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Abstract— The unobtrusive monitoring of vital signals and
behaviour can be used to gather intelligence to support the
care of people living with dementia. This can provide insights
into the persons wellbeing and the neurogenerative process,
as well as enable them to continue to live safely at home,
thereby improving their quality of life. Within this context, this
study investigated the deployability of non-contact respiration
rate (RR) measurement based on an Ultra-Wideband (UWB)
radar System-on-Chip (SoC). An algorithm was developed to
simultaneously and continuously extract the respiration signal,
together with the confidence level of the respiration signal and
the target position, without needing any prior calibration. The
radar-measured RR results were compared to the RR results
obtained from a ground truth measure based on the breathing
sound, and the error rates were within 8% with a mean value
of 2.4%. The target localisation results match to the radar-
to-chest distances with a mean error rate of 5.4%. The tested
measurement range was up to 5m. The results suggest that
the algorithm could perform sufficiently well in non-contact
stationary respiration rate detection.

I. INTRODUCTION

As populations age, the demand for dementia care in-
creases. Around 50 million people worldwide are living
with dementia, with problems of memory loss, thinking and
language [1], which create an urgent need to help the patients
to live better and in greater safety. Respiration rate (RR)
monitoring can benefit smart dementia care. Respiration
rate is a key predictor of some serious clinical events, and
the elderly have a higher chance of experiencing breathing
difficulties due to changes in lung structure and respiratory
system that come with age [2]. Specifically for dementia,
there is evidence of a relationship between breathing dys-
rhythmias and dementia with Lewy bodies [3], and sleep-
disordered breathing with Alzheimer’s Disease [4], [5]. Con-
tactless monitoring of breathing rate could therefore help
with monitoring of dementia risk factors and symptoms in
the home for more effective healthcare.

Devices requiring contact with the body for measurements
are less beneficial for dementia care applications. Long-term
measurements are hindered by issues with patient compli-
ance and perceived device stigmatisation [6], [7]. Dementia
patients can forget to wear or charge the device, which
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results in higher burden compared to passive devices plugged
into a wall outlet. Non-contact devices can maximise user
comfort by carrying out measurements without direct inter-
action. Impulse Radio Ultra-Wideband (IR-UWB) radar uses
GHz electromagnetic waves, and can go through obstacles
including cloth and walls and reflect every object in its
Field of View (FoV), making it more generally applicable.
It has high resolution and robustness in the face of multi-
path interference. The non-ionising waves are safe for daily
use as well. Moreover, it is a platform technology that allows
deriving many clinically useful measures from the same data
stream, improving its scalability and affordability for home-
based applications.

The literature shows that RR has been measured using
UWB radar using many different algorithms. Application
scenarios include in-car [8], in clinical environments [9], at
home [10], [11] or portable when installed with a mobile
phone [12] etc. Testing distances between object and radar
are generally from 0.5 to 2 meters, except for [10], which
is up to 8m. Most of the measurements require the target
to be stationary, apart from [8] which takes into account
the motions and hand gestures associated with driving.
Systems shown in [9], [10] and [11] are relatively bulky,
apart from which the system introduced in [10] is expensive.
For ground truth, [9] uses manual counting, for which the
accuracy depends on the observer, the presence of whom
could also lead to measurement artefacts. [10] and [13] use
chest sensors, giving more accurate results. The respiration
signals are also used to build respiration patterns for heart
rate measurement, requiring accurate measurement of the
duration of each breath [13]. In addition, UWB radar can
also be used for respiration detection during sleep [14], [15].

The Novelda X4M03 combines an X4 UWB radar System-
on-Chip (SoC), a microcontroller and PCB antenna board.
It is highly compact, has an SPI interface and is therefore
highly versatile, and is low-cost [16]. The maximum radar
emission is -41.3 dBm/MHz, which is within the limitations
stated in 47 CFR Part 15, illustrating the amount that
electronic devices can emit unintentionally [13]. It allows
measurements with targets up to 9.9 metres away. These are
essential features for the scalability of home-based applica-
tions. It has been shown in [16], [17] that the X4 radar SoC
is capable of non-contact vital sign monitoring in humans.
Our previous work demonstrated the ability to sense heart
rate variability using a similar (non-contact) setup [17] and
cardiovascular dynamics using a body-coupled antenna [18].
This work develops and describes a non-contact method for
robustly sensing respiration rate as one component within
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a ‘healthy home’ platform for the care of people living
with dementia. The remainder of this paper is organised as
follows: Section II describes the experimental setup and data
processing methods; Section III describes the experimental
protocol; Section IV presents and discusses the results; and
Section V draws a conclusion.

II. METHODS

A. Experimental Setup

The experimental setup is illustrated in Fig. 1a. The radar
antenna transmits UWB pulses towards the target and some
pulses will be reflected by the chest wall, giving a single
frame radar output as shown in Fig. 1b. Periodic chest wall
movements due to respiration will then cause radar output
amplitude variations. It is therefore possible to extract the
RR through sampling the variations in time domain (i.e.
slow-time sampling, with a configured rate of 17Hz), as
displayed in Fig. 1c. Due to limited access to highly accurate
respiration rate monitoring devices, a measure of ground
truth respiration rate based on the breathing airflow sound
is established to validate the data.
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Fig. 1. (a) Experimental setup illustration. The human target sits stationary
in front of the radar with a distance (D) and a radar-chest distance (C).
Results are being plotted in PC in real-time. Microphone of a Bluetooth
earphone is put under the target’s nasal cavity to record the airflow sound
due to breathing, which is used as a measure of ground truth. The sound
are saved by the voice recorder. (b) Radar baseband output varying with
range. The peak refers to the radar-measured target location. (c) Baseband
amplitude variations in time. The sample axis is equivalent to a time axis.
The range bin axis is equivalent to the range axis in (b), where each range
bin is referred to as a fast-time (i.e. radar range sampling, with a rate of
23.328GS/s) sample point.

B. Processing algorithm

The data processing algorithm is demonstrated in Fig. 2. A
25s’ time window is created to display the results. The range
bins containing respiration signals are selected, summed and
processed to give the radar signal, as displayed in Fig. 3a.
The data can also be used to localise the target (Fig. 3b) and
a confidence level calculation is included to check whether
the radar signal is due to respiration (Fig. 3c).
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Fig. 2. Flowchart illustrating the processing algorithm.
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Fig. 3. Example of output plot. (a) Radar signal. (b) Target Location. (c)
Confidence level.

1) Time window: In this study, a sample is received every
59ms and the window size is configured to 425 samples (i.e.
25s). The frame area is set to 1m, which concludes the human
target width and ensures the real-time plot.

2) Radar signal: In experimental recordings, some range
bin signals are not respiration related and some may be in
anti-phase to others. This algorithm takes all respiration-
related range bin signals into account, thus, the first step
is to select the range bin signals containing respiration
information and then invert the anti-phase signals.

The method is to find out the cross-correlation between a
reference range bin signal and each of the remaining range
bin signals. The cross-correlation measures the similarity be-
tween two signals. If the two signals are perfectly correlated,
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the cross-correlation will be 1. If the cross-correlation value
is higher than 0.1, the corresponding range bin signal will be
selected; If the value is less than -0.1, the range bin signal
will be inverted first. Finally, those signals are summed up to
obtain the final radar signal. The reference range bin signal is
therefore important. The range bin signal with the maximum
oscillation is used, because it is the most influential signal
for the final radar signal and the range bin refers to the target
location. Although this will limit applications under complex
circumstances, it is a reasonable choice at this stage and
could be improved in the future.

The collected raw data contains strong DC offsets, which
probably result from the stationary objects within the radar
FoV, e.g. the stationary target and the radar hardware imper-
fections [13]. In order to find the range bin with maximum
oscillation, the DC offsets should be removed first. Hence,
the mean of each range bin signal is subtracted from it. The
Matlab filtering function is not used due to its slow run time.
Finally, the signal is de-trended and plotted.

3) Confidence level: A measure of confidence level is
established to tell if the last 25s’ data contain respiration
information. Since respiration-related signals are periodic
and have sinusoidal oscillations, a method is to calculate
the similarity between a range bin signal and a related
sample sine wave. Auto-correlation is used to build the
sample sine wave. For a periodic signal, its auto-correlation
sequence has the same periodic feature. Thus, it is possible
to estimate the signal frequency from its auto-correlation
sequence, and use this frequency to build the sample sine
wave. The confidence level is then the maximum absolute
cross-correlations between each range bin signal and its
sample sine wave. The non-respiration signals, e.g. signals
measuring the environment and body movements as shown
in Fig. 4, will have high sample sine wave frequencies,
and hence small cross-correlation values and low confidence
levels.
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Fig. 4. (a) Confidence level drops when target moves. (b) Low confidence
level when there are no targets within the FoV.

4) Target localisation: Using the respiration data instead
of a single frame radar output to localise the target eliminates
effects from strong stationary objects and direct path. As
shown in Fig. 5, the target location obtained by a single
frame radar output was altered due to the metal object, while
the respiration data can reduce this effect through DC offset
removal.

III. EXPERIMENTAL PROTOCOL

In this study, we built an algorithm for UWB radar
respiration rate detection. To validate the measurement, an
experiment was performed on eight available targets at four
different radar-target distances in a home-based environment,
as demonstrated in Fig. 6. The frame range were set to 0.4-
1.5m, 0.4-1.5m, 1.5-2.5m and 4.5-5.5m respectively.

First, each target put the microphone under their nose and
sat stationary in front of the radar. Then, the frame area
was configured and the radar-target distance was recorded.
A measurement would last for at least 25s for initialisation,
and would stop when the confidence level was over at least
10%. The radar signal results were compared to the breathing
sound, therefore the measurement and the voice recording
were stopped at the same time. Since the plot was in real-
time, the sound track end was cropped to correspond with
the total sampling time.

Then, the upper envelope was estimated using spline
interpolation over local maxima separated by Np samples.
Default value of Np was 25,000. Because the experiment was
in a home-based environment, some loud noise were however
recorded. Besides, the airflow sound due to inhalation was
usually much weaker compared to that of exhalation, but
this is not the case when the target has a stuffy nose. Hence
Np values of some tests were changed to find the best-
fit envelope, as marked in Table II. An example of the
comparison can be seen in Fig. 7a.

Similar to the confidence level calculation, the RR results
of two signals were calculated by the mean time differences
between peaks of their auto-correlation sequences, with lags
limited to ±25s. The out-of-band frequencies (f<0.05Hz and
f>1Hz) were removed before the calculation (Fig. 7b). An
example can be found in Fig. 7c and Fig. 7d.

IV. RESULTS & DISCUSSION

The information of the targets and the RR results are listed
in Table I and Table II, where the error rates were calculated
by,

Error rate =
|RR_radar −RR_audio|

RR_radar
∗ 100% (1)

The error rates were within 8%, with a mean value of 2.4%,
when compared to the ground truth. From this experiment,
the radar signal amplitudes would decrease with distance, but
the RR detection accuracy was not affected by the distance.

A limitation of the algorithm was that local maxima of
the radar signal could due to either inhalation or exhalation.
This was found not only from range bin to range bin, as
aforementioned, but on one range bin signal, as shown in Fig.
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Fig. 5. (a) Placements of radar, target, and a metal object. (b) Single-frame radar output without the kettle. The target was shown at 1.209m. (c) Single-
frame radar output with the kettle. The kettle and the target were shown at 0.5915m and 1.003m respectively. (d) All bins time-domain plot. The target
was shown at range bin #17, referring to 1.2088m.
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Fig. 6. Room layout. The four possible ranges are 0.5m, 1m, 2m and 5m.

TABLE I
INFORMATION OF TARGETS

Target 1 2 3 4 5 6 7 8
Gender F M F F F M F M

Age 47 49 39 23 12 25 11 12
Weight(kg) 67.8 70 50 65 52.7 66 35.5 57.2
Height(m) 1.65 1.71 1.63 1.64 1.62 1.77 1.45 1.60

8, where the RR result was obtained after inverting the radar
signal after 6.987s. Further experiments and more strictly
controlled experimental environments are required to figure
out the reason. Besides, RR results of the audio signal would
vary with Np. Hence, more accurate ground truth validation
are recommended in future tests. In addition, home-based
experimental environments introduced many reflectors that
could have an impact on the measurements. It was found that
the radar could also detect respiration signals when the target
was sitting behind the radar. Also, there were multi-targets
within the room during the experiment, e.g. the observer
in Fig. 6). Those may affect the results and could also be
considered and improved in the future.

The confidence levels were oscillating when measuring
breathing signals, such as Fig. 3c and Fig. 4b. Hence the
mean and standard deviations were plotted in Fig. 9. Similar
to RR results, the confidence level was not found to vary
with distance. The sample sines were built with 0 phase,
while the range bin signal was shifting in real-time and could
have phases, hence the oscillations. A solution is to calculate
the cross-correlation between each range bin and its sample
sine with lags to eliminate the effect of phases. Besides, the
confidence level shown in Fig. 3c was increasing, because
the default values of the confidence level vector were 0 for
the first 25s. In addition, delay was found as shown in Fig.
4a and Fig. 4b, which should also be improved in the future.
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Fig. 7. (a) Comparison of the ground truth, its upper envelope and the radar signal. (b) Out-of-band frequencies (f<0.05Hz and f>1Hz) removed. (c)
Auto-correlation of (b). (d) Auto-correlation of the upper envelope.

0 5 10 15 20 25
t(s)

-5

0

5

R
ad

ar
 s

ig
na

l 10-3

0 5 10 15 20 25
t(s)

-5

0

5

R
ad

ar
 s

ig
na

l 10-3

t=6.987s(a)

(b)

Fig. 8. (a) Target 3’s radar signal at 1m. (b) t > 6.987s were inverted.
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Fig. 9. Mean and standard deviations of the last 25s’ confidence level.

The target localisation results were summarised in Fig.
10b. Each radar-measured distance value was the mean of
the last 25s’ results. The error rate was calculated as,

Error rate =
|R− C|

R
∗ 100% (2)

The relatively high error rates at smaller distance are due to
a range resolution of 0.05m. The results were compared to
radar-chest distance, while the human body could overlap
more than one range bin, e.g. females or heavy persons.
In future validations, the radar-target distance, angles and
human body width that UWB pulse can penetrate through
should also be considered.

V. CONCLUSION

This paper investigated the deployability of stationary RR
detection using UWB radar for radar-target distance up to
5m. The radar signal, target location and confidence level
of detected respiration signals were plotted in real-time. The
algorithm was tested and found to perform sufficiently well
for stationary RR detection. This non-contact respiration
monitoring application could potentially benefit dementia
care in smart home environments. It is safe for home-based
environments and does not require any external sensors or
devices except for the UWB radar. To build a more practical
and reliable system, the movement artefacts and the inversion
problems need to be investigated in future study. Besides,
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TABLE II
RR RESULTS (IN RPM)

Target Signal 0.5m 1m 2m 5m Mean
Error Rate

1 Radar 24.2 24.5 25.9 26.4
Audio 23.3 24.5 26.9 26.1

Error rate 3.7% 0% 3.9% 1.1% 2.2%

2 Radar 14.0 14.6 12.8 13.9
Audio 14.1 14.3 12.5 13.8

Error rate 0.7% 2.1% 2.3% 0.7% 1.45%

3 Radar 16.8 17.81+ 20.1 19.5
Audio 16.7 18.0 19.8 19.4

Error rate 0.6% 1.1% 1.5% 0.5% 0.93%

4 Radar 12.3 11.51 10.6 10.8
Audio 12.3 12.4 10.8 10.6

Error rate 0% 7.8% 1.9% 1.9% 2.9%

5 Radar 17.92 18.4 22.9 17.63
Audio 17.5 17.8 23.0 17.0

Error rate 2.2% 3.3% 0.4% 3.4% 2.33%

6 Radar 11.0 10.24 10.74 7.84
Audio 10.3 10.9 11.2 7.6

Error rate 6.4% 6.9% 4.7% 2.6% 5.15%

7 Radar 22.0 19.7 22.2 /
Audio 21.1 19.6 21.7 /

Error rate 4.1% 0.5% 2.3% / 2.3%

8 Radar 15.91 19.51 19.6 13.85
Audio 15.7 18.7 20.0 13.7

Error rate 1.3% 4.1% 2.0% 0.7% 2.03%
1 Np=35k; 2 Np=45k; 3 Np=40k; 4 Np=65k; 5 Np=50k;
+ Radar signal is partially inverted, see Fig. 8

although the experiments were up to 5m, the radar is capable
of taking measurements at distances up to 9.9 metres. This
can also be tested in the future for RR monitoring.
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