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Data-independent Acquisition-based Proteome and 
Phosphoproteome Profiling across Six Melanoma Cell Lines 
Reveals Determinants of Proteotypes 

Erli Gaoa‡, Wenxue Lia‡, Chongde Wua‡, Wenguang Shaob, Yi Dia, Yansheng Liua,c* 

Human cancer cell lines are widely used in pharmacological and systems biological studies. The rapid documentation of the 
steady-state gene expression landscape of the cells used in a particular experiment may help to improve the reproducibility 
of scientific research. Here we applied a data-independent acquisition mass spectrometry (DIA-MS) method, coupled with 
a peptide spectral-library free data analysis workflow, to measure both proteome and phosphoproteome of a melanoma 
cell line panel with different metastatic properties. For each cell line, the single-shot DIA-MS detected 8,100 proteins and 
almost 40,000 phosphopeptides in the respective measurement of two hours. Benchmarking the DIA-MS data towards the 
RNA-seq data and tandem mass tag (TMT)-MS results from the same set of cell lines demonstrated comparable qualitative 
coverage and quantitative reproducibility. Our data confirmed the high but complex mRNA~protein and protein~phospsite 
correlations. The results successfully established DIA-MS as a strong and competitive proteotyping approach for cell lines. 
The data further showed that all subunits of Glycosylphosphatidylinositol (GPI)-anchor transamidase complex were 
overexpressed in metastatic melanoma cells and identified altered phosphoprotein modules such as BAF complex and mRNA 
splicing between metastatic and primary cells. This study provides a high-quality resource for calibrating DIA-MS 
performance, benchmarking DIA bioinformatic algorithms, and exploring the metastatic proteotypes in melanoma cells.

1  Introduction 
Human cancer cell lines are widely used in biological and 
biomedical research, serving as an important model system for 
studying normal and aberrant cellular processes. 
Comprehensive molecular profiling for multiple cell lines or cell 
line panels has been demonstrated promising, which connects 
the genomic alterations to functional networks and 
pharmacological responses in cancer cells. Just as examples, a 
pilot study measured the quantitative proteome for 11 common 
human cell lines and discovered ubiquitous and varying 
expressions of most proteins 1. The Cancer Cell Line 
Encyclopedia (CCLE) generated multi-layered molecular 
profiling datasets for 947 human cancer cell lines that 
encompass 36 tumor types, providing a resource for studying 
genetic variants, candidate targets, and biological therapeutics 
in human cancers 2, 3. The compilation of CCLE recently was 
added with a high-quality quantitative proteomics dataset of 

375 cell lines using tandem mass tag (TMT) mass spectrometry 
(MS), which revealed post-transcriptional mechanisms 
undiscovered by DNA and RNA methods 4. At a smaller sample 
scale, Roumeliotis et al. profiled a total of 50 colorectal cancer 
cell lines with TMT and quantified 9,000 proteins and 11,000 
phosphopeptides between cells. This study leveraged a 
systematic view of proteotype co-variation networks 
determined by genomic factors in colorectal cancer 5. Also, the 
proteome maps of NCI-60 cell lines were analyzed by different 
MS techniques 6-8. 
  On the other hand, others and we have reported the instability 
of cell lines, both genetic and phenotypic, even for the cells of 
the same name between different laboratories 9, 10. For 
example, in 14 stock HeLa samples from 13 international 
laboratories, we discovered substantial heterogeneity between 
the HeLa strains by the total genomic, transcriptomic 
measurements, as well as the proteomic profiling of 5,000 
proteins 10. These studies suggested that the previous cell line 
authentication methods using e.g., short tandem repeat (STR) 
and single nucleotide polymorphism (SNP) analysis 11 might be 
not sufficient to document the particular cell line used in an 
experiment, prompting rapid documentation of precise gene 
expression status of the cells 10. Although transcriptomics can 
effectively record the basic state of the cells, proteins are the 
executors of the function encoded by a cell’s genome. The 
direct proteomic measurement should be alternatively 
considered for documenting the cell’s molecular landscape. 
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   As above, there are pressing needs for both high-throughput 
characterization of multiple cells and proteomic documentation 
of individual cells. Furthermore, because dynamic 
phosphorylation plays a major role in regulating many cellular 
processes, phosphoproteomic profiling was recently used in 
defining the proteome “activity” in cancer cell line panels 8. 
Together, it is imperative to establish a fast, cost-effective, 
reproducible method for profiling the cell “proteotype” 12, 
ideally through both proteome and phosphoproteome profiling. 
Previously, the integrative proteomic and phosphoproteomic 
measurements have been successfully performed by coupling 
peptide-fractionation to either shotgun- or TMT- MS workflows 
in cancer cell lines and clinical tissues 5, 8, 13-16. The data-
independent acquisition mass spectrometry (DIA-MS) 17-19 
provides an alternative, simple, and robust MS workflow for 
profiling proteotype through the concurrent proteomic and 
phosphoproteomic analysis 20, without the need of extensive 
peptide-level fractionation and the costly tagging reagents. 
However, DIA-MS was previously acknowledged to generate 15-
20% less protein identifications than TMT workflow with fixed 
instrument time 21. Besides, very few studies have analyzed 
both proteome and phosphoproteome of cell lines by DIA-MS. 
Nevertheless, the complex quantitative relationship among 
transcripts, proteins, and phosphosites has not been 
characterized in a standard DIA-MS dataset previously. Herein, 
we describe a high-quality DIA dataset acquiring single-shot 
measurements for both proteome and phosphoproteome of six 
metastatic and primary melanoma cell lines. We then assessed 
the qualitative and quantitative features of this DIA dataset and 
systematically investigated the mRNA-protein and proteome-
phosphoproteome correlations. We further discussed the 
appropriate phosphoproteomic normalization strategies using 
the plentiful peptide-level identifications in DIA. This work 
provides a valuable resource for evaluating DIA-MS 
performance and understanding the melanoma cell 
proteotypes.  
 
 
2  Materials and methods 
2.1 Cell culture 
The metastatic melanoma cancer cells (ATCC TCP-1014) and the 
primary melanoma cancer cells (ATCC TCP-1013) were 
purchased from ATCC. The three metastatic cell lines include 
RPMI-7951 (ATCC HTB-66, named “7951” hereafter), SH-4 
(ATCC CRL-7724, named “SH4”), and SK-MEL-3 (ATCC HTB-69, 
named “HTB69”). The three primary cell lines include SK-MEL-1 
(ATCC HTB-67, named “SK”), A375 (ATCC CRL-1619, named 
“A375”), and G-361 (ATCC CRL-1424, named “G361”). The 
routine cell culture protocol was detailed previously10. In brief, 
cells were cultured in 5% CO2 and 37° in either DMEM 
(#10564011, for 7951, HTB69, A375 and G361 cells) or RPMI 
Medium (#72400047, for SH4 and SK cells) supplemented with 
10% FBS (Sigma Aldrich), together with a 
penicillin/streptomycin solution (Gibco). Cells were harvested 
at 80% confluence for mRNA and protein extractions. 
 

2.2 RNA extraction, quality control, library preparation, and 
sequencing 
Cells were washed by PBS twice, snap-frozen, and then lysed 
with the QIAShredder columns (Qiagen) according to 
manufacturer's instructions. Total RNA was isolated with the 
Qiagen RNeasy Mini Kit (#74104, QIAGEN), including DNA 
digestion step using the RNAase-Free DNAase set kit (#79254).  
RNA samples were quantified and checked for quality control 
using the Agilent 4200 Tapestation RNA Screentape assay. 
Samples with RINs greater than 7 were selected for library 
preparation. Library preparation was performed using the KAPA 
Biosystems mRNA HyperPrep Kit, in which samples were 
normalized with a Total RNA input of 1000 ng and library 
amplification with 8 PCR cycles. Libraries were validated using 
the Agilent 4200 Tapestation D1000 assay and quantified KAPA 
Library Quantification Kit for Illumina® Platforms kit. 
Sequencing was done on an Illumina NovaSeq 6000 using the S4 
XP workflow. Libraries were pooled to 1.25% in order to achieve 
25M read pairs for each library. Three dish replicates per cell 
line were used for RNA sequencing. A simple TPM (Transcripts 
Per Kilobase Million) cutoff 22 of 0.1 was applied to retain 
possibly expressed genes at the transcriptomic level. 
 
2.3 RNA data procession and analysis 
The reads were trimmed to remove low-quality based-calls, and 
the Minimum accepted length was 45 bases. If the trimming 
reduces the read length below 45 bases, that read is discarded. 
We used HISAT2 23 for alignment of the trimmed reads to the 
reference genome hg38, with GENCODE annotation 24. We then 
used the StringTie /Ballgown 25 to generate gene counts and 
transcript abundance estimates from the alignments. TPMs 
reported were log2-transformed for statistical analysis. 
 
2.4 Protein extraction and digestion 
Cultured cells were harvested and digested as previously 
described 26, 27. Briefly, cells were washed three times by PBS, 
harvested, and snap-frozen. The cell pellets were then lysed by 
adding 10 M urea containing complete protease inhibitor 
cocktail (Roche) and Halt™ Phosphatase Inhibitor (Thermo), and 
were further ultrasonically lysed at 4 °C for 2 min using a 
VialTweeter device (Hielscher-Ultrasound Technology), and 
centrifuged at 18,000 × g for 1 hour to remove the insoluble 
material. A total of 800 μg supernatant proteins (determined by 
BioRad Bradford assay) were reduced by 10 mM tris-(2-
carboxyethyl)-phosphine (TCEP) for 1 hour at 37 °C and 20 mM 
iodoacetamide (IAA) in the dark for 45 min at room 
temperature. Five volumes of precooled precipitation solution 
containing 50% acetone, 50% ethanol, and 0.1% acetic acid 
were added to the protein mixture and kept at −20 °C overnight. 
The mixture was centrifuged at 18,000×g for 40 min. The 
precipitated proteins were washed with 100 % acetone and 70% 
ethanol with centrifugation at 18,000×g, 4°C for 40 min. 
Following that, 300 μL of 100 mM NH4HCO3 was added in to 
each sample with sequencing grade porcine trypsin (Promega) 
at a ratio of 1:20 overnight at 37 °C. The resulted peptide 
mixture was acidified with formic acid and then desalted with a 
C18 column (MarocoSpin Columns, NEST Group INC) following 
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manufacturer's instructions. The amount of the final peptides 
was determined by Nanodrop (Thermo Scientific). Duplicate 
dishes per cell line were used for proteomics analysis. 
 
2.5 Phosphoproteomics sample preparation 
The phosphopeptide enrichment was performed using the 
High-Select™ Fe-NTA kit (Thermo Scientific, A32992) according 
to the manufacturer's instructions 15. Briefly, the resins of spin-
column were aliquoted, incubated with 200 µg of total peptides 
(see above) for 30 min at room temperature, and transferred 
into the filter tip (TF-20-L-R-S, Axygen). The supernatant was 
then removed by centrifugation. Then, the resins adsorbed with 
phosphopeptides were washed sequentially with 200 µL × 3 
washing buffer (80% ACN, 0.1% TFA) and 200 µL × 2 H2O to 
remove nonspecifically adsorbed peptides. The 
phosphopeptides were then eluted off the resins by 100 µL × 2 
elution buffer (50% ACN, 5% NH3•H2O). The centrifugation 
steps were all kept at 500 g, 30 sec. The eluates were dried by 
speed-vac and stored in −80 °C before MS measurements. 
 
 
2.6 DIA-MS measurement 
The peptide samples were resolved in 2% ACN, 0.1% FA, and 1 
µg of peptides or enriched phosphopeptides was injected per 
each single MS injection. The DIA-MS measurement was 
performed mainly as described 28. Briefly, LC separation was 
performed on EASY-nLC 1200 systems (Thermo Scientific, San 
Jose, CA) using a 75 µm × 50 cm C18 column packed with 100A 
C18 material. A 120-min measurement with buffer A (0.1% 
formic acid in H2O) and buffer B (80% acetonitrile containing 
0.1% formic acid) mixed and configured as below to elute 
peptides from the LC: Buffer B was increasing from 6% to 37% 
in 109 mins, increased to 100% in 3 mins, and then kept at 100% 
for 8mins. The flow rate was kept at 300 nL/min with the 
temperature-controlled at 60 °C using a column oven kit (PRSO-
V1, Sonation GmbH, Biberach, Germany). The Orbitrap Fusion 
Lumos Tribrid mass spectrometer (Thermo Scientific) 
instrument coupled to a nanoelectrospray ion source 
(NanoFlex, Thermo Scientific) was used as the DIA-MS platform 
for both proteomic and phosphoproteomic analyses. Spray 
voltage was set to 2,000 V and heating capillary temperature at 
275 °C. All the DIA-MS methods consisted of one MS1 scan and 
40 MS2 scans of variable isolated windows 28, with 1 m/z 
overlapping between windows. The MS1 scan range is 350 – 
1650 m/z, and the MS1 resolution is 120,000 at m/z 200. The 
MS1 full scan AGC target value was set to be 2.0E5, and the 
maximum injection time was 100 ms. The MS2 resolution was 
set to 30,000 at m/z 200 with the MS2 scan range 200 – 1800 
m/z, and the normalized HCD collision energy was 28%. The 
MS2 AGC was set to be 5.0E5, and the maximum injection time 
was 50 ms. The default peptide charge state was set to 2. Both 
MS1 and MS2 spectra were recorded in profile mode.  
 
2.7 Proteomics and phosphoproteomics data procession and 
analysis 
DIA-MS data analyses for proteomics and phosphoproteomics 
were performed using Spectronaut v14 29, 30, both with the 

“DirectDIA” pipeline (i.e., an optimal spectral library-free 
pipeline 31). This means the DIA runs were all directly searched 
against Swiss-Prot protein database (September 2020, 20,375 
entries). For the identification of the total proteomic dataset, 
the possibilities of Oxidation at methionine and Acetylation at 
the protein N-terminals were set as variable modifications, 
whereas Carbamidomethylation at cysteine was set as a fixed 
modification. For the “DirectDIA” database searching on the 
phosphoproteomic dataset, in addition to the above peptide 
modification settings, the possibility of Phosphorylation at 
serine/threonine/tyrosine (S/T/Y) was enabled as a variable 
modification. Overall, both peptide- and protein- FDR (based on 
Qvalue) were controlled at 1%, and the data matrix was filtered 
by Qvalue. In particular, the PTM localization option in 
Spectronaut v14 was enabled to locate phosphorylation sites 32, 

33 for the entire phosphoproteomic experiment, with the PTM 
score >0.75 33 applied in at least one of the twelve single-shot 
phosphoproteomic injections, generating Class-I sites 34 for all 
phosphopeptides at the whole experiment level. The PTM score 
of 0 was used for estimating and reporting the total number of 
identified phosphosites (that may not be all localized) and for 
accepting quantitative values in each sample for all Class-I 
phosphosites identified at the experiment level. All the other 
Spectronaut settings for identification and quantification were 
kept as default, meaning that e.g., the “Inference Correction” 
was enabled, the “Global Normalization” (on “Median”) was 
used, the quantification was performed at the MS2 level using 
peak areas, and the Top 3 peptide precursors (“Min: 1 and Max: 
3”) were summed for representing protein quantities in all DIA 
analyses. For each localized phosphosite, the corresponding 
phosphopeptide precursors with the least missing values were 
taken for quantification between samples. The quantitative 
peak areas for protein and phosphopeptides were then log2-
transformed for downstream statistical analysis. 
 
 
2.8 Bioinformatics 
The biological gene list annotation and enrichment analysis 
incorporating Cytoscape35 and MCODE based analysis 36 were 
performed by Metascape 37 (https://metascape.org/) using the 
“Multiple Gene List” function with default statistical cutoffs. To 
embrace as many genes as the input for studying the biology of 
melanoma metastasis, the simple statistical student’s t-test was 
used and P<0.05 was set as a cutoff. Pearson and Spearman 
correlation coefficients were calculated using R (functions cor() 
or cor.test() to infer statistical significance). The colored 
scatterplots from blue-to-yellow were visualized by the 
“heatscatter” function in R package “LSD” using a two-
dimensional Kernel Density Estimation. Online consensus 
Survival webserver for Skin Cutaneous Melanoma (OSskcm, 
http://bioinfo.henu.edu.cn/Melanoma/MelanomaList.jsp)38 
was used to estimate the survival outcome of GPAA1 mRNA 
expression using the data source of “Combined” or “TCGA” 
options with the patients split by “Upper 30% VS Lower 30%”. 
The heatmap following hierarchical clustering analysis (HCA) 
was created using the R package “pheatmap”. The principal 
component analysis (PCA) was performed using R function 
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prcomp(). GraphPad Prism (v9) was used to generate the 
histogram and scatter plots for individual columns. 
 
2.9 Data availability 
RNA-seq data were uploaded to GEO repository and are 
available on GEO (GSE162270, data will be available upon paper 
publication).  
  The mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE partner 
repository 39 with the dataset identifier PXD022992 (data will be 
available upon paper publication). 
 
 
3  Results and discussion 
3.1 Single-shot DIA-MS achieving exquisite sensitivity in 
profiling proteome and phophosproteome. 
To establish a cost-effective proteotyping method that is 
generally applicable for individual cancer cell lines, we applied 
a workflow incorporating our single-shot 2-hour DIA-MS 
method 28 and an improved, spectral library-free 31 DirectDIA 
algorithm (see Methods). We quantitatively profiled the cell 
proteotype via both proteome and phosphoproteome on six 
melanoma cell lines, including 7951, HTB69, and SH4 cells that 
are metastatic and A375, SK, and G361 cells that are non-
metastatic. Our DIA-MS workflow was able to detect 8,110 ± 31 
protein groups corresponding to 90,588 ± 687 unique peptides 
in each single-shot of these cell lines, with both peptide- and 
protein- FDR strictly controlled below 1% (Figure 1 and 
Supplementary Table S1). This analytical coverage represents 
almost 80% of the total proteome expressed in a cancer cell line 
under a given condition 40. Furthermore, on average, 39,808 
unique phosphopeptides were identified in each MS shot under 
the same FDR threshold. Impressively, high sensitivity was 
consistently achieved between different cell lines and MS 
injections – the detection rate variation was merely ~0.5% for 
the total proteome profiling and ~3% for the phosphoproteome 
measurement (Figure 1). These numbers therefore suggest that 
DIA-MS stably identified substantial proteins and 
phosphopeptides among the six cell lines without the need of 
building spectral libraries. 

 
3.2 Benchmarking the proteomic and phosphoproteomic 
profiling by RNA-seq analysis. 
We further assessed the performance of DIA-MS based 
proteotyping by comparison to transcriptomic profiling, which 
is relatively more developed than proteomic profiling. Based on 
RNA sequencing (RNA-Seq), a total number of 13,527 genes 
could be profiled, in comparison to 8,435 and 6,417 genes 
respectively covered by proteomics and phosphoproteomics in 
the same cells (Figure 2A). A total number of 7,560 genes was 
profiled with both RNA and protein expression values, which 
compares favorably to previous studies 41, 42. Compared to total 
proteomics, the phosphoproteomics covered an extra list of 
1,416 genes, but did not detect any phosphosite for 3,434 
genes. This result suggests that the phosphorylations of around 
40% of the proteome (i.e., 3,434/ 8,435 proteins) might be of 
extremely low stoichiometry or even not existing. Collectively, 
nearly 10,000 genes were measured by proteomics and 
phosphoproteomics (Figure 2A), with a total MS measurement 
time of only 4 hours.  
  Besides the detection performance that is close to RNA-Seq, 
the reproducibility of quantification represents another 
significant highlight of DIA-MS. We correlated the TPM values 
or the DIA-MS peak areas for mRNA, protein, and 
phosphopeptides between dish-replicates for each cell line; and 
we found that the dish-replicates were always clustered 
together (Supplementary Figure S1). DIA-MS achieved a 
replicate-correlation as excellent as RNA-Seq (i.e., Pearson 
R=0.98 for RNA data, while R= 0.98 and 0.96 for protein and 
phosphopeptide abundances, Figure 2B).  Following the multi-
cell line comparison performed by Geiger et al. 1, we 
consolidated the quantitative data for 7,756 proteins and 
24,458 Class-I phosphosites (P-sites) 34  across all the six 
melanoma cell lines without any missing values (Figure 2C-D). 
Because of the exemplary quantitative reproducibility, the 
greater reduction of phosphosites across cell lines than the 

Figure 1 | The numbers of unique peptides (left panel), protein groups (middle panel), and phosphopeptides (right panel) identified in the 
single-shot MS measurement of the six melanoma cell lines.  A 2-hour measurement time was adopted for each DIA-MS. Both peptide and 
protein FDR were controlled at 1%. 
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protein identities (i.e., from 34,505 to 24,458 versus from 8,455 
to 7,756, Figure 2D) could be ascribed to the larger biological  
variation between phosphoproteomes than between 
proteomes (Supplementary Figure S1C and S2). The multi-
omics datasets could be used to discern the global similarity 
between the six cell lines by hierarchical clustering analysis 
(HCA, Figure 2E-F) and principal component analysis (PCA, 
Figure 2H). In both HCA and PCA, while the 7951 and A375 cells 
formed a group throughout the mRNA, proteomic, and 
phosphoproteomic profiling, the other four cell lines (i.e., SK, 
SH4, G361, and HTB69) were consistently clustered. Notably, 
this global pattern did not recapitulate the metastatic and non-
metastatic property of melanoma cells, suggesting that the 
drastic individual genomic variability, rather than the metastatic 
tumor signatures, dedicated the global clustering results. 

  In summary, our results suggest that DIA-MS based 
proteotyping reached a close coverage and an equally great 
quantitative reproducibility compared to RNA-Seq 
measurement. 
 
3.3 Comparing DIA-MS results to a state-of-the-art TMT 
dataset for cellular proteomic profiling. 
The newly added proteomic dataset to the Cancer Cell Line 
Encyclopedia (CCLE) presents a landmark resource to the 
community, quantifying an average of 9,175 proteins for 375 
cancer cells 4. To generate this CCLE dataset, the authors utilized 
the combination of 10-plex TMT labeling (TMT10), deep 
peptide-level fractionation, and the synchronous precursor 
selection (SPS)-based MultiNotch MS3 technique which 
improves the quantification accuracy in TMT-workflows 43.  In a 

Figure 2 | Benchmarking the proteomic and phosphoproteomic results with the RNA-seq data. (A) The Venn diagram between the 
measured proteome, phosphoproteome and transcriptome of the cell lines.  (B) Pearson correlation between dish-replicates, grouped by 
transcriptome, proteome and phosphoproteome. (C) The number of overlapped proteins measured across the six cell lines. (D) The number 
of overlapped Class-I phosphosites measured across the six cell lines. (E) Hierarchical clustering analysis of the transcript profiles in the six 
cell lines. (F) Hierarchical clustering analysis of the protein profiles measured in the six cell lines. (G) Hierarchical clustering analysis of the 
phosphopeptide (P-site) profiles measured in the six cell lines. (H) Principal component analysis of mRNA, protein and P-site profiles. 
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recently updated workflow described by the same group, the 
high-Field Asymmetric Ion Mobility Spectrometry (FAIMS), real-
time database searching, and the 16-plex TMTpro labeling were 
integrated, and a similar proteome coverage was achieved for 
eight cell lines 44. Because the CCLE-TMT dataset 4 contains four 
of six melanoma cell lines we measured in the present study 
(i.e., 7951, HTB69, SH4, and A375), we benchmarked our DIA-
MS data to TMT results accordingly. We firstly compared the 
identification performance based on the unique gene identities. 
We found that DIA-MS measured the proteome for 7,790 genes 
without any missing values among the four cell lines, whereas 
the CCLE-TMT measured 7,398 genes, 5.0% less than DIA-MS 
(Figure 3A). However, a further inspection of CCLE-TMT data 
indicated that 7951 and SH4 cells were measured in the same 
TMT10 batch, whereas A375 and HTB69 cells were measured in 
the other two 10-plex batches. Interestingly, when it comes to 
7951 and SH4 only, the CCLE-TMT reported the relative 
quantification for 8,719 genes, denoting a 9% increase 
compared to DIA-MS (Figure 3B). The nearly 10% increase 
seems to be fairer for TMT, because the TMT would normally 
accommodate a small number of cell lines in only one 
experimental batch. Taken together, the above comparisons 
indicate that a) the high-quality DIA-MS still identifies about 9-
10% fewer proteins than those in the TMT approach in one 
batch, and b) even with the proper “bridging sample”, the large-
scale TMT profiling using multiple batches could modestly or 
moderately impact the final quantification outcome between 
samples. Finally, we checked the relative fold-change between 
7951 and SH4 quantified by TMT or DIA-MS, respectively. Using 
the data from the overlapping 6,900 proteins, we determined 
the cross-approach correlation to be strong (R=0.67, Pearson 
correlation, Figure 3C), despite that the cells were cultured in 
different labs and independent proteomic protocols were used.  
  To conclude, our data suggest that high-quality DIA-MS could 
achieve qualitative and quantitative results that are both 

comparable to TMT. It should be stressed, however, that our 
small-scale comparison here does not aim to provide a 
systematic comparison between DIA-MS and TMT – Both 
approaches have respective advantages over the other. For 
example, DIA-MS could be more flexible when only one or two 
cell lines used in an experiment need to be proteotyped 10 or 
when the absolute label-free quantification is desired 45, 
whereas TMT workflow could save loading amounts for 
precious samples due to its pooling strategy. For a more 
completed comparison between DIA-MS and TMT with the 
same instrument time, please refer to Muntel et al. 21 
 
3.4 Quantitative relationships of mRNA vs. protein and 
proteome vs. phosphoproteome. 
The quantitative relationship between mRNA and protein has 
been extensively discussed 41, 42. While the absolute 
mRNA~protein correlation analysis (normally performed within 
one sample) could be affected by the across-gene variation, the 
relative mRNA~protein correlation (performed between 
samples and conditions) can remove this confounding factor for 
inferring the significance of the post-transcriptional regulation 
41, 42, 46, 47. The perspective of absolute and relative relationships 
may also provide insights for analyzing regulations at other 
molecular layers 48. Herein, our well-matched mRNA~protein 
and protein~phosphosite datasets allow for a rigorous 
assessment of the variability of protein expression and 
phosphorylation in the genomic context of steady-state 
melanoma cell lines. First, we correlated the mRNA TPM values 
and DIA-MS readouts in the log-scale for all the ~7500 genes in 
each cell line (Figure 4A, upper panel). The absolute correlation 
was 0.58-0.64 (Spearman correlation coefficient ρ) with an 
average of 0.61, consistent with previous high-quality datasets 
42. Second, we compared the fold-change of mRNA and protein 
values of each cell line to the averaged values across six cells so 
that a relative correlation could be inferred in each cell line 
(Figure 4A, lower panel). This analysis yielded correlations of 
0.54-0.66, with an average of 0.61 as well. The high 
mRNA~protein correlations at both relative and absolute scales 
(Figure 4B) agree with the previous notion that mRNA levels 
primarily contributes to protein concentrations in the steady-
state 41, 42.  Third, to uncover Protein~P-site relationship, we 
performed similar correlation analyses (Figure 4C). The absolute 
Protein~P-site abundance correlations were quite low (ρ= 0.12-
0.18), compared to the relative correlations (ρ= 0.49-0.53, 
Figure 4D). The absolute correlation here could be affected by 
the abundance differences among individual P-sites of the same 
protein, the flyability in MS difference between 
phosphopeptide and non-phosphopeptide, and intrinsic, 
variable P-site/Protein ratios. Therefore, the relative analysis 
reflected that many of phosphoproteome abundance 
regulations conceivably followed the proteome level.  
  Besides the overall mRNA-protein correlation, the gene-
specific correlation analysis was demonstrated to be powerful 
in associating the different genes and pathways with the extent 
of post-transcriptional regulation among samples 14, 46, 49, 50. 
Thus, we distributed the gene-specific mRNA~protein and 
Protein~P-site correlation coefficients. We then functionally 

Figure 3 | Benchmarking DIA-MS results in this study with the TMT 
data in Cancer Cell Line Encyclopedia (CCLE). (A) The overlapped 
proteins without any missing values measured by DIA-MS and 
TMT. (B) The overlapped proteins of SH4 and 7951 cells measured 
by DIA-MS and TMT. Note these two cell lines were measured in 
the same TMT-plex batch. (C) The scatter plot of the protein fold 
changes between SH4 and 7951 cells measured by DIA-MS and 
TMT.  
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annotated those genes with low correlations (ρ <0.2, Figure 5). 
From the low mRNA~protein correlations, we discovered that 
those genes enriched in e.g., Cell cycle, DNA repair, 
Mitochondrion organization, Autophagy, Respiratory electron 
transport, and other regulatory processes (-Log10_P value >10, 
based on Metascape 37, Figure 5A) were regulated significantly 
at the post-transcriptional level. On the other hand, the 
phosphorylation events enriched in processes such as mRNA 
processing, Cell cycle, Nuclear transport, Covalent chromatin 
modification, Cellular response to stress, and Membrane 
trafficking tend to be regulated independently on the 
corresponding protein abundance (-Log10_P value >20, Figure 
5B), because they preferred to harbor low Protein~P-site 
correlations. Thus, although the sample size is small (n=6 cell 
lines), our preliminary analysis indicates protein-level 
remodeling and phosphorylation modification can be 
remarkably different for various pathways and biological 
processes. The results also urge the multi-layered, with-in gene 
variance analysis to be performed in more cell lines and cell 
panels in the future. 
  In summary, the across-gene mRNA~protein and Protein~P-
site correlations could be determined at both absolute and 
relative scales using our high-quality DIA-MS datasets. Together 
with the biological annotations of gene-specific correlations, 
our integrative analysis uncovered ubiquitous but also varying 
determinants for protein expression and phosphorylation levels. 

The relative-scale analyses indicate that mRNA levels cannot 
fully predict protein abundance and that protein abundance 
cannot fully predict the phosphorylation level variability. For 
the genes in specific pathways, the protein and 
phosphoprotein-level alterations may be even more difficult to 
predict than others. Thus, the accurate proteotyping of a cell 
line favors real experimental data. 
 
3.5 Comparing different phosphoproteomic normalization 
strategies using the matched proteome and 
phosphoproteome DIA-MS datasets. 
Many of the previous phosphoproteomic studies only measured 
the relative changes between samples based on the enriched 
phosphopeptides. However, as shown by the relative 
Protein~P-site correlation between stable cancer cells (Figure 4) 
and similar analysis performed in the previous studies 51-53, a 
major component underlying P-site abundance variance is 
attributed to the protein levels. It is conceivable that this 
complication also occurs in other steady-state comparison 
scenarios, such as comparing the phosphoproteomes of the 
tumor and paired adjacent tissues. Although many recent 
clinical proteomic studies measured both total proteomes and 
phosphoproteomes across samples, these two layered datasets 
are usually quantified respectively. Wu et al. showed that 25% 
of the phosphopeptide abundance changes could be due to 
protein expression differences in a mutant yeast system, 

Figure 4 | Absolute and relative quantification relationships of mRNA vs. Protein and Protein vs. phosphosite. (A) The scatter plot of mRNA 
and protein quantities in the absolute (upper panel) and relative (lower panel) scales, separated by six individual six cells. (B) The Spearman 
correlation between mRNA and protein summarized. (C) The scatter plot of protein and phosphosite quantities in the absolute (upper 
panel) and relative (lower panel) scales, separated by six individual six cells. (D) The Spearman correlation between protein and phosphosite 
summarized.  
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emphasizing the critical importance of calibrating 
phosphoproteomic data by protein expression 52. On the other 
hand, the protein-level measurement is not straightforward in 
bottom-up proteomics, in which peptide abundances are 
measured as surrogates for protein expressions 53. Currently, 
there is no consensus on how to summarize peptide’s 
abundance into protein levels; and a common procedure is to 
summarize signals of Top-intensity peptides for a particular 
protein (e.g., the “Top 1” or “Top 3” method). However, if Top-
intensity peptides are used for normalizing phosphoproteomic 
data, one has to assume that e.g., these peptides are not 
modified themselves, or their modifications would not affect 
the relative protein quantification (Supplementary Figure S3A). 
Herein, based on the matched peptide and phosphopeptide DIA 
datasets, we investigate the influence of different 
normalization strategies on phosphoproteomic profiling. 
  To acquire the site-specific, quantitative phosphoproteomic 
data, we adopted three possible methods (Figure 6A) – Method 
1: the intensity of phosphopeptides (P-peptide) is used directly 
without protein-level information; Method 2: the intensity of P-
peptides is normalized so that it is divided by the protein 
expression that is estimated by Top 3 method 27, 54 in the total 
proteomic measurement; and Method 3: the intensity of P-

peptides is normalized so that it is divided by the abundance of 
its sequence-matched, unmodified peptide counterpart (nP-
peptide) in the total proteomic measurement. We included 
Method 3 because we reason that the ratio of P-peptide/nP-
peptide is independent of the modification status of all the 
other peptides of the same protein and may be more robust for 
phosphosite abundance normalization. As expected, because 
Method 3 requires the identification of both P- and nP-peptides, 
it only determined the quantification ratio for 9,271 
phosphosites, which accounts for 37.9% of those analyzed by 
Method 1 (Figure 6B). In contrast, Method 2 retains the 
quantitative information for 90.3% of phosphopeptides that 
were analyzed by Method 1. The correlation analysis across 
phosphosites indicated that whereas Method 2 and 3 were 
highly correlated among cells (R was around 0.8), Method 1 
generated deviated quantification results to Method 2 and 3 (R 
was around 0.6, Figure 6C). The HCA after scaling also suggested 
that Method 2 and 3 results were clustered together 
(Supplementary Figure S3B). Furthermore, Method 1 and 2 
respectively identified 574 and 550 phosphosites changing 
significantly between the metastatic and primary melanoma 
group, with 145 of them overlapping between Method 1 and 

Figure 5 | The identification and functional annotation of the genes with low correlations across cells. (A) The histogram of the within-
gene correlations between mRNA and protein. The genes with low correlation (ρ < 0.2, Spearman correlation) were marked in orange and 
functionally annotated by Meatscape. (B) The histogram of the within-phosphosite correlations between protein and phosphosite. The 
genes with low correlations (ρ < 0.2) were marked in red and functionally annotated by Meatscape.  
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Method 2 (Figure 6D). Therefore, our results showed that the 
different phosphoproteomic normalization strategies had a 
significant effect on both absolute and relative phosphosite 
quantification. Finally, we correlated the P-peptide/Top3-
peptide (ratio in Method 2) and P-peptide/nP- peptide (ratio in 
Method 3) across the six cell lines for each phosphosite. We 
found that the relative change of ratios was largely consistent 
between Method 2 and 3 (R=0.817, averaged from 9,217 

phosphosites, Supplementary Figure S3C). Also, the relative 
fold-change of Metastatic vs. Primary cells was generally 
conserved between results following Method 2 or 3 (R=0.61, 
Figure 6E).  Given the fact that Method 2 analyzed 140% more 
phosphosites than Method 3, we conclude that Method 2 
efficiently accounted for the protein expression difference in 
quantifying phosphosite while still maintaining a fairly large 
phosphoproteome coverage. Therefore, Method 2 could be 

Figure 6 | The comparisons between different phosphoproteomic normalization strategies and phosphorylation-centric signaling 
alterations between metastatic and non-metastatic melanoma cell lines. (A) The overall scheme of three phosphoproteomic normalization 
strategies. (B) The number of P-sites analyzed by three methods. (C) The correlation analysis of P-sites analyzed by three methods. (D) The 
overlapped P-sites that were significantly changed between Method 1 and Method 2. (E) The scatter plot of the log-scale fold-changes of 
9,271 P-sites between three metastatic cells and three primary cells determined by Method 2 or Method 3. (F) Following Method 2, 402 
metastasis-associated genes were filtered (P<0.05 between metastatic and primary groups, student’s t-test) for functional annotation and 
the protein-protein interaction (PPI) network analysis by Metascape. The MCODE components were identified from the merged PPI network 
as core phosphoprotein modules and highlighted in different colors. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.422682doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422682
http://creativecommons.org/licenses/by-nc-nd/4.0/


ARTICLE Journal Name 

10  | J. Name., 2020, 00, 1-3  

accepted as the initial normalization strategy for large-scale 
phosphoproteomic analysis. 
 
3.6 Preliminary biological insights on melanoma cancer 
metastasis using multi-omic profiling.  
Because of the small sample size and the usage of cell lines 
(rather than clinical samples), this study did not aim to identify 
biomarkers associated with cancer metastasis in melanoma. 
Nevertheless, we discovered that the individual genomic 
variability, rather than the metastatic property, determined the 
overall molecular similarity between six cell lines (Figure 2E-H). 
In fact, simple t-tests filtered 311, 242, and 425 genes being 
different at mRNA, proteomic, and phosphoproteomic levels, 
respectively (P<0.05 as a loose criterion), accounting for only 
2.30%, 2.87%, and 6.62% of the total genes measured at each 
level (see the numbers in Figure 2B). We therefore included all 
these differential genes for function analysis, with the purpose 
to discern metastasis-related processes at each level. According 
to Metascape 37, we found that different omics layers 
uncovered many distinctive signature genes associated with 
metastasis, with a few overlapping functional processes across 
layers, such as DNA repair, Metabolism of mRNA, Negative 
regulation of cell cycle, and Regulation of intracellular transport 
(P <0.01 for all, Supplementary Figure S4A-B). We further found 
that the phosphoproteomic dataset particularly revealed more 
metastasis-associated signaling processes than proteomic 
profiling, such as SWI/SNF complex, the beta-catenin-TCF 
complex assembly, and mRNA processing (all P <0.01). 
Intriguingly, the proteome data uniquely revealed that 
Glycosylphosphatidylinositol (GPI)-anchor transamidase 
complex was significantly changed between Metastatic and 
Primary cells (-Log10_P value =10.33, Supplementary Figure 
S4C-D). In particular, all the five subunits of this complex–
GPAA1, PIGK, PIGT, PIGS, PIGU were found to upregulated by 
approximately 2 folds in the three metastatic cell lines, 
compared to the three primary cells (Supplementary Figure 
S5A). The inspection of the published mRNA profiles through 
the Online consensus Survival webserver for Skin Cutaneous 
Melanoma (OSskcm)38 supported the unfavorable prognosis 
outcome for GPAA1 (P=5E-04 for 1085 clinical melanoma 
samples combined, P=0.022 for TCGA datasets, Supplementary 
Figure S5B). Moreover, previous literature has suggested that 
the overexpression of GPI transamidase subunits induces tumor 
invasion in breast cancer 55 and that GPAA1 promotes gastric 
cancer progression via upregulation of GPI-anchored proteins 
56. It is therefore appealing to establish the functional 
relationship between GPI transamidase complex 
overexpression and melanoma metastasis in the future 
biological and clinical studies.  
  Finally, to focus on phosphoproteomic data that enrich cell 
signaling events, we normalized the phosphosite abundance by 
the corresponding proteins (following Method 2 in Section 3.5) 
and took the 402 filtered genes (P<0.05, student’s t-test) for 
functional analysis. Here, all protein-protein interactions (PPI) 
among the 402 gene list were extracted from PPI data source in 
Metascape 37, and core protein modules were then identified in 
the PPI network by MCODE 36 (Figure 6F). These protein 

modules include BAF complex, actin cytoskeleton organization, 
mRNA splicing, and Regulation of cell cycle processes, providing 
an overview of those most important phosphorylation-centric 
signaling alterations between metastatic and non-metastatic 
melanoma cell lines tested. The establishment of relevant 
molecular mechanisms connecting the phosphoprotein module 
to melanoma development is beyond the scope of this study. 
 
4  Conclusions 
In this study, we presented a high-quality DIA-MS dataset, 
which profiled both proteome and phosphoproteome in the six 
melanoma cell lines that differ in the metastatic cancer 
phenotype. With the respective 2-hour single-shot 
measurements, DIA-MS achieved a proteomic coverage of 
8,100 proteins and a phosphoproteomic coverage of 40,000 
phosphopeptides for each cancer cell line, demonstrating the 
exquisite sensitivity and sample throughput of DIA-MS in cell 
proteotyping. Besides the substantial genome-wide analyte 
throughput, DIA-MS showed an equally excellent quantification 
reproducibility compared to RNA-seq. The additional 
comparison of our DIA-MS results to CCLE-TMT data also 
revealed comparable qualitative and quantitative features 
between the two proteomic methods. Considering its flexibility 
of handling individual cell lines, the cost-effectiveness, the 
simple experimental procedures, and the analytical 
performance newly available from the spectral-library free 
workflow, as well as the recently demonstrated cross-lab 
reproducibility 27, 57, we deem DIA-MS a powerful and 
competitive method for documenting and referencing the gene 
expression landscape of cancer cells used in a particular 
experiment and between labs 10. 
  Human cancer cells are widely used for large-scale 
comparative studies across multi-omic layers. Benefiting from 
the high data-quality of DIA-MS and the well-matched multi-
omic datasets generated in the present study, we quantitatively 
assessed the across-gene mRNA~protein correlation and 
Protein~P-site correlation at both absolute and relative scales. 
We then summarized the biological processes associated with 
the low gene-specific correlations across cell lines. We 
additionally benchmarked the possible phosphoproteomic 
normalization strategies. We finally searched our multi-omic 
datasets for potential biological signatures and insights 
separating metastatic and primary melanoma cells.  Our 
analysis demonstrated the significant dependence of protein 
abundances on mRNA concentrations (ρ= 0.61) and the 
significant dependence of phosphosite regulation on protein 
changes (ρ= 0.53). Furthermore, our data supported the 
fundamental need of calibrating phosphoproteomic abundance 
by corresponding protein expression and suggested that the 
Top-intensity method could be acceptable to summarize 
protein intensities for this normalization purpose. Finally, our 
results underscored that distinctive metastatic signatures could 
emerge at different molecular layers and that both proteomic 
and phosphoproteomic measurements are indispensable for 
the complete understanding of biological processes. 
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