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The use of antimicrobials without imposing selection on resistant mutants is conjectured (1, 2)6

to stop the rise of multi-drug resistance, but proof is still elusive. Here I present experimental7

evidence, underpinned by a mathematical model, showing that antimicrobial sensitivity can be8

predictably manipulated to achieve the sustained drug efficacy expected from evolution-proof9

therapies. The model relies on neighbouring microbial species often found in polymicrobial en-10

vironments. The neighbours can act as drug or carbon sink depending on their drug sensitivity,11

changing the relative abundance of drugmoleculeswithin a focal species and influencing its sensi-12

tivity to antimicrobials. Aided by this theory, I doubled the sensitivity of Escherichia coliMC410013

to tetracycline in 24h sensitivity tests. Importantly, the effect was maintained after 168h of serial14

passages akin to those used in evolutionary biology (3). My results show that evolutionary-proof15

therapy design is, indeed, possible. My theory provides a framework to design synthetic neigh-16

bours thatmaximise drug efficacy,whileminimising selectionon resistance, opening anewvenue17

in drug therapy design.18

I. Introduction19

Pure cultures are fundamental in microbiology. They consist of one purified microbial species, isolated,20

for example, to quantify antimicrobial sensitivity (4–6). Indeed, routine clinical protocols across the globe21

(7, 8) rely on pure cultures. However, therapies designed using pure cultures target pathogens thriving22

in polymicrobial environments (9). And there, their sensitivity is unpredictable: Pathogens known to be23

sensitive to an antimicrobial can be interpreted as resistant, and vice versa, when the sample contains multi-24

ple microbial species (10–12). Not surprisingly, therapies targeting pathogens in polymicrobial conditions25

can often fail (13). But the underlying mechanism is unknown. Interestingly, the sensitivity of cancers to26

chemotherapies is also affected by neighbouring microorganisms, particularly those growing within the27

tumour’s microenvironment (14, 15). Here the mechanism is also unknown.28

Below I show a simplemathematical model suggesting that neighbouringmicroorganisms act as carbon29

or antimicrobial sink and, therefore, change the drug sensitivity of other species (i.e. a pathogen or tumour).30

The change is predictable, and I used the model to increase two-fold the sensitivity of Escherichia coli to31

tetracycline. Perhaps more importantly, I also show that E. coli remained hyper-sensitive to the drug for32

more than 80 generations—resembling the conjecture outcome of evolution-proof therapies. Moreover,33

the model can predict the likelihood of drug-tolerance of a pathogen, or a tumour, based on the sensitivity34

of their neighbouring microorganisms.35

II. Results36

Drug sensitivity of a focal species is determined by susceptibility of its neighbouring species.37

Consider 𝑗 phenotypically distinct species competing for a limited resource, 𝐶, and exposed to a drug, 𝐴,38
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cast as the following model:39

¤𝑆𝑗 =

Growth︷   ︸︸   ︷
𝐺 𝑗 (𝐶)𝑆𝑗 ·

Inhibition︷︸︸︷
𝐼 𝑗 (𝐴) , (1a)40

41

¤𝐴𝑗 =

Decay︷︸︸︷
−𝑑𝐴𝑗 +

Fick’s Diffusion︷           ︸︸           ︷
𝜑 𝑗 (𝐴𝑒 − 𝐴𝑗)𝑆𝑗, (1b)42

43

¤𝐴𝑒 = −𝑑𝐴𝑒 −
𝑖∑
𝑗=1

𝜑 𝑗 (𝐴𝑒 − 𝐴𝑗)𝑆𝑗 (1c)44

45

¤𝐶 = −
𝑖∑
𝑗=1

C-Uptake︷   ︸︸   ︷
𝑈 𝑗 (𝐶)𝑆𝑗, (1d)46

47

Here, ¤𝑆𝑗 and ¤𝐴𝑗 represent the density of individuals per unit volume from species 𝑗 and their content of48

drug 𝐴 over time, respectively. 𝑈 𝑗 (𝐶), the uptake rate of resource 𝐶—supplied at concentration 𝐶0—of49

individuals from species 𝑗, is a saturating Monod function proportional to the maximal uptake rate,50

𝑈 𝑗 (𝐶) := �̄� 𝑗
𝐶

𝐾𝑗 + 𝐶
, (2)51

where 𝐾𝑗 is the half-saturation parameter and the affinity of individuals from species 𝑗 for the limited re-52

source 𝐶 is given by 1/𝐾𝑗. Their growth rate (i.e. absolute fitness) at a given resource concentration is53

denoted by 𝐺 𝑗 (𝐶) := 𝑈 𝑗 (𝐶) · 𝑦𝑗, where 𝑦𝑗 is the biomass yield per unit of resource in individuals from54

species 𝑗. Their growth inhibition, by drug 𝐴, is described qualitatively by the inhibition function (16)55

𝐼 𝑗 (𝐴) :=
1

1 + (𝐴𝑗/𝜅 𝑗)𝛼
, where 0 ≤ 𝐼 𝑗 (𝐴) ≤ 1. (3)56

This function is dimensionless and has two parameters. First, the Hill coefficient 𝛼 which characterises the57

cooperativity of the inhibition. And second, 𝜅 𝑗 is the affinity of drug 𝐴 for its target and it can be derived58

from the drug concentration required to halve the maximal growth rate, so that 𝐴50 = 1/𝜅 𝑗 (16). Drug 𝐴 is59

supplied at concentration 𝐴0, outside any individuals, at 𝑡 = 0 (so, 𝐴𝑒(0) = 𝐴0). The drug then diffuses into60

individuals from species 𝑗 with a diffusion coefficient noted by 𝜑 𝑗, and part of 𝐴 is lost to chemical stability61

(17 ) at a rate 𝑑.62

For my first computation I set the number of species 𝑗 = 2, to facilitate later experimental validation,73

where 𝐼1(𝐴) = 𝐼2(𝐴) and 𝐺1(𝐶) = 𝐺2(𝐶). Thus, individuals from both species are sensitive to 𝐴 and74

phenotypically identical. Given Equation 3, the density of individuals from either species as pure cultures75

declines with higher drug concentrations consistently with standard clinical protocols (7, 8) (Figure 1A). To76

allow experimental validation, I calculated the concentration of 𝐴 inhibiting the growth of the pure cultures77

by 90% (IC90) as commonly used in clinic laboratories (18–20). The drug sensitivity of each species depends78

on the values for the parameters 𝐾 , �̄�, and 𝑦 of Equation 2 (Figure 1B–D, grey), with values that increase79

the density of individuals resulting in higher IC90. This is consistent with the inoculum effect (21), whereby80

sensitivity tests using larger inocula also report higher minimum inhibitory concentrations.81

This phenomenon is exacerbated if both species grow in mixed culture conditions, where both become82

phenotypicallymore tolerant to drug 𝐴 (Figure 1B–D, black). If I were to target, say, individuals from species83
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Figure 1. S1 drug sensitivity profiles in pure andmixed culture growth conditions alongside accessory species S2. A)
Growth of species S1, with different parameter values (k1, �̄�1, and y1), after 24h of growth in the presence of different antibi‑
otic concentrations. I aggregated the resulting dose‑response profiles (blue) to create a densitymap from lowpredicted cell
density (white) to high predicted cell density (black). B–D) IC90, antibiotic concentration inhibiting 90% (IC90) the growth
predictedwithout drug, resultingwith different parameters values for the half‑saturation parameterk1 (B),maximal carbon
up‑take �̄�1 (C), or biomass yield ys (D) in equation 1 when species S2 is drug‑sensitive. The IC90 for species S1 growing as
pure cultures is shown in grey, and growing in mixed culture with S2 are shown in black. The parameter values for species
S2 were fixed at a value noted by a black arrow on the y ‑axis, followed by a dotted black line. E–G) Change in IC90, as in
Figures B–C), when the competing species S2 is not drug‑sensitive.
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𝑆1, doing so when the species is surrounded by 𝑆2 would require more drug. This is the case of pancreatic84

ductal adenocarcinoma with bacteria growing in its microenvironment (14). More generally, genotypes85

analog to 𝑆1 should increase their drug tolerance when they are surrounded by similarly sensitive species.86

To test this hypothesis, I mixed equal proportions of Escherichia coli Wyl and Salmonella typhimurium87

SL1344 in minimal media supplemented with different concentrations of tetracycline (see Methods). Both88

species have similar sensitivity to this antibiotic, 0.232±0.003 and 0.276±0.016 µg/mLof tetracycline (mean89

IC90 ± 95% confidence, with 𝑛 = 8 replicates, see Methods). This approximates to 𝐼1(𝐴) ≈ 𝐼2(𝐴), as laid90

out by the theory above. The chromosome of E. coliWyl carries yfp, gene encoding a yellow fluorescence91

protein (YFP), so I tracked its density in mixed culture conditions. Consistently with Equations 1a–d, the92

bacteriumwas around 23%more tolerant to tetracycline when it grew inmixed culture with S. typhimurium93

(Mann-Whitney U-test 𝑝 = 1.554 × 10−4, 𝑟𝑎𝑛𝑘𝑠𝑢𝑚 = 36 with 𝑛 = 8 replicates, Figure 2A).94

Next, I explored in the model the case where individuals from both species have different sensitivities95

to drug 𝐴 (𝐼1(𝐴) ≠ 𝐼2(𝐴)). This scenario is akin to pathogens such as C. difficile growing alongside human96

cells (22) where the latter are unaffected by the drug (𝐼2(𝐴) ≈ 1). The model now predicts a subset of97

values for 𝐾 , 𝑦, and �̄� that make 𝑆1 more sensitive to the drug in the presence of individuals from species 𝑆298

(Figure 1E–G). To test this prediction, I mixed equal proportions of two constructs of Escherichia coli with99
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different sensitivities to tetracycline. One construct is Wyl, used above, who is sensitive to the antibiotic.100

The other construct is GB(c), harbouring a non-transmissible plasmid carrying the gene tet(36) (23) and,101

therefore, resistant to the drug. Tetracycline binds to the bacterial ribosome, inhibiting protein synthesis102

(24), and tet(36) provides ribosomal protection against tetracycline (23) without degrading the antibiotic.103

The IC90 for this construct was 6.106 ± 0.272 µg/mL of tetracycline (mean IC90 ± 90% confidence with104

𝑛 = 8 replicates). Now, 𝐼1(𝐴) � 𝐼2(𝐴) satisfies the assumption above. The IC90 for E. coli Wyl was105

0.232 ± 0.003 µg/mL of tetracycline as pure culture. Growing alongside drug-resistant GB(c), however, it106

was 0.112 ± 0.003 µg/mL (Figure 2B).107
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Figure 2. Changes in IC90 of drug‑sensitive Escherichia coliWyl are consistent with theoretical predictions. A–B) IC90
for tetracycline of Escherichia coliWyl in pure culture, and inmixed culturewith Salmonella typhimurium (A) and Escherichia
coliGB(c) (B). The IC90 for S. typhimurium in pure culturewas 0.276±0.016 μg/mL of tetracycline (mean± 95% confidence),
and 6.106 ± 0.272 μg/mL for E. coli GB(c). The box plot shows the median (centre of the box), 25th, and 75th percentile of
the dataset. The whiskers extend to the most extreme data points that are not outliers, which are individually represented.
Raw data is represented as red dots. The p value shown corresponds to a Mann‑Whitney U‑test. C) Theoretical difference
in relative drug content—antibiotic molecules per cell–of S1 between pure culture conditions, andmixed culture with drug‑
sensitive S2 for different �̄� values (for all parameters in Figure S1). Positive values denote higher content of antibiotic per
cell in pure culture conditions, whereas negative values denote higher antibiotic per cell inmixed culture. Lack of difference
is represented by a horizontal, dotted line. D–E) Estimation of tetracycline content from experimental data of E. coli Wyl
growing alongside Salmonella typhimurium (D) and E. coli GB(c) (E). The box plots show the median (centre of the box),
25th, and 75th percentile of the dataset. The whiskers extend to the most extreme data points that are not outliers, which
are individually represented. Raw data is represented as red dots. The p value shown corresponds to a Mann‑Whitney U‑
test. F) Variation in IC90 of E. coliWyl in mixed culture over time. The errorbars denote mean IC90 and 95% confidence, and
raw data is shown as red dots. The p value shown corresponds to aMann‑Whitney U‑test. I fitted a linearmodel to IC90 data
including (grey) and excluding the IC90 at 24h, and showed the slope parameter of the case with the lowest p. The inset
show the p value of a Kruskal Wallis one‑way ANOVA applied to IC90 data excluding that measured at 24h. The box plot
shows the median in red, 25th, and 75th percentile of the dataset. The whiskers extend to the most extreme data points
that are not outliers, which are individually represented as a black cross.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127128

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.12.14.422780doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422780
http://creativecommons.org/licenses/by-nc/4.0/


5

Neighbouring species S2 determines drug availability for S1. Above I noted that parameter values129

leading to higher density of individuals in pure culture, also led to higher IC90. When 𝐼1(𝐴) ≈ 𝐼2(𝐴),130

Equations 1a–d suggest that individuals from one species change the drug availability, measured as relative131

drug molecules per individual, for the other. Thus, when species 𝑆2 absorbs its share of drug in mixed132

culture conditions, there is less of it available for species 𝑆1 resulting in less drug per individual (Figure133

S1A–C)—and vice versa. However, when 𝐼1(𝐴) ≠ 𝐼2(𝐴), the least sensitive species barely absorbs drug.134

The change in drug availability occurs through a different mechanism. The least sensitive species is able to135

remove a higher share of the limited resource, 𝐶, as its growth is unaffected by the drug. Thus, the growth136

of the most sensitive species is limited (25), leaving more drug per individual of this species (Figure S1D–F).137

To verify this rationale, I estimated the content of tetracycline in E. coliWyl by dividing the bacterium’s138

culture density, measured in relative fluorescence units to allow tracking inmixed culture conditions, by the139

concentration of tetracycline defining its IC90. The estimates resemble closely the theoretical predictions in140

Figure 2C: E. coliWyl contains approximately 20% less tetracycline growing next to Salmonella typhimurium141

(Figure 2D) and 65% more tetracycline growing alongside drug-resistant GB(c) (Figures 2E).142

Now, experiments of parallel evolution show that acr, operon responsible for the multi-drug efflux143

pump AcrAB-TolC (26), undergoes genomic amplification in E. coliMC4100 (3). Thus, MC4100 overcomes144

the exposure to doxycycline, a type of tetracycline drug, within five days given its increased capacity to145

remove antibiotic molecules (3). Other strains of E. coli show identical adaptation (27 ). To test whether146

Wyl, MC4100 derivative sensitive to tetracycline, overcomes its exposure to the drug I propagated a culture147

containing equal proportions of E. coli Wyl and GB(c) for 168h. If Wyl acquires a mutation, such as the148

amplification of acr, that protects it against tetracycline I would expect greater IC90 over time. However, as149

Figure 2F illustrates, the IC90 of Wyl was further reduced during this period.150

III. Discussion151

My theory reconciles conflictive sensitivity data reported through direct sensitivity tests (7, 10, 11)—drug152

sensitivity tests that skip the isolation and purification of a pathogen (28–30). Using direct testing, pathogens153

known to be sensitive to a drug can be interpreted as resistant and vice versa (10, 31). While direct testing154

shortens turnaround time in hospitals, allowing to initiate therapies earlier (32), international guidelines155

(7 ) do not recommend these tests as they can be misleading. A simple mathematical model can explain why156

such inconsistencies occur.157

The predictability of changes in sensitivity in polymicrobial environments poses the following question:158

Can we exploit the underlying principle? ‘Evolution-proof’ therapies are the next frontier in the treatment159

of both infectious diseases (2) and cancers (33), but whether they exist is still a conjecture. A corollary for160

the above inconsistencies is that pathogens can have multiple sensitivities to the same drug, and my model161

and data suggest that the underlying principle could be used to develop strategies that ‘sensitise’ cancers162

and pathogens to chemotherapies. Mine is a very simple model inspired by the polymicrobial ecosystem163

where pathogens thrive, so I do not wish to over state its predictive power. For example, it lacks an im-164

mune response or environmental complexities found in the human body. But it shows that evolution-proof165

strategies are indeed possible. This, however, this does not mean adaptation stops. Data in Figure 2F show166

adaptation of Wyl, given the change in standard error in IC90. Now, a successful mutant must not only be167

resistant to the drug, but also fit enough to outcompete its neighbours—with a lower supply of mutants168

imposed by its neighbour’s competitive suppression (25).169
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This work is focused on bacteria as they can easily be grown in a laboratory or labelled. But the model170

can also apply to cancers. The drug content in pancreatic ductal adenocarcinoma is lower in the tumour171

when bacteria are present (14). My model suggests these bacteria would be acting as drug sink, absorbing172

part of the drug and causing the tolerance to chemotherapies reported in Ref. Geller et al. (14).173

IV. Methods174

Media and Strains. The strains of Escherichia coli GB(c) and Wyl (34) were a gift from Remy Chait and175

Roy Kishony, and Salmonella typhimurium SL1344 (35) a gift from Markus Arnoldini and Martin Acker-176

mann. Experiments were conducted in M9 minimal media supplemented with 0.4% glucose and 0.1%177

casamino acids and supplemented with tetracycline. I made tetracycline stock solutions from powder stock178

(Duchefa #0150.0025) at 5mg/mL in deionised water. Subsequent dilutions were made from this stock and179

kept at 4𝑜C.180

Sensitivity assay. I inoculated a 96-well microtitre plate, containing 150µg/mL of media supplemented181

with 0–0.5 µg/mL of tetracycline (for E. coliWyl and S. typhimurium) or 0–15µg/mL (for E. coliGB(c)), with182

an overnight of each strain to measure drug sensitivity in pure cultures. For sensitivity assays of Wyl in183

mixed culture conditions I inoculated the microtitre plate, containing 150µg/mL of media supplemented184

with 0–0.5 µg/mL of tetracycline, with equal proportions of two overnight cultures: Wyl + GB(c) or Wyl +185

S. typhimurium.186

I incubated the microtitre plate at 30𝑜C in a commercial spectrophotometer and measured the optical187

density of each well at 600nm (OD600), yellow florescence for Wyl (YFP excitation at 505nm, emission at188

540nm), and cyan fluorescence for GB(c) (CFP at 430nm/480nm) every 20min for 24h. I defined the mini-189

mum inhibitory concentration as the tetracycline concentration able to inhibit 90% of the growth observed190

in the absence of antibiotic after the 24h incubation period.191

Culture readings. Fluorescence protein genes were constitutively expressed with an approximately con-192

stant fluorescence to optical density ratio (Figure S2). The number of colony forming units (CFU) is posi-193

tively correlated with optical density measured at 600nm (𝑂𝐷600) (Figure S3). Thus, I normalised fluores-194

cence readings with respect to optical density readings, using the ratio optical density to fluorescence that I195

in pure culture conditions, to track the relative abundance of Wyl in mixed culture conditions. Time series196

data set were blank corrected prior to calculating the minimum inhibitory concentration.197

Evolutionary dataset. Following the protocol in Reference (3) I propagated a mixed culture, growing198

in a 96-well microtitre plate containing 150µg/mL of media supplemented with 0–0.5 µg/mL of tetracy-199

cline, into a new microtitre plate containing fresh media and antibiotic every 24h. Growth data was blank200

corrected as above, and used to calculate the IC90.201

Code availability: A python implementation of equations 1a–d can be found at https://github.com/rc-202

reding/papers/tree/master/EvolProof_2020 . The parameter values used can be found in Table S1.203

Competing interests: The author declares no competing interests.204
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V. Supplementary Tables283

Table S1. Model parameters for Equations 1a–d, 2 and 3.

Parameter Description Value

�̄� 𝑗 Maximal carbon uptake rate 1.25 mg / OD / h
𝐾𝑗 Half-saturation constant 0.5 mg / mL
𝑦𝑗 Biomass yield 0.65 OD / mg
𝑑 Drug degradation rate 10−4 / h
𝜅 𝑗 Affinity of drug A for species type 𝑗 0.1 mL / µg
𝜑 𝑗 Diffusion coefficient 0.1 mm2 / s
𝐴0 Initial drug concentration 2 µg / mL
𝐶0 Initial carbon concentration 2 mg / mL

VI. Supplementary Figures284
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Figure S1. Drug concent in individuals from species S1 in pure and mixed growth conditions. A–C) Theoretical dif‑
ference in relative drug content—antibiotic molecules per cell–of S1 between pure culture conditions, and mixed culture
with drug‑sensitive S2. A), B) and C) illustrate the prediction when changing the parameter k , �̄�, and y , respectively. The
difference is positive (>0) when the relative content of antibiotic is higher in pure culture conditions, whereas is negative
(<0) when the content is higher in mixed culture conditions. Lack of difference is represented by a horizontal, dotted line.
D–F) Theoretical difference in relative drug content—antibiotic molecules per cell–of S1 between pure culture conditions,
and mixed culture with drug‑insensitive S2. A), B) and C) illustrate the prediction when changing the parameter k , �̄�, and
y , respectively. The difference is positive (>0) when the relative content of antibiotic is higher in pure culture conditions,
whereas is negative (<0) when the content is higher in mixed culture conditions. Lack of difference is represented by a hori‑
zontal, dotted line.
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Figure S2. Changes in relative fluorescence over time in both Wyl and GB(c) strains. Raw change in florescence, per
optical density units, measured every 20min for 24h for E. coliWyl (black) and GB(c). Each column represents the data set
for each tetracycline concentration used.
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Figure S3. Calibration curve to translate optical density data to number of Escherichia coli cells. I fitted the linear
model a = bx + c to optical density and colony counting data (dots) to calculate the number of optical density units
(OD600) per cell. a denotes the optical density readings measured at 600nm, c the crossing point with the y−axis when
x = 0, and b the conversion factor between optical density and number of cells (x ). I interpolating optical density readings
to calculate the number of cells within a culture as x = (a − c)/b. For the strain S, b = 1.62 × 10−10 OD · mL · CFU−1

and c = 1.78 × 10−2 OD, whereas for R b = 1.79 × 10−10 OD · mL · CFU−1 and c = 1.33 × 10−2 OD.
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