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Abstract 17 

Signal transduction networks process extracellular signals to guide cell fate decisions such as 18 

to divide, differentiate, or die. These networks can generate characteristic dynamic activities 19 

that are shaped by their cell-type specific architecture. The differentiation of pluripotent cells 20 

is controlled by FGF/ERK signaling. However, the dynamic activity of the FGF/ERK signaling 21 

network in this context remains unexplored. Here we use live cell sensors in wild type and 22 

Fgf4 mutant mouse embryonic stem cells to measure ERK dynamic activity in single cells, in 23 

response to defined ligand concentrations. We find that ERK activity oscillates in embryonic 24 

stem cells. Single cells can transit between oscillatory and non-oscillatory behavior, leading to 25 

heterogeneous dynamic activities in the population. Oscillations become more prevalent with 26 

increasing FGF4 dose, while maintaining a robust characteristic timescale. Our results 27 

suggest that FGF/ERK signaling operates in the vicinity of a transition point between 28 

oscillatory and non-oscillatory dynamics in embryonic stem cells. 29 
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 2 

Introduction 34 

Cells rely on signal transduction networks to process signals from their environment, and to 35 

guide decisions such as to divide, differentiate, or die (Koseska and Bastiaens, 2017). These 36 

networks can produce dynamic activation patterns even at constant stimuli (Antebi et al., 2017; 37 

Santos et al., 2007). Dynamic activity patterns are shaped by the cell-type specific architecture 38 

of the signal transduction system. 39 

  40 

One of the most critical signal transduction systems during early mammalian embryogenesis 41 

relays signals from extracellular fibroblast growth factor 4 (FGF4) through the 42 

RAS/RAF/MEK/ERK network (Brewer et al., 2016). The differentiation of extraembryonic 43 

primitive endoderm cells in the mouse preimplantation embryo depends on FGF/ERK 44 

signaling in a dose-dependent manner (Kang et al., 2013; Krawchuk et al., 2013). Embryonic 45 

stem cells (ESCs), clonal cell populations that retain the differentiation potential of inner cell 46 

mass cells of the preimplantation embryo, are a tractable model system that recapitulates this 47 

dose-dependent function of FGF4 (Raina et al., 2020; Schröter et al., 2015). FGF/ERK 48 

signaling is also required for maturation of the epiblast lineage in the embryo (Kang et al., 49 

2017; Ohnishi et al., 2014), and controls the corresponding process of transitioning from naïve 50 

to primed pluripotency and lineage commitment in ESCs (Kunath et al., 2007; Molotkov et al., 51 

2017). Both in the embryo and ESCs, FGF/ERK signaling is mostly triggered by paracrine 52 

FGF4 ligands (Kang et al., 2013; Krawchuk et al., 2013; Kunath et al., 2007). Despite these 53 

well-known functions of FGF/ERK signaling during the differentiation of pluripotent cells, little 54 

is known about FGF/ERK signaling dynamics in this developmental context. 55 

 56 

Revealing intracellular signal transduction dynamics requires live-cell approaches in single 57 

cells. Live-cell ERK activity can be monitored with substrate-based sensors that employ FRET 58 

or subcellular localization as read-outs (Komatsu et al., 2011; Regot et al., 2014). Analysis of 59 

ERK activity in acutely stimulated ESCs expressing a FRET-based sensor revealed a transient 60 

peak of activation that decayed over long timescales (Deathridge et al., 2019). However, the 61 

short timescale ERK signaling dynamics in the continuous FGF stimulation regimes required 62 

to trigger differentiation of ESCs (Hamilton et al., 2019) remains largely unexplored.  63 

 64 

Short timescale ERK dynamics upon continuous stimulation of other receptor tyrosine kinases 65 

(RTKs) such as the epidermal growth factor (EGF) receptor have been studied in various cell 66 

types, revealing a diversity of behaviors. In many, but not all cell types, ERK activity occurs in 67 

pulses (Aoki et al., 2013). In several cell types, the frequency of ERK activity pulses depends 68 
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on EGF concentration or cell density (Albeck et al., 2013; Aoki et al., 2013). This has led to 69 

the suggestion of frequency-modulated encoding of information about extracellular signal 70 

levels by the RAS/RAF/MEK/ERK network downstream of the EGF receptor (Albeck et al., 71 

2013). In mammary epithelial cells in contrast, pulses of ERK nuclear translocation have a 72 

constant frequency across a range of EGF stimulation levels (Shankaran et al., 2009).  73 

 74 

Here we use a translocation-based sensor (Regot et al., 2014) to measure short timescale 75 

ERK activity dynamics in single ESCs upon continuous FGF stimulation. We find that ERK 76 

activity is pulsatile in ESCs, and develop concepts and analysis methods to quantitatively 77 

characterize dynamic signatures of pulsing. ERK activity pulses in ESCs are faster than any 78 

previously reported ERK dynamics. Pulses occur with high regularity consistent with an 79 

oscillatory behavior in a subset of cells. We detect no pulsing in unstimulated Fgf4 mutant 80 

cells, indicating that ERK pulses are driven by FGF4. Controlling extracellular ligand levels in 81 

the mutant background, we show that individual ERK pulses have a duration that is 82 

independent of ligand levels. However, the extent of the oscillatory behavior increases with 83 

FGF4 dose. Finally, we show that ERK pulsing is more prevalent in the early stages of the cell 84 

cycle. Our data suggest that the FGF/ERK signal transduction system in ESCs transits 85 

between oscillatory and non-oscillatory behavior. 86 

 87 

Results 88 

ERK activity is dynamic in ESCs 89 

We first explored ERK activation in single ESCs under constant culture conditions that 90 

maintain pluripotency. We stained for phosphorylated ERK (pERK) in cells growing in 91 

serum + LIF (S+L) and quantified whole-cell pERK levels. We observed pERK staining in cells 92 

growing in serum + LIF which was absent in the presence of the MEK-inhibitor PD0325901 93 

(MEKi) (Fig. 1A, B). pERK staining was more heterogeneous in serum + LIF than in the MEKi 94 

control. Almost all cells in serum + LIF had pERK staining values above the range covered by 95 

MEKi cells (Fig. 1B).  96 

 97 

The heterogeneous pERK staining in serum + LIF could purely reflect long-term variability 98 

between cells as previously reported (Deathridge et al., 2019). In addition, short-term signaling 99 

fluctuations could contribute to this variability. To test the extent of short-term signaling 100 

fluctuations, we integrated a translocation-based sensor to measure ERK activity in live cells. 101 

We generated this cell line by single copy insertion of the ERK-KTR-mClover construct into 102 

the Hprt open locus (Fig. 1C) to ensure uniformity in expression. Transgenic cells continued 103 
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to express pluripotency markers (Fig. 1 Supp. 1), and transmitted to the germline of chimeric 104 

mice (Simon et al., 2020), indicating that reporter expression does not interfere with 105 

pluripotency and differentiation potential. 106 

 107 

Phosphorylation of the ERK target site of the sensor leads to its export from the nucleus, thus 108 

reporting ERK activity as the cytoplasmic to nuclear (C/N) ratio of reporter localization (Regot 109 

et al., 2014) (Fig. 1C). Snapshots of cells growing in serum + LIF showed that the sensor 110 

preferentially localized to the cytoplasm, in contrast to the MEKi treated control where it was 111 

uniformly distributed (Fig. 1D). Furthermore, the C/N ratio of sensor localization was more 112 

variable between cells growing in serum + LIF compared to the MEKi-treated control (Fig. 1E), 113 

in line with heterogeneous pERK staining. These qualitative similarities between pERK 114 

staining and reporter C/N ratios suggest that the reporter is suited to explore short-term ERK 115 

dynamics in ESCs. 116 

 117 

We next recorded dynamic changes of reporter localization by imaging reporter cells at 20 118 

second time intervals for up to two hours. In these time-lapse movies we could observe 119 

repetitive translocation of the sensor back and forth from the nucleus of cells growing in serum 120 

+ LIF, which were absent in MEKi (Fig. 1F; Supp. Movie S1). To validate that these 121 

observations reflected genuine ERK activity, we transfected two spectrally compatible 122 

orthogonal ERK activity sensors in the same cells. Both sensors showed similar and highly 123 

correlated dynamic behavior (Fig. 1 Supp. 2). These sensors rely on different ERK substrate 124 

sequences, and deploy FRET (Komatsu et al., 2011) and translocation as two distinct read-125 

outs. This indicates that pulsatile nuclear export of the KTR sensor reflects genuine ERK 126 

dynamics.  127 

 128 

To quantify dynamic activity in single cells over time, we measured mean fluorescence 129 

intensity of the negative image in a region of interest within the nucleus (Methods). Thus, high 130 

values of the resulting KTR signal reflect high ERK activity, maintaining consistency with the 131 

representation in Fig. 1E. This analysis confirmed repeated pulses of sensor translocation in 132 

serum + LIF medium, which were suppressed by treatment with MEKi (Fig. 1G, Fig. 1 Supp. 133 

3). We observed a broad range of dynamic behaviors across the population: some cells 134 

showed regular pulsing reminiscent of oscillations (* in Fig. 1G), and some showed isolated 135 

pulses (**). We also observed transitions between non-pulsing and pulsing behavior within the 136 

same cell (***). We conclude that ESCs display a range of pulsatile ERK activity dynamics 137 

when cultured in serum + LIF.  138 

 139 
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 140 
Fig. 1. A targeted translocation sensor reveals pulsatile ERK activity in ESCs 141 

A. Immunostaining of mESCs growing in serum + LIF medium without (top) or with MEKi (bottom) for pERK and 142 
E-Cadherin to mark membranes. The punctate pERK staining within the nucleus is insensitive to MEK inhibition, 143 
suggesting it is non-specific. Scale bar = 20 μm. B. Quantification of fluorescence staining intensities in single cells 144 

stained as in A. n ≥ 100 per condition, green bars indicate medians (MedianS+L=24.39 a.u., MedianMEKi=7.75 a.u.; 145 
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CVS+L=0.67, CVMEKi=0.17), box bounds are the 25 and 75 percentiles of the distributions, and whiskers are the 5 146 
and 95 percentiles. C. Schematic of the ERK-KTR sensor and targeting construct for integration into the Hprt locus. 147 
D. Subcellular localization of ERK-KTR sensor in live cells in serum + LIF without (top) and with MEKi (bottom). 148 
Membranes are stained with live-cell membrane dye CellMaskRed. Scale bar = 20 μm. E. Quantification of 149 
cytoplasmic to nuclear ratio of sensor fluorescence in single cells imaged as in D, green bars indicate medians 150 
(MedianS+L=1.52, MedianMEKi= 1.05; CVS+L=0.18, CVMEKi=0.13), box bounds are the 25 and 75 percentiles of the 151 
distributions, and whiskers are the 5 and 95 percentiles. F. Stills from a movie of ERK-KTR expressing cells growing 152 
in serum + LIF without (top) and with MEKi (bottom). Dashed line indicates cell outlines. G. Representative traces 153 
of the KTR signal obtained as the mean inverted fluorescence intensity within a nuclear ROI in single cells growing 154 
in serum + LIF without (right) and with MEKi (left). 155 

 156 

 157 

 158 
 159 

Intermittent ERK oscillations in ESCs 160 

The broad range of dynamic behaviors that we observed qualitatively across the population 161 

prompted us to systematically investigate the dynamic signatures of ERK activity in ESCs. 162 

 163 

Since ERK activity pulses were a prominent feature of the dynamics, we sought to identify 164 

single pulses in time series. We first annotated the timepoints of local maxima and minima, 165 

and then used timeseries of MEKi treated cells to set a threshold for filtering ERK dependent 166 

pulses from background fluctuations (Fig. 2A, Fig. 2 Supp. 1, Supp. Table T1, Methods). Most 167 

cells (64/69, 93%) showed pulses in serum + LIF, while very few (2/67, 3%) showed any pulse 168 

in MEKi. The total fraction of time that single cells were pulsing was variable: some cells pulsed 169 

continuously, others showed a mixture of pulsing and non-pulsing behavior –termed silent– 170 

and yet others were non-pulsing throughout the experiment (Fig. 2B). On average, cells were 171 

pulsing (32 ± 3)% (mean ± SEM) of the time in serum + LIF alone, but only (0.13 ± 0.09)% of 172 

the time in the presence of MEKi (Fig. 2B). 173 

 174 

To determine general characteristics of pulsing activity in the population, we introduced a set 175 

of quantitative measures: the amplitude and duration of single pulses, and the interpulse and 176 

silence intervals between successive pulses (Fig. 2C). The amplitude of a pulse was defined 177 

as the average difference between the peak value and the neighboring local minima (Fig. 2C). 178 

Our thresholding parameters only filter the tail of the amplitude distribution, containing low 179 

amplitude fluctuations that fall within the range of background levels determined from time 180 

series of MEKi-treated cells (yellow area in Fig. 2D).  181 

 182 
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We defined the duration of a pulse as the time elapsed between the two local minima flanking 183 

the maximum of the pulse (Fig. 2C, Methods). The distribution of pulse durations has a well-184 

defined mode at 6.33 min and is slightly asymmetric (Fig. 2E). We observed no pulses shorter 185 

than 3 min, a timescale much longer than the detection limit of 40 seconds given by our 186 

algorithm and our sampling frequency. The congruence of the KTR and FRET sensors 187 

suggest that the pulse durations that we can capture are not limited by the timescales of sensor 188 

transport (Fig. 1 Supp. 2). Therefore, we conclude that ERK pulses have a minimum duration. 189 

Pulses with long durations tended to have large amplitudes, and those with short durations 190 

clustered at low amplitude values (Fig. 2 Supp. 2). 191 

 192 

The interpulse interval (IPI) was defined as the time between the maxima of two neighboring 193 

pulses (Fig. 2C). The mode of the IPI distribution was 7.67 min, similar to the mode of the 194 

pulse duration (Fig. 2F). This suggests the presence of consecutive pulses, occurring 195 

immediately one after another. Consecutive pulses have either shared minima, or are 196 

separated by intervals of silence that are short relative to their pulse duration. As each 197 

interpulse interval can be decomposed into a silence interval and a joint pulse duration (Fig. 198 

2C, Methods), we used these quantities to define consecutiveness in a way that accounts for 199 

differences in pulse duration. In a plot of joint duration against silence interval duration, sparse 200 

events will lie in the lower right region, while consecutive pulses will populate the upper left. 201 

Here we defined consecutive pairs of pulses as those with a silent interval of less than half the 202 

joint pulse duration (dashed line, Fig. 2G). With this definition, 52% of all pairs of pulses in 203 

cells growing in serum + LIF lay above the threshold and were classified as consecutive (Fig. 204 

2G).  205 

 206 

In summary, our analysis reveals that ERK pulses in ESCs growing in serum + LIF have a 207 

characteristic duration and are often part of consecutive sequences. We interpret this behavior 208 

as intermittent oscillations, where silent periods alternate with isolated pulses and oscillations 209 

– here defined as consecutive pulses with a characteristic duration. 210 

 211 
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 212 

 213 
Fig. 2. Time series analysis reveals intermittent ERK oscillations in ESCs 214 

A. Pulse recognition in representative time series of ERK dynamical activity. Shown are smoothened single cell 215 
traces of KTR signal in the serum + LIF condition. Pulses are indicated by the maxima (blue dots) and 216 
corresponding minima (black dots) that define them. Bar at the bottom indicates pulsing (green) or non-pulsing 217 
(grey) intervals in the lower trace. B. Left: fraction of time that individual cells spent pulsing (green) or non-pulsing 218 
(grey) in serum + LIF alone (top) or upon addition of MEKi (bottom). Right: Average time that cells were pulsing 219 
(green) or non-pulsing (gray) in the cell population. Error bar indicates SEM. C. Dynamical features of the time 220 
series analyzed in D-G are indicated on a sample trace portion (gray rectangle in A). D. Pulse amplitude distribution 221 
for the serum + LIF condition (n = 289 pulses). E. Pulse duration distribution for the serum + LIF condition (n = 289 222 
pulses). F. Interpulse interval distribution for the serum + LIF condition (n = 225 pairs of pulses). Pulse recognition 223 
resolution limit (yellow bar) and quartiles (Q) 25, 50 and 75 are indicated in D-F, and histograms are normalized to 224 
1. G. Joint pulse duration vs. silence intervals for successive pairs of pulses in the serum + LIF condition (n = 225 225 
pairs of pulses). The dashed line with slope 2 classifies pairs of pulses into consecutive (above) and non-226 
consecutive (below). The axes range was adjusted to better resolve individual data points, leaving off the scale 27 227 
out of 225 data points. Data in D-G from N = 69 cells.  228 

 229 

 230 

 231 

ERK oscillations are driven by FGF4 232 

ERK activity is dynamic in many cell types (Albeck et al., 2013; Aoki et al., 2017; de la Cova 233 

et al., 2017; Goglia et al., 2020; Hiratsuka et al., 2015; Mayr et al., 2018; Pokrass et al., 2020; 234 

Shankaran et al., 2009; Simon et al., 2020). Extracellular signals can change the 235 

characteristics of these dynamics, such as pulse frequency (Albeck et al., 2013; Aoki et al., 236 

2013). In ESCs, FGF4 is the main ligand that activates ERK (Kunath et al., 2007). We therefore 237 
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 9 

asked how ERK dynamics depend on FGF4 concentration. To be able to control FGF4 238 

concentration externally, we introduced an Fgf4 loss of function mutation in the sensor line. In 239 

the chemically defined N2B27 medium that contains only minimal amounts of recombinant 240 

growth factors, Fgf4 mutant cells were viable, but pERK levels were strongly reduced (Supp. 241 

Movie S2, Fig. 3 Supp. 1A). For stimulation, we chose FGF4 concentrations from 2.5 to 20 242 

ng/ml. These concentrations cover the dynamic range of FGF4-response at the level of ERK 243 

phosphorylation (Fig. 3 Supp. 1B, C), transcription of an FGF/ERK-dependent reporter gene 244 

(Fig. 3 Supp. 1D, E), and differentiation along the primitive endoderm lineage (Raina et al., 245 

2020). To measure the steady-state signalling response to different ligand levels, we pre-246 

treated cells with the respective FGF4 concentrations for 24 h in pluripotency conditions, and 247 

replenished the medium 4 h before starting the recording (Fig. 3A, Methods). In the absence 248 

of FGF4 stimulation, we observed almost no pulsing. Widespread pulsatile activity was 249 

observed at all FGF4 concentrations tested, indicating that FGF4 triggers ERK pulsing (Fig. 250 

3B, Fig. 3 Supp. 2, Supp. Movie S2). To identify pulses, we employed a similar strategy as 251 

above, setting a threshold based on the untreated condition and the highest FGF4 252 

concentration (Fig. 3 Supp. 3, Methods). 253 

 254 

The distribution of sensor pulse amplitudes was not significantly different amongst the three 255 

concentrations (Fig. 3 Supp. 4A, Methods, Supp. Table T2). However, immunostaining and 256 

single cell analysis revealed that the median, the lower end, as well as the variance of the 257 

pERK distributions shifted to larger values with increasing FGF concentration (Fig. 3 Supp. 258 

4B, C). Thus, it is possible that the amplitude of pERK pulses increases with FGF 259 

concentration, without translating into a measurable increase in sensor pulse amplitude.  260 

 261 

The total fraction of time that single cells were pulsing increased with FGF4 concentration in 262 

the range from 0 to 5 ng/ml (Fig. 3C), to levels similar to those measured in wild type cells in 263 

serum + LIF. We wondered how the number of pulses and their duration contributed to this 264 

increase in pulsing time. We defined a single cell pulse rate as the number of pulses divided 265 

by the duration of the trace, and found that it increases with FGF4 concentration in the same 266 

range (Fig. 3D). The distribution of pulse durations overlapped between the three FGF4 267 

concentrations, and their modal values were conserved (Fig. 3E). We observed a subtle trend 268 

towards narrower distributions with higher FGF4 concentrations, yet these were significantly 269 

different only between the 2.5 ng/ml and 20 ng/ml conditions (Supp. Table T2, Methods). Thus, 270 

the increase in pulsing time is largely due to an increase in pulse rate rather than pulse 271 

duration. In line with stable pulse durations, the IPI distributions had a similar modal value of 272 

about 7 min in all conditions. However, IPIs became more narrowly distributed with increasing 273 
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FGF4, with a clear difference between 2.5 and 20 ng/ml FGF4 (Fig. 3F, Supp. Table T2). 274 

Narrower IPI distributions at high FGF concentrations indicated more regular pulsing. 275 

 276 

To determine whether the extent of consecutive pulsing was controlled by FGF4, we plotted 277 

joint pulse duration against silence interval duration (Fig. 3G). In the population, the fraction 278 

of consecutive pulses increased steadily across the entire FGF concentration range from 279 

49.2% (2.5 ng/ml) to 57.6% (5 ng/ml), and 63.9% (20 ng/ml). We counted isolated and 280 

consecutive pulses in single cell traces to evaluate their contribution to this population 281 

behavior. Here, isolated pulses include those from non-consecutive pairs as well as those 282 

from traces with single pulses in which no silence intervals were defined. The proportion of 283 

cells showing only isolated pulses decreased from 43% (17 out of 40) at 2.5 ng/ml FGF4 to 284 

18% (10 out of 56) and 24% (16 out of 65) at 5 ng/ml and 20 ng/ml, respectively. In the cells 285 

that showed consecutive pulsing, the fraction of consecutive pulses increased with FGF4 286 

across the entire concentration range that we tested (Fig. 3H). 287 

 288 

In summary, these results reveal that ERK pulses have a characteristic duration that is 289 

independent from FGF4 concentration. The increase of both pulse rate and consecutiveness, 290 

together with the narrowing of duration distributions, suggest that FGF dose controls the extent 291 

as well as the precision of ERK oscillations.  292 
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 293 
Fig 3. Pulsing and regularity of ERK activity are controlled by FGF4 dose 294 

A. Schematic of experimental protocol to measure the steady state signaling response to defined FGF4 ligand 295 
levels. B. Representative traces of smoothened time series of ERK dynamical activity in single Fgf4 mutant cells 296 
stimulated with different FGF4 doses. C. Left: Fraction of time that individual cells stimulated with different 297 
concentrations of FGF4 spent pulsing (blue), or non-pulsing (grey). Right: Average time that cells in the population 298 
were pulsing (blue) or non-pulsing (gray). Error bar indicates SEM. D. Pulse rate boxplots at different concentrations 299 
of FGF4. E. Pulse duration distributions. The number of pulses was n = 164 (2.5ng/ml), n = 426 (5ng/ml) and n = 300 
544 (20ng/ml). F. Distributions of interpulse intervals between pairs of successive pulses. The number of 301 
successive pulses was n = 124 (2.5ng/ml), n = 370 (5ng/ml) and n = 479 (20ng/ml). Pulse recognition resolution 302 
limit (yellow bar) and quartiles (Q) 25, 50 and 75 are indicated in E and F, and histograms are normalized to 1. G. 303 
Joint pulse duration vs. silence intervals for successive pairs of pulses. The slope 2 dashed line classifies pairs of 304 
pulses into consecutive (above) and non-consecutive (below). The axes range was adjusted to better resolve 305 
individual data points, leaving off the scale 6 of 124 (2.5ng/ml FGF4), 26 out of 370 (5ng/ml FGF4) and 33 out of 306 
479 (20ng/ml FGF4) data points. Number of cells in C–G: N = 61 (0ng/ml FGF4), N = 48 (2.5ng/ml FGF4), N = 57 307 
(5ng/ml FGF4) and N = 69 (20ng/ml FGF4). H. Ratio of consecutive pulses to the total number of pulses in single 308 
cells. Number of cells was N = 41 (2.5 ng/ml), N = 56 (5 ng/ml) and N = 67 (20 ng/ml), cells with no pulses were 309 
not included. Box plots (D, H): Black dots represent individual cells, color bars are the median, box bounds are the 310 
25 and 75 percentiles of the distributions, and whiskers are the 5 and 95 percentiles.  311 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.422687doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422687
http://creativecommons.org/licenses/by/4.0/


 12 

 312 

 313 

ERK pulses are more prevalent early in the cell cycle 314 

We noted that within the same experimental condition, there was significant cell-to-cell 315 

variability in pulsing activity (Fig. 2B, Fig. 3C). This observation could result from stable 316 

differences in pulsing behavior between cells. Alternatively, single cells could transition back 317 

and forth between pulsing and non-pulsing states, which would show up as different behaviors 318 

when observation times are limited in comparison to the characteristic times of such 319 

transitions. To identify changes in pulsing behavior of single cells over longer timescales, we 320 

recorded movies for 18 hours such that cells could be followed from birth to division (Fig. 4A, 321 

Fig. 4 Supp. 1). Increasing the frame intervals to 105 s reduced overall light exposure, while 322 

still allowing to resolve pulses that are at least 3.5 min apart. We recorded pulsing in wild type 323 

cells growing in N2B27 medium, thereby exclusively focusing on pulsing driven by paracrine 324 

FGF4 signaling, and avoiding possible ligand depletion that could occur with exogenous 325 

FGF4. We established an alternative peak-finding approach to quantify and annotate these 326 

low temporal resolution traces (Fig. 4B, Fig. 4 Supp. 2, Methods). We made raster plots 327 

showing occurrence of pulses in cells that we could follow from immediately after cell division 328 

(Fig. 4C). Visual inspection of these raster plots suggested that pulses were concentrated 329 

towards the beginning of the cell cycle. A change in pulsing activity over time could be a 330 

consequence of cell cycle effects on pulsing, or it could result from non-stationary 331 

experimental conditions.  332 

 333 

To visualize the contributions from these two possible causes, we introduced a two-334 

dimensional time map. The coordinates in this map are experimental time 𝑇", which is time 335 

measured from the beginning of the time lapse movie and 𝑇#, the time relative to individual 336 

cell birth. For each cell i, the trace begins at 𝑇#$ = 	0 and experimental time 𝑇"$, the time when 337 

cell i was born measured from the beginning of the movie. From this point in the map, individual 338 

traces would fall along a diagonal line of unit slope. To reveal the population behavior and 339 

avoid superposition of individual traces in the map, we plot pulse rate averaged in 70 min bins 340 

along both axes. In each bin, we count the total number of pulses from all traces in that bin 341 

and divide by the total number of minutes of recording that contribute to that bin. On this pulse 342 

rate map, cell cycle effects would manifest as a rate change in the horizontal direction (Fig. 343 

4E, upper panel) while non-stationary experimental conditions would manifest as a change in 344 

rate in the vertical direction (Fig. 4E, lower panel). 345 

 346 
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Inspection of the pulse rate time map revealed a higher pulse rate at the bottom left of the plot 347 

that decreased both towards the right and the top (Fig. 4F). This behavior indicates that pulse 348 

rate decays across the cell cycle, in addition to effects of non-stationary experimental 349 

conditions. To quantify this observation, we further binned pulse rate at larger timescales (Fig. 350 

4G). In this coarse-grained map, pulse rate within the same experimental time window was 351 

consistently higher in cell populations which were earlier in their cell cycles. We obtained 352 

similar results when applying an alternative detrending strategy (Fig. 4 Supp. 2, Fig. 4 Supp. 353 

3), as well as when analyzing cells growing in serum + LIF medium (Fig. 4 Supp. 4). Taken 354 

together, these results confirm that cells are more prone to pulse earlier in their cell cycle. 355 

 356 

 357 

 358 
Fig. 4. ERK pulsing is more prevalent early in the cell cycle 359 

A. Schematic of experimental protocol to record ERK peaks across complete cell cycles. B. Montage of an ESC 360 
colony expressing the ERK-KTR sensor over the course of a long-term imaging experiment. Scale bar = 20 μm. C. 361 
Representative filtered traces of ERK dynamical activity with identified peaks (black dots), in single wild type cells 362 
growing in N2B27 medium. D. Raster plot displaying the timing of ERK activity peaks across the cell cycle. 363 
Lavender horizontal bands extend from birth to division of single cells, dark vertical bars represent peaks. Single 364 
cell tracks begin immediately after a cell division event and are plotted relative to absolute experimental time. E. 365 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.422687doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422687
http://creativecommons.org/licenses/by/4.0/


 14 

Schematic representation of expectations for a reduction of pulsing activity due to cell cycle (top) and due to 366 
changing experimental conditions (bottom) in the 2-dimensional color-encoded pulse rate map. F. Pulse rate map 367 
for the data shown in D. Time is discretized into 70 min bins. G. Coarse grained pulse rate map showing average 368 
pulse rate and its estimated error with 420 min binning.  369 

 370 

Discussion 371 

Here we report fast pulses of ERK activity in mouse embryonic stem cells under a continuous 372 

stimulation regime. We demonstrate that this pulsing activity is consistent with oscillations, 373 

with transitions between silent and oscillatory states in single cells. Oscillations are driven by 374 

FGF4. Across a range of FGF4 ligand concentrations, we find oscillations with similar 375 

individual pulse durations. With increasing FGF4 concentrations, the distribution of interpulse 376 

intervals becomes narrower and the fraction of consecutive pulses increases, suggesting more 377 

regular oscillations.  378 

 379 

The detection of signal-dependent ERK activity dynamics on short time scales in ESCs was 380 

made possible by combining the KTR sensor with high time-resolution recordings. A previous 381 

study which examined ERK dynamics upon acute stimulation focused on long term activity 382 

and did not resolve the short-timescale oscillations that we report here (Deathridge et al., 383 

2019). These previously undetected dynamics have a modal interpulse interval of 384 

approximately 7 minutes (that is, about 8 pulses per hour), and are thus much faster than in 385 

any other cell system described so far.  386 

 387 

Both paracrine and recombinant FGF4 stimulation of ESCs trigger oscillatory ERK activity with 388 

similar timescales of pulse duration and IPI, indicating that oscillations emerge in the 389 

intracellular signal transduction network, similar to the situation in other cell lines (Sparta et 390 

al., 2015). The short frequencies of ERK oscillations in ESCs further support the notion that 391 

they are driven by short-timescale delayed feedbacks such as post-translational modifications 392 

at the receptor level (Sparta et al., 2015), or at various levels within the MAPK cascade (Lake 393 

et al., 2016; Lemmon et al., 2016). 394 

 395 

Pulsatile ERK activity in single cells upon continuous stimulation of RTKs has been reported 396 

in many cell types (Albeck et al., 2013; Goglia et al., 2020; Shankaran et al., 2009), indicating 397 

that the tendency to generate time-varying ERK activity patterns is a general feature of RTK 398 

signal transduction. In addition to the timescales, the dynamic signatures of FGF-triggered 399 

ERK pulses in ESCs however differ markedly from those observed in most other contexts. 400 
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 401 

ERK pulses in ESCs have well-defined durations and narrowly distributed IPIs, consistent with 402 

oscillations. This is in contrast to the more irregular, stochastic pulsing reported in several 403 

immortalized cell lines and keratinocytes (Albeck et al., 2013; Aoki et al., 2013; Goglia et al., 404 

2020). Regular oscillations of ERK nuclear import and export have been reported in mammary 405 

epithelial cells (Shankaran et al., 2009). In these cells, the frequency of ERK oscillations is 406 

insensitive to ligand levels over a wide range (Shankaran et al., 2009), similar to what we find 407 

upon titrating FGF4 in ESCs. Remarkably, across a wide range of ligand levels ESC 408 

populations contain a mixture of oscillating and non-oscillating cells as well as cells that 409 

transition between these regimes. This suggests that the FGF/ERK signal transduction system 410 

in ESCs is organized in the vicinity of a transition point between a non-oscillatory and 411 

oscillatory state. In this framework, increasing FGF4 levels would bring the system closer to 412 

this point. Similarly, the decay of ERK pulsing across the cell cycle can be interpreted as cells 413 

shifting away from the oscillatory to a non-oscillatory state, possibly through changes in the 414 

surface-to-volume ratio or cell cycle-dependent expression of components of the FGF/ERK 415 

signaling system. Such positioning close to a transition between oscillatory and non-oscillatory 416 

behavior has been described in hair cells of the cochlea (Camalet et al., 2000; Eguíluz et al., 417 

2000), the actin system of Dictyostelium (Westendorf et al., 2013), and isolated cells of the 418 

growing vertebrate body axis (Webb et al., 2016), suggesting that this is a generic principle. 419 

The mechanism that positions the FGF/ERK signaling system in ESCs close to this transition 420 

point, the molecules involved, and the possible physiological relevance of being close to this 421 

transition, remain to be identified.  422 

 423 

In cell systems that show stochastic ERK pulsing, increasing ligand levels leads to shorter 424 

interpulse intervals and hence to an increase in pulse rate (Albeck et al., 2013). This has been 425 

interpreted as frequency-modulated (FM) encoding of ligand concentration. In ESCs, the mode 426 

of the interpulse intervals is largely independent from FGF4 concentration, and pulse rate in 427 

the population increases mostly as a consequence of an increase in the fraction of time that 428 

individual cells spend pulsing. Thus, the FM-encoding model proposed for stochastic ERK 429 

pulsing is unlikely to apply in differentiating ESCs. 430 

 431 

Still, the signalling dynamics that we report here reflect the cell type-specific organization of 432 

the FGF/ERK system in ESCs. While single cell models for FM-encoding are based on 433 

excitable dynamics arising from a combination of positive and negative feedback loops (Aoki 434 

et al., 2013; Tsai et al., 2008), oscillations with regular interpulse intervals require delayed 435 

negative feedback only (Novák and Tyson, 2008). Frequency-modulated ERK pulses are often 436 
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found downstream of the EGF receptor, for which autocatalysis provides a positive feedback 437 

mechanism (Koseska and Bastiaens, 2020). Positive feedback might be less prominent for 438 

the FGF receptor in ESCs, such that ERK dynamics is dominantly shaped by negative 439 

feedback. Negative feedback in the RAF-MEK-ERK cascade sets the ligand dose response 440 

range, and linearizes signal transduction despite non-linear signal amplification (Sturm et al., 441 

2010). In ESCs and cells of the early embryo, the proportion of differentiated cell types 442 

smoothly depends on FGF4 concentration (Krawchuk et al., 2013; Raina et al., 2020). The 443 

oscillatory ERK activity that we detect here might be a consequence of negative feedback 444 

mechanisms that have evolved to tune the response range of the signal transduction system 445 

to the physiologically relevant range of paracrine FGF4 concentration, and faithfully transmit 446 

this information to the transcriptional level. Interfering with candidate mechanisms for negative 447 

feedback will be required to establish the connections between network architecture, 448 

oscillations, and cell differentiation.   449 

 450 

Our identification of heterogeneous signaling dynamics adds another dimension to the 451 

phenomenon of cellular heterogeneity which is a hallmark of embryonic stem cell cultures in 452 

vitro (Canham et al., 2010; Chambers et al., 2007; Hayashi et al., 2008; Singh et al., 2007; 453 

Toyooka et al., 2008). Consistent with the well-known increase in cellular heterogeneity in 454 

serum + LIF (Kalkan and Smith, 2014), we observe a broader distribution of IPI in this culture 455 

condition compared to defined conditions. Heterogeneities in stem cell cultures have 456 

classically been attributed to the noisy activity of gene regulatory networks that control cell 457 

state. Correlating signaling dynamics with the state of transcriptional networks over time will 458 

be required to discern how signaling heterogeneities are causally related to these 459 

transcriptional cell states.  460 

 461 
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 471 

Methods 472 

 473 

Cell culture 474 

mESCs were routinely cultured on 0.1% gelatin (Sigma Aldrich)-coated tissue culture flasks in 475 

serum + LIF medium composed of GMEM (ThermoFisher), 10% batch-tested fetal bovine 476 

serum (FBS) (Sigma Aldrich), 1x GlutaMAX (ThermoFisher), 1 mM sodium pyruvate 477 

(ThermoFisher), 1x non-essential amino acids solution (ThermoFisher), 100 µM 2-478 

mercaptoethanol (ThermoFisher) and 10 ng/ml LIF (MPI protein expression facility). Cells 479 

were passaged every two to three days using 0.05% Trypsin (PAN Biotech). Basal medium 480 

for serum free culture was N2B27, prepared as a 1:1 mixture of DMEM/F12 (PAN Biotech) 481 

and Neuropan basal medium (PAN Biotech) with 0.5% BSA, 1x N2 and 1x B27 supplements 482 

(ThermoFisher) and 50 µM 2-mercaptoethanol. For FGF stimulation experiments, short-term 483 

serum-free culture was carried out in N2B27 supplemented with 3 µM CHIR99201 (Tocris), 1 484 

µg/ml of Heparin (Sigma) and with or without 10 ng/ml LIF as indicated. Recombinant human 485 

FGF4 used was obtained from Peprotech. For live imaging and immunostaining studies, cells 486 

were seeded on polymer-bottomed ibidi µ-slides (ibidi) coated with 20 µg/ml fibronectin. 487 

 488 

Cell lines  489 

All KTR-expressing cell lines used in this study were derived from E14tg2a (Hooper et al., 490 

1987). Targeting of the ERK-KTR-Clover construct into the Hprt locus has been described 491 

elsewhere (Simon et al., 2020). Mutagenesis of the Fgf4 gene was performed by co-492 

transfection of a CRISPR-construct and a repair template introducing a nonsense and a 493 

frameshift mutation as previously described (Morgani et al., 2018). Clones with the desired 494 

mutation were identified by restriction digest and Sanger sequencing of a PCR fragment 495 

encompassing the Fgf4 start codon. Clonal cell lines were tested for their chromosome count 496 

using standard procedures (Nagy et al., 2008), and only cell lines with a modal count of n = 497 

40 were used for analysis. Fgf4-/-, Spry4H2B-Venus/H2B-Venus cells to evaluate transcriptional 498 

activation downstream of recombinant FGF4 have been described (Morgani et al., 2018). 499 

 500 

 501 

Dual reporter experiments 502 

The ERK-KTR-mCherry construct for transient expression was prepared by first inserting the 503 

coding sequence for ERK-KTR (Regot et al., 2014) into a CMV-driven mCitrine C1 expression 504 

vector (TaKaRa), and then replacing the fluorophore for mCherry. The plasmid for transient 505 
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expression of EKAREV-NLS has been described (Komatsu et al., 2011). 1.5 µg each of 506 

plasmid were transiently transfected into E14tg2A mouse stem cells using Lipofectamine 2000 507 

(ThermoFisher) in suspension according to manufacturer’s instructions. Cells were plated on 508 

fibronectin-coated ibidi slides and imaged 24h after transfection.  509 

 510 

Western blotting 511 

Cells were grown to confluency on fibronectin-coated tissue culture dishes and exposed to 512 

indicated experimental conditions. Cells were briefly washed twice with ice-cold PBS 513 

supplemented with 1 mM activated sodium orthovanadate and then lysed using commercially 514 

available lysis buffer (Cell Signaling) supplemented with benzonase (ThermoFisher), 515 

phosphatase inhibitor cocktail 2 and 3 (Sigma), and cOmplete EDTA-free protease inhibitor 516 

cocktail (Roche). Lysates were snap-frozen in liquid nitrogen. Protein concentration was 517 

estimated using a micro-BCA assay (ThermoFisher), and lysates were denatured by adding 518 

appropriate amounts of 5x Laemelli buffer and boiling for 5 min. 10 or 20 μg protein was loaded 519 

across all wells in any given gel. Bis-Tris SDS gels were run with 1x MOPS buffer 520 

(ThermoFisher) with fresh sodium bisulfite, and subsequently transferred onto methanol-521 

activated PVDF membranes (Millipore) at 40 V for 1.5 h with the NuPage transfer system 522 

(ThermoFisher). Primary antibodies used were anti-Tubulin 1:5000 (T6074, Sigma), anti-523 

pERK1/2 1:1000 (4370S, Cell Signaling), and anti-total ERK1/2 1:1000 (ab36991, Abcam) 524 

along with appropriate secondary antibodies (LI-COR). Bands were detected using the 525 

Odyssey CLx imaging system (LI-COR). Bands were quantified using FIJI/ImageJ (Rueden et 526 

al., 2017). For quantification of pERK and total ERK, integrated intensity in both ERK1 and 527 

ERK2 bands was added.  528 

 529 

Immunostaining 530 

For pERK immunostaining, cells were fixed for 15 min at 37ºC by diluting fixative stocks 531 

directly into cell culture medium to a final concentration of 4% PFA and 0.01% glutaraldehyde 532 

(Sigma). After a brief wash with PBS, cells were permeabilized with 100% methanol at -20ºC. 533 

For all other antibodies, fixation was performed with 4% PFA at room temperature for 20 min. 534 

Cells were washed with PBS and then simultaneously blocked and permeabilized with 5% 535 

normal goat serum (ThermoFisher) in 0.5% Triton X-100 (Serva) in PBS for 60 min. Antibody 536 

staining was carried out overnight at 4ºC in PBS + 0.1% Triton X-100 and 1% BSA (Sigma). 537 

Primary antibodies used were anti-pERK1/2 1:200 (4370S, Cell Signaling), anti-E-Cad 1:200 538 

(M108, clone ECCD-2, TaKaRa), anti-Nanog 1:200 (eBIO-MLC51), anti-POU5F1 1:200 (C-539 

10, sc-5279, Santa Cruz), along with appropriate secondary antibodies. Hoechst 33342 was 540 

used at 1µg/ml to counter-stain nuclei, and CellMaskRed (ThermoFisher) was used to label 541 
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membranes according to manufacturer’s instructions. After staining, samples were covered 542 

with 200 µl of antifade composed of 80% w/v glycerol with 4% w/v N-propyl gallate and stored 543 

at 4ºC. Images were analyzed using custom scripts in MATLAB (The Mathworks) and 544 

Fiji/ImageJ for the detection of nuclei as well as an active-contours based identification of 545 

membranes. 546 

 547 

Flow cytometry 548 

Cells were grown on fibronectin-coated dishes in N2B27 supplemented with 3 µM CHIR99201, 549 

1 µM PD0325901 and 10 ng/ml LIF (2i + LIF) for 3 days. For stimulation, cells were washed 550 

2x with PBS, and FGF4 was added at indicated concentrations in serum-free N2B27 medium 551 

supplemented with 3 µM CHIR99201 and 1 mg/ml Heparin for 24 h. Cells were then 552 

trypsinized and fixation was performed in suspension with 4% paraformaldehyde at room 553 

temperature for 15 min. After a brief wash in PBS, cells were resuspended in PBS + 1% BSA 554 

and analyzed on a BD-LSR II (BD Biosciences) flow cytometer. Data was analyzed in FlowJo 555 

(BD Biosciences). 556 

 557 

Live cell imaging and cell tracking 558 

ERK-KTR expressing cells were cultured on ibidi µ-slides, and imaged on a Leica SP8 559 

confocal microscope equipped with an incubation chamber and CO2 supply to maintain 560 

temperature at 37°C, CO2 at 5%, and relative humidity at 80%. 4 h before acquisition, live-cell 561 

nuclear dye SiR-Hoechst 652/674 (Spirochrome) was added to facilitate tracking of cells. SiR-562 

Hoechst was added at a final concentration of 500 nM for short-term time-lapse experiments, 563 

and 250nM for long-term time-lapse experiments. Fluorophores were excited with a 504nm 564 

line from a white-light laser (Leica), and images of the KTR-Clover and the nuclear marker 565 

were simultaneously captured through a 63x 1.4 N.A. oil objective. For short-term (~2 h) 566 

imaging experiments, single frames were acquired once every 20 s, with an XY resolution of 567 

0.251 nm, with a pixel dwell time of 2.6 μs, and a pinhole of 2.4 airy units. For long term (~19 568 

h) imaging experiments, to minimize overall light exposure single frames were acquired once 569 

every 105 s, with an XY resolution of 0.401 nm, with a pixel dwell time of 3.1 μs, and a pinhole 570 

of 2.6 airy units. Images were processed with custom MATLAB scripts to enhance contrast 571 

and highlight nuclei to facilitate automatic tracking. Tracking was performed using the 572 

Trackmate plugin (Tinevez et al., 2017) for FIJI/ImageJ. Tracking was initially performed 573 

automatically for the entire colony, and tracks were subsequently manually curated frame-by-574 

frame by removing any cells that did not display a typical ESC morphology with a small 575 

cytoplasm and round, well-defined nuclei. We also removed cells that left the field of view, and 576 

adjusted tracking in individual frames for incorrectly identified nuclei. We inverted fluorescence 577 
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values to obtain the negative image, and then measured mean fluorescence intensities in a 578 

region of interest (ROI) of variable size within each tracked nucleus. In these KTR signal 579 

traces, low intensity values correspond to low ERK activity and high intensity values indicate 580 

high ERK activity. For the short-term imaging, tracks started at the beginning of the movie and 581 

extended until the end of the movie, or until cell division. As the long-term imaging experiments 582 

were designed to capture the entire cell cycle, tracks started in the first frame following cell 583 

division where a cell could be tracked, and ended at cell division. In these experiments, we 584 

kept tracks of cells that left the field of view, but only if they were observed for longer than 585 

4.5 h.  586 

 587 

Time series preprocessing 588 

We screened and corrected time series for tracking errors, such as ROIs placed partially 589 

outside the nucleus or overlapping with a nucleolus. Because these structures have 590 

fluorescence intensities that usually differ from that of the nucleoplasm, these tracking errors 591 

usually led to an increase in the variance of the pixel intensity across the ROI. We screened 592 

time series for high variance regions, checked the tracking for all instances where the variance 593 

crossed a manually set threshold value, and corrected the tracking if this was required. 594 

 595 

Just before cell division, the sensor was excluded from the nucleus, resulting in a pulse of the 596 

KTR signal at the end of dividing cells tracks (for example cells 30, 31, 41 and 50 in the serum 597 

+ LIF condition without MEKi (Fig. 1 Supp. 2)). As this pulse of reporter exclusion was 598 

insensitive to MEK inhibition, it is unlikely reporting ERK activity and we therefore decided to 599 

trim these events from all traces. While most cells divided in the long-term measurements, 600 

only a few did it in short-term measurements. Correspondingly, in short-term measurements 601 

we deleted the last 20 frames (about 7 min) of the time series of dividing cells only. In the long-602 

term measurements, where most cells divided, we discarded the last 15 frames (20.25 min) 603 

of each time series. 604 

 605 

Analysis of ERK dynamics in short-term high resolution datasets  606 

 607 

Pulse recognition 608 

We defined a pulse as a local maximum between two local minima, imposing two conditions: 609 

(i) we required amplitude to be larger than a threshold amplitude 𝐴)*, and (ii) slope to be larger 610 

than a threshold slope 𝑣)*. The amplitude and slope thresholds are free parameters of the 611 

algorithm. These free parameters were set through a quantitative threshold analysis protocol 612 

described below and were specific for each dataset (Supp. Table T1).  613 
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 614 

To remove high frequency noise that interfered with the performance of the pulse detection 615 

algorithm, we first smoothed the time series (Fig. 2 Supp. 1, Fig. 3 Supp. 3). We filtered the 616 

highest frequencies in the data using a moving average window of 3 frames of duration. That 617 

is, for each KTR signal value 𝑥$ of the time series, we computed the average value  618 

 619 

𝑥-. =
/
0
(𝑥$2/ + 𝑥$ + 𝑥$4/),  620 

 621 

where 𝑖 is the frame number. At the boundaries we considered average windows of 2 and 1 622 

frames. Note that detrending was not required in the case of this data. 623 

 624 

We first searched the time series for all the local maxima and minima. We compared each 625 

value 𝑥-.  of the time series with its immediate neighbours 𝑥7$2/ and 𝑥7$4/. The initial value 𝑥78 was 626 

compared only with the next value 𝑥7/, and the last value 𝑥79 with the previous one 𝑥792/ (Fig. 2 627 

Supp. 1, Fig. 3 Supp. 3). We discarded the first maximum if there was no minimum on its left, 628 

and the last maximum if there was no minimum on its right. In this way we defined a subset of 629 

data points consisting of the maxima 𝑀 = {	𝑗	|	𝑥7> 	> 𝑥7>±/}, and the subset of minima 𝑚 =630 

{	𝑗	|	𝑥7> 	< 𝑥7>±/}. From the definition, it follows that the minimum distance |𝑖 − 𝑗| between two 631 

maxima 𝑥7$, 𝑥7> ∈ 𝑀 is 2 frames, and the minimum distance |𝑘 − 𝑙| between two minima 𝑥7I,632 

𝑥7J ∈ 𝑚 is 2 frames.  633 

 634 

To identify pulses from this set of maxima we applied two filters, one for pulse amplitude and 635 

another one for pulse slope. To implement the pulse amplitude and pulse slope filters we 636 

considered each maximum of the time series, from left to right. For each maximum 𝑗 ∈ 𝑀 of 637 

𝑥7>, we searched for the first minimum to its left 𝑘 ∈ 𝑚 such that the resulting left amplitude 638 

𝐴>
J"K) = 𝑥7> − 𝑥7I was larger than the amplitude threshold 𝐴>

J"K) ≥ 𝐴)* and the left slope was 639 

larger than the slope threshold 𝑣>
J"K) ≥ 𝑣)* (see threshold analysis protocol below). The left 640 

slope was defined as 𝑣>J"K) = 𝐴>J"K)/𝑑𝑡>J"K), where	𝑑𝑡>
J"K) = 𝑗 − 𝑘 is the left pulse duration. 641 

Similarly, we searched the first minimum to the right that verified 𝐴>
T$U*) ≥ 𝐴)* and	𝑣>

T$U*) ≥ 𝑣)*. 642 

We next removed overlapping pulse candidates: if the right minimum of the first pulse occurred 643 

later than this new left minimum of the second one, we discarded the pulse that had the smaller 644 

amplitude Y𝐴$
J"K) 	+ 	𝐴$

T$U*)Z/2 (Fig. 2 Supp. 1, Fig. 3 Supp. 3). 645 

 651 
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Threshold analysis protocol 652 

Pulse recognition depends on the free parameters for amplitude threshold 𝐴)* and slope 653 

threshold 𝑣)*. To rationally set values for these two threshold parameters, we first focused on 654 

the negative control condition for each respective experiment, where ERK pulsing was 655 

minimal. We determined parameter combinations for which a fixed, low number of pulses was 656 

detected in the negative control, and then selected specific parameter values that maximized 657 

the number of pulses recognized in the experimental condition where ERK was most active 658 

(Supp. Table T1). 659 

 660 

We started by establishing a two-dimensional exploratory parameter space for each dataset 661 

(Supp. Table T1). For each combination of parameters (𝐴)*\ 	, 𝑣)*
9 ) on the exploratory parameter 662 

space, we run the pulse detection algorithm described in the previous section for the negative 663 

control and computed the averaged pulse rate  664 

 665 

𝛿^ =
𝟏
𝑵
∑ 𝒏𝒋

𝑳𝒋
𝑵
𝒋e𝟏  ,  666 

 667 

where N is the total number of cells in the negative control, 𝑛> is the number of detected pulses 668 

for cell j and 𝐿> is the length of the time series (Fig. 2 Supp. 1). We then introduced exploratory 669 

level curves across the parameter space by fixing average pulse rate values 𝛿^ = 	𝛿^∗	 in the 670 

negative control (Supp. Table T1). This restricted parameter combinations to curves in the 671 

exploratory parameter space (Fig. 2 Supp. 1, Fig. 3 Supp. 3). Next, for each (𝐴)*
\i, 𝑣)*

9i) 672 

combination on each exploratory level curve 𝑘, we applied the pulse recognition algorithm on 673 

the experimental condition where ERK was most active. The plot of pulse rate along this level 674 

curve showed a flat region of similarly high pulse detection. Within this region, we chose 675 

parameters pairs that filtered out spurious pulses that were flat and long from the negative 676 

control. This resulted in a pair of parameters (𝐴)*	, 𝑣)*) specific for each experiment (Fig. 2 677 

Supp. 1, Fig. 3 Supp. 3, Supp. Table T1). 678 

 679 

Quantitative pulse dynamics characterization 680 

To characterize dynamical activity of the time series, we introduced a set of quantitative 681 

measures (Fig. 2D). For each pulse 𝑃$ in the set of pulses 𝑃 = {	𝑃> = (𝑗, 𝑘>, 𝑙>)	|	𝑃>	𝑖𝑠	𝑎	𝑝𝑢𝑙𝑠𝑒	} 682 

we defined the pulse amplitude 𝐴$ as the average of its right and left amplitudes  683 

 684 

𝐴$ = 	
/
p
Y𝐴$

J"K) 	+ 	𝐴$
T$U*)Z. 685 
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 686 

Pulse duration 𝑑𝑡$ was defined as the distance between the two minima that define the pulse 687 

 688 

𝑑𝑡$ = 	 𝑑𝑡$
J"K) + 𝑑𝑡$

T$U*), 689 

 690 

and the joint pulse duration 𝑑𝑡$,> between a pair of successive pulses 𝑃$, 𝑃> with 𝑗	 > 𝑖, as the 691 

sum of the right pulse duration of the earlier pulse 𝑖 and the left pulse duration of the later 692 

pulse 𝑗 693 

 694 

𝑑𝑡$,> = 	𝑑𝑡$
T$U*) + 𝑑𝑡>

J"K). 695 

 696 

We computed the interpulse interval 𝐼𝑃𝐼$,> between a pair of successive pulses 𝑃$, 𝑃> with 697 

𝑗	 > 𝑖, as the time interval between their maxima 698 

 699 

𝐼𝑃𝐼$,> = 𝑗 − 𝑖.  700 

 701 

The silent interval 𝑑𝑚$,> between a pair of successive pulses 𝑃$, 𝑃> was defined as the time 702 

elapsed between the right minimum of the earlier pulse 𝑃$ and the left minimum of the later 703 

pulse 𝑃>, that is  704 

 705 

𝑑𝑚$,> 	= 	 𝑘> − 𝑙$. 706 

 707 

Note that calculating these last three quantities requires a trace with at least two pulses. These 708 

quantities satisfy the relationship 709 

 710 

𝑑𝑚$,> 	= 𝐼𝑃𝐼$,> − 𝑑𝑡$,>. 711 

 712 

The values that these quantitative measures can take are constrained by the resolution 713 

imposed by pulse recognition. The minimum distance |𝑖 − 𝑗| between two maxima 𝑥7$, 𝑥7> ∈ 𝑀 714 

was previously set to 2 frames. Thus, the distance between maxima of pulses 𝑃I, 𝑃J ∈ 𝑃 715 

verifies |𝑘 − 𝑙| ≥ 2 frames, and in particular 𝐼𝑃𝐼I,J ≥ 2 frames for any pair of consecutive pulses 716 

𝑃I, 𝑃J ∈ 𝑃. Similarly, the minimum distance |𝑖 − 𝑗| between two minima 𝑥7$, 𝑥7> ∈ 𝑚 is 2 frames. 717 

Consequently, given a pulse 	𝑃> = (𝑗, 𝑘>, 𝑙>) 	∈ 𝑃, the distance between the two minima that 718 
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defines the pulse 𝑑𝑚> = 	𝑘> − 𝑙> satisfies 𝑑𝑚> ≥ 2 frames. Finally, from the previous section 719 

we have the constraints 𝐴$	 > 	𝐴)* and 𝑣$ > 𝑣)*.  720 

 721 

We classified pulses as consecutive or isolated. Inspection of the raw data indicated that 722 

pulse duration was more variable between cells in the same condition than within a cell. For 723 

this reason, we made the criterion for consecutiveness dependent on joint duration of the half-724 

pulses that flank an intervening silent period. Specifically, we established that a pair of 725 

successive pulses 𝑃$, 𝑃> are consecutive pulses if the silent interval between them 𝑑𝑚$,> is 726 

shorter than half of their joint duration 𝑑𝑡$,>, that is 𝑃$, 𝑃> are consecutive if 𝑑𝑚$,> ≤ 0.5	𝑑𝑡$,>. 727 

Pulses that do not belong to a consecutive pair are isolated pulses.  728 

 729 

We also introduced a quantitative measure to characterize the dynamical activity on a 730 

population level. Given a single cell 𝑐 associated to a time series of total length 𝑇 and 𝑛 pulses, 731 

the pulsing measure 𝐴v is defined as the proportion of time that a single cell is pulsing 732 

 733 

𝐴v =	
/
w
∑ 𝑑𝑡$9
$e/ .  734 

 735 

Kolmogorov-Smirnov test and notation 736 

We implemented the Kolmogorov-Smirnov two sample test (Frodesen et al., 1979) available 737 

on the stats module of the Scipy package from Python (Virtanen et al., 2020). The 738 

aggregated data for all quantities considered is summarized in (Supp. Table T2). 739 

 740 

 741 
Analysis of ERK dynamics in long-term datasets 742 

Long-term recordings to map ERK dynamics across the cell cycle were about 12.5 times 743 

longer and had a sampling rate reduced to about 1/5 compared to the short-term recordings 744 

(Fig. 4 Supp. 1). These qualitative differences of these data prompted for a different analysis 745 

strategy. Due to this limited time resolution, we decided to exclusively focus on the occurrence 746 

and timing of ERK pulses in the long-term datasets, and hence refer to these features as 747 

peaks.  748 

 749 

Peak detection 750 

The long-term recordings data featured both low and high frequency fluctuations. Low 751 

frequency noise created variable trends that impeded direct comparison between traces, while 752 
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high frequency noise could hinder the identification of activity pulses. We used two different 753 

filtering strategies to remove fluctuations: (i) a baseline filtering that removed only low 754 

frequencies, and (ii) a band-pass filter that removed both low and high frequencies. Both 755 

methods produced similar statistics after peak detection. 756 

 757 

In the first strategy we flattened the baseline of each trace by subtracting a low degree 758 

polynomial that follows its minima (Fig. 4 Supp. 2). To obtain this polynomial, we first identified 759 

all the local minima on each time series. We compared each value 𝑥$ of the time series with 760 

its two neighbors to the left 𝑥$2/ and 𝑥$2p, and to the right 𝑥$4/ and 𝑥$4p. The value 𝑥/ was 761 

compared with its two right neighbors and 𝑥8 to the left, and 𝑥92/ with its two left neighbors 762 

and 𝑥9 to the right. We used the least squares method to fit a polynomial to the minima 763 

together with the endpoints of the trace (numpy (Harris et al., 2020)). Due to the variability in 764 

the traces duration and baseline, we set a trace specific polynomial degree 𝑑𝑒𝑔 to allow an 765 

accurate fit of the baseline while avoiding overfitting, with 𝑑𝑒𝑔> 	= 	 (2 +𝑚>)/3, where 𝑚> is the 766 

number of minima in trace 𝑗. 767 

 768 

In the second strategy, we filtered the signal by removing unwanted high and low frequencies 769 

with a band-pass filter (Fig. 4 Supp. 2). We applied a Butterworth filter with zero time and linear 770 

phase, by implementing the band-pass filter on a moving window both forward and backward 771 

in time (scipy Signal submodule (Virtanen et al., 2020)). We used an odd extension for the 772 

padded signal and a pad length of 15 frames, that is 3 times the number of coefficients of the 773 

Butterworth polynomials. The Butterworth filter is a band-pass square filter: it has a flat 774 

frequency response in the passband region, and rolls off towards zero in the stopband region. 775 

The order of the filter regulates the sharpness of the cutoff and we set it to 4. We chose the 776 

cutoff frequencies 𝑓J{| and 𝑓*$U* in terms of the maximum frequency we can resolve with the 777 

given sampling rate. We chose low and high stopband frequencies in terms of the Nyquist 778 

frequency, 𝑓J{| = 	0.025	𝑓9}~  and 𝑓*$U* = 0.6	𝑓9}~ , with 𝑓9}~ = 0.5	𝑓� 	= (1/210) Hz for a 779 

sampling frequency 𝑓� = (1/105)	Hz.  780 

 781 

We determined the local maxima by comparison of neighboring values. We compared each 782 

value 𝑥7$ of the time series with its neighbours [𝑥7$2�, 𝑥7$2/] and [𝑥7$4/, 𝑥7�4/], where 𝛿 is a free 783 

parameter of the method that determines the minimum time interval between peaks that we 784 

could resolve. We reduced the range of comparison until reaching [𝑥7/, 𝑥7�] for the initial value 785 

𝑥78, and [𝑥792�, 𝑥792/] for the final value 𝑥79. We set 𝛿 = 2 frames, which allowed us to resolve 786 

ERK-dependent peaks that are at least 3.5 minutes apart. 787 
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 788 

Threshold analysis protocol 789 

To remove spurious low amplitude peaks, we filtered peaks with a KTR signal threshold value 790 

𝐼)*. We explored how the number of peaks changed in Fgf4 mutant in N2B27 (negative control) 791 

and wild type cells growing in serum + LIF as we changed this threshold (Fig. 4 Supp. 2). We 792 

detected peaks in the two conditions for different 𝐼)*$  threshold values evenly spaced in the 793 

a.u. range [0, 30]. For each 𝐼)*$ , we computed the total pulse rate 794 

 795 

𝛿𝒊 = ∑ 𝒏𝒋
𝒊

𝑳𝒋
𝑵
𝒋	e	𝟏	  ,  796 

 797 

where N is the total number of cells of each condition, 𝑛>$ is the number of detected pulses for 798 

this threshold value 𝐼)*$  and 𝐿> is the total length of the time series of cell 𝑗. We normalized 799 

pulse rate to the total pulse rate 𝛿8 at 𝐼)*8 = 0, 𝛿̅𝒊 = 𝛿$	/	𝛿8 (Fig. 4 Supp. 2). This normalized 800 

pulse rate decreased with increasing the threshold values both in the negative control and the 801 

wild type. The negative control pulse rate decays much faster, reaching 0.5 while wild type 802 

values are still around 0.9. Thus, wild type genuine peaks can be distinguished from the 803 

background fluctuations in the control. We set a threshold value 𝐼)* for which 1% of all the 804 

local maxima were classified as peaks in the negative control, that is 𝛿̅𝒊 = 0.01. This condition 805 

results in threshold values 𝐼)* = 24 for the frequency filtering strategy and 𝐼)* = 25 for baseline 806 

filtering strategy (Fig. 4 Supp. 2.). We chose the baseline filtering strategy to analyze the data 807 

shown in Fig. 4, Fig. 4 Supp. 1 and Fig. 4 Supp. 3. 808 

 809 

Error estimation in pulse rate maps 810 

Being 𝚤>̅,I the contribution of vector 𝚤 ̅to Y𝑇#,>, 𝑇",IZ, we interpreted each element of every 𝚤>̅,I as 811 

an individual experiment with two possible outcomes 1 (success) and 0 (failure). This 𝑇 812 

independent experiments in Y𝑇#,>, 𝑇",IZ had a characteristic probability of success p ∈ [0,1]. 813 

Then, the probability of obtaining 𝑟̂ numbers of success in the 𝑇 independent experiments in 814 

Y𝑇#,>, 𝑇",IZ is determined by the binomial distribution 𝐵(𝑟̂; 𝑇, 𝑝).  815 

 816 

We are interested on estimate the relative number of successes in 𝑇 trials r7̅ = r7/T. Then, the 817 

maximum likelihood estimator for r7̅ is given by r7̅ = 𝑟/𝑇 and its variance 𝜎²(r7̅) = 	 r7̅	(1 − r7̅)/𝑛 818 

(Frodesen et al., 1979). 819 

 820 
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Understanding the 𝑇 number of trials as a time interval, the maximum likelihood estimator of 821 

the relative number of successes is the previously defined pulse rate, that is number of peaks 822 

per unit time. Then, we estimated the pulse rate in each subspace Y𝑇#,>, 𝑇",IZ (Fig. 4F, Fig. 4 823 

Supp. 3). The corresponding error was computed as the standard deviation in Fig. 4 Supp. 3. 824 

On this approach we assume stationarity conditions for each subspace Y𝑇#,>, 𝑇",IZ by assuming 825 

a constant 𝑝 in each case. We neglected small variations in 𝑝 because we wanted to study 826 

the behavior of the previously characterized short-term dynamical activity (~7 min) in long-827 

term cell cycle time scales (~13 h). 828 

  829 
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Supplementary Figures: 990 

 991 

 992 
Fig. 1 Supp. 1. Reporter cells and parental cells express similar levels of pluripotency 993 

markers 994 

A. Immunostaining of ERK-KTR mESCs (top row) and the parental E14tg2a line (bottom row) for expression of 995 
pluripotency markers NANOG (yellow) and OCT3/4 (red). Nuclei in cyan. Scale bar = 20 μm. 996 
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 1010 
Fig. 1 Supp. 2. Orthogonal ERK activity sensors report similar dynamics 1011 

A. Stills from a movie of mESCs growing in serum + LIF medium co-transfected with both an ERK-KTR-mCherry 1012 
and an EKAREV-CFP-YFP FRET reporter. Upper row shows ratiometric images of a single cell expressing the 1013 
EKAREV sensor, bottom row shows images of the same cell expressing the KTR-mCherry sensor. High ERK 1014 
activity detected by the FRET reporter coincides with strong nuclear exclusion of the KTR reporter (asterisk). 1015 
Gamma values for the KTR montage have been adjusted to 0.86, and the image has been smoothened for the 1016 
purpose of visualization only. The acquisition rate was 40 s/frame. B. Single cell trace of mean nuclear intensity 1017 
(KTR reporter, grey) and mean FRET ratio (EKAREV reporter, orange) in the same nuclear ROI over time in the 1018 
absence (top) and the presence of MEKi (bottom). FRET ratio was calculated as the ratio between donor emission 1019 
and acceptor emission upon donor excitation. Traces are standardized by subtracting the mean and then dividing 1020 
by the standard deviation of every individual trace. C. Normalized cross correlation for data shown in B. between 1021 
traces of the different sensors as a function of time lag 𝜏. D. Summary statistics of maximum cross correlation over 1022 
a lag of ± 400 s between both reporters in pluripotency (N = 10 cells) and MEKi (N = 11 cells) conditions. 1023 
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 1028 
Fig. 1 Supp. 3. Dynamics of KTR signal reveals ERK pulsing in serum + LIF conditions 1029 

Traces of the KTR signal obtained as the mean inverted fluorescence intensity within a nuclear ROI in single cells 1030 
growing in serum + LIF without (top) and with MEKi (bottom). The decrease in KTR signal at the end of the trace 1031 
in cells 30, 31, 41 and 50 in the condition without MEKi is due to nuclear envelope breakdown as cells enter mitosis. 1032 
This part of the trace, together with the immediately preceding peak, was trimmed for the downstream analysis. 1033 
The acquisition rate was 20 s/frame. 1034 
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 1041 
 1042 

Fig. 2 Supp. 1. Pulse recognition and threshold analysis in high resolution time-series 1043 

A. Representative traces of ERK dynamical activity in single ESCs growing in serum + LIF conditions in the 1044 
presence (two columns on the left) or absence (two columns on the right) of MEKi. Rows illustrate steps in the 1045 
pulse recognition algorithm: First row shows raw data, second row shows smoothened traces. Blue and black dots 1046 
in the third row are local maxima and minima. Fourth row shows local maxima and minima that pass the amplitude 1047 
and slope thresholds. Fifth row shows identified pulses after removing overlaps. Pulses are defined by maxima and 1048 
their adjacent minima. B. Average pulse rate as a function of amplitude and slope thresholds for cells growing in 1049 
serum + LIF with (left) or without (right) MEKi. The level curve where the average pulse rate in MEKi-treated cells 1050 
is 	3 × 102�min-1 (green line) was used to explore combinations of amplitude and slope threshold values in the 1051 
condition without inhibitor. C. Average pulse rate for combinations of amplitude and slope thresholds along the red 1052 
curve in cells growing in serum + LIF only. Error bar indicates SEM. Red triangle in B, C indicates parameter values 1053 
used for subsequent analysis (Methods, Supp. Table T1). 1054 
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 1059 
Fig. 2 Supp. 2. Correlation of pulse amplitude and duration in cells growing in 1060 

serum + LIF 1061 

Amplitude vs. pulse duration for individual pulses (green dots). Grey dots show randomly shuffled values for 1062 
comparison. Shaded yellow regions indicate the pulse recognition limits determined by the slope (yellow triangle) 1063 
and amplitude (horizontal bar) thresholds in the pulse recognition algorithm, as well as the sampling resolution 1064 
(vertical bar).  1065 
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 1080 
 1081 

Fig. 3 Supp. 1. Dynamic range of signaling and transcriptional response to FGF4 dose 1082 

in ESCs 1083 

A. Western blot for pERK and total ERK in wild type and Fgf4 mutant cells growing in the indicated media 1084 
conditions. B. Representative western blot for pERK and total ERK in Fgf4 mutant cells treated with a range of 1085 
FGF4 concentrations, with the same experimental protocol as in Fig. 3A. C. Quantification of western blot data 1086 
from N = 3 independent experiments. D. Flow cytometry of Fgf4mutant, Spry4H2B-Venus/H2B-Venus cells stimulated with a 1087 
range of FGF4 concentrations as described in the methods. A non-reporter line was used as the negative control 1088 
(shaded in grey). E. Quantification of the mean H2B-Venus fluorescence intensity from D. Gray box in C and E 1089 
indicates the concentration range used in this study from 2.5 to 20 ng/ml. 1090 
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Fig. 3 Supp. 2. Dynamics of KTR signal at different FGF4 doses 1093 

Traces of the KTR signal obtained as the mean inverted fluorescence intensity within a nuclear ROI in single Fgf4 1094 
mutant cells stimulated with indicated doses of FGF4. The decrease in KTR signal at the end of the trace in cells 1095 
15, 27 and 32 (0 ng/ml), cells 14, 20, 34, 38, 41, 43, and 44 (2.5 ng/ml), cell 13 (5 ng/ml) and cells 8 and 39 (20 1096 
ng/ml) is due to nuclear envelope breakdown as cells enter mitosis. This part of the trace, together with the 1097 
immediately preceding peak, was trimmed for the downstream analysis. The acquisition rate was 20 s/frame. 1098 
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 1123 
 1124 

Fig. 3 Supp. 3. Pulse recognition and threshold analysis in FGF4 stimulation 1125 

experiment 1126 

A. Representative traces of ERK dynamical activity in single Fgf4 mutant cells stimulated with different doses of 1127 
FGF4 with colors as in Fig. 3 (columns). Rows illustrate steps in the pulse recognition algorithm: First row shows 1128 
raw data, second row shows smoothened traces. Blue and black dots in the third row are local maxima and minima. 1129 
Fourth row shows local maxima and minima that pass the amplitude and slope thresholds. Fifth row shows 1130 
identified pulses after removing overlaps. Pulses are defined by maxima and their adjacent minima. B. Average 1131 
pulse rate as a function of amplitude and slope thresholds for Fgf4 mutant without stimulation (left) and stimulated 1132 
with 20 ng/ml FGF4 (right). The level curve where the average pulse rate in unstimulated cells is 0.015 min-1 (blue 1133 
line) was used to explore combinations of amplitude and slope threshold values in the stimulated conditions. C. 1134 
Average pulse rate for combinations of amplitude and slope thresholds along the blue curve in Fgf4 mutant cells 1135 
stimulated with 20 ng/ml of FGF4. Error bar indicates SEM. Red triangle in B, C indicates parameter values used 1136 
for subsequent analysis (Methods, Supp. Table T1). 1137 
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 1140 
Fig. 3 Supp. 4. Distribution of pulse amplitudes and single cell pERK levels at different 1141 

FGF4 doses 1142 

A. Distribution of sensor pulse amplitudes in Fgf4 mutant cells stimulated with different doses of FGF4. The number 1143 
of pulses was n = 164 (2.5 ng/ml), n = 426 (5 ng/ml) and n = 544 (20 ng/ml). Pulse recognition resolution limit 1144 
(yellow bar) and quartiles (Q) 25, 50 and 75 are indicated, and histograms are normalized to 1. B. Immunostaining 1145 
of Fgf4 mutant cells for pERK (magenta) and E-Cadherin (cyan) to outline cell boundaries. Cells were treated with 1146 
indicated concentrations of FGF4, with the experimental protocol depicted in Fig. 3A. Scale bar = 20 μm. C. Boxplot 1147 
of pERK intensity in single cells stained as in B. Black dots represent individual cells, red bars are the median, box 1148 
bounds are the 25 and 75 percentiles of the distributions, and whiskers are the 5 and 95 percentiles. Data for 3 1149 
replicates are shown for each condition. Intensity values are normalized to the median of the 20 ng/ml condition for 1150 
each experiment to facilitate comparison. 1151 
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 1154 
Fig. 4 Supp. 1. Dynamics of KTR signal in long term recordings 1155 
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Traces of the KTR signal obtained as the mean inverted fluorescence intensity within a nuclear ROI in wild type 1156 
cells growing in N2B27 (top), serum + LIF (middle), and in Fgf4 mutant cells growing in N2B27 (bottom). The 1157 
acquisition rate was 105 s/frame. The scale of the horizontal axis represents absolute experimental time. Single 1158 
cell tracks begin immediately after a cell division event and are plotted relative to absolute experimental time. Most 1159 
traces end with exclusion of the sensor from the nucleus before cell division. This part of the traces, together with 1160 
the immediately preceding peak, was trimmed for the downstream analysis.  1161 
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 1184 
 1185 

Fig. 4 Supp. 2. Peak detection and threshold analysis in long term time series 1186 

A. Representative traces of KTR signal from long term recordings in single wild type cells growing in serum + LIF. 1187 
Traces have been aligned relative to the time of cell birth for this illustration. B - D illustrate the two filtering 1188 
strategies, left column corresponds to baseline filtering and right column to band-pass filtering (Methods). B. Same 1189 
traces as in A following filtering. C. Plot of normalized pulse rate vs. filtered KTR signal threshold to explore how 1190 
the number of detected pulses depends on threshold value. Fgf4 mutant cells growing in N2B27 in dark blue, wild 1191 
type cells growing in serum + LIF in light blue. The gray dotted line represents the difference of the normalized 1192 
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pulse rates between the experimental conditions considered. The position of the selected intensity threshold value 1193 
𝐼)* is marked with a red triangle. D. Same traces as in B with identified peaks (black dots). The dotted grey line in 1194 
indicates the selected threshold parameter 𝐼)*. 1195 
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 1218 
 1219 

 1220 

Fig. 4. Supp. 3. The alternative frequency filtering strategy confirms prevalent ERK 1221 

pulsing early in the cell cycle 1222 

A. Representative traces of ERK dynamical activity from the same experiment reported in Fig. 4, now following the 1223 
alternative frequency filtering strategy. Identified peaks indicated as black dots. B. Raster plot displaying the timing 1224 
of ERK activity peaks across the cell cycle in frequency-filtered data. Rows correspond to single cells and dark 1225 
bars represent peaks. Single cell tracks begin immediately after a cell division event and are plotted relative to 1226 
absolute experimental time. C. Pulse rate map for the data shown in B. Time is discretized into 70 min bins. D. 1227 
Coarse grained pulse rate map showing average pulse rate and its estimated error with 420 min binning.  1228 
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 1234 
Fig. 4. Supp. 4. Prevalent ERK pulsing early in the cell cycle in cells growing in 1235 

serum + LIF 1236 

A. Representative traces of ERK dynamical activity with identified peaks (black dots) in wild type cells growing in 1237 
serum + LIF. Experimental protocol and baseline filtering strategy are the same as in Fig. 4. B. Raster plot 1238 
displaying the timing of ERK activity peaks across the cell cycle in cells growing in serum + LIF. Rows correspond 1239 
to single cells and dark bars represent peaks. Single cell tracks begin immediately after a cell division event and 1240 
are plotted relative to absolute experimental time. C. Pulse rate map for the data shown in B. Time is discretized 1241 
into 70 min bins. D. Coarse grained pulse rate map showing average pulse rate and its estimated error with 420 1242 
min binning.  1243 
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Tables: 1255 

 1256 

Experiment Negative 
control 

condition 

Positive 
control 

condition 

Exploratory 
parameter space 

Level curve 
(𝛿^∗)	

Selected 
amplitude 
threshold 

Selected 
slope 

threshold  

Wild type 

constant 

stimulation 

MEKi serum + LIF 𝑣)*	: (0-15) �.�
\$9

	with a 

0.25 �.�
\$9

resolution. 

𝐴)*	: (0-60) a.u. with 

a 1 a.u. resolution. 

3 × 102�	𝑚𝑖𝑛2/	 20.68 a.u. 5.61 �.�
\$9

 

Fgf4 mutant, 

different 

FGF4 

stimulation 

Fgf4 mutant 

0 ng/ml of 

FGF4 

Fgf4 mutant 

20 ng/ml of 

FGF4 

𝑣)*	: (0-15) �.�
\$9

with a 

0.5 �.�
\$9

resolution. 

𝐴)*	: (0-40) a.u. with 

a 1 a.u. resolution. 

	0.015	𝑚𝑖𝑛2/	 18.47 a.u. 5.16 �.�
\$9

 

Supp. Table T1. Pulse detection parameters for the threshold analysis protocol, including the 1257 

amplitude and slope thresholds resulting from this protocol in the two experiments analyzed. 1258 
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Pulse rate 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.009 0.005 48 

5 ng 0.009 1.000 0.727 57 

20 ng 0.005 0.727 1.000 69 

Pulse duration 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.059 0.002 164 

5 ng 0.059 1.000 0.340 426 

20 ng 0.002 0.340 1.000 544 

Amplitude 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.432 0.586 164 

5 ng 0.432 1.000 0.835 426 

20 ng 0.586 0.835 1.000 544 

Interpulse interval 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.044 < 0.001 124 

5 ng 0.044 1.000 0.014 370 

20 ng < 0.001 0.014 1.000 479 

Consecutive pulses 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.099 0.082 48 

5 ng 0.099 1.000 0.837 57 

20 ng 0.082 0.837 1.000 69 

References 

> 0.05 < 0.05 < 0.01 < 0.005 < 0.001 
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Supp. Table T2. Kolmogorov-Smirnov two sample test p-value, 𝐾[𝑥, 𝑦]. Cells values are 1276 

rounded to three decimals after zero and color coded according to different p-value thresholds, 1277 

the color code is given at the table bottom. The total number of data points for each condition 1278 

is indicated on the rightmost column of the table. The low number of pulses at 0 ng/ml 1279 

precluded statistical analysis of this condition. 1280 
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