
Hapo-G, Haplotype-Aware Polishing Of Genome
Assemblies

Jean-Marc Aury​1,​* ​, Benjamin Istace​1

1 Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA),

Université Paris-Saclay, F-91057 Evry, France

* To whom correspondence should be addressed. Email: ​jmaury@genoscope.cns.fr

ABSTRACT

Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences

and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases

order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and

completeness of repetitive regions. However, the error rate of long-read technologies is higher than

that of short-read technologies. This has a direct consequence on the base quality of genome

assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of

genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the

two haplotypes and can lead to premature stop codons. Several methods have been developed to

polish genome assemblies using short reads and generally, they inspect the nucleotide one by one,

and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are

not able to properly process diploid genomes and they typically switch from one haplotype to another.

Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of

incorporating phasing information from short reads to polish genome assemblies and in particular

assemblies of diploid and heterozygous genomes.

INTRODUCTION

Long-read technologies commercialized by Pacific Biosciences (PACBIO) and Oxford Nanopore

Technologies (ONT) are able to sequence long DNA molecules but at the cost of a higher error rate at

least for standard protocols. Their throughputs are sufficient to generate complex genomes​(1–5) and

their costs are almost compatible with their use in large-scale resequencing projects​(6–8)​. Standard

genome assemblies currently rely on a combination of several technologies, making it possible to

generate complete assemblies in terms of both repetitive and coding regions. The quality of the

consensus relies heavily on the use of short reads and the choice of a polishing algorithm.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

mailto:jmaury@genoscope.cns.fr
https://paperpile.com/c/jhIkVu/65Nf+NVQT+ugJ1+NgOt+4fpT
https://paperpile.com/c/jhIkVu/3BqJ+IF13+m8fP
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

One of the most popular polishing algorithms, Pilon ​(9)​, was developed several years ago, before the

advent of the long-read era and was originally designed to detect variants and improve microbial

genome assemblies. With the increasing popularity of long-read technologies, public databases now

contain a large collection of very contiguous assemblies, but even if the overall reported quality seems

sufficient, local errors can critically affect protein prediction ​(10)​. Aware of this issue, the bioinformatic

community has developed several tools over the past two years​(11–15)​. Most of the tools (Pilon,

Racon, NextPolish, HyPo and POLCA) are based on short-read alignment , ntEdit is the only method

that uses a kmer approach and NextPolish combines both strategies (Table 1). After aligning the short

reads, the algorithms detect errors by examining the pileup of bases from the reads (Pilon,

NextPolish), by generating a consensus using Partial Order Alignment (Racon, HyPo) or by detecting

variants (POLCA). While these tools are capable of correcting most of the errors in a draft assembly

generated using long reads, we have observed frequent issues when correcting heterozygous

regions. Indeed, the case of diploid genomes is particularly problematic since in this case the

long-read assembly is composed of collapsed homozygous regions and duplicated allelic regions

which will complicate the correct alignment of short reads. As the existing tools work locally and not at

the scale of a 150bp read and its mate, they frequently generate a mixture of haplotypes. Switching

between haplotypes is problematic for the alignment of short reads and variant calling, but it can also

affect the coding sequence of genes. As an example, when we were dealing with a long-read genome

assembly, we observed that the pilon correction was not able to restore a deletion in a heterozygous

coding region (Figure 1). This simple observation motivated our need to develop a new polishing

algorithm.

Here we present Hapo-G (pronounced as apogee), a new method dedicated to the polishing of

genome assemblies. This algorithm tends to phase the assembly while correcting the sequencing

errors. We compare Hapo-G with existing short-read polishers (HyPo, NextPolish, Pilon, POLCA and

Racon) and show that Hapo-G is not only comparable to existing methods for polishing draft

assemblies, but is also faster and tends to decrease jumps between haplotypes. Hapo-G is written in

C, uses the hts library​(16)​ and is freely available at http://www.genoscope.cns.fr/hapog.

MATERIAL AND METHODS

Hapo-G algorithm

Hapo-G, like most existing tools, requires a sorted bam file containing the short-read alignments on

the draft genome. These short-read alignments could have been generated using bwa mem​(17)​,

minimap2 ​(18) or any other alignment tool capable of producing a bam file. Hapo-G maintains two

stacks of alignments, the first (all-ali) contains all the alignments that overlap the currently inspected

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://paperpile.com/c/jhIkVu/CdB6
https://paperpile.com/c/jhIkVu/1zJn
https://paperpile.com/c/jhIkVu/xVzg+JEWE+yO8o+Bdzr+uLPs
https://paperpile.com/c/jhIkVu/Rx9U
https://paperpile.com/c/jhIkVu/Pqeo
https://paperpile.com/c/jhIkVu/LMip
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

base, and the second (hap-ali) contains only the read alignments that agree with the last selected

haplotype. Hapo-G selects a reference alignment and tries to use it as long as possible to polish the

region where it aligns, which will minimize mixing between haplotypes (Figure 2).

Hapo-G performs the polishing sequentially and scans the input bam file of alignments sorted by

position. For each input alignment (called current alignment), Hapo-G polishes each nucleotide in the

region between the last recorded position and the start position of the current alignment (called

current position), after which the current alignment will be added to both stacks (Figure 2).

Polishing of a given nucleotide in the draft assembly

First, the two stacks (all-ali and hap-ali), if they are not empty, are cleaned to remove any alignment

that does not overlap with the current position. In case the reference alignment has been deleted, a

new alignment is selected from the hap-ali stack (the read alignment that ends closest to the current

position). If the coverage at the current position is below a threshold, set at three reads, the current

base in the draft sequence remains unchanged. Otherwise, the nucleotide of the reference alignment

(called the reference base) is extracted and the frequency of this reference base is calculated in the

all-ali and hap-ali stacks. Based on its frequency, the current position is tagged as a homozygous site,

a heterozygous site or a sequencing error (Figure 2).

The position is classified as homozygous if the frequency of the reference base is greater than 0.8

and at least 3 reads from the hap-ali stack are in accordance. If the reference base and the nucleotide

of the draft assembly (the current base) are different, the current base is replaced by the reference

base.

The position is classified as heterozygous if the frequency of the reference base is between 0.2 and

0.8 and the hap-ali stack contains at least six reads. If the reference base and the current base are

different, the current base is replaced by the reference base. In addition, any read alignments that do

not have the same base as the reference base at the current position will be removed from the hap-ali

stack. Indeed, they may represent a second haplotype. Importantly, when a read is removed from the

stack, its name and its mate name are added to a hash table. The corresponding read alignments will

be ignored when encountered later while polishing the current sequence. The hash table is empty

when the end of the current sequence is reached.

Usage and parallelisation of Hapo-G

The polishing step of Hapo-G is wrapped in a python script which manages the pre and post

processing steps. First, the wrapper indexes the genome and maps the short reads on the draft

assembly using bwa mem. The polishing step, written in C using the htslib, is not multithreaded but

can be easily parallelized by splitting the input fasta file as well as the alignment file. This divide and

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

conquer strategy makes it possible to speed up the polishing step, and allows to take advantage of a

wide range of computing architectures.

Generation of benchmarking datasets

Homozygous genome assembly - ​Arabidopsis thaliana
We downloaded the Nanopore data produced by Michigan State University (Table 2) and assembled

these data using the Flye assembler​(19) (v2.8.1) with the parameter '-g 120m' to indicate a genome

size of 120Mb. We obtained an assembly of 118Mb, comprising 16 large contigs and an N50 contig of

14.8Mb (Table 2). This assembly was used as input of the Medaka polisher​(20) (v1.2.0), in

conjunction with the Nanopore reads and the '-m r941_min_high_g303' parameter was applied, in

order to choose a suitable model for this type of data. This assembly was used to compare

short-reads polishing tools.

Synthetic diploid sequence

We generated a 100Kb sequence using an Homo sapiens model ​(21) and created two haplotypes by

incorporating, each time, 100 random mutations into the initial 100Kb sequence ​(22)​. We added two

random 1Kb sequences to both ends of the two haplotypes to avoid mapping issues on first and last

nucleotides. Illumina short-reads were generated from both haplotypes using ART​(23) software

(version 2.5.1) and the following parameters: -ss HSXt -p -l 150 -f 25 -m 200 -s 10. From the two

haplotype sequences, we generated an haploid sequence by alternatively retaining 60 nucleotides of

each sequence and adding 2,000 random mutations​(22) to simulate sequencing errors. The resulting

haploid sequence is a mixture of the two haplotypes and is used to test the ability of each polisher to

correct errors and phase the draft sequence.

Heterozygous genome assembly - ​Solanum tuberosum L.

We downloaded the Nanopore data produced by the authors of a recent article by Zhou et al.​(24)

describing the diploid assembly of ​Solanum tuberosum (Table 2). The long-read dataset was

assembled using the Flye assembler​(19) (v2.8.1) with the parameter '-g 1600m' to indicate a genome

size of 1600Mb (representing the length of the diploid genome). The resulting assembly had a size of

1.33Gb and a contig N50 of 440Kb (Table 2).

Using this assembly, we performed two benchmarks: a first on the whole genome and a second on a

specific genomic region which has been thoroughly analyzed in the Zhou et al. publication.

Benchmarking of polishing methods

Each polisher was launched (on a 36 cores server with 380GB of memory) iteratively six times on the

input assembly to evaluate accuracy and impact of multiple rounds of correction. If needed, Illumina

reads were aligned with BWA mem (v0.7.17 with the default parameters except -t 36), and the

resulting bam file was sorted and indexed using Samtools​(16) (v1.10 with the default parameters

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://paperpile.com/c/jhIkVu/NnYA
https://paperpile.com/c/jhIkVu/cmFN
https://paperpile.com/c/jhIkVu/MNFz
https://paperpile.com/c/jhIkVu/EUuf
https://paperpile.com/c/jhIkVu/smh5
https://paperpile.com/c/jhIkVu/EUuf
https://paperpile.com/c/jhIkVu/Pkum
https://paperpile.com/c/jhIkVu/NnYA
https://paperpile.com/c/jhIkVu/Rx9U
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

except -@ 36 and -m 10G). Surprisingly, HyPo never succeeded when using a genome size of

1300Mb for the correction of the ​Solanum T. genome assembly, but was able to polish the sequence

when using 120Mb. The parameters used for each polisher are described in Table 1.

Polishing of an homozygous genome assembly -​ Arabidopsis thaliana

The Fastmer script​(25) was used to generate statistics on the quality of the alignment between the

polished assemblies and the reference genome (Col-0 downloaded from the TAIR website), and a

quality score was calculated, for each assembly, using the following formula:

QScore = -10 * log10(1 - (matches / (matches + mismatches + insertions + deletions))​.

Additionally, the accuracy of the gene content was assessed by extracting exons from the TAIR10.1

annotation (using the getfasta command from bedtools​(26)​) and aligning the exons onto each

assembly using the Blat aligner​(27)​. Exons that were aligned with 100% identity along their entire

length were kept and unique exon names were counted to avoid multi-mapping bias.

Synthetic diploid sequence

The polished assemblies of the original 100Kb genomic region were aligned with the two haplotype

sequences using muscle ​(28) (version 3.8) and each position was labeled haplotype 1 or haplotype 2

(if the base was similar to the corresponding haplotype), error (if the base was different from the two

haplotypes) or equal (if the three bases were identical). For each polisher, the number of swaps

between the two haplotypes and the number of errors were reported (Figure 4).

Polishing of an heterozygous genome assembly - ​Solanum tuberosum L.

The diploid and heterozygous genome of ​Solanum tuberosum was used to assess the ability of each

polisher to locally preserve the haplotype phasing. Two benchmarks were performed: a first on the

whole genome and a second on a specific genomic region.

Polishing algorithms were compared on their ability to phase genomic regions during the

error-correction step. For that purpose, heterozygous variants were detected from the Illumina short

reads, without prior assembly, using discoSNP​(29) and default parameters. The sequence context

(30bp on the right and left side) of each variant was extracted from the discoSNP output and only

61bp-sequence with a single variant were kept. In the discoSNP output, the detected variants were

phased based on the Illumina reads (-A parameter of discoSNP), and only chains of at least three

variants validated by at least 5 short reads were selected. For each heterozygous SNP, the two

variants were mapped on each polished assembly and only perfect matches were kept. All reliable

chains of variants were searched in the alignment results and a given chain was validated only if all its

variants were found in a perfect match and on the same genomic sequence.

In addition, we focused on a 300Kb genomic region of chromosome 8, which has been described in

the Figure 2b of the Zhou et al. publication. The authors illustrate a syntenic block on the two

haplotypes. The coding exons of the two haplotypes were extracted and only the exons that contain at

least one difference were selected and used as candidate exons. This region was assembled into four

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://paperpile.com/c/jhIkVu/RShI
https://paperpile.com/c/jhIkVu/aYMM
https://paperpile.com/c/jhIkVu/H85N
https://paperpile.com/c/jhIkVu/1qWR
https://paperpile.com/c/jhIkVu/F1hr
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

different contigs in our nanopore-based assembly, with two collapsed (contig_3372 and

contig_15103) and two duplicated contigs (contig_15126 and contig_15127). The candidate exons

were searched in the polished versions of these four contigs and only the perfect alignments were

kept.

RESULTS

Polishing of an homozygous genome assembly- ​Arabidopsis thaliana

Overall, all of the polishing tools achieved very similar results in terms of quality metrics. They

produced an assembly with an identity rate greater than 99.9% (Figure 3A), with the exception of

Racon (99.6% after the first round of polishing). All tools, except Racon and ntEdit, produced a

corrected assembly with a quality score of at least 30, right from the first round of correction (Figure

S1). These results are confirmed with the number of perfectly mapped Illumina read pairs (Figure 3B),

with the lowest scores obtained by Racon and ntEdit (34.1M and 41.8M respectively), while the

highest number was achieved by HyPo and NextPolish (43.0M after the first round of correction).

Regarding the alignment of the reference annotation, again, differences were small (less than 450

exons between Hapo-G, HyPo, NextPolish, Pilon and POLCA out of the 203,233 input exons), with

ntEdit and Racon assemblies containing the lower number of exons retrieved perfectly (Figure 3C).

For Hapo-G, HyPo, ntEdit, NextPolish, Pilon and POLCA, increasing the number of polishing rounds

didn’t seem to have any significant impact, increasing average identity rate by less than 0.01%. Oddly,

increasing the number of polishing rounds with Racon decreased the average identity rate from 99.6%

for the first round to 99.1% for the sixth round. Racon’s inferior performance can be explained by the

fact that it was originally designed to perform polishing using long reads. The fastest average running

time was achieved by ntEdit with approximately 25 minutes for each round, while the slowest was

Racon, with an average running time of 163 minutes. From the alignment-based methods, Hapo-G

was the fastest with an average running time of 40 minutes (Figure 3D).

Polishing of a synthetic sequence

Initially, the 100Kb sequence contained 861 haplotype switches and 1,877 sequencing errors. In this

benchmark, we only performed one round of correction for each tool. Pilon was the only polisher to

generate more haplotype switches than there were initially in the reference (881). The POLCA and

ntEdit polished sequences contain more than 800 switches, while about 500 switches were still

present in the HyPo, Racon and NextPolish corrected sequences. Hapo-G, the only tool dedicated to

heterozygous genomes, obtained the best result with only 65 switches (Figure 4 and Table S1). In

terms of remaining sequencing errors, only three corrected sequences still contain some errors, the

one obtained with: HyPo (5 errors), Racon (198 errors) and ntEdit (938 errors).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Polishing of a heterozygous genome assemblies

In the case of a more complex and heterozygous genome, the situation is different. Three methods

seem to perform better than the others: Hapo-G, HyPo and NextPolish. As for simple and

homozygous genomes, ntEdit and Racon obtained the worst results (Figure 5A). However the number

of phased variants that could be recovered is higher in the assembly corrected with Hapo-G and this

from the first round (472,534 phased variants compared to 469,441 after six rounds of NextPolish,

Figure 5B). The situation is the same when looking at chains of at least three variants. Hapo-G is the

only one to retrieve more than 100,000 chains whereas the second best result is obtained by

NextPolish with 92,291 chains (Figure 5C). Additionally, Hapo-G is twice as fast as HyPo and seven

times faster than NextPolish, the other two methods that perform well on heterozygous genomes.

Furthermore, Hapo-G is the second fastest method and as previously observed ntEdit is the fastest

(Figure 5D). The six rounds of polishing using Hapo-G were faster than a single round performed with

NextPolish. Interestingly, we have observed three types of tools: those that take advantage of multiple

rounds of correction, those for which one round seems sufficient, and those that produce inferior

results by performing multiple rounds of correction. Hapo-G, HyPo, Pilon and POLCA are in the first

category, ntEdit and NextPolish in the second and Racon is the only one which seems to degrade the

quality of the assembly as rounds are performed (Figures 5A, 5B and 5C).

In addition, we focused on the two allelic regions described in the study by Zhou et al., and counted

the number of candidate exons in each assembly. In the Hapo-G corrected sequence, we recovered

86 candidate exons which represent the highest number of exons found in all assemblies, compared

to 39 in the unpolished assembly. For comparison, 84 candidate exons were found in the NextPolish

assembly which is the second best result (Table S2).

DISCUSSION

In this study, we report a new software, Hapo-G, which is able to polish draft assemblies with a quality

equivalent to that of existing tools on simple and homozygous genomes, while being faster, but which

also improves the polishing of heterozygous genomic regions.

Nowadays, the number of polishing tools is high and although almost all are based on the same

principle (mapping of short reads), their performances are different, likewise none are specialized in

processing heterozygous genomes. In this study, we compared seven existing algorithms: Hapo-G,

HyPo, NextPolish, ntEdit, Pilon, POLCA and Racon. We obtained very similar results on a small plant

genome (​Arabidopsis thaliana​) with the exception of ntEdit which is the only tool not based on

short-read alignment. In addition, we observe that the oldest and most widely used polishing tool,

Pilon, is not among the tools with the best results.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

We observed on a synthetic diploid sequence and on a true heterozygous genome (​Solanum

tuberosum​) that the phasing of variants is of better quality when the assembly is polished with

Hapo-G, leading after six rounds of correction to the higher number of paired-end reads perfectly

mapped back to the assembly (47,957,836 out of 151,018,344). Only two tools, ntEdit and Hapo-G,

succeeded in polishing the 1.3Gb of the ​Solanum tuberosum genome assembly in less than 3 hours

on average. On this large genome, the six rounds of Hapo-G ended before the first round of

NextPolish, which is the second best tool according to our benchmark and already incorporates

several rounds of mapping/correction internally. Increasing the number of correction rounds is

generally beneficial, except for ntEdit and NextPolish where the results are very similar from round

one through sixth, and Racon where the quality of the consensus seems to deteriorate when adding

new correction cycles. Based on these observations, we recommend to use Hapo-G to polish

long-read assembly and eventually by performing multiple rounds of correction if possible.

In homozygous regions, although many polishers have achieved similar results, NextPolish appears

to be the best performer, therefore, if possible, we suggest using NextPolish in combination with

Hapo-G to achieve high quality in homozygous and heterozygous regions. In fact, homozygosity is

generally not complete and heterozygous regions may remain. Interestingly, by combining NextPolish

and Hapo-G, the number of perfectly mapped paired-end reads was higher than after six rounds of

Hapo-G or NextPolish separately. However, a combination of any other polisher did not lead to better

results in our tests (Figure S2).

AVAILABILITY

Hapo-G is an open source software, source code, binaries as well as results of the benchmark are

freely available from http://www.genoscope.cns.fr/hapog. All data, short and long reads, used in the

article are available on public repositories.

SUPPLEMENTARY DATA

All the supporting data are included in three additional files which contain a) Tables S1-2 and Figures
S1-S2, b) Table S3 that contains comparative metrics on the ​Arabidopsis thaliana​ assembly, c) Table
S14 that contains comparative metrics on the ​Solanum tuberosum​ assembly.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

FUNDING

This work was supported by the Genoscope, the Commissariat à l'Energie Atomique et aux Énergies

Alternatives (CEA) and France Génomique (ANR-10-INBS-09-08).

ACKNOWLEDGMENT

The authors thank Pierre Peterlongo for his support and advice with discoSNP and his proofreading of

the manuscript.

CONFLICT OF INTEREST

None declared.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. Jain,M., Koren,S., Miga,K.H., Quick,J., Rand,A.C., Sasani,T.A., Tyson,J.R., Beggs,A.D.,
Dilthey,A.T., Fiddes,I.T., ​et al. ​ (2018) Nanopore sequencing and assembly of a human genome
with ultra-long reads. ​Nat. Biotechnol.​, ​36 ​, 338–345.

2. Belser,C., Istace,B., Denis,E., Dubarry,M., Baurens,F.-C., Falentin,C., Genete,M., Berrabah,W.,
Chèvre,A.-M., Delourme,R., ​et al.​ (2018) Chromosome-scale assemblies of plant genomes using
nanopore long reads and optical maps. ​Nat Plants​, ​4 ​, 879–887.

3. Schmidt,M.H.-W., Vogel,A., Denton,A.K., Istace,B., Wormit,A., van de Geest,H., Bolger,M.E.,
Alseekh,S., Maß,J., Pfaff,C., ​et al. ​ (2017) De Novo Assembly of a New Solanum pennellii
Accession Using Nanopore Sequencing. ​Plant Cell​, ​29 ​, 2336–2348.

4. Rousseau-Gueutin,M., Belser,C., Da Silva,C. and Richard,G. (2020) Long-reads assembly of the
Brassica napus reference genome, Darmor-bzh. ​bioRxiv​.

5. Liu,J., Seetharam,A.S., Chougule,K., Ou,S., Swentowsky,K.W., Gent,J.I., Llaca,V.,
Woodhouse,M.R., Manchanda,N., Presting,G.G., ​et al.​ (2020) Gapless assembly of maize
chromosomes using long-read technologies. ​Genome Biol.​, ​21 ​, 121.

6. Alonge,M., Wang,X., Benoit,M., Soyk,S., Pereira,L., Zhang,L., Suresh,H., Ramakrishnan,S.,
Maumus,F., Ciren,D., ​et al. ​ (2020) Major Impacts of Widespread Structural Variation on Gene
Expression and Crop Improvement in Tomato. ​Cell​, ​182​, 145–161.e23.

7. Jiao,W.-B. and Schneeberger,K. (2020) Chromosome-level assemblies of multiple Arabidopsis
genomes reveal hotspots of rearrangements with altered evolutionary dynamics. ​Nat. Commun.​,
11​, 989.

8. Song,J.-M., Guan,Z., Hu,J., Guo,C., Yang,Z., Wang,S., Liu,D., Wang,B., Lu,S., Zhou,R., ​et al.
(2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of
Brassica napus. ​Nat Plants​, ​6 ​, 34–45.

9. Walker,B.J., Abeel,T., Shea,T., Priest,M., Abouelliel,A., Sakthikumar,S., Cuomo,C.A., Zeng,Q.,
Wortman,J., Young,S.K., ​et al. ​ (2014) Pilon: an integrated tool for comprehensive microbial
variant detection and genome assembly improvement. ​PLoS One​, ​9 ​, e112963.

10. Watson,M. and Warr,A. (2019) Errors in long-read assemblies can critically affect protein
prediction. ​Nat. Biotechnol.​, ​37 ​, 124–126.

11. Warren,R.L., Coombe,L., Mohamadi,H., Zhang,J., Jaquish,B., Isabel,N., Jones,S.J.M.,
Bousquet,J., Bohlmann,J. and Birol,I. (2019) ntEdit: scalable genome sequence polishing.
Bioinformatics​, ​35 ​, 4430–4432.

12. Hu,J., Fan,J., Sun,Z. and Liu,S. (2020) NextPolish: a fast and efficient genome polishing tool for
long-read assembly. ​Bioinformatics​, ​36 ​, 2253–2255.

13. Kundu,R., Casey,J. and Sung,W.-K. HyPo: Super Fast & Accurate Polisher for Long Read
Genome Assemblies. ​10.1101/2019.12.19.882506 ​.

14. Zimin,A.V. and Salzberg,S.L. (2020) The genome polishing tool POLCA makes fast and accurate
corrections in genome assemblies. ​PLoS Comput. Biol.​, ​16 ​, e1007981.

15. Vaser,R., Sović,I., Nagarajan,N. and Šikić,M. (2017) Fast and accurate de novo genome
assembly from long uncorrected reads. ​Genome Res.​, ​27 ​, 737–746.

16. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G., Durbin,R.
and 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map
format and SAMtools. ​Bioinformatics​, ​25 ​, 2078–2079.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/65Nf
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/NVQT
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/ugJ1
http://paperpile.com/b/jhIkVu/NgOt
http://paperpile.com/b/jhIkVu/NgOt
http://paperpile.com/b/jhIkVu/NgOt
http://paperpile.com/b/jhIkVu/NgOt
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/4fpT
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/3BqJ
http://paperpile.com/b/jhIkVu/IF13
http://paperpile.com/b/jhIkVu/IF13
http://paperpile.com/b/jhIkVu/IF13
http://paperpile.com/b/jhIkVu/IF13
http://paperpile.com/b/jhIkVu/IF13
http://paperpile.com/b/jhIkVu/IF13
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/m8fP
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/CdB6
http://paperpile.com/b/jhIkVu/1zJn
http://paperpile.com/b/jhIkVu/1zJn
http://paperpile.com/b/jhIkVu/1zJn
http://paperpile.com/b/jhIkVu/1zJn
http://paperpile.com/b/jhIkVu/1zJn
http://paperpile.com/b/jhIkVu/1zJn
http://paperpile.com/b/jhIkVu/xVzg
http://paperpile.com/b/jhIkVu/xVzg
http://paperpile.com/b/jhIkVu/xVzg
http://paperpile.com/b/jhIkVu/xVzg
http://paperpile.com/b/jhIkVu/xVzg
http://paperpile.com/b/jhIkVu/xVzg
http://paperpile.com/b/jhIkVu/JEWE
http://paperpile.com/b/jhIkVu/JEWE
http://paperpile.com/b/jhIkVu/JEWE
http://paperpile.com/b/jhIkVu/JEWE
http://paperpile.com/b/jhIkVu/JEWE
http://paperpile.com/b/jhIkVu/JEWE
http://paperpile.com/b/jhIkVu/yO8o
http://paperpile.com/b/jhIkVu/yO8o
http://dx.doi.org/10.1101/2019.12.19.882506
http://paperpile.com/b/jhIkVu/yO8o
http://paperpile.com/b/jhIkVu/Bdzr
http://paperpile.com/b/jhIkVu/Bdzr
http://paperpile.com/b/jhIkVu/Bdzr
http://paperpile.com/b/jhIkVu/Bdzr
http://paperpile.com/b/jhIkVu/Bdzr
http://paperpile.com/b/jhIkVu/Bdzr
http://paperpile.com/b/jhIkVu/uLPs
http://paperpile.com/b/jhIkVu/uLPs
http://paperpile.com/b/jhIkVu/uLPs
http://paperpile.com/b/jhIkVu/uLPs
http://paperpile.com/b/jhIkVu/uLPs
http://paperpile.com/b/jhIkVu/uLPs
http://paperpile.com/b/jhIkVu/Rx9U
http://paperpile.com/b/jhIkVu/Rx9U
http://paperpile.com/b/jhIkVu/Rx9U
http://paperpile.com/b/jhIkVu/Rx9U
http://paperpile.com/b/jhIkVu/Rx9U
http://paperpile.com/b/jhIkVu/Rx9U
http://paperpile.com/b/jhIkVu/Rx9U
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

17. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-Wheeler
transform. ​Bioinformatics​, ​25 ​, 1754–1760.

18. Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences. ​Bioinformatics​, ​34 ​,
3094–3100.

19. Kolmogorov,M., Yuan,J., Lin,Y. and Pevzner,P.A. (2019) Assembly of long, error-prone reads
using repeat graphs. ​Nat. Biotechnol.​, ​37 ​, 540–546.

20. Medaka — Medaka 1.2.0 documentation.

21. RSAT : Random sequence result.

22. Mutate DNA.

23. Huang,W., Li,L., Myers,J.R. and Marth,G.T. (2012) ART: a next-generation sequencing read
simulator. ​Bioinformatics​, ​28 ​, 593–594.

24. Zhou,Q., Tang,D., Huang,W., Yang,Z., Zhang,Y., Hamilton,J.P., Visser,R.G.F., Bachem,C.W.B.,
Robin Buell,C., Zhang,Z., ​et al.​ (2020) Haplotype-resolved genome analyses of a heterozygous
diploid potato. ​Nat. Genet.​, ​52 ​, 1018–1023.

25. Simpson,J. assembly_accuracy.

26. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic
features. ​Bioinformatics​, ​26 ​, 841–842.

27. Kent,W.J. (2002) BLAT--the BLAST-like alignment tool. ​Genome Res.​, ​12 ​, 656–664.

28. Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high
throughput. ​Nucleic Acids Research​, ​32 ​, 1792–1797.

29. Peterlongo,P., Riou,C., Drezen,E. and Lemaitre,C. DiscoSnp : de novo detection of small variants
from raw unassembled read set(s). ​10.1101/209965 ​.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

http://paperpile.com/b/jhIkVu/Pqeo
http://paperpile.com/b/jhIkVu/Pqeo
http://paperpile.com/b/jhIkVu/Pqeo
http://paperpile.com/b/jhIkVu/Pqeo
http://paperpile.com/b/jhIkVu/Pqeo
http://paperpile.com/b/jhIkVu/Pqeo
http://paperpile.com/b/jhIkVu/LMip
http://paperpile.com/b/jhIkVu/LMip
http://paperpile.com/b/jhIkVu/LMip
http://paperpile.com/b/jhIkVu/LMip
http://paperpile.com/b/jhIkVu/LMip
http://paperpile.com/b/jhIkVu/LMip
http://paperpile.com/b/jhIkVu/NnYA
http://paperpile.com/b/jhIkVu/NnYA
http://paperpile.com/b/jhIkVu/NnYA
http://paperpile.com/b/jhIkVu/NnYA
http://paperpile.com/b/jhIkVu/NnYA
http://paperpile.com/b/jhIkVu/NnYA
http://paperpile.com/b/jhIkVu/cmFN
http://paperpile.com/b/jhIkVu/MNFz
http://paperpile.com/b/jhIkVu/EUuf
http://paperpile.com/b/jhIkVu/smh5
http://paperpile.com/b/jhIkVu/smh5
http://paperpile.com/b/jhIkVu/smh5
http://paperpile.com/b/jhIkVu/smh5
http://paperpile.com/b/jhIkVu/smh5
http://paperpile.com/b/jhIkVu/smh5
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/Pkum
http://paperpile.com/b/jhIkVu/RShI
http://paperpile.com/b/jhIkVu/aYMM
http://paperpile.com/b/jhIkVu/aYMM
http://paperpile.com/b/jhIkVu/aYMM
http://paperpile.com/b/jhIkVu/aYMM
http://paperpile.com/b/jhIkVu/aYMM
http://paperpile.com/b/jhIkVu/aYMM
http://paperpile.com/b/jhIkVu/H85N
http://paperpile.com/b/jhIkVu/H85N
http://paperpile.com/b/jhIkVu/H85N
http://paperpile.com/b/jhIkVu/H85N
http://paperpile.com/b/jhIkVu/H85N
http://paperpile.com/b/jhIkVu/1qWR
http://paperpile.com/b/jhIkVu/1qWR
http://paperpile.com/b/jhIkVu/1qWR
http://paperpile.com/b/jhIkVu/1qWR
http://paperpile.com/b/jhIkVu/1qWR
http://paperpile.com/b/jhIkVu/1qWR
http://paperpile.com/b/jhIkVu/F1hr
http://paperpile.com/b/jhIkVu/F1hr
http://dx.doi.org/10.1101/209965
http://paperpile.com/b/jhIkVu/F1hr
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

TABLE AND FIGURES LEGENDS

Table 1. ​General characteristics of existing polishing algorithms. These seven tools were

evaluated in our benchmark with the specified parameters.

* size= 120Mb (​Arabidopsis thaliana​), 120Mb (​Solanum tuberosum L​), 100K (synthetic sequence)

 Reference Publication
Date Version Read

alignment
Integrated

aligner
Parameters used in

the benchmark

Hapo-G This study - 0.1 yes BWA -t 36

POLCA Ziminn AV.
et al.​(14) 2020 3.4.2 yes BWA -t 36

HyPo Kundu R. et
al. ​(13) 2019 1.0.3 yes no

-s size*

-c 180

-t 36

NextPolish Hu J. et
al.​(12) 2019 1.3.2 yes BWA

task = best

parallel_jobs = 6

multithread_jobs = 6

genome_size = auto

ntEdit Warren RL.
et al. ​(11) 2019 1.3.2 no NA

-k 40 -t 36

--outbloom

--solid

ntEdit : -m 1 -t 36

Racon Vaser R. et
al. ​(15) 2017 1.4.3 yes no -t 36

Pilon Walker BJ.
et al. ​(9) 2014 1.23 yes no --threads 36

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://paperpile.com/c/jhIkVu/Bdzr
https://paperpile.com/c/jhIkVu/yO8o
https://paperpile.com/c/jhIkVu/JEWE
https://paperpile.com/c/jhIkVu/xVzg
https://paperpile.com/c/jhIkVu/uLPs
https://paperpile.com/c/jhIkVu/CdB6
https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Table 2. ​Datasets and long-read assemblies generated for the benchmark. Coverages were

computed using a genome size of 120Mb and 1,600Mb for ​Arabidopsis thaliana and ​Solanum

tuberosum ​respectively.

 Arabidopsis thaliana
Col-0 Synthetic sequence Solanum tuberosum​ L.

RH89-039-16

Illumina

Accession
number SRR12136403 NA PRJNA573826

Read Length
(bp) 2x150 2x150 2x250

Coverage 176 X 50 X 47 X

Nanopore

Accession
number SRR12136402 - PRJNA573826

Reads N50
(bp) 18,827 - 25,280

Coverage 95 X - 75 X

Assembly

Number of
contigs 238 1 11,070

Cumulative
size 119,992,853 102,000 1,332,417,447

Contig N50
(bp) 14,841,396 102,000 440,422

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1. ​Example of a deletion in a coding frame. ​The two haplotypes have consistent coding

frames (codons are alternatively colored in red and blue) and the draft assembly contains a deletion in

a stretch of T’s (green box). Pilon was not able to restore the coding frame and add a second

frameshift. In comparison Hapo-G was able to restore haplotype A.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2. ​Description of the Hapo-G algorithm ​. Two stacks of alignments are stored, all-ali which

contains all the alignment of a specific region (not shown) and hap-ali which contains reads from the

same haplotype. The bam file is processed iteratively, and for each input alignment, Hapo-G will

polish the region (draft genome is in black) between the start of the last alignment and the start of the

current alignment. The reference alignment is the one used as the backbone for error-correction.

Once the frequency of the reference base (in red) is computed, the position is classified as

homozygous (case 1, left panel), heterozygous (case 2, lower panel), or sequencing error (case 3,

right panel).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3. ​Comparison of polishing algorithms on the ​Arabidopsis thaliana genome assembly.
Lower panels of A, B and C show the full distribution and the upper panels are a zoom on the higher
values. ​A. ​Identity rate of assemblies after each round of polishing, when compared to the
Arabidopsis thaliana reference genome. ​B. Number of Illumina pairs mapped perfectly on each
assembly. ​C. Number of Arabidopsis thaliana exons aligned with 100% identity after each round of
polishing. ​D.​ Run times of polishing tools, for each polishing round.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Figure 4. Comparison of polishing algorithms on a synthetic diploid sequence. ​The 100Kb
sequence is represented on the x axis and each polishing tool has a dedicated track, where remaining
errors are represented with red bars and switches between the two haplotypes are represented by
blue bars.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5. Comparison of polishing algorithms on the ​Solanum tuberosum genome assembly
for each polishing round. ​Lower panels of A, B and C show the full distribution and the upper panels
are a zoom on the higher values. ​A. ​Number of Illumina pairs mapped perfectly on each assembly. ​B.
Number of phased variants retrieved in each assembly. ​C. Number of chains composed of more than
3 variants (and confirmed by at least 5 reads) perfectly retrieved in each assembly. ​D. Run time of
each polishing tool.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422624doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422624
http://creativecommons.org/licenses/by-nc/4.0/

