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Abstract 

Background and Purpose: Genetic profiling for glioblastoma multiforme (GBM) patients with 

intracranial biopsy carries a significant risk of permanent morbidity. We previously 

demonstrated that the CUL2 gene, encoding the scaffold cullin2 protein in the cullin2-RING E3 

ligase (CRL2), can predict GBM radiosensitivity and prognosis mainly due to the functional 

involvement of CRL2 in mediating hypoxia-inducible factor 1 (HIF-1) α and epidermal growth 

factor receptor (EGFR) degradation. Because CUL2 expression levels are closely regulated with 

its copy number variations (CNVs), this study aims to develop an artificial neural network (ANN) 

that can predict GBM prognosis and help optimize personalized GBM treatment planning.  

Materials and Methods: Datasets including Ivy-GAP, The Cancer Genome Atlas Glioblastoma 

Multiforme (TCGA-GBM), the Chinese Glioma Genome Atlas (CGGA) were analyzed. T1 

images from corresponding cases were studied using automated segmentation for features of 

heterogeneity and tumor edge contouring.  

Results: We developed a 4-layer neural network that can consistently predict GBM prognosis 

with 80-85% accuracy with 3 inputs including CUL2 copy number, patient’s age at GBM 

diagnosis, and surface vs. volume (SvV) ratio.  

Conclusion: A functional 4-layer neural network was constructed that can predict GBM 

prognosis and potential radiosensitivity.  

Keywords: cullin2, glioblastoma multiforme, copy number variations, artificial intelligence, 

machine learning, deep learning. 
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Introduction 

Glioblastoma Multiforme (GBM) is an aggressive form of tumor in the central nervous system 

(CNS) with less than 5% of patients in the United States surviving for five years following initial 

diagnosis[1]. While concurrent and adjuvant chemoradiotherapy constitutes standardized 

treatment for GBM after the Stupp et al. clinical trial in 2005, finding further methods of refining 

treatment would prove invaluable for better patient outcomes with less general toxicity[2]. 

Recent research regarding biomarkers of traits governing treatment response as well as 

promising machine learning (ML) applications in neuroimaging analysis join to indicate that 

targeted treatment informed by genetic and imaging data could lead to the paradigm shift 

necessary for such improvement[3, 4]. The rapidly developing field of ML includes methods 

allowing for increasingly robust approaches to research designed to enhance targeted treatment. 

Aspects of deep learning (DL), a subfield of ML concerned with multi-layered artificial neural 

networks (ANNs), stand to benefit GBM research in particular given that applications in medical 

image processing allow the systematic extraction of image features desirable for use in predictive 

modeling [4-6].  

Using genetic data from numerous datasets, we recently demonstrated expression levels 

of CUL2, which encodes the cullin2 scaffold protein the cullin2-RING E3 ligase (CRL2) 

complex, can predict GBM radiosensitivity[7]. Variations of GBM radiosensitivity has been well 

demonstrated in xenograft models with single-dose irradiation TCD 50s (tumor control dose 50%) 

values range from 32.5 to 75.2 Gy[8, 9], indicating that the ability to predict a GBM patient’s 

radiosensitivity could promote effective personalized RT and improved patient outcomes as a 

result. Notably, CUL2 copy number variation (CNV) dictates expression levels, suggesting that 
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models could rely on CNVs measured through non-invasive methods rather than expression 

levels to predict a patient’s radiosensitivity[7, 10]. To improve the accuracy of these predictions 

without requiring additional invasive techniques, ANN models could also leverage data extracted 

from MRI to help assess treatment response and patient prognosis[11]. Neuroimaging data 

contains valuable information for measuring treatment response as well as discerning patient 

outlook. Distinct quantitative GBM image features such as tumor shape, edge sharpness, and 

texture varied with the survival probability of patients[12]. Combined with clinical 

measurements found in existing datasets, features extracted from imaging data could be 

combined with genetic information such as CUL2 CNVs to strengthen the foundation for non-

invasive, effective, and consistent evaluation of treatment outcomes and radiosensitivity profiling.  

To this end, we employed ML and DL methodologies to create an effective model for 

radiosensitivity profiling using CUL2 CNVs and imaging data derived from independent public 

datasets. An ANN working model that integrates image, clinical, and genetic information for 

non-invasive radiosensitivity profiling is proposed.  

 

Materials and Methods 

Public Datasets 

Datasets including genetic data regarding CUL2 copy number variations (CNVs) and expression 

levels, clinical data indicating patient demographic and overall survival (OS), and T1 Magnetic 

Resonance Imaging (MRI) images enabled this study. Such datasets include The Cancer Genome 

Atlas Glioblastoma Multiforme (TCGA-GBM), the Ivy Glioblastoma Atlas Project (Ivy-GAP), 
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and the Chinese Glioma Genome Atlas (CGGA)[13-15]. Clinical and genetic data from the 

TCGA-GBM were acquired through the Xena platform (https://xena.ucsc.edu/)[16]. TCGA-

GBM images were made available through The Cancer Imaging Archive (TCIA)[17]. This also 

includes skull-stripped and co-registered segmentations of TCGA-GBM images made available 

by Bakas et al., as well as DICOM-SEG conversions of these segmented images created by 

Beers et al.[17]. Images from the Ivy-GAP dataset were also acquired through TCIA, with 

clinical and genetic data made available by Puchalski et al[14].  

T1 MRI image segmentation 

While images considered in this research included post-gadolinium T1-weighted DICOM images 

from the original TCGA-GBM dataset, the features used in modeling were derived from the most 

voluminous DICOM-SEG conversions of images in the segmented image dataset for each patient. 

Python packages for processing image files in the DICOM, DICOM-SEG, and NIfTI file formats 

include pydicom, pydicom_seg, and nibabel, respectively. 

Image Analyses 

To explore the applicability of image features for the prediction of patient outcomes, a simple 

ratio comparing the surface area of tumor borders to the total volume of borders was derived 

from the DICOM-SEG conversions of segmented tumors. The edges of these borders can be 

detected using the canny edge detector such as the one available from the Skimage, or Scikit-

image, Python package. Finding the sum of the pixels forming these edges gives a close 

approximation of surface area. Tumor border volume can be calculated by summing up all pixels 

within the tumor borders. Calculating the tumor surface area vs. volume (SvV) ratio between the 
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two is then as simple as dividing the surface area by volume (SvV = Surface Area / Volume). 

This results in a value unique to each patient that is indicative of tumor border regularity[12]. 

 

Kaplan–Meier (K–M) survival analysis 

K–M survival analyses for GBM with differential CUL2 copy numbers, Karnofsky Performance 

Score (KPS) rankings, age at GBM diagnosis, surface area, and SvV ratios were conducted using 

the Lifelines library. The data set is split into two at the mean value of any of respective 

attributes above. Any value that is above the mean value for that attribute is placed in the upper 

group, while any value that is below the mean is placed in the lower group. Therefore, the 

number of patients in either group varies from attribute to attribute. Because of this, the number 

of patients in any one group is labeled next to the legend for that group on its graph. Log-Rank 

analyses for p-values smaller than 0.05 were considered statistically significant. 

Artificial neural network (ANN) of GBM genomics and clinical features 

Four different ANNs were created for the purpose of predicting the OS time of patients with the 

goal of testing whether or not measuring patient CUL2 copy numbers would yield similar results 

to CUL2 expression levels. Results are determined by how often a neural network can predict a 

patient’s survivability based on clinical data. Four different loss functions were used to test on all 

four of our neural networks, resulting in 16 different results to compare. The loss functions we 

chose were Binary Crossentropy, Mean Absolute Error, Mean Error Squared, and Categorical 

Crossentropy. The packages used for creating these neural networks include Keras, Pytorch, and 

TensorFlow. After extensive testing, a 4-layer model (8-8-8-2), with a binary output, was built. 
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The first layer consists of 8 nodes and takes number of inputs based on the information we are 

passing to it. The information being passed to our neural networks is as follows: Baseline (Age, 

KPS, longest dimension), Expression (CUL2 expression, Age, KPS, longest dimension), Copy 

Number Variation (CUL2 copy numbers, Age, KPS, longest dimension), and Feature Data 

(CUL2 copy numbers, Age, SvV). Therefore, each neural network requires a different amount of 

inputs. The second and third layer are both also 8 nodes and use a relu activation function. The 

last layer is binary output, with outputs of either 0 or 1.  

Regarding the last binary output layer of the neural network, we split each dataset into 

targets of 0 or 1, with patients who are assigned a 1 survived longer, and those who did not are 

assigned a 0. The data is split to be approximately 55%-45% in favor of 0 targets, with the 

exception of the feature dataset which is split approximately 60%-40% in favor of 0 targets. The 

data must be split like this in order to ensure a valid model. Figure 1 is a schematic overview of 

the architecture of the ANN. The data is passed into each of the 8 nodes, and so on until the last 

output layer, and if the model is correct it reinforces the model, whereas if it is wrong it punishes 

the model and tweaks the weights of each neuron accordingly. 

 

Results 

GBM T1 MRI segmentation and tumor surface regularity 

Many radiomic features such as first order statistics measuring gray value intensity and skewness, 

texture features describing the tumor region serve as predictors for GBM overall survival (OS) 

rates[18]. One method of systematically measuring shape involves finding the surface area vs. 
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volume ratio (SvV) of tumor borders[19]. Using the most voluminous binary segmentation 

masks attainable from DICOM-SEG (DSO) conversions for the TCGA-GBM segmentation 

dataset for each patient, the surface area of tumor borders was approximated by summing up 

edges of 2D slices derived with a canny edge detector (Figure 1B). The volumes of segmented 

tumors masks can then be calculated by summing up all pixels of each slice.  Applying this 

approach on the segmented image dataset creates surface area, volume, and SvV ratio data for 

102 patients, 98 of these patients have recorded CUL2 CNV averages in the corresponding 

genetic dataset. 

Itakura et al. established three clusters of GBM phenotypes associated with distinct OS 

categories[12]. These clusters are distinguished by concavity and regional intensity with Cluster 

1 described as pre-multi-focal tumors that have irregular tumor shapes combined with 

concavities along their border and associated with poor OS rates; Cluster 2 as spherical with 

better survival outcomes; Cluster 3 tumors resemble spherical tumors with rim-enhancing and 

cystic hypointense centers (Figure 1A)[12]. However, measuring the outer surface area of GBM 

was unable of reflect the intralesional heterogeneous features including multifocal hemorrhage 

and masses, cystic and necrotic components (Figure 1A, arrows). By using binary segmented 

masks, we were able to quantify the GBM intralesional heterogeneity which may help 

differentiate the Cluster 2 spherical tumors from Cluster 3 rim-enhancing tumors (Figure 1A, B, 

C). Notably, the orientation of these segmentation masks does not affect these measurements 

(Figure 1C). The resulting ratios prove unique to patients and indicate surface regularity. 

Segmented image features  
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To further investigate the clinical relevance of proposed segmentation methods, we studied the 

prognostic value of quantifiable image features in GBM.  These features include the total surface 

area, tumor volume, SvV ratio, and longest tumor dimension (Figure 2). In Kaplan Meier 

analyses, we found GBM total surface area based on the segmented images can predict GBM 

prognosis with patient with lower surface area (n=58) have significantly better prognosis than 

those with higher surface area (n=39) (p=0.0016) (Figure 2A). Interestingly, we did not observe 

significant difference on survival when patients were grouped based on tumor volume, longest 

dimension, or SvV ratio (Figure 2B, C, D). Given that each parameter in the MRI images is 

unique for individual GBM patient, we tested and tried these image features to find best 

candidates that can be incorporated for best performance in our neural network.  

CUL2 CNVs and GBM surface heterogeneity  

We previously demonstrated elevated CUL2 expression correlates with lower cellular protein 

levels of hypoxia-inducible factor 1 α (HIF-1 α) and epidermal growth factor receptor (EGFR) 

due to the polyubiquitination activity of cullin2-RING E3 ligase (CRL2) against these substrate 

proteins[7, 20, 21]. The importance of HIF-1 α and EGFR in GBM intralesional and surface 

heterogeneity may correlate CUL2 expression levels/copy numbers with SvV ratios[22, 23]. We 

found GBM patients with higher CUL2 copy numbers are more likely to have spherical or rim-

enhancing tumors (Cluster 2, 3, respectively) with corresponding larger surface area as 

demonstrated in images showing segmentation masks (Figure 3A).   A ‘left shift’ distribution 

pattern for Volume and Surface Area with low CUL2 copy numbers were observed as compared 

with cases of high CUL2 copy numbers (Figure 3B). However, no significant difference on 

average Volume, Surface Area and SvV ratio were identified in cases with low and high CUL2 

copy numbers (Supplementary Figure 1).  
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Prognostic value of CUL2 CNVs and clinical features 

Consistent with what we have reported, GBM patients with higher CUL2 copy numbers (n=41) 

often have better OS rates that those with lower CUL2 copy numbers (n=44) (Figure 4B). Given 

that CUL2 CNVs and GBM surface area and volume are features that can be obtain via non-

invasive methods, we went further to investigate the prognostic value of clinical parameters that 

are readily available at initial disease diagnosis. Age refers to a patient's age at initial diagnosis. 

Patients were split into two groups at their mean age. Patients over the mean age fall into the 

“High Age” group (n=46), and those that fall under the mean age fall into the “Low Age” group 

(n=39) (p=0.0062) (Figure 4A). And as expected those who rank higher (n=68) on the 

Karnofsky Performance Scale (KPS) tend to survive longer that those with lower ranking (n=17) 

(Figure 4C). We then chose these clinical attributes and CUL2 CNVs as inputs in our neural 

network. 

Constructed artificial neural networks (ANNs) predict GBM survival   

The parameters that we chose to build the neural networks should stay consistent throughout our 

trials. A loss function is required in many neural networks and can lead to performance 

increases/decreases depending on the type of problem that is being tackled[24]. Because of this 

we employed 4 different loss functions to test on all 4 of our neural networks, resulting in 16 

different results to compare. The loss functions we chose were Binary Crossentropy, Mean 

Absolute Error, Mean Error Squared, and Categorical Crossentropy (Figure 5A)[24]. The 

structure of the neural network we chose is a 4-layer model (8-8-8-2), with a binary output. The 

first layer consists of 8 nodes with sets of inputs as follows: Baseline dataset (Age, KPS, longest 

dimension), Expression dataset (CUL2 expression, Age, KPS, longest dimension), Copy Number 
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Variation dataset (CUL2 copy numbers, Age, KPS, longest dimension), and Feature Data dataset 

(CUL2 copy numbers, Age, SvV) (Figure 5A). The second and third layer are both also 8 nodes 

with a relu activation function. The last layer is binary output, with outputs of either ‘0’ or ‘1’ 

with patients who are assigned a ‘1’ survived longer, and those who did not are assigned a ‘0’ 

(Figure 5C).  

As expected, since the Baseline neural network was given the least amount of data, it 

makes sense that it was the poorest performing model in all four trials (Figure 5A). We then 

studied the performance between the Copy Number Variation neural network vs. the Expression 

neural network. The CNV neural network outperformed or similar to the Expression neural 

network in all four trials (Figure 5A). Therefore, CUL2 expression levels or CUL2 copy 

numbers will yield similar results, with around 73-74% accuracy as displayed on the average of 

the 4 loss functions combined in a single visual (Figure 5B).  

Lastly, to identify the set of inputs that establish best performing neural network, we have 

a set number of trials for each of our 16 neural networks. Each neural network run 1000 times 

with a total of 16,000 trials for 16 neural networks. The best performing model for each set of 

dataset input was saved for distribution and to view the model’s structure and weights. We found 

a consistent 80-85% accuracy on all loss functions for Feature Data dataset that has inputs of 

CUL2 copy numbers, Age, and SvV (Figure 5A).  

 

Discussion 
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We previously demonstrated that CUL2 gene expression levels and copy number variations 

(CNVs) can predict GBM radiosensitivity and overall survival (OS). This study further 

constructed neural networks via deep learning (DL) of basic clinical information, T1 MRI-based 

imaging features and CUL2 copy numbers. In our best performing neural network models, we 

consistently demonstrated 80-85% accuracy in predicting GBM prognosis with inputs of CUL2 

copy number, patient’s age at GBM diagnosis, and surface vs. volume (SvV) ratio in segmented 

images.  All these inputs are objective quantifiable parameters that can be obtained without any 

intracranial biopsy which carries significant risk of causing serious permanent morbidity 

(5%)[25]. Therefore, our model provides a unique tool for non-invasive pre-surgical evaluation 

of GBM patients regarding prognosis and potentially radiosensitivity.  

We found the usage of tumor border surface area and volume led to improved accuracy 

for each neural network model. This not only suggests that the uniqueness of these 

measurements has enough of a degree of influence on OS rates to clearly impact the results, but 

also demonstrates the general value of quantifiable features derived from image processing in 

predicting treatment outcomes. In addition to including other measurements of shape indicating 

surface regularity, future models could also potentially integrate first order statistics regarding 

gray level intensity, textural features, and a myriad of radiomic features with demonstrable 

impact on GBM survival. Artificial intelligence-based automated image segmentation will play a 

critical role in this aspect. 

Processing medical images such as T1 images has its challenges, but several approaches 

exist to extract hundreds of potentially useful features of each category. Image processing 

solutions that employ convolutional neural network architectures such as 3D U-Net to automate 

tumor segmentation allow the systematic tumor segmentation, though atlas. Ultimately, 
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additional image features derived using deep learning (DL) solutions stand to improve the 

already promising model by introducing more non-invasive data alongside CUL2 CNVs, further 

indicating the value of combining such measurements for predicting treatment response.  

Although we built a promising model for non-invasive pre-surgical evaluation of GBM 

patients, this study has several limitations. First, this study needs to incorporate further imaging 

data and features from independent datasets into our neural network which will help our existing 

neural networks more accurately predict survivability. Second, the radiosensitivity of GBM 

patients is difficult to reflect with survival data that are derived from retrospective studies. 

Clinical trials are warranted to fully validate whether the neural network we built can guide RT 

treatment planning. Furthermore, relying on clinical data can be a risk, especially when certain 

clinical parameters are subjective. To solve this issue, we need to create new neural networks 

that are only fed imaging data and patients’ age, without including additional clinical data. 

Current models we built have binary outputs (‘1’ and ‘0’). Instead of the neural network just 

trying to predict between two possible outcomes, we could have the neural network try and be 

more accurate and predict possibly three or four possible outcomes.  
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Figure Legends 

Fig. 1 GBM T1 image segmentation. A) Example of imaging phenotypes as defined by Itakura 

et al.[12] with multifocal Cluster 1, spherical Cluster 2, and rim-enhancing Cluster 3 GBM cases. 

Arrows indicate intralesional multifocal heterogeneity. B) Example of binary segmentation 

masks attainable from DICOM-SEG (DSO) conversions for the TCGA-GBM dataset. The 

surface area of tumor borders calculated by summing up edges of 2D slices derived with a canny 

edge detector. The volumes were approximated by summing up all pixels of each slice.  C) 

Examples of segmented images with corresponding T1 image from the GBM case TCGA-06-

0192. 

 

Fig. 2 Prognostic value of image features. A, B, C) Overall survival (OS) analysis of GBM 

cases based on the quantifiable features including Surface area, Volume, and Surface area vs. 

Volume (SvV) of segmented images. Mean values were used as cutoffs for each survival 
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analysis panel.  The number of patients in each group was indicated as ‘N=’. D) OS analysis of 

GBM cases from TCGA-GBM dataset based on the longest dimension of GBM in T1 images. 

Mean value was used as cutoff. The number of patients in each group was indicated as ‘N=’. 

 

Fig. 3 Radiogenomic study of CUL2 copy numbers and segmented T1 images. A) 

Representative of segmented images of GBM cases with differential CUL2 copy numbers. B) 

Distribution of Volume, Surface area and Surface area vs. Volume (SvV) in GBM cases with 

differential CUL2 copy numbers.  

 

Fig. 4 Impact of CUL2 CNVs and clinical parameters in GBM survival. A, B, C) Overall 

survival (OS) analyses of GBM cases with differential CUL2 copy numbers, age at GBM 

diagnosis, and Karnofsky Performance Score (KPS) rankings. Mean values in each panel were 

used as cutoffs in grouping patients.  

 

Fig. 5 Parameterizing artificial neural networks (ANNs) based on CUL2 CNVs, image 

features and clinical data. A) 4 loss functions analyses including Binary Crossentropy, Mean 

Absolute Error, Mean Error Squared, and Categorical Crossentropy were used in our ANNs. The 

packages used for creating these ANNs include Keras, Pytorch, and TensorFlow. The 

information being passed to our neural networks is as follows: Baseline (Age, KPS, longest 

dimension), Expression (CUL2 expression, Age, KPS, longest dimension), Copy Number 

Variation (CUL2 copy numbers, Age, KPS, longest dimension), and Feature Data (CUL2 copy 

numbers, Age, SvV). Each neural network run 1000 times, and the prediction results from the 

best performing model of these 1000 runs were presented. A total of 16 neural networks were 
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trained with a total of 16,000 trials. B) Average performance of 4 neural networks for each set of 

inputs.  C) A schematic overview of our 4-layer neural networks.  
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