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Abstract 17 

 Two modes of positive selection have been recognized: 1) hard sweeps that result in the 18 

rapid fixation of a beneficial allele typically from a de novo mutation and 2) soft sweeps that are 19 

characterized by intermediate frequencies of at least two haplotypes that stem from standing 20 

genetic variation or recurrent de novo mutations. While many populations exhibit both hard and 21 

soft sweeps throughout the genome, there is increasing evidence that soft sweeps, rather than 22 

hard sweeps, are the predominant mode of adaptation in many species, including humans. Here, 23 

we use a supervised machine learning approach to assess the extent of hard and soft sweeps in 24 

the closest living relatives of humans: bonobos and chimpanzees (genus Pan). We trained 25 

convolutional neural network classifiers using simulated data and applied these classifiers to 26 

population genomic data for 71 individuals representing all five extant Pan lineages, of which 27 

we successfully analyzed 60 individuals from four lineages. We found that recent adaptation in 28 

Pan is largely the result of soft sweeps, ranging from 73.1 to 97.7% of all identified sweeps. 29 

While few hard sweeps were shared among lineages, we found that between 19 and 267 soft 30 

sweep windows were shared by at least two lineages. We also identify novel candidate genes 31 

subject to recent positive selection. This study emphasizes the importance of shifts in the 32 

physical and social environment, rather than novel mutation, in shaping recent adaptations in 33 

bonobos and chimpanzees.   34 

 35 

Keywords: adaptation, convolutional neural network, diploS/HIC, selective sweep, supervised 36 

machine learning  37 
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Introduction 38 

 The identification of adaptative traits and their genetic basis is one of the central goals of 39 

evolutionary biology. Two approaches, top-down and bottom-up, have been used to accomplish 40 

this goal; the latter of which leverages population-level data to recognize the genomic signatures 41 

of positive selection (Barrett and Hoekstra 2011). At the genomic level, the process of adaptation 42 

results in a window of reduced variation that erodes over time. As these signatures do not persist, 43 

they can only be used to infer selection over a particular time scale in a population. In most 44 

species, this time frame is restricted to a few thousand generations, roughly ~ 200,000 years in 45 

humans (Oleksyk et al. 2010). The classic model for positive selection for a given locus proposes 46 

that a single, novel mutation, that confers a fitness advantage (i.e., a beneficial allele) will rapidly 47 

spread in a population and eventually reach fixation (Maynard Smith and Haigh 1974). Neutral 48 

polymorphism adjacent to the novel allele will ‘hitchhike’, resulting in a distinct pattern of 49 

reduced genomic diversity at the locus and surrounding sites. The term ‘hard sweep’ has been 50 

used to identify this pattern and process.  51 

 ‘Soft sweeps’ describe the presence of two or more haplotypes that occur at intermediate 52 

frequencies (Hermisson and Pennings 2005). Thus, the signature of a soft sweep is intermediate 53 

to those of neutral or ‘background’ genomic variation and the signature of a hard sweep. This 54 

pattern can result from recurrent de novo mutations following positive selection. Alternatively, 55 

soft sweeps can also result from positive selection on standing genetic variation where alleles 56 

were already present in a population before selection. This variation may be the result of 57 

independent mutations (multiple origin soft sweep) or when an adaptive allele arose before 58 

selection, but multiple copies have subsequently swept through the population (single origin soft 59 

sweep). Soft sweeps are often incorrectly viewed synonymously with standing genetic variation; 60 
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hard sweeps can emerge from standing genetic variation if a single copy of the beneficial allele 61 

was the ancestor of all beneficial alleles in a sample (Hermisson and Pennings 2017). 62 

 Hard and soft sweeps are locus-specific and, thus, not mutually exclusive across a 63 

genome. Unsurprisingly, soft sweeps are also much more difficult to recognize than hard sweeps 64 

because their genomic patterns are intermediate. Additionally, the identification of selective 65 

sweeps, hard or soft, is further complicated by the possibility that neutral loci linked to either soft 66 

or hard sweeps may produce a false signature similar to that of a sweep (Schrider et al. 2015; 67 

Kern and Schrider 2018). 68 

 With these challenges in mind, a considerable amount of work has been dedicated to both 69 

developing robust methods to identify selective sweeps and also understanding the evolutionary 70 

parameters that determine hard or soft sweeps. Mutation-limited scenarios are expected to 71 

exclusively produce hard sweeps because beneficial alleles rarely occur (Hermisson and 72 

Pennings 2017). Thus, the most important parameter for estimating the likelihood of hard vs soft 73 

sweeps is the population-scaled mutation rate: � = 4Neμ, where Ne is the effective population size 74 

and μ is the mutation rate. However, this single parameter can vary widely depending on the 75 

advantage of the beneficial allele, the effective population size, the size of the mutational target, 76 

and the timescale for adaptation (Messer and Petrov 2013; Hermisson and Pennings 2017). 77 

While it has become clear that most populations will likely exhibit a mosaic of hard and soft 78 

sweeps (Hermisson and Pennings 2017), additional data on sweep type frequencies in various 79 

species are sorely needed to better tease apart which parameters may determine each of those 80 

frequencies.  81 

 Both species of the Pan genus represent important evolutionary models due to their 82 

phylogenetic proximity to humans. Homo and Pan diverged ~ 5 to 7 Ma (Sarich and Wilson 83 
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1967; Bradley 2008; Scally et al. 2012; Besenbacher et al. 2019) and the most recent estimates 84 

for the divergence of bonobos and chimpanzees range between 1 and 2 Ma (Prüfer et al. 2012; de 85 

Manuel et al. 2016). Four extant chimpanzee subspecies evolved from a chimpanzee common 86 

ancestor that split ~ 600 Ka with both subsequent lineages further splitting: one ~ 250 Ka and the 87 

other ~ 160 Ka (de Manuel et al. 2016). These two species exhibit stark differences in aspects of 88 

their morphology, physiology, behavior, and ecology (Susman 1984; Goodall 1986; Wrangham 89 

1986; Kano 1992; White 1996; Furuichi 2011; Nishida 2011; Stumpf 2011; Behringer et al. 90 

2014; Turley and Frost 2014; Wilson et al. 2014). Many of these distinguishing traits are inferred 91 

to have occurred shortly after divergence, while much less is known about recent evolutionary 92 

processes in these lineages.  93 

 Understanding recent positive selection in Pan is intriguing because of the dynamic 94 

physical and social environments in which they evolved. Climatic variation across Africa is well-95 

documented for the Pleistocene and has been proposed to drive the evolution of Homo (Potts 96 

1998; Antón et al. 2014), and such variation probably impacted other taxa during this time 97 

period, including the genus Pan. Chimpanzee populations living in more stable environments 98 

that were closer to Pleistocene refugia were recently described to exhibit less behavioral 99 

diversity than chimpanzees living in more seasonal habitats that are more distant to forest refugia 100 

(Kalan et al. 2020). While the formation of these refugia may have resulted in periods of habitat 101 

stability for some bonobo and chimpanzee populations during glacial periods (Takemoto et al. 102 

2017; Barratt et al. 2020), climatic fluctuations throughout the Pleistocene likely affected both 103 

the physical environment—via changes in habitat structure and type—and the social 104 

environment—via changes in the frequency of dispersal and intergroup encounters. Further, 105 

evidence of admixture within extant and between extant and extinct members of the Pan genus 106 
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adds even more variation to the social environments in which these apes evolved (Hey 2010; 107 

Wegmann and Excoffier 2010; de Manuel et al. 2016; Kuhlwilm et al. 2019). A dynamic 108 

environment may result in selection for multiple existing alleles, resulting in a greater frequency 109 

of soft sweeps than in a more stable environment where one would expect a greater frequency of 110 

hard sweeps.  111 

 In this study, we apply a recently developed supervised machine-learning approach to 112 

population-level genomic data for bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) to 113 

assess the extent of different sweep types in these species. While a few studies have examined 114 

recent positive selection in bonobos and chimpanzees (e.g., Cagan et al. 2016; Han et al. 2019; 115 

Schmidt et al. 2019; Nye et al. 2020), the role of hard and soft sweeps in shaping their 116 

adaptations is currently unknown. We sought to categorize genomic regions as subject to recent 117 

hard or soft sweeps, as linked to recent hard or soft selective sweeps, or as evolving neutrally. 118 

Data from simulations have predicted that hard sweeps would be common in humans because of 119 

our low mutation rate (Hermisson and Pennings 2017). Under this “mutation limitation 120 

hypothesis” and given the similarity in mutation rate between Homo and Pan, one could predict 121 

that bonobos and chimpanzees should also exhibit a high degree of hard sweeps. However, hard 122 

sweeps appear quite rare in recent human evolution (Hernandez et al. 2011; Schrider and Kern 123 

2017) and adaptation in humans may not be mutation-limited. This could be explained by several 124 

non-mutually exclusive alternatives including demographic effects. Larger populations can have 125 

more standing variation for selection to act on (Hermisson and Pennings 2005) which may result 126 

in more soft sweeps whereas bottlenecks can result in drift and thus potentially more hard 127 

sweeps if intermediate frequency haplotypes are lost. For example, humans have experienced 128 

recent demographic changes (e.g., Schiffels and Durbin 2014), including a bottleneck upon 129 
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leaving Africa (e.g., Henn et al. 2012). Indeed, Schrider and Kern (2017) found that hard sweeps 130 

were more frequent in non-African than African populations. Chimpanzees and bonobos have 131 

also experienced recent demographic changes, including in effective population size, within the 132 

time frame (< 200 Ka) for selective sweeps, based on PSMC analyses (Prado-Martinez et al. 133 

2013; de Manuel et al. 2016). We therefore predicted that we would observe a higher frequency 134 

of soft sweeps in Pan, but that lineage-specific population histories might affect the degree to 135 

which soft sweeps dominate. 136 

 137 

Methods 138 

Genomic Data 139 

 We retrieved raw short read data on bonobos and all four chimpanzee subspecies from 140 

the Great Ape Genome Project (GAGP) (Prado-Martinez et al. 2013). This dataset contained 141 

high coverage genomes (Figures S1, S2) from 13 bonobos (P. paniscus), 18 central chimpanzees 142 

(P. troglodytes troglodytes), 19 eastern chimpanzees (P. t. schweinfurthii), 10 Nigeria-Cameroon 143 

chimpanzees (P. t. ellioti), and 11 western chimpanzees (P. t. verus) (File S1). 144 

 145 

Read Mapping and Variant Calling 146 

 Initial quality assessments in fastqc (Andrews 2010) and multiqc (Ewels et al. 2016) 147 

indicated a number of quality issues, including failed runs, problematic tiles, and substantial 148 

variation in base quality. We removed adapters and trimmed all reads for quality with BBduk 149 

(https://sourceforge.net/projects/bbmap/). For trimming, we used the parameters “ktrim=r k=21 150 

mink=11 hdist=2 qtrim=rl trimq=15 minlen=50 maq=20” for all reads and added “tpo and tpe” 151 

for paired reads. 152 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422788doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8

 We used XYalign (Webster et al. 2019) to create versions of the chimpanzee reference 153 

genome, panTro6 (Kronenberg et al. 2018), for male- and female-specific mapping. Specifically, 154 

the version of the reference for female mapping has the Y chromosome completely masked, as 155 

its presence can lead to mismapping (Webster et al. 2019). We then mapped reads with BWA 156 

MEM (Li 2013) and used SAMtools (Li et al. 2009) to fix mate pairs, sort BAM files, merge 157 

BAM files per individual, and index BAM files. We use Picard (Broad Institute 2018) to mark 158 

duplicates with default parameters, before calculating BAM statistics with SAMtools. We next 159 

measured depth of coverage with mosdepth (Pedersen and Quinlan 2018), removing duplicates 160 

and reads with a mapping quality less than 30 for calculations. Visualizations for coverage and 161 

demography (see Generation of Simulated Chromosomes below) were created in R, version 3.5.2 162 

(R Core Team 2020), using ‘ggplot2’ (Wickham 2016). 163 

 We used GATK4 (Poplin et al. 2018) for joint variant calling across all samples. We used 164 

default settings for all steps—HaplotypeCaller, CombineGVCFs, and GenotypeGVCFs—with 165 

three exceptions. First, we turned off physical phasing for computational efficiency and 166 

downstream VCF compatibility with filtering tools. Second, because multiple samples in this 167 

dataset suffer from contamination from other samples both within and across taxa (Prado-168 

Martinez et al. 2013), we employed a contamination filter to randomly remove 10% of reads 169 

during variant calling. This should have the effect of reducing confidence in contaminant alleles. 170 

Finally, we output non-variant sites to allow equivalent filtering of all sites in the genome and 171 

more accurate assessments of callability. 172 

 The above quality control, assembly, and variant calling steps are all contained in an 173 

automated Snakemake (Köster and Rahmann 2012) available on Github 174 

(https://github.com/thw17/Pan_reassembly). The repository also contains a Conda environment 175 
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with all software versions and origins, most of which are available through Bioconda (Grüning et 176 

al. 2018). 177 

 178 

Variant Filtration and Genome Accessibility 179 

 We considered only autosomes for this analysis as the X and Y chromosome violate 180 

many of the assumptions for the following methods (Webster and Wilson Sayres 2016). We also 181 

excluded unlocalized scaffolds (N = 4), unplaced contigs (N = 4,316), and the mitochondrial 182 

genome from any downstream analyses. Additional filtration steps were completed using 183 

bcftools (Li 2011); command line inputs are provided in parentheses. Given our focus on 184 

selective sweeps, we only included single nucleotide variants (SNVs) (“-v snps”) that were 185 

biallelic (“-m2 -M2”). On a per sample basis within each site, we marked genotypes where 186 

sample read depth was less than 10 and/or genotype quality was less than 30 as uncalled (“-S . -i 187 

FMT/DP ≥ 10 && FMT/GT ≥ 30”). To ensure that missing data did not bias our results, we 188 

further excluded any sites where less than ~ 80% of individuals (N = 56) were confidently 189 

genotyped (“AN ≥ 112”). We also removed any positions that were monomorphic for either the 190 

reference or alternate allele (“AC > 0 && AC ≠ AN”). These filtrations steps yielded 41,869,892 191 

SNVs for our downstream analyses (Table S1).  192 

 We considered sites in our sample with low to no coverage to be ‘inaccessible’ in the 193 

reference genome. Using the output of mosdepth (see Read Mapping and Variant Calling above), 194 

we identified and filtered sites exhibiting low coverage as defined above. We used the 195 

‘maskfasta’ function in bedtools (Quinlan and Hall 2010) to mark these sites (N) in the pantro6 196 

FASTA, featuring only the autosomes, for use in downstream analyses. This resulted in 86.3% of 197 

the assembled autosomes as accessible (File S2).  198 
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 199 

Generation of Simulated Chromosomes 200 

 We used the software ‘discoal’ to generate simulated chromosomes on which we trained 201 

a classifier per lineage (Kern and Schrider 2016). We generated a matching number of simulated 202 

haploid chromosomes for the sample size of each Pan lineage (i.e., 26 chromosomes for 13 P. 203 

paniscus, 20 chromosomes for 10 P. t. ellioti, etc.). Simulated chromosomes were set to 1.1 Mb 204 

in length and divided into 0.1 Mb subwindows for a total of 11 subwindows. These simulations 205 

included a population-scaled mutation rate (4NμL), where N is the effective population size, μ is 206 

the per base pair per generation mutation rate, and L is the length of the simulated chromosome. 207 

We used the median of the previously reported effective population size range per lineage 208 

(Prado-Martinez et al. 2013). As estimates of genome-wide mutation rates vary considerably and 209 

are complicated in that mutation rates vary across individual genomes, we based our parameter 210 

on a mutation rate of 1.6 x 10-8, which falls between estimates from genome-wide data and 211 

phylogenetic estimates (Narasimhan et al. 2017). We introduced some variation in this rate by 212 

setting a lower and upper-bound to 1.5 and 1.7 x 10-8 and sampled a new mutation rate per 213 

simulation drawing from this uniform prior. All simulations also included a population-scaled 214 

recombination rate (4NrL), where r is the recombination rate per base pair per generation, again 215 

calculated from the median effective population size for each lineage from Prado-Martinez et al. 216 

(2013) and a recombination rate drawn from a uniform prior of 1.1 - 1.3 x 10-8, based on the 217 

mean genome-wide rate (1.2 x 10-8) reported for bonobos, chimpanzees, and gorillas (Stevison et 218 

al. 2015). We note that while some of the estimated recombination rates in bonobos and 219 

chimpanzees are beyond the uniform distribution used in our simulations, many of these values 220 

are the high rates present in the telomeres, regions that generally exhibit lower or no coverage 221 
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and thus will be largely if not entirely masked from this analysis (see Variant Filtration and 222 

Genome Accessibility above). We also included a demographic string reflecting approximate 223 

changes in population size for each lineage between ~ 0.05 and 2 Ma. Changes in population size 224 

were set in units of 4N0 generations, N0 was set to the approximate median effective population 225 

size from (Prado-Martinez et al. 2013) and we used a generation time of 25 years (Langergraber 226 

et al. 2012). Population size changes for this time period were drawn from a previous PSMC 227 

analysis (de Manuel et al. 2016) (Figure S3). While this is only one study from which to draw 228 

demographic information and reconstructions of Pan demography vary widely across studies, the 229 

downstream program used to classify genomic windows, diploS/HIC, is robust to demographic 230 

misspecification (Kern and Schrider 2018). We generated 2 x 103 simulations using these 231 

parameters as a set of simulations under neutral evolution per lineage.  232 

 Hard and soft selective sweeps were simulated with all of the aforementioned parameters 233 

and using a uniform prior of population-scaled selection coefficients (α = 2Ns) derived from each 234 

lineage’s median effective population size (Prado-Martinez et al. 2013) and moderately weak to 235 

moderately strong selection coefficients between 0.02 and 0.05. Sweeps also included a 236 

parameter (τ) for the time to fixation of the beneficial allele over a uniform range in units of 4N 237 

generations. This value ranged from 0 to 0.001 for all lineages. Linked-hard and linked-soft 238 

sweeps were generated by placing the selected site at the center of each of the 10 subwindows 239 

flanking the center (6th) subwindow. Additionally, we included a uniform prior on the frequency 240 

at which a mutation is segregating at the time it becomes beneficial for soft and linked-soft 241 

sweeps, setting this range from 0 to 0.2. We generated 1 x 103 simulations per subwindow for 242 

linked-hard and linked-soft sweeps (N = 10) and 2 x 103 simulations for hard and soft sweeps.  243 
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This resulted in a total of 2 x 103 hard, 1 x 104 hard-linked, 2 x 103 soft, and 1 x 104 soft-linked 244 

simulated sweeps. Parameters for these simulations are presented in File S3.  245 

 246 

Calculation of Simulation Feature Vectors and Classifier Training 247 

 We calculated feature vectors from these simulated chromosomes using the ‘fvecSim’ 248 

function in the program diploS/HIC (Kern and Schrider 2018). Briefly, diploS/HIC calculates 12 249 

summary statistics for all 11 subwindows: π, Watterson’s θ, Tajima’s D, the variance, skew, and 250 

kurtosis of genotype distance (gkl), the number of multilocus genotypes, J1, J12, J2/J1, unphased 251 

Zns, and the maximum value of unphased ω. Collectively, these summary statistics capture 252 

information about the site frequency spectrum (SFS), haplotype structure, and linkage 253 

disequilibrium (LD). diploS/HIC uses a convolutional neural network (CNN) to capture essential 254 

aspects of a feature (the feature vector) by sliding a receptive field over the image to compute dot 255 

product between the original filter and the convolutional filter. In diploS/HIC, the CNN uses 256 

three branches of a CNN, of which each has two dimensional convolutional layers with ReLu 257 

activations followed by max pooling. This is followed by a dropout layer to control for model 258 

overfitting. Outputs from all three units are fed into two fully connected dense layers, which also 259 

use dropout layers, before arriving at a softmax activation that outputs the probability for each 260 

categorical class (hard, hard-linked, neutral, soft-linked, or soft). Complete details for this 261 

procedure can be found in Kern and Schrider (2018). 262 

 When calculating feature vectors for the simulated chromosomes, we used the optional 263 

arguments for the ‘fvecSim’ function to mask each simulation with 110,000 bp segment 264 

randomly drawn from our masked FASTA where > 0.25 of SNVs in a subwindow were 265 

accessible (i.e., not marked by Ns). This enabled us to train our classifiers on simulated data 266 
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featuring the same patterns of inaccessible genomic regions that the classifier would encounter in 267 

the empirical data.   268 

 We created a balanced set with equal representation (2 x 103) of all five classes via 269 

sampling without replacement in which to train the classifier using diploS/HIC’s 270 

‘makeTrainingSets’ function. These were divided into 8,000 training examples, 1,000 validation 271 

examples, and 1,000 testing examples to test the accuracy of the classifier via the ‘train’ function 272 

in diploS/HIC. We built ten classifiers per lineage and selected the one with the highest accuracy 273 

to apply to the empirical data (File S4).  274 

 A second, independent set of simulated chromosomes was generated per lineage using 275 

the same parameters. After calculating feature vectors and creating a balanced training set, we 276 

used diploS/HIC’s ‘predict’ function to assess the true positive rate, false positive rate, and 277 

accuracy of each classifier (Tables S2 - S5).  278 

 279 

Empirical Data Feature Vectors and Prediction 280 

 Upon achieving > 0.8 accuracy, each trained classifier was applied to its respective Pan 281 

lineage. Each autosome was analyzed separately and feature vectors calculated using 282 

diploS/HIC’s ‘fvecVcf’ function. We supplied this function with the masked FASTA for that 283 

chromosome and discarded windows where any subwindow had < 0.25 unmasked sites 284 

following Schrider and Kern (2017) (File S5). This step reduces the potential effect of the 285 

number of SNVs in a given window on sweep classification. Finally, the trained classifier was 286 

applied to the feature vector files using the ‘predict’ function.  287 

 288 

Sweep Identification, Potential Target Genes, and Gene Ontology 289 
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 As diploS/HIC outputs the probability for each sweep class, we first report the class 290 

inferred to be the most likely. However, as the difference between the most likely class and the 291 

next most likely may be small, we further report windows where the sweep class probability is  > 292 

0.5, > 0.75, and > 0.9 (File S6). We also examined our data for spatial patterns. Windows 293 

classified as immediately abutting other windows with the same sweep type for hard and soft 294 

sweeps were considered to be a single sweep. Unique sweep windows and those shared between 295 

two or more lineages were visualized using UpSet plots (Lex et al. 2014) in R (R Core Team 296 

2020).  297 

 We examined what genes lie in the windows identified as being subject to a recent 298 

selective sweep by extracting the genomic coordinates of all autosomal coding regions for the 299 

longest transcript per gene (N = 20,119 genes) in the panTro6 genome via the panTro6 gff 300 

(retrieved from: https://www.ncbi.nlm.nih.gov/genome/202?genome_assembly_id=380228). We 301 

used the bedtools ‘intersect’ function (Quinlan and Hall 2010) to identify overlap between 302 

coding regions and candidate sweep windows after converting both CDS and sweep window 303 

coordinates to 0-start, half-open format. As some coding sequences may have been masked (see 304 

Variant Filtration and Genome Accessibility above), we extracted FASTAs for each coding 305 

sequence using bedtools ‘getfasta’ function (Quinlan and Hall 2010) and used a custom R script 306 

to calculate the percent of each gene that was masked. Overall, 66.2% of all coding sequence 307 

was unmasked. We excluded listing genes for candidate sweep regions if > 50% of the total 308 

coding sequence per gene was masked. Thus, we considered 13,228 genes as potential targets for 309 

selective sweeps (File S7).  310 

 We investigated the enrichment of particular pathways by performing a gene ontology 311 

analysis using the Functional Annotation Tool in DAVID (Huang et al. 2008; Huang et al. 2009). 312 
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We used the custom background described above (genes whose total coding sequence was > 313 

50% unmasked) rather than all pantro6 genes to ensure our analysis was not underpowered. 314 

DAVID does not allow for official gene symbols to be used in a background list, so we 315 

converted gene symbols to Entrez gene IDs. As not all gene symbols have a corresponding 316 

Entrez gene ID, we removed genes for which there was no Entrez gene ID (N = 98 in 317 

background list). We collated genes for both hard and soft sweeps into a single input per lineage. 318 

We evaluated statistical significance for biological process gene ontology terms via p-values 319 

adjusted using the Benjamini-Hochberg method (Benjamini and Hochberg 1995). 320 

 Scripts for all data analyses are available on Github 321 

(https://github.com/brandcm/Pan_Selective_Sweeps). 322 

 323 

Results 324 

  We generated four classifiers that reached an acceptable level of accuracy for bonobos 325 

(P. paniscus), central chimpanzees (P. t. troglodytes), eastern chimpanzees (P. t. schweinfurthii), 326 

and Nigeria-Cameroon (P. t. ellioti) chimpanzees. These classifiers ranged in accuracy from 327 

85.6% (Nigeria-Cameroonian chimpanzees) to 93.9% (central chimpanzees) (File S4). We could 328 

not produce a sufficiently accurate classifier using realistic parameters for western chimpanzees 329 

(P. t. verus); therefore, they were excluded from downstream analyses. Following Kern and 330 

Schrider (2018), we calculated false positive rates by testing our classifiers on a second, 331 

independent set of simulated chromosomes per lineage. We used a binary classification,  332 

considering the identification of either sweep type as a positive and identification of a linked or 333 

neutral region to be negative. Our trained classifiers had considerable statistical power (1 - false 334 

positives) ranging from 96.6 to 99.2% and a low false positive rate (false positives / false 335 
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positives + true negatives) that ranged from 1.4 to 4.3% across all four classifiers (Tables S2 - 336 

S5). When considered separately—i.e., true positives only included one sweep type (hard or soft) 337 

rather than both—we had greater power to detect hard sweeps than soft sweeps, averaging 99% 338 

and 96.9% across lineages, respectively (Tables S2 - S5). Accuracy (true positives + true 339 

negatives / total) for identifying sweep regions vs non-sweep regions ranged from 94.1 to 98.3% 340 

while a second estimate (in addition to the first accuracy estimate that resulted from the 341 

construction of the classifiers) of class-specific accuracy ranged from 81.6 to 92.1% (Tables S2 - 342 

S5). 343 

 We classified ~ 91.6% of the assembled autosomes in each lineage (Table 1, File S8), 344 

even after masking for inaccessible regions and excluding windows with few SNVs. We found 345 

that soft sweeps were abundant in all four lineages, accounting for > 73% of all individual 346 

sweeps, whereas hard sweeps were relatively rare (Table 1, File S8). This pattern held true even 347 

when more stringent posterior probabilities were applied to consider a region a sweep and at 348 

least 30% of hard sweep windows and 76% of soft sweep windows were called with 50% or 349 

greater posterior probability (File S6). Genomic regions linked to sweeps were also quite 350 

pervasive in all four lineages (Table 1); particularly among eastern chimpanzees, where roughly 351 

86% of the genome was classified as linked to selective sweeps.  352 

 We examined overlap in windows classified as either a hard or soft sweep across 353 

lineages, which may reflect either ancestral or parallel adaptation. Most hard sweep windows 354 

were unique to each lineage; however, we did find some shared windows across lineages (Figure 355 

1). Central and Nigeria chimpanzees shared the highest number of sweep windows (N = 33) but 356 

when weighted by the total possible number of windows, the highest overlap for hard sweeps 357 

was between eastern and Nigeria chimpanzees (7/32 or ~ 0.21). No hard sweeps windows were 358 
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shared across all lineages. Like hard sweeps, most soft sweep windows were also unique to each 359 

lineage (Figure 2). Among pairs of lineages there was remarkable consistency in the number of 360 

shared windows (N = 111-147), even when the total possible number of shared windows is 361 

considered. One exception is eastern and central chimpanzees who shared nearly twice the 362 

number of soft sweep windows (N = 267). The highest number of shared soft sweep windows 363 

between three lineages occurred in the three chimpanzee subspecies (N = 80). Only 19 windows 364 

were shared across all four lineages.  365 

 After excluding genes that were > 50% masked, we identified 1,671 candidate genes in 366 

bonobo hard and soft sweeps, 1,761 genes in central chimpanzee sweeps, 1,372 genes in eastern 367 

chimpanzee sweeps, and 1,844 genes in Nigeria-Cameroonian chimpanzee sweeps (File S9). 368 

After correcting for multiple testing, across all lineages, we identified only two significantly 369 

enriched pathways in central chimpanzees: nervous system development and central nervous 370 

system development (File S10).  371 

  372 

Discussion 373 

 Our study contributes to the emerging picture of recent evolution in Pan and adaptation 374 

more broadly. Contrary to the predictions of a mutation-limitation hypothesis, yet concordant 375 

with recent results for humans (e.g., Hernandez et al. 2011; Schrider and Kern 2017), we find 376 

soft sweeps to overwhelmingly predominate regions of the genome experiencing selective 377 

sweeps in both bonobos and the three chimpanzee subspecies we could analyze. These results 378 

confirm the prediction from Schmidt et al. (2019) who speculated that soft sweeps played a 379 

major role in the evolution of eastern and central chimpanzees. Those authors also posit that hard 380 

sweeps should be more frequent in western chimpanzees relative to other subspecies because of 381 
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their low effective population size. While western chimpanzees are estimated to have the lowest 382 

effective population size, it is estimated to be only slightly lower than that of bonobos for which 383 

we found a high number (95.1%) of soft sweeps (e.g., Prado-Martinez et al. 2013; de Manuel et 384 

al. 2016). It is curious that Nigeria-Cameroon chimpanzees exhibit the most hard sweeps in this 385 

analysis. While this could be the result of a multitude of factors, a notable possibility is that this 386 

lineage has experienced the most stable effective population size in recent evolutionary time as 387 

estimated by PSMC, compared to bonobos, eastern chimpanzees, and central chimpanzees 388 

(Prado-Martinez et al. 2013; de Manuel et al. 2016).  389 

 Our analysis of shared hard and soft sweeps found that most sweeps of both types were 390 

unique to each lineage. However, there was a high number of hard sweep windows shared 391 

between central and Nigeria-Cameroon chimpanzees as well as between eastern and Nigeria-392 

Cameroon chimpanzees when the total possible number of shared sweeps was considered. 393 

Further, there were nearly twice the number of shared soft sweep windows shared between 394 

eastern and central chimpanzees. These results are similar to other recent findings (Nye et al. 395 

2020). It is impossible to discern whether or not the overlap in hard sweeps between central and 396 

Nigeria-Cameroon chimpanzees and the overlap in soft sweeps for eastern and central 397 

chimpanzees is the result of shared ancestry and/or similar environmental conditions because 398 

both pairs of lineages share a geographic boundary: the Ubangi river for eastern and central 399 

chimpanzees and Sanaga river for central and Nigeria-Cameroon chimpanzees. The overlap in 400 

hard sweeps between eastern and Nigeria-Cameroon chimpanzees is more puzzling because they 401 

are not sister taxa and share a common ancestor ~ 600 Ka. Therefore, parallel adaptation via 402 

similar physical and/or social environments may serve as a more likely hypothesis. While the 403 

lowest in overall frequency, we also identified a number of soft sweep windows that were shared 404 
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across three lineages as well as 19 windows that occurred in all four. Future work should further 405 

investigate these shared sweep windows.  406 

 As mentioned above, soft sweeps are not exclusively the result of selection on standing 407 

genetic variation (Pennings and Hermisson 2006a; Pennings and Hermisson 2006b). However, 408 

given the mutation rates estimated for bonobos and chimpanzees, it appears unlikely that 409 

recurrent de novo mutations explain the majority of these soft sweeps. We did not explicitly 410 

model for different types of soft sweeps in our analysis. However, while soft sweeps from 411 

standing genetic variation and de novo mutations may exhibit similar genomic signatures, the 412 

hypothesis that these processes result in similar genomic signatures must be tested before any 413 

additional conclusions are drawn. Nonetheless, our results reveal a major role of standing genetic 414 

variation, and thus changes in the physical and social environment, in driving recent adaptations 415 

in Pan. 416 

 A few recent studies have considered the impact of effective population size on adaptive 417 

evolution in the great apes (Cagan et al. 2016; Nam et al. 2017). Theory predicts that the rate of 418 

adaptive evolution should be positively correlated with effective population size when Nes is >> 419 

1 (Gossmann et al. 2012). Both Cagan et al. (2016) and Nam et al. (2017) found a positive 420 

association between effective population size and the rate of adaptive evolution, measured by 421 

proportion of adaptive substitutions and the number of selective sweeps, respectively. However, 422 

we observed no clear linear relationship between the number of sweeps (hard, soft, or both) 423 

estimated from this analysis and the estimated effective population sizes for these four lineages 424 

(see File S3 for population sizes). This descriptive result should be considered cautiously 425 

because of the limited number of lineages analyzed here and the potential confounding effect of 426 

phylogeny. It is possible that this relationship may not be driven by the number of sweeps, but 427 
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rather the strength of sweeps a population experiences (Nam et al. 2017). Estimates of selection 428 

strength are generally lacking for the great apes so this relationship remains a question for further 429 

study.  430 

 In addition to characterizing broad patterns in the genomic landscape for bonobos and 431 

chimpanzees, the results of this study also highlight thousands of candidate regions and genes for 432 

further analysis. We also find additional support for previous selection candidates. For example, 433 

disease has been long thought to shape evolution in primates (Nakajima et al. 2008; van der Lee 434 

et al. 2017). The potential for disease transmission between non-human primates and humans has 435 

also prompted much research, particularly focusing on the genomic underpinnings of host 436 

responses to lentiviruses, which include HIV and SIV (Gao et al. 1999; Van Heuverswyn et al. 437 

2006; Compton et al. 2013; Nakano et al. 2020). Cagan and colleagues (2016) found evidence of 438 

recent positive selection within IDO2, a T-cell regulatory gene, among all four-chimpanzee 439 

subspecies and bonobos. We identified a candidate soft sweep region for eastern chimpanzees 440 

that overlaps this gene. However, this window had one of the lowest posterior probabilities in 441 

this lineage (49.7%) and there was a nearly equally high probability that this window was linked 442 

to a soft sweep (43.8%). Clearly, additional work is needed to understand the potential role of 443 

IDO2 in Pan evolution. Schmidt et al. (2019) recently described three chemokine receptor 444 

genes—CCR3, CCR9, and CXCR6—had a significant number of highly differentiated SNVs in 445 

central chimpanzees. We could evaluate all three of these genes in our analysis but only one fell 446 

within a candidate sweep window: CXCR6. The window containing this gene was confidently 447 

called as a soft sweep with a posterior probability of 85.5%. It is not known as to whether or not 448 

SIVcpz uses CXCR6 to enter chimpanzee host cells (Wetzel et al. 2018). However, multiple lines 449 

of evidence for selection either at this locus or within the window overlapping this gene prompt a 450 
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closer examination of this genomic region. Finally, TRIM5 fell within a hard sweep window in 451 

central chimpanzees. TRIM5 is a well-known retrovirus restriction factor that appears subject to 452 

ancient, multi-episodic positive selection in primates (Sawyer et al. 2005).    453 

 Recent attention has focused on admixture between lineages in the genus Pan and the 454 

potential adaptiveness of introgressed genomic elements. de Manuel and colleagues (2016) 455 

identified 221 genes that fell within putatively introgressed elements in central chimpanzees 456 

from admixture with bonobos. Some of this admixture is estimated to occur < 200 Ka, thus 457 

within the timeframe that the present analysis can detect selective sweeps. While we could not 458 

evaluate six of these 221 genes, five fell within candidate sweep regions in central chimpanzees 459 

from our study: CDK8, EIF4E3, GRID2, PTPRM, and TRIM5. As described above, TRIM5 was 460 

unique to central chimpanzees. We found CDK8 in sweep windows for bonobos, eastern 461 

chimpanzees, and Nigeria-Cameroon chimpanzees. In humans, CDK8 mutations have been 462 

associated with multiple phenotypic effects including hypotonia, behavioral disorders, and facial 463 

dysmorphism (Calpena et al. 2019). We also identified EIF4E3 in candidate sweeps for bonobos 464 

whereas GRID2 and PTPRM were found in eastern chimpanzees. EIF4E3 is a translation 465 

initiation factor (Osborne et al. 2013) while PTPRM is a member of the protein phosphatase 466 

family (PTP) and has multiple functions including cell proliferation and differentiation (Sun et 467 

al. 2012). GRID2 generates ionotropic glutamate receptors and mutations have been associated 468 

with abnormalities of the cerebellum (Lalouette et al. 1998). 469 

 The gene ontology analysis produced only two statistically significant terms, nervous 470 

system development and central nervous system development, for a single Pan lineage: central 471 

chimpanzees. While cognitive and neurological differences are widely considered to differentiate 472 

bonobos and chimpanzees (e.g., Rilling et al. 2012; Stimpson et al. 2016; Staes et al. 2019), we 473 
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are unaware of any studies that investigate variation among chimpanzee subspecies that may 474 

explain enrichment for nervous system and central nervous system development related genes 475 

specifically in central chimpanzees. We note that compared to other gene ontology analyses, our 476 

level of enrichment is quite low. While we excluded a large number of genes from our analysis 477 

due to poor coverage, our use of a custom background should increase, rather than decrease, 478 

statistical power.  479 

 The results from our analysis should be interpreted with some caution. First, while our 480 

classifiers achieved a high degree of accuracy, it is possible that some selective sweeps in each 481 

lineage were not detected or regions were incorrectly identified as such (Tables S2 - S5). We 482 

also note that we did not model small selection coefficients as we could not accurately classify 483 

sweeps under weak selection. Overall, our classifiers were quite good at identifying hard and 484 

linked-hard sweeps with both at approximately 95% accuracy across all lineages. Neutral and 485 

linked-soft regions were the most difficult to recognize with neutral regions typically being 486 

classed as soft-linked when they did not appear neutral. This suggests that the neutral portion of 487 

the genome for each lineage is slightly underestimated here. Finally, some soft sweeps were 488 

identified as hard sweeps in each of our classifiers, suggesting that some portion of identified 489 

hard sweeps in each lineage are, in fact, soft sweeps. The low false positive rates demonstrate the 490 

overall accuracy of the observed genomic patterns (i.e., the proportion of hard and soft sweeps) 491 

for these taxa. However, this point underscores the need to conduct subsequent analyses of the 492 

candidate regions and genes to confirm such the proposed mode of adaptation and investigate 493 

any functional consequences of that adaptation. In the ‘era of -omics’, the generation of 494 

candidate regions for any type of selection across populations and species appears to 495 

overwhelmingly outpace the confirmation of such patterns. Avenues of research that investigate 496 
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these candidate genes in more detail are thus well poised to provide a deeper and more accurate 497 

understanding of lineage-specific adaptations.  498 

 Second, background selection, the loss of a linked neutral site from purifying selection on 499 

a deleterious allele, can potentially mimic patterns of selective sweeps and thus may impact the 500 

results of this study (Charlesworth et al. 1993). We did not explicitly model background 501 

selection in our analysis, however, evidence from simulations in various taxa demonstrate that 502 

this pattern of selection does not substantially increase the rate of false positives in selective 503 

sweep analyses (Schrider and Kern 2017; Schrider 2020: 20). Further, Nam et al. (2017) 504 

considered the effect of background selection on genomic diversity in extant apes, including all 505 

five Pan lineages, and note that background selection alone does not produce the observed 506 

diversity reduction near genic regions in these lineages.    507 

 Further, sampling bias can reduce the accuracy of identifying selective sweeps. If 508 

multiple haplotypes are present in a population but only individuals sharing one haplotype are 509 

sampled, then the sweep would be classified as a hard sweep when it is a soft sweep. However, 510 

this scenario would only underestimate the degree of recent adaptation from soft sweeps. 511 

Therefore, if this sampling bias is present in this analysis, then soft sweeps may predominate 512 

recent Pan evolution to an even larger degree than described here. Population structure adds 513 

further complications to the classification of hard sweeps. Parallel adaptation produces multi-514 

origin soft sweeps at the global population level that would appear to be hard in local 515 

populations, although even local samples may sometimes appear to be soft sweeps (Ralph and 516 

Coop 2010). Thus, if samples stemmed from one or few local populations then global soft 517 

sweeps may be misclassified as hard. A previous analysis estimated the geographic origin of 518 

individuals used in this analysis (de Manuel et al. 2016). These authors found that individuals 519 
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from both eastern and central chimpanzee populations were sampled from multiple countries 520 

across the geographic range for both subspecies. Therefore, any hard sweeps detected in these 521 

populations are likely accurate at the subspecies level. Geographic origin could not be assessed 522 

for any of the bonobos or all of the Nigeria-Cameroon chimpanzees used in this analysis (de 523 

Manuel et al. 2016). As such, sampling or geographic bias may partially explain the high degree 524 

of hard sweeps observed in Nigeria-Cameroon chimpanzees, if they were sampled from a smaller 525 

geographic area than the other subspecies. We encourage future studies to consider this potential 526 

bias when hard sweeps are encountered in existing data and during study design.  527 

 This analysis focuses on signatures of positive selection at single loci. However, there is 528 

theoretical and empirical evidence that a number of adaptive traits have a complex, multilocus 529 

architecture (Pritchard et al. 2010; Yang et al. 2017; Bergey et al. 2018). For these polygenic 530 

traits, shifts in the physical or social environment might result in allele frequency changes at 531 

many loci, of which, according to models, few to none of which would reach fixation (Pritchard 532 

et al. 2010). This may, in part, explain why hard sweeps appear to be rare in humans and other 533 

species if it represents a dominant mode of adaptation in these taxa. Unfortunately, at this point, 534 

we lack the data and methods to investigate the extent of polygenic selection across the genome 535 

in many non-model taxa such as Pan. It is also worthwhile to address that this analysis focused 536 

on modelling very recent completed selective sweeps. Another future avenue of study is the 537 

identification of incomplete or partial sweeps in bonobos and chimpanzees.  538 

 Finally, while our approach to identifying hard and soft sweeps is a logical first step, 539 

future work should consider sweeps within subspecies to assess population-level (i.e., local), 540 

rather than lineage-specific, adaptations. This is underscored by the extensive phenotypic 541 

variation among chimpanzees, particularly that of behavioral variation, which includes key 542 
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characteristics that are often used to dichotomize bonobos and chimpanzees (Wilson et al. 2014). 543 

Further investigation is also clearly warranted in bonobos, whose overall phenotypic variation is 544 

likely underappreciated compared to chimpanzees (Hohmann and Fruth 2003; Sakamaki et al. 545 

2016; Beaune et al. 2017; Wakefield et al. 2019).  546 

 547 

Conclusion         548 

 This study highlights the importance of changes in physical and/or social environment via 549 

soft selective sweeps in the recent evolution of our closest living relatives, chimpanzees and 550 

bonobos. Our results also yield further support for the ubiquity of soft, rather than hard, sweeps 551 

in adaptation. We contribute candidate regions and genes that may help identify unique 552 

phenotypes in each Pan lineage. Our findings also prompt many new questions including the 553 

estimation of selection strength coefficients and the degree of haplotypic diversity in candidate 554 

sweep regions. While our study focuses on these lineages broadly, this point also underscores the 555 

need for high-coverage genomic data collected using non-invasive methods at more local 556 

geographies.  557 
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Table 1. Selective sweep summary per population. 818 

 Number / Percent of Windows per Class Type Number and Percent of Sweep Type 

Lineage Hard Linked-

hard 

Neutral Linked-

soft 

Soft Total Hard Soft Total 

P. paniscus 85 

(0.4%) 

1,576 

(6.5%) 

7,488 

(30.8%)  

13,168 

(54.1%) 

2,002 

(8.2%) 

24,319 81 

(4.9%) 

 1,585 

(95.1%) 

1,666 

P. t. ellioti 573 

(2.4%) 

6,358 

(26.1%) 

1,389 

(5.7%) 

14,498 

(59.6%) 

1,505 

(6.2%) 

24,323 488 

(26.9%) 

1,323 

(73.1%) 

1,811 

P. t. schweinfurthii 32 

(0.1%) 

696 

(2.9%) 

1,835 

(7.5%) 

20,179 

(83.0%) 

1,581 

(6.5%) 

24,323 32 

(2.3%) 

1,376 

(97.7%) 

1,408 

P. t. troglodytes 224 

(0.9%) 

1,746 

(7.2%) 

5,483 

(22.5%) 

15,121 

(62.2%) 

1,749 

(7.2%) 

24,323 184 

(10.6%) 

1,557 

(89.4%) 

1,741 

  819 
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Figure 1.  Unique and shared hard sweep windows. The frequency of windows shared by two or 821 

more lineages should be considered relative to the total possible number of shared windows (i.e., 822 

the set size of the lineage with the smallest set size).  823 

824 
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Figure 2. Unique and shared soft sweep windows. The frequency of windows shared by two or 825 

more lineages should be considered relative to the total possible number of shared windows (i.e., 826 

the set size of the lineage with the smallest set size). 827 

828 
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