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ABSTRACT  

Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences          

and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases              

order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and               

completeness of repetitive regions. However, the error rate of long-read technologies is higher than              

that of short-read technologies. This has a direct consequence on the base quality of genome               

assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of              

genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the                   

two haplotypes and can lead to premature stop codons. Several methods have been developed to               

polish genome assemblies using short reads and generally, they inspect the nucleotide one by one,               

and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are                 

not able to properly process diploid genomes and they typically switch from one haplotype to another.                

Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of             

incorporating phasing information from short reads to polish genome assemblies and in particular             

assemblies of diploid and heterozygous genomes. 

 

INTRODUCTION 

Long-read technologies commercialized by Pacific Biosciences (PACBIO) and Oxford Nanopore          

Technologies (ONT) are able to sequence long DNA molecules but at the cost of a higher error rate at                   

least for standard protocols. Their throughputs are sufficient to generate complex genomes​(1–5) and             

their costs are almost compatible with their use in large-scale resequencing projects​(6–8)​. Standard             

genome assemblies currently rely on a combination of several technologies, making it possible to              

generate complete assemblies in terms of both repetitive and coding regions. The quality of the               

consensus relies heavily on the use of short reads and the choice of a polishing algorithm. 
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One of the most popular polishing algorithms, Pilon ​(9)​, was developed several years ago, before the               

advent of the long-read era and was originally designed to detect variants and improve microbial               

genome assemblies. With the increasing popularity of long-read technologies, public databases now            

contain a large collection of very contiguous assemblies, but even if the overall reported quality seems                

sufficient, local errors can critically affect protein prediction ​(10)​. Aware of this issue, the bioinformatic              

community has developed several tools over the past two years​(11–15)​. Most of the tools (Pilon,               

Racon, NextPolish, HyPo and POLCA) are based on short-read alignment , ntEdit is the only method                

that uses a kmer approach and NextPolish combines both strategies (Table 1). After aligning the short                

reads, the algorithms detect errors by examining the pileup of bases from the reads (Pilon,               

NextPolish), by generating a consensus using Partial Order Alignment (Racon, HyPo) or by detecting              

variants (POLCA). While these tools are capable of correcting most of the errors in a draft assembly                 

generated using long reads, we have observed frequent issues when correcting heterozygous            

regions. Indeed, the case of diploid genomes is particularly problematic since in this case the               

long-read assembly is composed of collapsed homozygous regions and duplicated allelic regions            

which will complicate the correct alignment of short reads. As the existing tools work locally and not at                  

the scale of a 150bp read and its mate, they frequently generate a mixture of haplotypes. Switching                 

between haplotypes is problematic for the alignment of short reads and variant calling, but it can also                 

affect the coding sequence of genes. As an example, when we were dealing with a long-read genome                 

assembly, we observed that the pilon correction was not able to restore a deletion in a heterozygous                 

coding region (Figure 1). This simple observation motivated our need to develop a new polishing               

algorithm. 

Here we present Hapo-G (pronounced as apogee), a new method dedicated to the polishing of               

genome assemblies. This algorithm tends to phase the assembly while correcting the sequencing             

errors. We compare Hapo-G with existing short-read polishers (HyPo, NextPolish, Pilon, POLCA and             

Racon) and show that Hapo-G is not only comparable to existing methods for polishing draft               

assemblies, but is also faster and tends to decrease jumps between haplotypes. Hapo-G is written in                

C, uses the hts library​(16)​ and is freely available at http://www.genoscope.cns.fr/hapog.  

 

MATERIAL AND METHODS 

Hapo-G algorithm 

Hapo-G, like most existing tools, requires a sorted bam file containing the short-read alignments on               

the draft genome. These short-read alignments could have been generated using bwa mem​(17)​,             

minimap2 ​(18) or any other alignment tool capable of producing a bam file. Hapo-G maintains two               

stacks of alignments, the first (all-ali) contains all the alignments that overlap the currently inspected               
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base, and the second (hap-ali) contains only the read alignments that agree with the last selected                

haplotype. Hapo-G selects a reference alignment and tries to use it as long as possible to polish the                  

region where it aligns, which will minimize mixing between haplotypes (Figure 2).  

Hapo-G performs the polishing sequentially and scans the input bam file of alignments sorted by               

position. For each input alignment (called current alignment), Hapo-G polishes each nucleotide in the              

region between the last recorded position and the start position of the current alignment (called               

current position), after which the current alignment will be added to both stacks (Figure 2). 

Polishing of a given nucleotide in the draft assembly 

First, the two stacks (all-ali and hap-ali), if they are not empty, are cleaned to remove any alignment                  

that does not overlap with the current position. In case the reference alignment has been deleted, a                 

new alignment is selected from the hap-ali stack (the read alignment that ends closest to the current                 

position). If the coverage at the current position is below a threshold, set at three reads, the current                  

base in the draft sequence remains unchanged. Otherwise, the nucleotide of the reference alignment              

(called the reference base) is extracted and the frequency of this reference base is calculated in the                 

all-ali and hap-ali stacks. Based on its frequency, the current position is tagged as a homozygous site,                 

a heterozygous site or a sequencing error (Figure 2). 

 

The position is classified as homozygous if the frequency of the reference base is greater than 0.8                 

and at least 3 reads from the hap-ali stack are in accordance. If the reference base and the nucleotide                   

of the draft assembly (the current base) are different, the current base is replaced by the reference                 

base. 

 

The position is classified as heterozygous if the frequency of the reference base is between 0.2 and                 

0.8 and the hap-ali stack contains at least six reads. If the reference base and the current base are                   

different, the current base is replaced by the reference base. In addition, any read alignments that do                 

not have the same base as the reference base at the current position will be removed from the hap-ali                   

stack. Indeed, they may represent a second haplotype. Importantly, when a read is removed from the                

stack, its name and its mate name are added to a hash table. The corresponding read alignments will                  

be ignored when encountered later while polishing the current sequence. The hash table is empty               

when the end of the current sequence is reached. 

Usage and parallelisation of Hapo-G 

The polishing step of Hapo-G is wrapped in a python script which manages the pre and post                 

processing steps. First, the wrapper indexes the genome and maps the short reads on the draft                

assembly using bwa mem. The polishing step, written in C using the htslib, is not multithreaded but                 

can be easily parallelized by splitting the input fasta file as well as the alignment file. This divide and                   
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conquer strategy makes it possible to speed up the polishing step, and allows to take advantage of a                  

wide range of computing architectures. 

Generation of benchmarking datasets 

Homozygous genome assembly - ​Arabidopsis thaliana 
We downloaded the Nanopore data produced by Michigan State University (Table 2) and assembled              

these data using the Flye assembler​(19) (v2.8.1) with the parameter '-g 120m' to indicate a genome                

size of 120Mb. We obtained an assembly of 118Mb, comprising 16 large contigs and an N50 contig of                  

14.8Mb (Table 2). This assembly was used as input of the Medaka polisher​(20) (v1.2.0), in               

conjunction with the Nanopore reads and the '-m r941_min_high_g303' parameter was applied, in             

order to choose a suitable model for this type of data. This assembly was used to compare                 

short-reads polishing tools. 

Synthetic diploid sequence 

We generated a 100Kb sequence using an Homo sapiens model ​(21) and created two haplotypes by               

incorporating, each time, 100 random mutations into the initial 100Kb sequence ​(22)​. We added two              

random 1Kb sequences to both ends of the two haplotypes to avoid mapping issues on first and last                  

nucleotides. Illumina short-reads were generated from both haplotypes using ART​(23) software           

(version 2.5.1) and the following parameters: -ss HSXt -p -l 150 -f 25 -m 200 -s 10. From the two                    

haplotype sequences, we generated an haploid sequence by alternatively retaining 60 nucleotides of             

each sequence and adding 2,000 random mutations​(22) to simulate sequencing errors. The resulting             

haploid sequence is a mixture of the two haplotypes and is used to test the ability of each polisher to                    

correct errors and phase the draft sequence.  

Heterozygous genome assembly - ​Solanum tuberosum L. 

We downloaded the Nanopore data produced by the authors of a recent article by Zhou et al.​(24)                 

describing the diploid assembly of ​Solanum tuberosum (Table 2). The long-read dataset was             

assembled using the Flye assembler​(19) (v2.8.1) with the parameter '-g 1600m' to indicate a genome               

size of 1600Mb (representing the length of the diploid genome). The resulting assembly had a size of                 

1.33Gb and a contig N50 of 440Kb (Table 2).  

Using this assembly, we performed two benchmarks: a first on the whole genome and a second on a                  

specific genomic region which has been thoroughly analyzed in the Zhou et al. publication.  

Benchmarking of polishing methods 

Each polisher was launched (on a 36 cores server with 380GB of memory) iteratively six times on the                  

input assembly to evaluate accuracy and impact of multiple rounds of correction. If needed, Illumina               

reads were aligned with BWA mem (v0.7.17 with the default parameters except -t 36), and the                

resulting bam file was sorted and indexed using Samtools​(16) (v1.10 with the default parameters              
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except -@ 36 and -m 10G). Surprisingly, HyPo never succeeded when using a genome size of                

1300Mb for the correction of the ​Solanum T. genome assembly, but was able to polish the sequence                 

when using 120Mb. The parameters used for each polisher are described in Table 1. 

Polishing of an homozygous genome assembly -​ Arabidopsis thaliana 

The Fastmer script​(25) was used to generate statistics on the quality of the alignment between the                

polished assemblies and the reference genome (Col-0 downloaded from the TAIR website), and a              

quality score was calculated, for each assembly, using the following formula:  

QScore = -10 * log10(1 - (matches / (matches + mismatches + insertions + deletions))​. 

Additionally, the accuracy of the gene content was assessed by extracting exons from the TAIR10.1               

annotation (using the getfasta command from bedtools​(26)​) and aligning the exons onto each             

assembly using the Blat aligner​(27)​. Exons that were aligned with 100% identity along their entire               

length  were kept and unique exon names were counted to avoid multi-mapping bias. 

Synthetic diploid sequence 

The polished assemblies of the original 100Kb genomic region were aligned with the two haplotype               

sequences using muscle ​(28) (version 3.8) and each position was labeled haplotype 1 or haplotype 2               

(if the base was similar to the corresponding haplotype), error (if the base was different from the two                  

haplotypes) or equal (if the three bases were identical). For each polisher, the number of swaps                

between the two haplotypes and the number of errors were reported (Figure 4).  

Polishing of an heterozygous genome assembly - ​Solanum tuberosum L. 

The diploid and heterozygous genome of ​Solanum tuberosum was used to assess the ability of each                

polisher to locally preserve the haplotype phasing. Two benchmarks were performed: a first on the               

whole genome and a second on a specific genomic region. 

Polishing algorithms were compared on their ability to phase genomic regions during the             

error-correction step. For that purpose, heterozygous variants were detected from the Illumina short             

reads, without prior assembly, using discoSNP​(29) and default parameters. The sequence context            

(30bp on the right and left side) of each variant was extracted from the discoSNP output and only                  

61bp-sequence with a single variant were kept. In the discoSNP output, the detected variants were               

phased based on the Illumina reads (-A parameter of discoSNP), and only chains of at least three                 

variants validated by at least 5 short reads were selected. For each heterozygous SNP, the two                

variants were mapped on each polished assembly and only perfect matches were kept. All reliable               

chains of variants were searched in the alignment results and a given chain was validated only if all its                   

variants were found in a perfect match and on the same genomic sequence. 

In addition, we focused on a 300Kb genomic region of chromosome 8, which has been described in                 

the Figure 2b of the Zhou et al. publication. The authors illustrate a syntenic block on the two                  

haplotypes. The coding exons of the two haplotypes were extracted and only the exons that contain at                 

least one difference were selected and used as candidate exons. This region was assembled into four                
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different contigs in our nanopore-based assembly, with two collapsed (contig_3372 and           

contig_15103) and two duplicated contigs (contig_15126 and contig_15127). The candidate exons           

were searched in the polished versions of these four contigs and only the perfect alignments were                

kept. 

 

RESULTS 

Polishing of an homozygous genome assembly- ​Arabidopsis thaliana 

Overall, all of the polishing tools achieved very similar results in terms of quality metrics. They                

produced an assembly with an identity rate greater than 99.9% (Figure 3A), with the exception of                

Racon (99.6% after the first round of polishing). All tools, except Racon and ntEdit, produced a                

corrected assembly with a quality score of at least 30, right from the first round of correction (Figure                  

S1). These results are confirmed with the number of perfectly mapped Illumina read pairs (Figure 3B),                

with the lowest scores obtained by Racon and ntEdit (34.1M and 41.8M respectively), while the               

highest number was achieved by HyPo and NextPolish (43.0M after the first round of correction).               

Regarding the alignment of the reference annotation, again, differences were small (less than 450              

exons between Hapo-G, HyPo, NextPolish, Pilon and POLCA out of the 203,233 input exons), with               

ntEdit and Racon assemblies containing the lower number of exons retrieved perfectly (Figure 3C).              

For Hapo-G, HyPo, ntEdit, NextPolish, Pilon and POLCA, increasing the number of polishing rounds              

didn’t seem to have any significant impact, increasing average identity rate by less than 0.01%. Oddly,                

increasing the number of polishing rounds with Racon decreased the average identity rate from 99.6%               

for the first round to 99.1% for the sixth round. Racon’s inferior performance can be explained by the                  

fact that it was originally designed to perform polishing using long reads. The fastest average running                

time was achieved by ntEdit with approximately 25 minutes for each round, while the slowest was                

Racon, with an average running time of 163 minutes. From the alignment-based methods, Hapo-G              

was the fastest with an average running time of 40 minutes (Figure 3D). 

Polishing of a synthetic sequence 

Initially, the 100Kb sequence contained 861 haplotype switches and 1,877 sequencing errors. In this              

benchmark, we only performed one round of correction for each tool. Pilon was the only polisher to                 

generate more haplotype switches than there were initially in the reference (881). The POLCA and               

ntEdit polished sequences contain more than 800 switches, while about 500 switches were still              

present in the HyPo, Racon and NextPolish corrected sequences. Hapo-G, the only tool dedicated to               

heterozygous genomes, obtained the best result with only 65 switches (Figure 4 and Table S1). In                

terms of remaining sequencing errors, only three corrected sequences still contain some errors, the              

one obtained with: HyPo (5 errors), Racon (198 errors) and ntEdit (938 errors).  
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Polishing of a heterozygous genome assemblies 

In the case of a more complex and heterozygous genome, the situation is different. Three methods                

seem to perform better than the others: Hapo-G, HyPo and NextPolish. As for simple and               

homozygous genomes, ntEdit and Racon obtained the worst results (Figure 5A). However the number              

of phased variants that could be recovered is higher in the assembly corrected with Hapo-G and this                 

from the first round (472,534 phased variants compared to 469,441 after six rounds of NextPolish,               

Figure 5B). The situation is the same when looking at chains of at least three variants. Hapo-G is the                   

only one to retrieve more than 100,000 chains whereas the second best result is obtained by                

NextPolish with 92,291 chains (Figure 5C). Additionally, Hapo-G is twice as fast as HyPo and seven                

times faster than NextPolish, the other two methods that perform well on heterozygous genomes.              

Furthermore, Hapo-G is the second fastest method and as previously observed ntEdit is the fastest               

(Figure 5D). The six rounds of polishing using Hapo-G were faster than a single round performed with                 

NextPolish. Interestingly, we have observed three types of tools: those that take advantage of multiple               

rounds of correction, those for which one round seems sufficient, and those that produce inferior               

results by performing multiple rounds of correction. Hapo-G, HyPo, Pilon and POLCA are in the first                

category, ntEdit and NextPolish in the second and Racon is the only one which seems to degrade the                  

quality of the assembly as rounds are performed (Figures 5A, 5B and 5C). 

In addition, we focused on the two allelic regions described in the study by Zhou et al., and counted                   

the number of candidate exons in each assembly. In the Hapo-G corrected sequence, we recovered               

86 candidate exons which represent the highest number of exons found in all assemblies, compared               

to 39 in the unpolished assembly. For comparison, 84 candidate exons were found in the NextPolish                

assembly which is the second best result (Table S2). 

DISCUSSION 

In this study, we report a new software, Hapo-G, which is able to polish draft assemblies with a quality                   

equivalent to that of existing tools on simple and homozygous genomes, while being faster, but which                

also improves the polishing of heterozygous genomic regions. 

 

Nowadays, the number of polishing tools is high and although almost all are based on the same                 

principle (mapping of short reads), their performances are different, likewise none are specialized in              

processing heterozygous genomes. In this study, we compared seven existing algorithms: Hapo-G,            

HyPo, NextPolish, ntEdit, Pilon, POLCA and Racon. We obtained very similar results on a small plant                

genome (​Arabidopsis thaliana​) with the exception of ntEdit which is the only tool not based on                

short-read alignment. In addition, we observe that the oldest and most widely used polishing tool,               

Pilon, is not among the tools with the best results.  
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We observed on a synthetic diploid sequence and on a true heterozygous genome (​Solanum              

tuberosum​) that the phasing of variants is of better quality when the assembly is polished with                

Hapo-G, leading after six rounds of correction to the higher number of paired-end reads perfectly               

mapped back to the assembly (47,957,836 out of 151,018,344). Only two tools, ntEdit and Hapo-G,               

succeeded in polishing the 1.3Gb of the ​Solanum tuberosum genome assembly in less than 3 hours                

on average. On this large genome, the six rounds of Hapo-G ended before the first round of                 

NextPolish, which is the second best tool according to our benchmark and already incorporates              

several rounds of mapping/correction internally. Increasing the number of correction rounds is            

generally beneficial, except for ntEdit and NextPolish where the results are very similar from round               

one through sixth, and Racon where the quality of the consensus seems to deteriorate when adding                

new correction cycles. Based on these observations, we recommend to use Hapo-G to polish              

long-read assembly and eventually by performing multiple rounds of correction if possible. 

 

In homozygous regions, although many polishers have achieved similar results, NextPolish appears            

to be the best performer, therefore, if possible, we suggest using NextPolish in combination with               

Hapo-G to achieve high quality in homozygous and heterozygous regions. In fact, homozygosity is              

generally not complete and heterozygous regions may remain. Interestingly, by combining NextPolish            

and Hapo-G, the number of perfectly mapped paired-end reads was higher than after six rounds of                

Hapo-G or NextPolish separately. However, a combination of any other polisher did not lead to better                

results in our tests (Figure S2). 

 

AVAILABILITY  

Hapo-G is an open source software, source code, binaries as well as results of the benchmark are                 

freely available from http://www.genoscope.cns.fr/hapog. All data, short and long reads, used in the             

article are available on public repositories.  

 

SUPPLEMENTARY DATA  

All the supporting data are included in three additional files which contain a) Tables S1-2 and Figures 
S1-S2, b) Table S3 that contains comparative metrics on the ​Arabidopsis thaliana​ assembly, c) Table 
S14 that contains comparative metrics on the ​Solanum tuberosum​ assembly. 
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TABLE AND FIGURES LEGENDS   

Table 1. ​General characteristics of existing polishing algorithms. These seven tools were            

evaluated in our benchmark with the specified parameters. 

* size= 120Mb (​Arabidopsis thaliana​), 120Mb (​Solanum tuberosum L​), 100K (synthetic sequence) 

  

  Reference Publication 
Date Version Read 

alignment 
Integrated 

aligner 
Parameters used in 

the benchmark 

Hapo-G This study - 0.1 yes BWA -t 36 

POLCA Ziminn AV. 
et al.​(14) 2020 3.4.2 yes BWA -t 36 

HyPo Kundu R. et 
al. ​(13) 2019 1.0.3 yes no 

-s size* 

-c 180  

-t 36 

NextPolish Hu J. et 
al.​(12) 2019 1.3.2 yes BWA 

task = best 

parallel_jobs = 6 

multithread_jobs = 6 

genome_size = auto 

ntEdit Warren RL. 
et al. ​(11) 2019 1.3.2 no NA 

-k 40 -t 36  

--outbloom 

--solid 

ntEdit : -m 1 -t 36 

Racon Vaser R. et 
al. ​(15) 2017 1.4.3 yes no -t 36 

Pilon Walker BJ. 
et al. ​(9) 2014 1.23 yes no --threads 36 
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Table 2. ​Datasets and long-read assemblies generated for the benchmark. Coverages were            

computed using a genome size of 120Mb and 1,600Mb for ​Arabidopsis thaliana and ​Solanum              

tuberosum ​respectively. 

  

   Arabidopsis thaliana 
Col-0 Synthetic sequence Solanum tuberosum​ L. 

RH89-039-16 

Illumina 

Accession 
number SRR12136403 NA PRJNA573826 

Read Length 
(bp) 2x150 2x150 2x250 

Coverage 176 X 50 X 47 X 

Nanopore 

Accession 
number SRR12136402 - PRJNA573826 

Reads N50 
(bp) 18,827 - 25,280 

Coverage 95 X - 75 X 

Assembly 

Number of 
contigs 238 1 11,070 

Cumulative 
size 119,992,853 102,000 1,332,417,447 

Contig N50 
(bp) 14,841,396 102,000 440,422 
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Figure 1. ​Example of a deletion in a coding frame. ​The two haplotypes have consistent coding                

frames (codons are alternatively colored in red and blue) and the draft assembly contains a deletion in                 

a stretch of T’s (green box). Pilon was not able to restore the coding frame and add a second                   

frameshift. In comparison Hapo-G was able to restore haplotype A. 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. ​Description of the Hapo-G algorithm ​. Two stacks of alignments are stored, all-ali which               

contains all the alignment of a specific region (not shown) and hap-ali which contains reads from the                 

same haplotype. The bam file is processed iteratively, and for each input alignment, Hapo-G will               

polish the region (draft genome is in black) between the start of the last alignment and the start of the                    

current alignment. The reference alignment is the one used as the backbone for error-correction.              

Once the frequency of the reference base (in red) is computed, the position is classified as                

homozygous (case 1, left panel), heterozygous (case 2, lower panel), or sequencing error (case 3,               

right panel).  
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Figure 3. ​Comparison of polishing algorithms on the ​Arabidopsis thaliana genome assembly.            
Lower panels of A, B and C show the full distribution and the upper panels are a zoom on the higher                     
values. ​A. ​Identity rate of assemblies after each round of polishing, when compared to the               
Arabidopsis thaliana reference genome. ​B. Number of Illumina pairs mapped perfectly on each             
assembly. ​C. Number of Arabidopsis thaliana exons aligned with 100% identity after each round of               
polishing. ​D.​ Run times of polishing tools, for each polishing round. 
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Figure 4. Comparison of polishing algorithms on a synthetic diploid sequence. ​The 100Kb             
sequence is represented on the x axis and each polishing tool has a dedicated track, where remaining                 
errors are represented with red bars and switches between the two haplotypes are represented by               
blue bars.  
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Figure 5. Comparison of polishing algorithms on the ​Solanum tuberosum genome assembly            
for each polishing round. ​Lower panels of A, B and C show the full distribution and the upper panels                   
are a zoom on the higher values. ​A. ​Number of Illumina pairs mapped perfectly on each assembly. ​B.                  
Number of phased variants retrieved in each assembly. ​C. Number of chains composed of more than                
3 variants (and confirmed by at least 5 reads) perfectly retrieved in each assembly. ​D. Run time of                  
each polishing tool. 
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