one lab preparing libraries
13 from each methylome assay, and two labs preparing EMSeq libraries. Biological and technical replicates of
2a genomic libraries were pooled and sequenced in multiplex using paired-end 150bp chemistry across two S2
»s and four S4 flow cells on lllumina NovaSeq 6000, and outputs across flow cells were combined per replicate
ns for subsequent analysis (Table 1).

127 Each methylome replicate was sequenced from 475M to 2.3B paired-end reads when combining all
1s  rounds of sequencing per replicate (Figure 1A), resulting from imbalance in library pooling. In contrast, each
1o library type exhibited tight, assay-specific distributions of estimated insert sizes per read pair, as calculated
w from mapping distance of paired end reads (Figure 1B). The combination of variable sequencing depth and
w  insert sizes resulted in divergent genome coverage distributions per assay type across the seven cell lines
w2 (Figure 1C). Generally, MethylSeq, SPLAT, and EMSeq had the deepest coverage, followed by bisulfite and
1 oxidative-bisulfite replicates from TrueMethyl, and finally TruSeq, which returned an imbalanced coverage of
13 genome, with the lowest percentage of the genome covered at lower depths, but a long tail of high-coverage
s sites. TruSeq also showed an imbalance of coverage of cytosines in CpG contexts, with a lowered mean and
1 alonger tail, compared to more normal distributions in other assays (Figure 1D). TruSeq replicates exhibited
1w GC-rich bias in genomic coverage and dinucleotide distribution (Figure 1E,F), owing to the random hexamer
us  priming strategy implemented by this library preparation, in contrast to the more balanced profiles of other
19 genomic assays.

140 All libraries were passed through an alignment and methylation calling pipeline (see below). Reads were
w  filtered out if they did not map to the reference genome, were marked as PCR or optical duplicates, or re-
w2 turned a mapping quality score below Q10. The number of reads filtered varied by assay, with EMSeq re-
s taining 68-85% of reads per preparation, MethylSeq retaining 80%, SPLAT retaining 75-82%, TrueMethyl
e retaining 58-62% for oxidative replicates and 65-70% for bisulfite-only replicates, and finally TruSeq retain-
us ing as low as 45% of reads (Figure 1G). As a result, different sequencing depths were required to achieve a
us given mean depth of coverage per CpG dinucleotide (Figure 1H), with EMSeq returning the greatest depth
w  per base, followed by MethylSeq/SPLAT, and then TruSeq/TrueMethyl.

« Mapping and Methylation Calling Comparison

s Alignment was performed using a set of commonly available aligners for methylome read mapping, includ-
w0 ing Bismark [18], BitMapperBS [19], bwa-meth [20], and GemBS [21], all against a GRCh38 reference genome
1w  appended with bisulfite controls (see methods; Figure S1). The run time of each aligner was first tested using
12 one million random paired-end reads from each HG0O02 library. BitMapperBS was the fastest aligner, with

13 an average of 550-650 read pairs processed per CPU core per second, with stable performance between


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted December 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s replicates (Supplementary Table 1). Bismark, bwa-meth, and GemBS showed equal alignment speed (about
s 200 read pairs per CPU core per second). However, Bismark showed the most variability of timing between
156 TUNS.

157 Mapping rates varied between the algorithms across methylome library types. On average, bwa-meth
1w and GemBS had the highest rate of reads mapping properly (forward and reverse mates aligning in proper
1w oOrientation within an expected distance of one another), with values between 92-98%, while Bismark and
w BitMapperBS returned a rate of 78-86% (Figure 2A). Reciprocally, BitMapperBS and Bismark had a higher rate
1w  of unmapped reads (9-18%) than bwa-meth and GemBS (0-2%), owing to different read filtering strategies by
w2 the aligners. Bismark and BitMapperBS had fewer ambigious (secondary and supplementary) alignments
s for reads that were properly mapped than bwa-meth and GemBS, and all four aligners returned very similar
w4 read duplication estimates.

165 Coverage of cytosines in CpG dinucleotide contexts also varied by caller, though callers performed con-
1 Sistently across assays (Figure 2B). Generally, all four aligners captured a similar, assay-specific fraction of
w7 CpG sites at low mean depths, while at higher depths the per-algorithm average dropped off, with Bismark
s dropping fastest, followed by GemBS, followed by BitMapperBS. Overall, bwa-meth captured the highest
1o fraction of CpG sites along increasing depth cutoffs compared to other algorithms. Accordingly, all down-
o  stream analyses were performed using bwa-meth methylation calls.

n In contrast to mapping and coverage rates, per-read methylation bias (or "mBias") curves were extremely
w2 similar among all four algorithms, with different, strand-specific profiles seen for each assay (Figure 2C).
w  EM-Seq and TrueMethyl showed hypomethylation at the 3' OT end and 5’ OB end; MethylSeq showed hy-
v permethylation in these same regions; SPLAT is relatively flat; and TruSeq is more irregular, though overall
ws hypermethylated. In line with this, the Spearman correlation of epigenome-wide methylation profiles be-
7 tween assays and algorithms showed high differentiation among assays, followed by closer grouping of
w  alignment strategies within assays (Figure 2D).

78 Differences in sequencing depth, and thus CpG coverage, were shown to be a driver of differences in
w7 methylation estimates. When replicates of HG002 were compared in a pairwise manner, the coefficient of
w0 variation (stdev/mean) of CpG coverage was higher in sites with 20% or more difference in estimated methy-

w  lation percentage, as compared to sites with 10% or less difference (Figure 2E), for all but one comparison.

« Downsampled Coverage and Methylation Estimates

w  Downsampling can be used to simulate the effect of generating similar amounts of sequence data for a
1w given sample when the number of reads sequenced is unbalanced, as in the data generated herein (Fig-

s ure 1). Downsampling can be done on aligned reads (BAM files) or on the methylation call files (bedGraph


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted December 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s files). As the downsampling process at the alignment level can be slow and demanding in terms of disk
w space and compute time, we set out to evaluate if downsampling methylation calls in bedGraph format re-
ws  capitulated downsampling aligned reads (BAM files) (Figure S2, Figure S3). Both downsampling approaches
o yielded similar results in methylation calls, number of CpG sites detected, and distribution of read counts
wo  (Figure S2B-D). We also measured the distribution of read counts between the different downsampling ap-
w1 proaches (Figure S2E). These data support that downsampling of bedGraph files produces equivalent DNA
12 methylation calls and count distributions as downsampling BAM files, but with the added benefit that the
w3 targeted average coverage is more acurately estimated when downsampling bedGraphs.

194 Given that downsampling bedGraphs yielded reproducible methylation calls, we evaluated the perfor-
s mance of different library preparation methods for genome-wide DNA methylation analysis using down-
e sampled, replicate-merged bedGraph files. The bedGraphs for all assays and genomes were downsampled
w7 along a range from 5X to 30X mean coverage. We subsequently evaluate the CpG sites covered by each
s assay and the reproducibility of methylation calls. In bedGraphs downsampled to average 10X CpG cover-
we  age, 12-15M (43-54%) CpG sites across the genome are covered at 10X or greater and 20-26M (71-92%) are
20 covered by at least 5X (Figure 3A). This pattern is consistent across libraries and average coverage level.
21 However, the number of sites detected at each cut-off varied between the different assays, with the EM-seq
22 assay capturing the greatest number (range 25.6-26.3M) and TruSeq assay capturing the lowest number
23 Of CpG sites (range 20.3-20.5M) in the 10X downsampled bedGraphs with a minimum cutoff of >=5 reads.
204 Approximately 16M (range 15.9-16.4M) CpG sites were consistently detected by all assays (Figure 3C) and
205 an additional 5M (range 4.6-5.3M) CpG sites were detected in EMSeq, MethylSeq, SPLAT, and TrueMethyl,
26 but not by TruSeq. The numbers were remarkably stable between genomes (Figure S5). The different library
27 types displayed differences in coverage around the transcription start site (TSS), with TrueMethyl showing
206 the most even coverage, lower coverage in EMSeq followed by MethylSeq/SPLAT, whereas TruSeq displayed
29 higher coverage around the TSS, likely due to its bias for high CG rich regions, which coincide with CpG is-
xo lands around the TSS (Figure 3D). In pairwise comparisons, the CpG-level DNA methylation calls were gen-
o erally very reproducible (Pearson’s rho 0.87-0.92) and the average deviation from the mean was low (RMSE
22 0.15-0.17) (Figure 3E). Each of the genome-wide methylome sequencing assays performed approximately
23 equivalently, with the exception of TruSeq consistently yielding more variable DNA methylation calls than
24 the other methods. The number of CpG sites captured, RMSE, and correlation coefficients for each assay

25 and genome is outlined in Figure S4.
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« Differential Methylation of Family Trios Among Methylome Assays

2

a7 After downsampling to median 10X coverage, 2,227,395 CpG sites present on chromosome 1 in replicates
zs  from all five assays (EMSeq, MethylSeq, SPLAT, TrueMethyl, and TruSeq) were analyzed for differential
zo methylation signal between assays. This analysis was done at the family level (Ashkenazi Trio HG002-
20  HGO004 against the Chinese Trio HG005-HG007) to avoid a one-to-one differential analysis. This also in-
2 cluded a restriction to sites with 5X coverage in at least two out of three members of each family group,
22 Which resulted in small data reductions for EMSeq, MethylSeq, and TrueMethyl (6%, 8%, and 5%, respec-
23 tively), with greater losses for SPLAT (12%) and TruSeq (27%). Coverage levels after this filtration step were
24 highly correlated among MethylSeq, TrueMethyl, and SPLAT (» > 0.75), while TruSeq and EMSeq were the
»s least correlated assays. The correlation matrix for HG002 samples is seen in Figure S6; these correlations
»s are representative of all members of the family trio.

227 To assess consistency in sites identified as differentially methylated (DM) by each assay (DMA), we
2»s computed the fraction of DMA sites that were uniquely identified by that assay (a pseudo false-positive
2o rate) (Table 2). We also computed the total number of DM sites commonly identified by three or more
20 assays (DM3+), which totaled 0.15% of the common sites. We then determined the percentage of DMA
2 sites that were also DM3+ sites (a measure of specificity), as well as the percentage of DM3+ sites that
22 were also DMA sites (a measure of sensitivity). EMSeq and TrueMethyl produced the smallest numbers of
23 DMA sites among the assays, with the lowest proportions of unique sites (35%) and the highest proportions
24 Of DMA sites in DM3+ sites (39%), indicating a good balance between sensitivity and specificity. MethylSeq
s and SPLAT both had higher numbers of DMA sites, associated with greater rates of unique DM sites (46%
26 and 49%, respectively) but also the highest sensitivity to detect DM3+ sites (75% and 78%, respectively).
27 TruSeq, which was associated with a much larger number of DMA sites than any other assay, had the lowest
28 concordance with the other assays, with only 13% of its DMA sites in DM3+ and 58% of the DM3+ sites among
230 its DMA sites.

240 We analyzed the profile of coverage variability for each assay (Figure 4), which illustrated the agreement
2 with other assays for DM sites as a function of coverage, with values ranging between the 5th and 95th
22 percentiles of median coverage across the six samples. For all assays, the analysis shows that agreement
23 declines at higher coverage levels, but this effect is small for EMSeq, MethylSeq, and TrueMethyl. Because
2« SPLAT has a heavy-tailed coverage distribution, the impact is more pronounced, while for TruSeq the cov-
s erage distribution is extremely diffuse and there is markedly poor agreement with other assays in its upper

s Coverage percentiles.
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; Differential Methylation Within Microarray Sites

2

=

s Of the 82,013 probes mapping to chromosome 1 on the 850k EPIC lllumina methylation array, 81,630 (99.5%)
20 overlapped with sites common to all five assays. Of these, the number of differentially methylated assays
20 (DMAS) ranged from 189 (TrueMethyl) to 729 (TruSeq). For all assays other than TruSeq, 100% of these
2 DMASs had an estimated percent methylation difference (PMD) of 20% or greater between the family groups,
252 and for TruSeq 725 of the 729 sites met this criterion. To analyze concordance between whole methylome
23 sequencing (WMS) and microarray results, we computed the proportion of these DMAs for which a corre-
2 sponding difference of at least 20% was observed for the microarrays, with these array PMDs estimated via
255 ANOVA models with random intercepts for each genome. The overall agreement was comparable for four
6 Of the five methods with values ranging from 79.3% (MethylSeq) to 83.0% (EMSeq) and no statistically sig-
27 nificant differences in proportion (Supplementary Table 2). However, for TruSeq the fraction of DMAs that
s were matched by the array was only 63.2%, which was significantly lower in comparison to every other assay.
25 Similar results were observed when the results were separated into hypermethylated and hypomethylated

260 Sites.

.« ATAC-seq Integration

2 ATAC-Seq provides information about DNA organization within the nucleus, which can be synthesized along-
3 Side methylation data to better understand the mechanistics of epigenetic pathways. Two protocols are rou-
x4 tinely used to prepare ATAC-Seq libraries from cells and tissues: the Original ATAC-Seq protocol published
25 by Buenrostro et al [22] and the Omni-ATAC protocol published by Corces et al [12]. In order to provide a
6 complete epigenomic dataset for the 7 cell lines, we generated ATAC-Seq libraries with both protocols, on
27 the same cell aliquots.

268 Both ATAC and Omni-ATAC produce similar fragment profiles for all the cell lines (Figure 5a). After map-
%9 ping to the human genome, the Omni-ATAC protocol provided the most reads to the autosomal regions when
20 compared to ATAC, and the least mitochondrial contamination (Figure 5b). The Omni-ATAC protocol also
on - showed an improvement in enrichment around the TSS of genes compared to the ATAC protocol (Figure 5¢).
22 Spearman correlations between libraries for the same protocol, and between protocols, were calculated to
213 provide an assessment of reproducibility. As shown in Figure 5d, the Omni-ATAC shows the best correlation
222 across protocols. To evaluate the impact of the difference in data quantity and quality obtained by both pro-
25 tocols, we performed a differential accessibility analysis between HG002 and HGOOS cell lines. The results
26 summarized in supplementary figure (Figure S7) suggest that the higher quality of the Omni-ATAC datasets

277 result in more peaks significantly open.
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278 The above analysis was produced with the data generated by paired-end 150 nucleotides sequencing.
29 To determine if ATAC-Seq analysis would benefit from shorter reads (as ATAC-seq libraries are more com-
20 monly prepared), we repeated the quality control with reads hard trimmed in silico to 3 lengths: 50, 75, and
2s 100bp for mates of paired end sequences. The results show that trimming the reads does not have an im-
22 pact on the quality metrics obtained (Figure 5e), annotation to genomic regions (Figure 5f), or mapping to
253 mitochondrial reads. Overall, both libraries are minimally impacted by experimental read length, and the
22« Omni-ATAC protocol generates libraries with more reproducible replicates, which can improve the overall
s results obtained in downstream analysis.

286 Multi-omic data integration is becoming an essential component of epigenomics studies. Using the
27 data generated for HG001, the mean methylation at CpG sites (across all the methylomic libraries) as a
28 function of chromatin accessibility measured by Omni-ATAC-Seq (open/closed) was plotted by genomic
29 region. A genomic location was considered "closed" if it was not called as an accessible peak when ana-
20 lyzing the Omni-ATAC-Seq data. As shown in Figure 5g, there is an overall increase in mean methylation
2 across gene features starting from 5’ Regulatory/5’UTR to 3’ Downstream 5k region. It is in the 5’ region
2 (Regulatory and 5'UTR) that we see the widest difference in mean methylation between the two chromatin
203 conformations, with "open" chromatin showing the lowest methylation level. This lower mean methylation
204 in the "open" chromatin was still observed for the 1st exon, but the difference is much smaller. First introns
25  showed no difference in mean methylation between the chromatin states. The highest mean methylation
26 Was observed for exons and introns (i.e other than 1st) and with very little difference. Interestingly, mean
27 methylation becomes slightly higher in "open" chromatin compared to "closed" chromatin in the introns and
206 €xons, and remains as such in the 3'UTR. Finally, integrating transcriptomic data from publicly accessible
20 RNAseq sequencing of HG0O1 (SRA run identifier SRR1153470) shows concordance between methylation

s0  state, chromatin accessibility, and gene expression (Figure S8).

. Microarray Normalization and Site Filtering

sz Each cell line had 3-6 biological or technical replicates with microarray data from the Illlumina Methyla-
w03 tionEPIC Beadchip (850k array) generated from up to 3 labs. These replicates were used to assess different
s« Microarray normalization pipelines. We implemented 26 normalization pipelines with different combinations
ss Of between-array and within-array normalization methods. The between-array normalization methods eval-
w06 Uated were no normalization (None), quantile normalization (pQuantile) [23], functional normalization (fun-
sz norm) [24], ENmix [25], dasen [26], SeSAMe [27], and Gaussian Mixture Quantile Normalization (GMQN) [28].
s The within-array normalization methods evaluated were no normalization (None), Subset-quantile Within

s Array Normalisation (SWAN) [29], peak-based correction (PBC) [30], and Regression on Correlated Probes
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s (RCP) [31]. All combinations were implemented with the exception of pQuantile + SWAN and SeSAMe +
an  SWAN, which were not possible due to incompatible R object types.

a2 We first performed principal component analysis (PCA) and visually inspected the first two principal com-
as  ponents (PCs) for each normalization pipeline. Generally, samples from the same cell line clustered together
su Mmore tightly after normalization, although a few pipelines (PBC alone, GMQN alone, GMQN + PBC) did not
a5 show obvious improvement in replicate clustering (Figure S9). Most pipelines failed to clearly distinguish
s samples from cell lines HGO0S and HG006, the Han Chinese father/son pair, from one another.

317 A variance partition analysis was used to compute the percentage of methylation variance explained
s by cell line at each CpG site in each normalized dataset. Funnorm + RCP had the highest median across
a0 the epigenome (90.4%), although many pipelines had medians in the 85-90% range Figure 6a. SeSAMe and
s20  RCP performed well (median>85%) no matter which methods they were combined with. While using RCP
an  or SWAN usually improved performance compared to having no within-array normalization, using PBC for
s within-array normalization always reduced the median variance explained by cell line. For all downstream
w3 analyses, we used the funnorm + RCP normalized microarray data because this pipeline had the highest
24 Median variance explained by cell line. Figure 6a shows the full distribution of variance explained by cell line
ws  across the epigenome for each normalization pipeline. Most pipelines had a bimodal distribution, meaning
ws  CpG sites typically had almost no variation explained by cell line or nearly 100% of variation explained by cell
w7 line.

328 In light of previous work that has shown that microarray data is not reliable for sites with low popula-
w20 tion variation [32], we investigated whether sites with poor concordance between replicates (% variance
a0 explained near 0) overlapped with low-varying sites. We used the 59 SNP probes on the Illumina EPIC ar-
s ray to compute a data-driven threshold for categorizing sites as low varying (Figure 6b-d, see Methods for
s details). We found that nearly all CpG sites in the normalized (funnorm + RCP) microarray data with poor
s33  concordance between replicates met our definition of low-varying sites (Figure 6e). When we compared
s« the microarray beta values to the sequencing-based beta values for all 3 HG002 microarray replicates (Fig-
35 Ure S11,Figure S12,Figure S13), we observed that these low-varying sites tended to have more extreme methy-
s lation values according to at least one platform, and there were many sites with large disrepancies (>20%)
sz between methylation estimates from different platforms. This suggests that our data-driven definition of
ss  low-varying CpG sites, which can be applied to any lllumina 450k or 850k array dataset, may be useful for

s filtering out less reliable CpG sites before analysis.

10
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« Microarray Versus Sequencing Comparison

s« We performed 5 additional variance paritition analyses, adding samples from one sequencing platform (EM-
s Seq, MethylSeq, SPLAT, TrueMethyl, or TruSeq) at a time, to evaluate the concordance between microarray
«s  and sequencing data. Because each cell line had 3-6 microarray replicates and only one (merged replicate)
ss  Sequencing sample, these results are largely driven by the microarray data and the values may be biased
as  upward by this. However, these models are a useful way to compare agreement between sequencing and
ws Microarray data across sequencing platforms, where a higher percentage of variance explained by cell line
s  in one platform compared to another indicates better agreement with the microarray data.

28 For low-varying microarray sites, cross-platform agreement was low for all sequencing platforms (Fig-
o Ure S10a). This was expected, because we observed poor concordance between microarray replicates at
s these sites as well. For a small number of these low-varying sites, nearly 100% of the variation in methylation
s was explained by platform, indicating that there were some technical artifacts introduced by platform, but
2 these technical artifacts were not widespread across the epigenome (Figure S10c).

353 For high-varying microarray sites, most of the variability across the epigenome was explained by cell line
ssa  rather than platform, indicating good cross-platform concordance (Figure S10b,d). MethylSeq was most
s concordant with the microarray data, followed by SPLAT and EMSeq, which were comparable to one an-
s Other, then TruSeq and finally TrueMethyl. Visual inspection of the microarray beta values compared to the
s7  sequencing beta values for 3 HG002 microarray replicates (Figure S11,Figure S12,Figure S13) show much

s more noise in the TruSeq and TrueMethyl comparisons.

= Discussion

w0 The EpiQC study provides a comprehensive resource for epigenetic research, using human cell lines already
s established as reference materials to advance genomics research from the Genome in a Bottle consortium.
2 In addition to providing an epigenetic data layer to existing genomic references, we sought to generate
3 datasets for a broad range of methylome sequencing assays, including whole genome bisulfite sequencing
s« (WGBS) and enzymatic deamination (EMSeq). We also provided data from targeted approaches, including
s chromatin accessibility datasets (ATAC-Seq) from two protocols common to the field of epigenetics, EPIC
s Methyl Capture for a subset of genomic CpGs, and the lllumina 850k array. Finally, we provide sequence and
37 epigenetic data for Oxford PromethlON, an emerging third generation long read instrument.

368 While most of the published and/or commercialized assays have been tested with some standard sam-
0 ple (e.g. GM12878), the sample used to benchmark each assay was drawn from different DNA aliquots,

s extracted from cells grown at different passage, and potentially grown in different media. Here, aliquots of

1
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sn  the same gDNA were distributed across multiple laboratories, and used for all data generated. To remove
s additional variability, all libraries were sequenced on one instrument (then a second time all on one instru-
w3 ment), across multiple NovaSeq6000 flow cells. For whole methylome sequencing, libraries were produced
s in duplicates, and triplicates were generated for the ATAC-Seq protocols. In total, we are sharing with the
a5 scientific community over 7 Tb of epigenetic data.

376 Benchmarking whole methylome sequencing technologies is important for determining which technol-
a7 ogy and method will achieve the best performance, and to provide recommendations and standards for
s future comprehensive methylomic studies. Large projects such as the NIH Roadmap Epigenomics Project
s [33] and the International Human Epigenome Consortium [34] have produced, compiled and analyzed a vast
0 amount of WGBS data comprising tissues and cell lines from normal and neoplastic tissues. These data
s continue to provide an invaluable source of data for the epigenetics research community and have helped
sz broaden our understanding of the various roles that epigenetics plays in health and disease. However, new
s methods are constantly being developed that address and circumvent issues with traditional approaches in
s terms of DNA input, resolution, and cost. Third-generation sequencing approaches are also rapidly advanc-
s ing and are emerging as a complementary method to the gold standard bisulfite conversion methods. Our
s study encompassed the most up-to-date range of assays offering to measure whole-genome DNA methy-
w7 lation. We were able to incorporate sample preparation protocols using the gold standard bisulfite con-
s version (Swift Accel-NGS Methyl-Seq, TrueMethyl-Seq, EPIC Methyl Capture and 850k array, and SPLAT), a
0 new method utilizing enzymatic deamination (EM-Seq), and Oxford Nanopore sequencing. With the use of
w0 7 different cell lines, this is to our knowledge the most extensive examination of DNA methylation analysis
s methods on the most extensive set of samples.

392 Cost is an important parameter to decide which library preparation method to use. Libraries with longer
sz inserts benefit from less adapter contamination and overlapping reads, which increases coverage efficiency,
s« especially when employing cost-effective sequencing on the lllumina HiSeq or NovaSeq systems with paired-
ss end 150 bp reads. In this study, this sequencing scheme resulted in a highly variable depth of coverage per
s library preparation. While imbalanced pools may account for some of the difference, library preparation
s7 methods had the biggest impact. Except for TruSeq, all the other library preparations start with shearing of
s the gDNA. For the other bisulfite-dependent protocols, the DNA fragments range between 200-400, whereas
0 EM-Seq allows for longer fragments ( 550bp). TruSeq libraries tend to have short (130 bp) insert sizes and
a0 are therefore more suitable for 75 bp paired-end read lengths. Despite the imbalance of coverage, this
an  studies provides robust recommendations for downsampling across sequencing types, showing both how
w2 different downsampling schemes (i.e. at the BAM level or at the methylation bedGraph level) are compara-

w3 ble, and how downsampled datasets can be directly compared to one another to assess the performance

12
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w4 Of the assays themselves.

405 The methods that have proven to have greater genome-wide evenness of coverage, namely Accel-NGS
ws  MethylSeq [35], SPLAT [36], and TrueMethyl [37] tend to have longer insert sizes (200—-300 bp), fewer PCR du-
w7 plicates (down to a few percent, depending on sequencing platform), and high mapping efficiencies (>75%).
ws The SPLAT libraries herein had shorter insert sizes than desired due to the use of 400 bp Covaris shearing
a0 prior to library preparation. To achieve insert sizes of >=300bp, the SPLAT authors now recommend using
«0  DNA fragmented to 500-600 bp as input and to perform final library purification at 0.8x AMPure ratio to re-
a1 move shorter fragments. The same recommendation would work for MethylSeq and TrueMethyl protocols.
a2 SPLAT is the only method in our evaluation that is not commercial/kit-based and could be comparatively
sz 10x cheaper per library [36]. This can be important when considering the sample preparation costalongside
s Sequencing costs.

15 Another important parameter is the amount of data retained from a WGBS experiment following adapter
«6 and quality trimming, mapping and deduplication. Here, we show the effects of each mapping step on each
«7 methylome assay, and how reads are filtered along each step, including the estimated number of reads
ss required to achieve a certain mean coverage per CpG. Similarly, previous studies (e.g. Miura et al., 2016
#e and Zhou et al., 2019) have implemented a metric to estimate the efficiency of WGBS genome coverage by
w20 determining the raw library size (number of PE 150 bp reads prior to filtering) required to achieve at least
= 30x coverage of 50% or more of the genome. According to these studies, this corressponded to 500M
22 for Accel-NGS, 900M for TruSeq DNA methylation, and 1000M for the QIAGEN QIAseq Methyl Library Kit
=23 [35]. Standardization and adoption of such a metric in future studies would make it significantly easier to
24 compare and contrast results from different methods.

425 NEB'’s EM-Seq protocol [38] compares favorably to the bisulfite sequencing-based approaches analyzed
w6 herein. In almost all comparisons EM-Seq libraries captures more CpG sites at equal or better coverage. A
a7 "conventional" pre-enzymatic conversion library preparation approach is recommended in the EM-Seq pro-
s tocol (NEB), as the cytosine bases in the adapter sequences are methylated and thus preserved during the
20 enzymatic APOBEC treatment. However, for some studies using low- or poor-quality DNA samples, such
«0 as those from FFPE or liquid biopsies that are comprised of a mix of ssDNA and dsDNA molecules, the
s EM-seqapproach in combination with library preparation methods such as SPLAT or Accel-NGS MethylSeq,
.2 Which are capable of capturing both ssDNA and dsDNA, may prove to be beneficial for creating higher quality
w3 libraries.

434 Beyond library preparation, the use of algorithmic tools has an impact on the performance of each methy-
s lome assay. Asymmetrical C-T distributions between DNA strands and reduced sequence complexity make

s epigenetic sequence alignment different from regular DNA processing. Computational time, alignment ef-
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.7 ficiency, and accuracy are the main factors for choosing an alignment, all of which are impacted by these
«s  factors. We observed a general trade-off between time and efficiency and accuracy for all aligners, with
0 bwa-meth providing the optimal balance of high accuracy and efficiency.

440 Choice of computational algorithms is equally important in analyzing methylation microarray data. In this
w«  study, we compared 26 different normalization pipelines. Many algorithms (SWAN, RCP, pQuantile, dasen,
w2 funnorm, ENmix, and SeSAMe) generally performed well in this dataset, clustering replicates from the same
w3 cell line (across different labs) together while preserving differences between cell lines, but all pipelines
«s  performed poorly at sites with low population variance, confirming previous work [32]. We proposed using
«s the 59 SNPs onthe 850k array to calculate a data-driven threshold for classifying low-varying sites. Using our
us threshold, which can be calculated in any lllumina microarray dataset with or without technical replicates,
w7 wWe observed that low-varying sites had poor concordance across replicates from the same cell line, tended
ws 1o have extreme (near 0% or 100%) methylation values, and showed poor agreement with sequencing data
«s  regardless of sequencing platform. This suggests that low-varying sites are not well captured by microarrays
«0 and should be filtered out before analysis. It is very possible that the issue of unreliable data at low-varying
«  sites is not specific to microarrays, but we were not able to address this question in the sequencing data
s2  because of the limited number of replicates, which were ultimately merged for analysis.

453 One final caveat herein is the use of high quality DNA from cell lines. Using this highly controlled input,
s« the methods examined within this study produced mostly comparable data. However, the performance of
s each kit may be more variable on less optimal input DNA (lower input, more highly fragmented, etc.) that
4 mirrors real clinical samples more closely. The optimal data herein could serve as a launch point for future

4«7 studies of more realistic inputs.

« Methods

s Library preparation

w0 lllumina TruSeq DNA Methylation (TruSeq): 100 ng of genomic DNA was bisulfite converted using EZ DNA
w1 Methylation-Gold Kit (Zymo Research). Sequencing libraries were prepared according to the manufacturer’s
w2 protocol (lllumina). The libraries were amplified with 10 PCR cycles using the FailSafe PCR enzyme (lllu-
w3 Mmina/Epicentre).

464

ss SPlinted Ligation Adapter Tagging (SPLAT): 100 ng gDNA was fragmented to 400 bp (Covaris). Bisulfite
w6 conversion was performed using the EZ DNA Methylation-Gold kit (Zymo Research). SPLAT libraries were

s7  constructed as described previously (Raine et al., 2017). The libraries were amplified with 4 PCR cycles using
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w8 KAPA HiFi Uracil+ PCR enzyme (Roche).

469

a0 lllumina EPIC Capture: 500 ng of genomic DNA was prepared according to the manufacturer’s protocol
«  (lllumina). Pools of 3 and 4 libraries were amplified using KAPA Uracil+ HiFi enzyme (Roche).

an

3 Swift Biosciences Accel-NGS Methyl-Seq (MethylSeq): 100 ng of genomic DNA was spiked in with 1% un-
s methylated Lambda gDNA, and fragmented to 350 bp (Covaris). Bisulfite conversion was performed using
«s  EZ DNA Methylation-Gold kit (Zymo Research). Libraries were prepared according to manufacturer’s in-
w6 structions (Swift), using dual-indexing primers. A total of 6 rounds of amplification were performed using
a7 the Enzyme R3 provided with the kit.

a8

s NUGEN TrueMethyl oxBS-Seq (TrueMethyl): 200 ng of genomic DNA was spiked with 1% unmethylated
0 Lambda gDNA and fragmented to 400 bp (Covaris). Fragmented DNA was processed for end-repair, A-
« tailing, and ligation using NEB's methylated hairpin adapter. Ligation was performed at 16C overnight in a
2 thermocycler. The USER enzyme reaction was performed the next morning, according to the manufacturer's
a3 protocol, before Ampure XP bead cleanup of the ligated DNA. Each sample was then split into 2 aliquots to
w4 perform oxidation + bisulfite conversion or mock (water) + bisulfite conversion according to the NuGen OxBS
ss module instructions (Tecan/NuGen). PCR amplification was performed using NEB’s dual-indexing primers
ss and KAPA Uracil+ HiFi enzyme for a total of 10 cycles.

a5

s Enzymatic Methyl-Seq (EMSeq): 100, 50 and 10 ng of genomic DNA spiked in with 2 ng unmethylated
w9 lambda and 0.1 ng CpG methylated pUC19 was fragmented to 500 bp (Covaris S2, 200 cycles per burst,
w0 10% duty-cycle, intensity of 5 and treatment time of 50 seconds). EM-seq libraries were prepared using the
. NEBNext Enzymatic Methyl-seq (E7120, NEB) kit following manufacturer’s instructions. Final libraries were
«2 amplified with the included NEBNext Q5U polymerase using 4 cycles for 100 ng, 5 cycles for 50 ng and 7
w3 cycles for 10 ng inputs.

494

«s MeDIP and hMeDIP-Seq: MeDIP-seq and hMeDIP-Seq were performed, with all the biological triplicates
w6 after DNA isolation, according to the protocol of Taiwo et al. [39], with minor adjustments. For DNA frag-
w7 Mentation to a size of 200 bp, 300 ng of isolated DNA were sonicated on the bioruptor (Diagenode) by
w8 Using instrument settings of 15 cycles, each consisting of 30 seconds on/off periods. After fragmentation,
w0 the genomic DNA size range was assessed using an Agilent 2100 Bioanalyzer and high-sensitivity DNA chips

so  (Agilent Technologies), according to the manufacturer’s instructions. Libraries were prepared using 300 ng
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sn of fragmented DNA (200 bp) and the NEBNext Ultra DNA Library Prep Kit for lllumina (NEB), according to
sz the manufacturer’s protocol. The purified adaptor-ligated DNAs were used for Methylated DNA Immuno-
ss Precipitation (MeDIP), according to the manufacturer’s instructions of the MagMeDIP kit (Diagenode) and
s+ |Pure kit (Diagenode).

505 PCR was used to amplify the MeDIP/hMeDIP adaptor-ligated DNA fragments. In brief, 25 yL NEBNext
ss High Fidelity 2x PCR Master mix (NEB), 1 pL of Index primer (NEB) that was used as a barcode for each
sv  sample, and 1 pL of Universal PCR primer (NEB) were added to 23 pL of the MeDIP adaptor ligated DNA
ss fragments. PCR was performed by using the temperature profile: 98 °C for 30 s, 15 cycles of 98 °C for
s0 10's, 65 °C for 30 sec., and 72 °C for 30 s, followed by 5 minutes at 72 °C and hold on 4 °C as described
so before. Thereafter, PCR-amplified DNAs (libraries) were cleaned using Cleanup of PCR Amplification in the
sn  NEBNext Ultra DNA Library Prep Kit for lllumina (NEB). Fragmented DNA size and quality were checked using
sz the Agilent 2200 TapeStation and High Sensitivity D5000 Screen Tape. In addition, generated libraries were
sz Size-selected on a 6% TBE Gel; fragments of 250—-500 bp were excised and the Illumina Truseq Purify cDNA
su construct was used to extract and purify the DNA libraries. Libraries were quantified on a Qubit fluorimeter
sis  (Invitrogen) by using the Qubit dsDNA HS Assay kit (Invitrogen) and qualified checked using the Agilent
sis 2200 TapeStation and High Sensitivity D5000 Screen Tape. All kits and chips were used according to the
sv manufacturer’s protocol.

518

so  lllumina Infinium MethylationEPIC BeadChip (850k array): Bisulfite conversion was performed using the
s20 EZ DNA Methylation Kit (Zymo Research). with 250 ng of DNA per sample. The bisulfite converted DNA
s» was eluted in 15 pl according to the manufacturer’s protocol, evaporated to a volume of <4 pl, and used for
s2 methylation analysis on the 850k array according to the manufacturer’s protocol (lllumina).

523 Microarray experiments were run at three different labs, two of which included technical replicates. The
s« resulting dataset consisted of 30 samples, with each of the 7 cell lines having between 3 and 6 replicates
s (both biological and technical). For all cell lines (HG001-HG007), 2 technical replicates were generated at lab
s2s 1 and 1 biological replicate was generated at from lab 2. Additionally, 3 technical replicates were generated
s» for the Han Chinese family trio cell lines (HG005-HG0OQ7) at lab 3.

528

s2o  Preparation of ATAC-Seq libraries: ATAC vs Omni-ATAC protocols: cryopreserved cells were thawed, counted,
ss0 and splitinto 2 aliquots for processing in parallel according to each protocol. Library quality control was as-
sn sessed with Qubit and TapeStation HS D1000.

532

s:3 LC-MS/MS quantification of 5mC and 5ShmC: Genomic DNA from HG001-007 cell lines was used for the
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s« analysis. Samples were digested into nucleosides using Nucleoside digestion mix (M0649S, New England
s Biolabs) following manufacturers protocol. Briefly, 200 ng of each sample was digested in a total volume
sss  Of 20 pl using 1 pl of the digestion mix. Samples were incubated at 37°C for 2 hours.

537 LC-MS/MS analysis was performed using two biological duplicates and two technical duplicates by in-
s jecting digested DNA on an Agilent 1290 UHPLC equipped with a G4212A diode array detector and a 6490A
s Triple Quadrupole Mass Detector operating in the positive electrospray ionization mode (+ESI). UHPLC was
s0 performed on a Waters XSelect HSS T3 XP column (2.1 x 100 mm, 2.5 ym) using a gradient mobile phase
s consisting of 10 mM aqueous ammonium formate (pH 4.4) and methanol. Dynamic multiple reaction mon-
s2 itoring (DMRM) mode was employed for the acquisition of MS data. Each nucleoside was identified in the
ss  extracted chromatogram associated with its specific MS/MS transition: dC [M+H]+ at m/z 228-112, 5mC
sae [M+H]+ at m/z 242-126, and 5hmC [M+H]+ at m/z 258-142. External calibration curves with known amounts

ss  Of the nucleosides were used to calculate their ratios within the analyzed samples.

s Sequencing

s NEB Sequencing: An lllumina NovaSeq 6000 was used for sequencing. Dual-unique index pools were con-
ss  structed from libraries made at multiple sites after quantification using an Agilent Bioanalyzer. To maximize
ss0  Usable reads, 5mC converted libraries were sequenced in pools containing unconverted libraries instead
ss0  of PhiX. Pools were loaded at ~250 pM for pools with length < 500 bp (paired-end 2x100) or ~300 pM for
s longer-insert pools (paired-end 2x150). In some cases dual-unique balancing libraries were not available.
ss2 These were sequenced in combination with the dual-unique libraries and demultiplexed using the expected
sss  index 2 sequence derived from the universal adapter. When too many libraries used the same indices we
ssa  employed an Illumina XP manifold system to sequence in 4 distinct pools. Basecalling occurred on the No-
sss  vaSeq using RTA v3.4.4x. Demultiplexing and fastq generation was performed using Picard 2.20.6 using

sss  default settings except as listed below:

ss7 picard ExtractIlluminaBarcodes MAX_NO_CALLS=0 MIN_MISMATCH_DELTA=2 MAX_MISMATCHES=2

sss. picard IlluminaBasecallsToFastq \

559 read_structure=100T8B8B100T RUN_BARCODE=A00336 \

560 LANE=<lane> FIRST_TILE=<tile> TILE_LIMIT=1 \

561 MACHINE_NAME=<instrument> FLOWCELL_BARCODE=<flowcell>

s62 lllumina Sequencing: Aliquots of stock DNA were sent to Illumina in order to ameliorate depth of se-

ss quencing for WGBS libraries. Libraries were pooled and diluted to 1.5nM (final loading concentration of

o

s« 300pM on flow cell), then sequenced on lllumina NovaSeq S4 flow cells with direct flow cell loading (Xp
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sss  workflow) according to manufacturer's instructions. MethylSeq and SPLAT libraries were multiplexed on
sss  two lane; SPLAT libraries on their own in the third lane; and TrueMethyl libraries on their own in the fourth

s7 lane. Run data were uploaded to BaseSpace and fastq files were generated using default parameters.

< Alignment

sso Quality Control: FastQC was used to evaluate the quality of sequencing data, including base qualities,
s GC content, adapter content, and overrepresentation analysis. Adapters were trimmed using Trim Galore
sn (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).

572 Mapping: Sequencing replicates were mapped against a modified build of the human reference genome
s3 (build GRCh38) which included additional contigs representing bisulfite controls spiked within the pooled
s+ libraries, including lambda, T4, and Xp12 phages and pUC19 plasmid. Alignment to the genome was per-
s formed with Bismark (v0.22.1), BitMapperBS (v1.0.2.2), BWA-METH (v0.2.1), and gemBS (v3.2.0). BS-Seeker3
s and BRAT-nova were not included after failing to build an index of the reference genome and repeated mem-
s ory errors. Alignments were run using default parameters for each software.

578 For the time comparison analysis, we subsampled a random set of one million read pairs per library,
s»  using the same random seed for each. Each pipeline was run on the subsetted inputs a total of 10 times. All
ss0  experiments were performed using a 24 CPU-threaded server, running Ubuntu 16.04, and the performance
s of each replicate was timed (see Supplementary Table 1). Post-alignment statistics were generated using
ss2  samtools stats and Qualimap. Alignment files generated from the four pipelines were fed into MethylDackel
sss for methylation bias (mBias) methylation calling, using the suggested trimming parameters from the mBias
s« analysis for each replicate.

585 CpG Characterization: We examine the number of common CpG sites of all possible combinations of
ss6 four aligners using bedtools intersect (https://github.com/arg5x/bedtools2). The intersection attributes of
7 CpG methylation estimates from each aligner were visualized with Intervene (https://github.com/asntech/intervene).
s Pairwise Spearman correlation was calulated to evaluate the concordance of CpG methylation calls from
sso the four aligners.

590 We further evaluated the performance of the four methods by comparing distribution of annotations,
sn including 3' UTR, 5" UTR, Exon, Intergenic, Intron, Non-coding, Promoter-TSS, TSS, and unknown regions.
s2  Additionally, to explore the aligner’s effect on methylation level in relation to the TSS, we profile the DNA

sis methylation level at each CpG site surrounding the gene’s TSS +5kb.
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»« Downsampling

ss The bedGraph files generated by the BWA-meth aligner (see results for rationale to proceed with BWA-
sss meth calls for secondary analyses) for each technical replicate were combined by summing up the methy-
s lated and unmethylated counts per CpG site by chromosome. Next, the strands were merged in order to
sis  produce one value per CpG dinucleotide using MethylDackel mergeContext. The resulting replicate-CpG-
soo merged bedgraphs were downsampled using https://github.com/nebiolabs/methylation_tools/ downsam-
«00 ple_methylKit.py where a fraction of counts kept corresponding to the desired downsampling depth.

601 To compare downsampling mapped reads (BAM files) and bedGraph files, the BAM files from all repli-
w2 cates representing EMSeq HG006 (Lab 1) and MethylSeq HG004 (Lab 1) were respectively merged using
e03 Samtools merge. The merged BAMs were then downsampled using samtools view using the —s parame-
w4 ter, calculating the fraction of reads necessary to achieve the desired mean coverage per BAM. Methylation
«s was called on these BAM files using the same methodology as above. The strands were merged by CpG
«0s dinucleotide using MethylDackel merge context, creating one methylation call per CpG site. The procedure

07 is outlined in the Supplementary Information (Figure S2A), (Figure S3A).

«s Differential Methylation Analysis

0o Differential methylation between the two family groups (HG002-HG004 vs HG005-HG007) was assessed at
s each site on chromosome 1 for which at least two samples per group were covered by 5 or more reads. Fol-
en lowing aggregation of replicates, strand merging, and downsampling to median 10X coverage, analysis was
sz independently conducted via logistic region for each of five platforms (MethylSeq, EMSeq, TruSeq, SPLAT,
sz and TrueMethyl bisulfite replicates) using the standard “glm” function in R. p-values were adjusted using the
s« Benjamini-Hochberg correction and adjusted values < 0.05 were considered statistically significant. Com-

«s parisons among platforms considered only sites that were present in all datasets.

«« ATACseq Processing

«v Pre-Processing: Trim Galore was used both to remove adapters and, for the purpose of the read length
s titration experiment, to hard-trim reads to fixed lengths (50bp, 75bp and 100bp) starting from the five-prime-
sw end. The NextSeq quality trimming option was set to 20. The hard-trimmed reads were then processed
e20 With the pigx-chipseq pipeline for preprocessing, peak calling and reporting for ChlP and ATAC sequencing
e experiments (https://github.com/BIMSBDbioinfo/pigx_chipseq, v0.0.41).

622 Alignment: Briefly, reads were aligned to the human reference genome (build GRCh38) using bowtie2

23 (v2.3.4.3) with maximum fragment length for valid paired-end alignments extended to 2000 bp. Alignments
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24 Were subsequently filtered via samtools (v1.9) removing mappings with mapping quality below 10 and dis-
s carding duplicate alignments.

626 Peak Calling: Macs2 (v2.1.1.20160309) was used to call peaks on the filtered alignments with automatic
sz duplicate removal enabled (—keep-dup ‘auto’), input format specified as paired-end bam (-format 'BAMPE’),
s shifting model-building disabled (—nomodel), effective genome size changed to human (—gsize 'hs’) and

s20 ignoring peaks with FDR less than 0.05 (-q 0.05).

« Oxidative Bisulfite Analysis

s TrueMethyl Libraries: quality of data was assessed with fastqc. Adapters were trimmed using Trim_Galore.
s2 Reads were aligned to the hg38 genome using Bismark/Bowtie2. CpG methylation data was extracted using
sss  MethylDackel, in destranded format, and keeping sites covered by at least 5 reads. This data was loaded
s« in the R/Bioconductor bsseq package [40]. CpG sites common to all replicates were obtained, and the M
35 (counts for methylated C) and Cov (total count) matrices were extracted and used to generate the matrices
s required for the MLML2R package [41] to estimate the levels of 5mC, 5hmC, C from the beta values. The
s7 resulting estimates were used to create bed files for further comparison with corresponding MeDIP/hMeDIP-

es  Seq data.

< Microarray Normalization and Site Filtering

e0  Microarray normalization methods were divided into two broad categories: between-array normalization
e and within-array normalization. Between-array normalization is used to reduce technical variation while
sz preserving biological variation between samples, while within-array normalization is used to correct for the
ss two different probe designs on the lllumina methylation arrays, which have been observed to have different
«s dynamic ranges [30]. The between-array normalization methods evaluated were pQuantile [23], funnorm
s [24], ENmix [25], dasen [26], SeSAMe [27], and GMQN [28]. We implemented all possible combinations of
«s between-array and within-array normalization methods as well as each method individually. Samples from
«7 all 3 labs were normalized together as one joint dataset.

648 In order to evaluate the performance of each pipeline, all 30 microarray samples from 3 labs were pooled
0 togetherin a variance partition analysis [42]. For each pipeline and at each CpG site, the percentage of varia-
eso  tionin DNA methylation beta values explained by cell line and lab was calculated. Additionally, we performed
et principal components analysis (PCA) and visually inspeced clustering of technical and biological replicates
es2 across all normalization pipelines. A superior normalization pipeline would have more variation explained
3 by cell line across the epigenome compared to other pipelines as well as clear clustering of biological and

s« technical replicates.
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655 After normalization, we used the 59 SNP probes on the 850k array, meant to identify sample swaps
s [43], to define a data-driven classification of low-varying sites. Previous studies have found that low-varying
7 sites have poor reproducibility on the Illumina arrays [32] and have suggested data-driven probe filtering us-
s ing technical replicates [44, 45] or beta value ranges [32]. However, not all studies have technical replicates,
sso and previously proposed beta value range cutoffs for one experiment may not be generalizable to another
eo experiment. We first called genotype clusters based on the beta values at each of the 59 SNP probe within
st each of the 3 different labs (Figure 6b). Although we used a naive approach for calling genotypes (<25%
s2 Methylation=cluster 1, 25-50% methylation = cluster 2, >75% methylation = cluster 3), which was sufficient
3 forthe clear separation in our dataset (Figure 6b), more sophisticated methods [46] can be used for datasets
ssa  With less clear separation and/or outlier values. In theory, because these 59 SNP probes are meant to mea-
s sure genotypes, cell lines with the same genotype should have exactly the same readout in an experiment
s Without any technical noise. Therefore, we can use variance within genotype clusters from the same exper-
s7 iment as a measure of technical noise and determine the minimum population variation needed to exceed
s the observed technical variation. Within each of the 3 labs, we calculated methylation variance at each SNP
s probe within each genotype cluster, giving us a distribution of observed technical noise ((Figure 6¢c). To
e0 avoid being overly conservative due to outlier values at these 59 SNP probes, we use the 95th percentile of

sn these genotype cluster variances as the threshold for defining low-varying sites (Figure 6c¢-d).

-~ Microarray Versus Sequencing Comparison

e73  Variance partition analyses were used to compare the microarray and sequencing datasets and assess
e74 cross-platform concordance. Each variance partition analysis included all microarray replicates, normal-
s ized with funnorm + RCP, and one sequencing sample per cell line from a single sequencing platform and
e lab (with replicates merged). The percent of variation in DNA methylation explained by cell line and plat-
s form (sequencing or microarray) was calculated at each overlapping CpG site. This produced 5 sets of re-
o8 Sults, one per sequencing platform. The percentage of variation explained by cell line at each site was used
s9 as a measure of cross-platform concordance between each sequencing platform and the microarray data,
«0 and the percentage of variation expained by platform was used as a measure of platform- or experimenet-
e specific artifacts. Each variance partition analysis was performed on the same 842,965 CpG sites, which

2 Wwere present in all 6 datasets, to ensure a fair comparison.
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« Data Availability

s« All data sequenced for this study is available within SRA under accession number SRR8324451. All code

sss Usedto process data and generate files is publicly available on Github at https://github.com/Molmed/epiqc.
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Figure 1: Sequencing and alignment of whole methylome libraries. (a) Total reads captured for each Genome
in a Bottle (GIAB) cell line across common epigenetic library preparations. Each stacked bar represents one
replicate per library (combining technical replicates), and different shades for EMSeq represent libraries pre-
pared at two sites. (b) Median insert size estimates derived from distance between aligned paired end reads.
(c) Cumulative coverage plot, averaged across the GIAB cell line genomes, for each genomic assay. (d) Dis-
tribution of mean coverage of cytosines in CpG contexts across assays, here shown just for chromosome
1 within HGOO1 replicates. (e) Normalized GC coverage bias per assay, calculated as dividing the number
of aligned bases by the number of 100bp windows in the genome that match a given %GC. (f) Nucleotide
distribution per assay, showing the log2 distribution of covered versus expected mono- and di-nucleotide
patterns. (g) Read retention rate per assay, showing the fraction of total reads that are filtered by each step
in the alignment process. (h) Mean depth of coverage per CpG dinucleotide versus the total number of reads
sequenced per assay, showing the relationship of sequencing required to achieve a certain level of capture.
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Figure 2: CpG capture across algorithms. (a) Distribution of reference mapping results, shown as fraction
of total reads per library, including properly mapped reads (both mates mapped in correct orientation within
a certain distance), ambiguously mapped reads (read pairs containing secondary or supplementary align-
ments), reads marked as duplicates, and unmapped reads. Note that ambiguous and duplicate reads can
be a subset of properly aligned reads. (b) Fraction of genome-wide CpGs (n=29,401,795) covered at a given
mean depth using CpG calls from each algorithm. (c) Methylation bias distribution, showing the percentage
of methylated cytosines per base across all reads of a library. OT=0riginal Top strand; OB=0riginal Bottom
strand. (d) Spearman correlation of CpG calls per assay and alignment algorithm. (e) Coefficient of variation
of coverage for every assay pair, showing the impact of CpG coverage in methylation calling. CpG calls from
bwa-meth were used. Gray distributions represent <10% difference in methylation at a given CpG between as-
says; blue distributions represent >20% difference in methylation. Percentages reflect sites within that com-
parison that match each condition. EM=EM-Seq; MS=MethylSeq; TM=TrueMethyl; SP=SPLAT; TS=TruSeq.
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Figure 3: Assay Comparison. (a) Number of CpG sites detected by assay and coverage. (b) CpG distribution
per library acorss downsampling regimes for HG002. (c) Upset plots showing the overlap in CpG sites cov-
ered by >= 1X coverage and >= half coverage in each downsampling regime for HG002. (d) Coverage within
5kb of Transcript Start Sites (TSS) within each downsampling regime for HG002. (e) Pair-wise comparison
of DNA methylation Beta- values of overlaping CpG sites by assay. Pearson’s correlation coefficients (r) are

indicated.
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Figure 5: ATAC-Seq of GIAB cell lines. (a) Fragment length distribution per cell line, showing nucleosome
free peaks, mononucleosome peaks, dinucleosome peaks, and beyond. BUEN=original Buenrostro ATAC
protocol; OMNI=OMNI protocol, for all elements of the figure. (b) Percentage of reads assigned to autoso-
mal versus mitochondrial regions. (c) Enrichment for Transcript Start Sites (TSS) between Buenrostro and
OMNI replicates across all cell lines. (d) Spearman correlation of all replicates across protocols. (e) Read
mapping, reads in peaks, and reads assigned to mitochondria (mtDNA) from read length titration experi-
ment, hard trimming reads to 100bp, 75, and 50bp. (f) Genomic distribution of aligned reads across titrated
replicates. (g) Meta-gene plot integrating ATAC-seq and methylation data, showing the mean methylation
across genomic features for open and closed genes as defined by ATAC-seq. Average methylation across

assays is shown.
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a) Concordance between microarray replicates across the epigenome, by normalization pipeline
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Figure 6: Microarray normalization and low-varying site definition. (a) Densities showing the percentage
of DNA methylation variation explained by cell line across the epigenome for each normalization method,
estimated via variance partition analysis. This figure includes only the 677,520 CpG sites common to all
normalized datasets. (b) Raw beta values at each of the 59 SNP probes on the Illumina EPIC arrays, with
samples colored by lab. Cell lines with the same genotype cluster together at each of these 59 sites and
should theoretically have the same values. (c) Variance in methylation beta values (no normalization) within
each genotype cluster at the 59 SNP probes, separated and colored by lab. The dotted vertical line represents
the 95th percentile. (d) Variance in methylation beta values (normalized with funnorm + RCP) across the
epigenome. Sites in the shaded area, which have less variation than 95% of SNP probe genotype clusters,
are defined as low-varying sites. (e) Percentage of methylation (normalized with funnorm + RCP) variance
explained by cell line across the epigenome, stratified by high-varying vs. low-varying sites.
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« Tables

Whole Genome Transposase-Accessible | Targeted
EM-Se: TrueMethyl
Genome Coriell ID | NISTID | NCBI BioSample 9 Methyl| 1. seq _TueVIETY | SPLAT| PromethlON  ATAC OMNI EPIC
100ng 50ng 10ng Seq Bisulfite | Oxidative

lab1/lab2 /lab1 /Llab2|lab1|lab2| Lab1  Llab1 | Lab1l labl |lab1 Lab 1 Llab1| Lab1 | Lab2 Lab 1
142 580 452

340 | 468 652 338 1093 514 353 15.584 267
CEPH Mother/Daughter | GM12878 HGO01 | SAMNO03492678 222 777 939
337 | 392 609 437 395 508 329 (4981) 772 990 | 1843 326
387 478 | 1557
379 | 403 960 351 901 508 625 41.337 239
Al Son GM24385 HG002 | SAMNO03283347 357 | 399 650 609 504 247 801 (4302) 136 972 210 335

705 594 926

171 1076 | 1314
77 | 397 829 654 664 272 484 30.852 288

AJ Father GM24149 HG003 | SAMN03283345 228 107 | 1102
354 | 419 838 568 367 344 1353 (3820) 696 793 1165 337

260 | 1314 650
313 | 381 959 340 802 519 453 27.805 235
AJ Mother GM24143 HG004 | SAMN03283346 244 | 1102 385
2 1 21 4
94 | 173 779 733 3 345 433 (3958) 467 1165 | 1893 339

169 593 586

Chinese Son GM24631 HGO05 | SAMNO03283350| 89 | 451 | 430 497 | 313 | 244 7% 709 605 360 922 152 85 494 243
791 514 447 450 855 321

954 770 748

273 683 895
R 741 1012 573 730 733 247
Chinese Father GM24694 HGO06 | SAMNO03283348| 359 | 451 | 344 | 422 | 412 | 186 815 608 631 220 1050 109 531 417 265

1063 | 568 737

99 713 188
714 993 638 575 1343 234

6 | 365 | 480 | 387 | 176 172 962 337
665 312 1015 199 1035 243

533 862 1934

Chinese Mother GM24695 HG007 | SAMNO03283349 352 | 4

o

Table 1. Sequencing across all genomes analyzed in this study. All genomic and targeted assays are included. Numbers within each genome/assay cell indicate
millions of paired-end 150bp reads sequenced, with the exception of PromethlON, which indicates millions of reads and mean read length in parentheses.
Each number represents one replicate sequenced for that genome/assay.
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Number of Common Sites 2277395 Assay
DM Sites in 3 or more assays (DM3+) 3379
EM-Seq Methyl-Seq SPLAT TrueMethyl TruSeq
Percentage of common sites with 5X coverage 94% 92% 88% 95% 73%
Number of DM Sites for this assay (DMA)| 5935 8462 9675 5971 15152
Percentage DMA sites unique to this assay 35% 46% 49% 35% 73%
Percentage of DMA sites in DM3+ 39% 30% 27% 40% 13%
Percentage of DM3+ in DMA sites| 69% 75% 78% 70% 58%

Table 2. Comparison of Differentially Methylated (DM) sites. Values are restricted to the 3379 sites that were differentially
methylated in 3 or more assays.
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= Supplementary Results

s EPIC Methyl Capture Targeted Methylome Sequencing

st We compared sequencing replicates of lllumina Methyl Capture EPIC, a targeted approach interrogating
sz roughly 3.3 million CpGs with a preference for CpG islands and promoter regions, to methylome-wide as-
sss  says across all seven genomes. Results shown for HG002 are representative of all seven genomes. Concor-
s« dance between biological replicates was extremely high, with >98% of captured CpGs overlapping between
sss replicates (Figure S14A), and very nearly 3.3 million CpGs captured in all seven genomes ((Figure S14B).
sss  Some off-target CpGs were captured, representing roughly 12.5% of total bases sequenced per replicate
s (Figure S14C). Within off-target regions, nearly all were captured only at 1X depth, with very few exceeding
sss 5X, while the mean coverage per CpG was closer to 20X for on-target CpGs, with a long tail exceeding 50X for
eso  Many sites (Figure S14D). Methylation percentage was more imbalanced for EPIC replicates than expected,
g0 With a higher proportion of sites estimated as 100% methylated than in other assays (Figure S14E). This was
s reflected in an analysis of concordance, which showed an r-value of roughly 0.68 per assay in comparison to
sz EPIC when examining only targeted regions (Figure S14F), a value likely driven down by an over-estimation

g3 Of methylation within EPIC capture.

» Hydroxy-methylcytosine Estimation

sss  The TrueMethyl protocol is one of the few assay allowing investigators to measure 5mC and 5hmC (and C)
g6 iN an indirect manner. For completeness, each cell line replicate was processed using both bisulfite only (BS
s = 5mC + 5hmC) and oxidative reaction prior to bisulfite reaction (OX = 5mC). In parallel, total 5mC and 5hmC
sss  were measured by LC-MS/MS. Supplementary Figure Figure S15 shows that all cell lines have a higher level
so  Of 5mC compared to 5ShmC (Figure S15A,B). The low 5hmC levels were also observed at the single-nucleotide
s resolution level, with similar correlations between the two library preparations across all cell lines (Figure
sn  0XxbsSuppl c), and also within each cell lines (d), where the PCA plot in figure oxbsSuppld shows little to no

g2 separation between libraries prepa8 ed using BS or OX protocols.
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873 As stated above, preparation of BS and OX libraries in parallel allows the determination of 5mC, 5hmC
e+ and C. We used the MLML2R package to estimate the level of each cytosine state, for each CpG sequenced,
&5 Using HG002 as example. The results are shown in figure Figure S15E. The top panel shows that some CpG
s sites not only show 100% of a specific cytosine mark (C = 100% unmethylated CpG, mC = 100% methylated
sz CpG), but also a mixture of two (MC_C = methylated or unmethylated C; hmC_C = hydroxymethylated or
e unmethylated C; mC_hmC = methylated or hydroxymethylated C) or of all cytosine mark (mC_hmC_C). Con-
a0 sistent with the LC-MS/MS quantitation, hmC marks were found in low proportions at some CpG sites. The

s0  results observed for HGO02 were representative of all the 7 cell lines.

s« Input titration for EM-Seq

sz In order to investigate the impact of input DNA, we generated EM-Seq libraries using 10ng, 50ng, and 100ng
s Of aliquot for each replicate for each Genome in a Bottle cell line. We also randomly subsample each run in
s« Silico to a random set of 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp reads per input. Across this
sss gradient of subsampled reads, the input amount had an effect on the number of CpGs uniquely captured at
sss  OF below 25M read pairs, though most CpGs were covered even with 10ng of input DNA at 50M read pairs
sz and above (Figure S16A). For CpGs covered across input titers, the mean coverage per CpG remained even,

ses and increased linearly with numbers of reads (Figure S16B).

= Biological Insight within Sequence Data vs Microarray

g0 TO determine the biological relevance of our results, we considered 52 CpGs on chromosome 1 that had
s been previously identified as differentially methylated in an array analysis of approximately 300 individuals
s2 from Caucasian-American, African-American, and Han Chinese-American populations [47]. Annotation and
sz Methylation results from all 52 CpGs are available within Supplementary Table 3. Of the 7 sites with reported
sa  |PMD|>0.2 between Chinese-Americans and Caucasian-Americans, 5 were identified as DMAs for all five
eos assays as well as having [PMD|>0.2 in our arrays. Of the two remaining sites, one (on the TASTR3 promoter)
ws had insufficient read coverage for MethylSeq and TruSeq but was a DMA for the remaining assays, and the
s7  second (located on the C1orf100 promoter) was identified as a DMA for only SPLAT and TruSeq. In addition
ss 10 TASTR3, which is a sweetness taste receptor that is known to vary phenotypically between the Asian and
so Caucasian populations [48], there was strong concordance for 6 CpGs on the PM20D1 promoter, a gene
o0 associated with obesity and Alzheimer’s disease with demonstrated population-based variation [49, 50].

901 We additionally reviewed a collection of 3379 sites that were identified as DMA for at least 3 of the five
s2 Sequencing assays on chromosome 1. Following annotation with HOMER [51], analysis with DAVID bioin-

o3 formatics [52] identified a subset of 32 genes associated with osteoporosis (Benjamini-Hochberg adjusted
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o4 p-value < 5.5E-8) according to the GAD database [53] (Supplementary Table 4). These include PBX1and WLS,
s both of which have been associated with bone mineral density in previous studies [54, 55]. These results
w6 are of interest not only because of the high rate of osteoporosis in the Ashkenazi Jewish population relative
o7 to other ethnic groups [56], but also because only 4 of the 94 CpGs associated with these 32 genes were
ws present on the lllumina array, highlighting the ability of whole methylome sequencing methods to detect

oo differences unobservable in array-based datasets.

s Methylation Capture in Oxford PromethlON

on Aliquots of all seven cell lines were sequenced across three Oxford Nanopore PromethlON R9.4 flow cells.
sz Bases and methylation values were called using Megalodon 2.2.1 with Guppy 4.0 under the hood, allowing si-
ss  multaneous base calling and base modification calling from raw signal data. Compared to other methylome
s data captured from more traditional sequencing, PromethlON showed a normal distribution of CpG cover-
a5 age (Figure S17A). However, the methylation percentage distribution was much less bimodal, with far fewer
a6 CpGs demonstrating 100% methylation across the genome (Figure S17B), reflecting current limitations in
o7 uniform base modification detection across DNA strands from Nanopore data. Despite this, the correlation
ss  of methylation capture between Nanopore data and other sequencing assays was quite high, with r values
s raging between 0.794 compared to EM-Seq and 0.825 compared to TruSeq (Figure S17C), with most sites
a0 called at 0% or 100% methylation, but many sites at 100% for other assays that showed lower methylation

o in PromethlON. The findings reported for HG002 are representative of findings for all other cell lines.
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Figure S1: Flowchart of methods used for each alignment and methylation calling pipeline.
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Figure S2: Downsampling evaluation for EMSeq / HG006. A) Outline of the downsampling procedure and
naming scheme of the downsampled libraries. B) Pairwise correlation matrix of beta-values for the EMSeq
HGOO06 library (lab 1). Scatter plots of the beta-values are shown in the lower left. Histograms of the beta-
values per library are shown across the diagonal. Pairwise Pearson (rho) and Spearman (p) correlation
coefficients, root mean square error (RMSE), and the number of CG dinucleotides with >= 5x coverage in
both libraries are shown in the upper right. C) Statistics over the beta-value distributions and observed read
coverage of CpG sites in the various bedGraph files. D) Pairwise RMSE and correlation coeficients calculated
(x-axis) compared to the number of CpG sites covered by five or more reads. The data are colored by target
coverage and symbols correspond to the which file the downsampling was performed on. F) Histograms of
the CG dinucelotide read coverage of each bedGraph files prior to and after downsampling.
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Figure S3: Downsampling evaluation for MethylSeq / HG004. A) Outline of the downsampling procedure
and naming scheme of the downsampled libraries. B) Pairwise correlation matrix of beta-values for the
MethylSeq HG004 library (lab 1). Scatter plots of the beta-values are shown in the lower left. Histograms of
the beta-values per library are shown across the diagonal. Pairwise Pearson (rho) and Spearman (p) correla-
tion coefficients, root mean square error (RMSE), and the number of CG dinucleotides with >= 5x coverage in
both libraries are shown in the upper right. C) Statistics over the beta-value distributions and observed read
coverage of CpG sites in the various bedGraph files. D) Pairwise RMSE and correlation coeficients calculated
(x-axis) compared to the number of CpG sites covered by five or more reads. The data are colored by target
coverage and symbols correspond to the which file the downsampling was performed on . F) Histograms
of the CG dinucelotide read coverage of each bedGraph files prior to and after downsampling.
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Figure S4: Comparison of the genome-wide DNA methylation assays by genome. Scatter plots of the beta-
values are shown in the lower left. Histograms of the beta-values per library are shown across the diagonal.
Pairwise Pearson (rho) and Spearman (p) correlation coefficients, root mean square error (RMSE), and the
number of CG dinucleotides with >= 5x coverage in both libraries are shown in the upper right.
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pled to a mean coverage of 10X per CpG.
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Figure S7: Comparison of ATAC vs Omni-ATAC in a differential accessibility analysis between the two sons
of the family trios analyzed in this study (HG002 versus HG005). Statistically significant peaks are colored.
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Figure S8: Integrating RNA expression data and ATAC-seq chromatin accessibility data with methylation
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regions of differentially open chromatin.
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Figure S9: PCA of all microarray samples by normalization pipeline, with samples colored by cell line.
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Figure S10: Densities of variance explained by cell line and platform (microarray or sequencing) across the
epigenome by sequencing platform.
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Figure S11: Comparison of HG002 sequencing and microarray beta values (lab 1, microarray replicate 1)
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Figure S12: Comparison of HG002 sequencing and microarray beta values (lab 1, microarray replicate 2)
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Figure S13: Comparison of HG002 sequencing and microarray beta values (lab 2, microarray replicate 1)
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Figure S14: Methyl Seq EPIC Capture for HG002 samples. (a) Percentage of CpGs covered by each replicate
individually, and overlapped. (b) Number of CpGs that were covered on-target (within the genomic regions
targeted by the assay) and off-target. (c) Relative percentage of bases sequenced with on-target and off-
target loci. (d-e) For the two replicates for HG002, depth of coverage and methylation percentage distribution
within off-target (OFF) and on-target (ON) loci. (f) Per-CpG concordance between EPIC Methyl Capture and
other methylomic sequencing assays.
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Figure S15: Capture of 5mC and 5hmC from TrueMethyl replicates, including bisulfite-only (bs) and oxidative
bisulfite (ox). (A) Percent of inferred 5mC among all cytosines in the genome.. (B) Percent of inferred
5hmC among all cytosines in the genome. (C) Spearman correlation of replicates across genomes between
oxidative and bisulfite replicates. (D) Unsupervised clustering of samples. (E) Bar plot shows the number of
true cytosine (C), 5-methylcytosine (5mC), and 5-hydroxymethycytosine (5hmc) across a random 1M CpGs
within HG002 TrueMethyl replicates. (F) Intersection of 5mc and 5hmC calls between TrueMethyl (TM) and
MeDIP (Methylation DNA ImmunoPrecipitation) (MD) replicates.

S-18


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted December 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a M 5M 10M b 8
213 9.0
2.10 8.9 14.8-
2.07- 8.81 .
— 14.6
%) i 64
C 2.04- 8.7
£ 8.6 14.4 ]
F 2,014 ‘ 7 <3
MM == = =] g
2] T T T T T T T T T =
(_g- 10ng 50ng 100ng 10ng 50ng 100ng 10ng 50ng 100ng 8_
O 25M 50M 100M = 41
S 28+ %
. 27.04 8
'g 234 26.54 26 %
> 26.0 %
Z 232 i 2 21
g 25.59 224
23.0 ]
= 250 2]
10'ng 50'ng 10(’)ng 10’ng 50'ng lO(’)ng 10’ng 50’ng lOl:)ng
04
™ sM

10.M 25.M SO.M 10.0M
Number of Input Reads

E 10ng E 50ng ‘ 100ng

Figure S16: EM-Seq read titration experiment. Replicates generated using 10ng, 50ng, and 100ng of input
DNA were randomly downsampled to 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp reads. (a) CpGs
covered at least 1X for each subset. (b) Mean depth per CpG for each subset.
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Figure S17: Methylation profiles of traditional methylome sequencing versus Oxford PromethlON for HG002
replicates. (a) Depth of coverage per CpG. (b) Distribution of methylation percentage. (c) Correlation of
estimated CpG methylation per CpG between PromethlON (Y-axis) and other methylome assays (X-axis). R
values are shown in top left corner for each comparison.
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= Supplementary Tables

Library Pipeline Nodes (Cores) | Input Reads|Average Running Time (s) Standard Deviation Read Pairs/core/sec.
EMSeq_REPO1 Bismark 14 . 216
BitMapperBS 14
BWA-Meth 14
gemBS 14
EMSeq_REP02 Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
MethylSeq_REPO1_Batch1 |Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
MethylSeq_REPO1_Batch2 |Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
MethylSeq_REP02_Batch1 |Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
MethylSeq_REP02_Batch2 | Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
SPLAT_REPO1_Batchl Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
SPLAT_REPO1_Batch2 Bismark 14
BitMapperBS 14
BWA-Meth 14
gemBS 14
SPLAT_REP02_Batchl Bismark 14
BitMapperBS 14 .
BWA-Meth 14| 1,000,000 300.5 3.98 238
gemBS 14/ 1,000,000 270.6 10.07 264
SPLAT_REP02_Batch2 Bismark 14 1,000,000 324.7 77.23 220
BitMapperBS 14, 1,000,000 2.29
BWA-Meth 14| 1,000,000 289.61 5.22 247
gemBS 14| 1,000,000 276.8 7.41 258
TrueMethyl_REPO1 Bismark 14| 1,000,000 309.3 85.14 231
BitMapperBsS 14| 1,000,000
BWA-Meth 14 1,000,000 305.93 2.83 233
gemBS 14| 1,000,000 273.7 6.65 261
TrueMethyl_REP02 Bismark 14| 1,000,000 305.3 81.7 234
BitMapperBs 14| 1,000,000
BWA-Meth 14 1,000,000 318.16 6.86 225
gemBS 14 1,000,000 284 11.64 252
TruSeq_REPO1_Batchl Bismark 14| 1,000,000 306.5 87.79 233
BitMapperBsS 14| 1,000,000
BWA-Meth 14, 1,000,000 295.18 2.96 242
gemBS 14 1,000,000 286.5 14.67 249
TruSeq_REPO1_Batch2 Bismark 14 1,000,000 304.2 91.84 235
BitMapperBs 14| 1,000,000
BWA-Meth 14/ 1,000,000 289.44 4 247
gemBS 14 1,000,000 289.9 29.55 246
TruSeq_REP02_Batchl Bismark 14 1,000,000 307.9 89.22 232
BitMapperBS 14| 1,000,000
BWA-Meth 14| 1,000,000 297.57 2.83 240
gemBS 14/ 1,000,000 281.2 19.37 254
TruSeq_REP02_Batch2 Bismark 14 1,000,000 304.2 87.43 235
BitMapperBs 14| 1,000,000
BWA-Meth 14| 1,000,000 287.26 2.15 249
gemBS 14/ 1,000,000 284.1 9.42 251
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EMSeq | MethylSeq | SPLAT TrueMethyl TruSeq
Number of DMAs mapped to array 194 266 339 189 729
Number DMAs with |PMD| >.2| 194 266 339 189 725

% DMAs with |PMD| >.2 and array |[PMD| >.2| 83.0% 79.3% 80.8% 80.4% 63.2%
Number Hypermethylated in HGO05-HGO007 151 208 266 141 512

% Hypermethylated DMAs with array PMD > .2| 82.1% 78.4% 81.6% 80.9% 64.5%
Number Hypomethylated in HG005-HG007 43 58 73 48 213

% Hypomethylated DMAs with array PMD <-.2| 86.0% 82.8% 78.1% 79.2% 60.1%

Supplementary Table 2. Distribution of differentially methylated assays (DMAs) in comparison to microarrays.
PMD = Percent Methylation Difference between sequencing assay and microarray.
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TargetlD | African American | Caucasian American | AsianAmerican | Asian-Caucasian |[FDR | Chr. | Position (HG19) | Position (HG 38) | Gene Feature Variance | meQTL |EMSeq |MethylSeq |SPLAT | TrueMethyl | Truseq |Microarray

g16590012 |0.84 085 062 023 2736291 [1265354 1329974 TASIR3 Promoter AS ves |-0.8111 NA -1 03377 |NA -0.260962377
23611477 |0.89 081 075 -0.06 4116111 1644835 1713396 CDK11A;CDK118 | Body;Promoter | AF ves |NA NA NA NA NA 0.053832397
00669623 |0.28 015 014 001 2.76E-17|1 | 1655867 1724428 CDK11B;CDK11A | Promoter AF no -0.0256 0 0 00227  |-002 [0.005745338
03396347 |0.73 06 061 001 1086051 |1875803 1944364 AF yes |-0.075 |-0.1011 |-0.2934 |0.049 -0.017332191
00095688 |0.62 066 052 0.4 1246051 |2003864 2072425 PRKCZ Promoter AS no 01038 -0.2954 -0.1048 |0.0172 02917 |-0.049854464
10761639 |0.74 084 069 015 109E-17 |1 |2023794 2092355 PRKCZ Promoter cA yes 00083 -0.051  |NA 01333 |-0.0286 |-0.042517805
24499605 |0.45 032 043 011 1766141 3142925 3226361 PRDM16 Body cA no 0067 |-0.0567 |-0.2079 |-0.1863  |0.084 |0.028062666
g14654471 |0.91 089 075 -0.14 3576141 5937169 5877109 NPHP4. Body AS yes -0.0345 -0.08 00455 |-0.0385  |-0.0294 |-0.126294083
g13549940 |0.64 081 081 0 2306121 6390053 6320993 ACOT7 Body AF yes |-0.0979 0.0928  |0.0137 |-0.0154  |-0.2374 -0.147345073
23914842 |0.32 039 05 0.11 1216071 |9327170 9267111 H6PD 3UTR AS yes |-0.164 00324 |-0.1957 |-0.0185  |0.005 |0.026883648
g01017257 |0.57 048 061 0.13 362605 1 | 15059738 14733242 KIAAL026/KAZN | Body;Body cA ves 08194 06722 |0.7075 |0.5711 05126 |0.638134684
g04850659 |0.31 026 04 0.14 1056081 [17019133 16692638 ESPNP Body AS o NA NA NA NA NA -0.000666352
g16558994 0.3 021 036 015 237605 1 21023132 20696639 KIF17 Body cA ves 0 NA NA 0 0.0404 |-0.017560366
g18150584 |0.57 05 064 0.14 6.286-04 |1 23887816 23561326 D3 Promoter cA no 02473 0 02073 |0.1569 0.1012 0.131310405
g19276111 |0.43 055 049 -0.06 2336031 24229232 23902742 CNR2 Promoter AF no  |-0.0417 02487  |-0.1137 |-02111  |-0.0798 |-0.210237682
€g20415053 | 0.54 0.62 0.74 0.12 1.60E-05 1 26527928 26201437 CATSPER4 Body AS yes 0.025 0.0758 0.137 -0.1027 0.1627 |0.124345312
g02251754 0.5 029 0.18 0.1 3506-20 1 28572299 28245788 AF/AS yes  |-0.3333 |-03256  |-0.4483 |-0.3462 -0.425859931
14781242 |0.66 081 084 0.03 9376141 32738251 32272650 LK Promoter AF ves 00277 02172  |-0.0227 |-0.0261 -0.015957536
g06917450 |0.29 027 054 027 2316161 | 38156652 37690980 Clorf109 Promoter AS ves 0.4389 07353  |0.5992 |0.4383 0.509289562
26038582 |0.69 057 064 007 1736021 42384390 41918719 HIVEP3 Promoter cA no |-0.0078 -0.1695 (00251 |-0.2942  NA -0.257082006
g02927682 |0.37 04 0.49 0.09 175603 |1 | 54844424 54378751 SSBP3 Body AS yes 0.4333 |NA 0256 |0.1581 03078 |0.219850053
g10760651 |0.48 037 05 0.13 106E-04 |1 86968184 86502501 cA yes 04137 02917 |0.2576 (01738 0.1409 0.170507918
g10631373 |0.41 029 036 007 2256041 89457642 88991959 RBMXLL;CCBL2 | Promoter;Promoter | CA yes 015 00903  |0.0566 |0.0925 0201 0.12582038

09408571 |0.59 066 075 0.09 584E-07|1 |101003634 100538078 GPRSS Promoter AF yes 00931 00112  |00866 |0.175 NA 0.097862582
g06223162 0.3 038 053 015 5.656-08|1 101003688 100538132 GPRSS Promoter AS yes 01429 -0.0706 (01318 |-0.1558  |-0.0271 |0.149266097
25210835 |0.25 028 046 018 281E-091 110254828 109712206 GSTMS Promoter AS ves |NA 01906  |NA 01504 -0.1442 |-0.133860867
02193146 |0.64 079 076 003 6376061 110752257 110209635 ncRNA promoter | AF no 00271 -0.1517 |-0.0085 |-0.2509  -0.0763 -0.028537651
24853868 |0.51 049 066 017 226E-051 146555624 147084075 AS yes 04304 03366  |0.0808 |NA 01679 0.140011883
13502125 |0.66 063 077 014 8156-051 147826191 148354063 AS yes |-0.1624 -0.1372 |-0.0375 |0 0.1367 |-0.061607065
09359103 |0.45 041 022 -0.19 7676151 | 154839909 154867433 KCNN3 Body As yes |-0.4656 -0.6515  -0.6462 -0.5063  -0.4793 -0.577817571
23915527 |0.5 036 039 0.03 2456051 | 161368787 161398997 AF ves 01214 00916  |0.2168 |0.0798 03758 |0.221514878
12092579 |0.38 023 029 0.06 2076-06|1 178380975 178411840 RASAL2 Body AF no 0255 |-0.2848 |-0.3801 -0.3463  -0.3087 -0.350398547
g21868798 |0.36 03 024 -0.06 300E-051 199481399 199512271 AF yes 04044 03149 (01774 (01912 -0.0476 |0.131486606
g18222590 |0.41 035 0.48 0.13 121€-10|1 204290972 204321844 PLEKHAG Promoter cA yes 02806 00093 |-0.016 |0.2121 0.0896 |0.185735095
§20240347 |0.46 031 035 0.04 1726041 | 204465584 204496456 AF yes |-0.1062 -0.1839 |-0.0775 |-0.0333  |0.1599 |0.081540919
g17178900 |0.28 05 024 026 2.76E-10|1 | 205818956 205849828 PM20D1 Body cA ves |-0.6818 -0.7946 |-0.5114 -0.5247  |-0.4531 -0.516444344
g26354017 |0.31 05 028 022 1986081 |205819088 205849960 PM20D1 Promoter cA yes |-0.5265 -0.6283 |-0.7179 |-0.5272  -0.5045 -0.490886073
g14159672 0.3 048 026 022 554E-111 205819179 205850051 PM20D1 Promoter cA yes |-05769 -0.7037 |-0.6773 |-0.5614  -0.7567 -0.613414876
g14893161 |0.26 038 022 -0.16 200E-11]1 205819251 205850123 PM20D1 Promoter cA yes |-05333 -0.4526 |-0.3795 -0.3741  -0.539 -0.444333875
g11965913 |0.15 03 011 019 9.61E-14|1 205819406 | 205850278 PM20D1 Promoter cA yes |-0.1451 -0.1765 |-0.2762 |-0.1818  |-0.4929 |-0.20053492
g24503407 |0.25 043 021 0.22 111613 (1 [205819492 205850364 PM20D1 Promoter cA yes |-0.5872 -0.5504  |-0.4495 |-0.6111 -0.564846802
g07157834 |0.33 046 028 -0.18 2786091 205819609 205850481 PM20D1 Promoter cA yes |-0.4496 -0.3813  -0.5091 -0.3881 -0.577898833
g06935979 |0.62 048 046 -0.02 101E-06|1 232941706 | 232805960 KIAA1383/MAP10 | Promoter AF ves |NA 01009 05966 |0.2897 0194209311
g00951395 |0.49 032 033 001 7126091 232941775 232806029 KIAA1383/MAP10 | Promoter AF yes |-0.1238 00211  |0.0655 (0.2 0.082643472
g02889973 |0.46 039 051 0.12 3256041 234977572 234841825 cA no 02008 03351 |0.3865 |0.2604 0.338365246
09033006 |0.4 046 022 024 S74E-19|1 244517177 244353875 Clorf100 Promoter AS yes |-0.0777 -0.0982 |-0.2727 |-0.1812 -0.226790732
g19368911 |0.61 0.7 075 005 101E-07|1 245541456 | 245378154 KIF268 Body AF no 0255 01074  |0.5537 |0.2123 0176927418
g04134399 |0.28 015 028 0.13 9.18E-09 |1 246231142 246067840 SMYD3 Body cA no  -0.0944 -0.0333 |0.0627 |-0.0954  |-0.0792 -0.032604475
04798314 |0.51 0.66 084 0.18 2266131 | 246668601 246505299 SMYD3 Body AS yes |-0.19 01108  |-0.1389 |0.0163 NA -0.03213339
09226051 |0.42 04 03 0.1 4036031 247611502 247448200 NLRP3 Body AS yes |-0.2002 -0.1067 |-0.1418 |0.0267 -0.0615 |-0.207283677
g15829088 |0.33 037 045 008 336E-04|1 | 247802935 247639633 ncRNA promoter | AS yes 00655 00341  |-04256 -0.1091  |-0.0111 -0.005306149

Supplementary Table 3. Population Variance agreement. A total of 52 CpGs on chromosome 1 that had been identified as differentially methylated between ethnic populations
were annotated and compared for concordance of differential signal between microarray and sequencing data.
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ID Gene Name

ADCY10 adenylate cyclase 10, soluble

ATP1B1 ATPase Na+/K+ transporting subunit beta 1
B3GALT2 beta-1,3-galactosyltransferase 2

CD247 CD247 molecule

CDC73 cell division cycle 73

COL24A1 collagen type XXIV alpha 1 chain

CREG1 cellular repressor of E1A stimulated genes 1
DPT dermatopontin

F5 coagulation factor V

FAM78B family with sequence similarity 78 member B
GPR161 G protein-coupled receptor 161

LMX1A LIM homeobox transcription factor 1 alpha
METTL18 methyltransferase like 18

MPZL1 myelin protein zero like 1

NME7 NME/NM23 family member 7

NR5A2 nuclear receptor subfamily 5 group A member 2
PBX1 PBX homeobox 1

POGK pogo transposable element with KRAB domain
POU2F1 POU class 2 homeobox 1

RAP1A RAP1A, member of RAS oncogene family
RERE arginine-glutamic acid dipeptide repeats
SCYL3 SCY1 like pseudokinase 3

SELE selectin E

SELL selectin L

SELP selectin P

SLC19A2 solute carrier family 19 member 2

SSU72 SSU72 homolog, RNA polymerase Il CTD phosphatase
TADA1 transcriptional adaptor 1

UCK2 uridine-cytidine kinase 2

WLS wntless Wnt ligand secretion mediator

XCL1 X-C motif chemokine ligand 1

ZBTB40 zinc finger and BTB domain containing 40

Supplementary Table 4. A total of 32 genes associated with osteoperosis
showed significant differentiation comprising 94 differentially methylated
CpGs across sequencing assays. Only 4 of 94 are present on the Illumina
microarray, highlighting differences of information capture between arrays
and sequencing.
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