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Abstract  

Argonaute 2 (AGO2), the effector protein partner of microRNAs (miRNAs) in the 

cytoplasmic RNA induced silencing complex, is further involved in nuclear RNA 

processing. However, a role for AGO2 in regulation of alternative polyadenylation was 

not yet demonstrated. Here, we reveal unexpected abundance of AGO2 in mouse 

neuronal nuclei and characterize nuclear AGO2 interactors by mass spectrometry. We 

discover that AGO2 broadly regulated alternative polyadenylation (APA) in neuronal 

cells. Specifically, we demonstrate how two isoforms of Ret mRNA, which encodes a 

receptor tyrosine kinase are regulated by AGO2-depenent APA, affecting downstream 

GDNF signaling in primary motor neurons. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422806


 

3 

 

Introduction 

Argonaute (AGO) proteins are the direct binding partners of small RNAs and primarily 

execute small-RNA-guided gene-silencing processes (Bartel, 2004; Hammond et al., 

2001; Hock & Meister, 2008; Liu et al., 2004; Meister, 2013; Meister & Tuschl, 2004; 

Tuschl et al., 1999; Zamore et al., 2000). AGO2 is the most abundant among the four 

mammalian AGO proteins (AGO1-4), facilitating regulatory activities, based on 

interacting protein co-factors. GW protein trinucleotide repeat-containing gene 6 

(TNRC6 A/B/C) are the chief co-factors of AGO2 that are necessary for regulatory 

activities, such as mRNA deadenylation, decapping and degradation (Eulalio et al., 

2008; Fabian et al., 2011; Jakymiw et al., 2005; Liu, Rivas, et al., 2005; Rehwinkel et 

al., 2005; Zekri et al., 2009). Under normal conditions, AGO2 is primarily in the 

cytoplasm, in both diffuse form and in cytoplasmic foci termed processing bodies (P-

bodies) (Eulalio et al., 2007; Liu, Valencia-Sanchez, et al., 2005; Schraivogel et al., 

2015; Sen & Blau, 2005).  

However, the presence of AGO proteins was reported also in the nucleus 

(Bottini et al., 2017; Chu et al., 2010; Gagnon et al., 2014; Janowski et al., 2006; 

Kalantari et al., 2016; Robb et al., 2005; Rudel et al., 2008; Sarshad et al., 2018; Wei 

et al., 2014), where they are involved in nuclear microRNA (miRNA)-mediated gene-

silencing (Meister, 2013; Sarshad et al., 2018), transcriptional silencing (Benhamed et 

al., 2012; Chu et al., 2010; Janowski et al., 2006; Janowski et al., 2007)  and splicing 

(Ameyar-Zazoua et al., 2012). The diversified aspects of RNA regulation (reviewed in 

(Nussbacher et al., 2019)), highlights the flexibility of AGO2 that is based on the 

specific activities of the associated RNA-binding protein cofactors that are recruited by 

AGO and TNRC6.  

Alternative polyadenylation (APA) is a nuclear processing step of the mRNA 3ʹ 

end that is executed by a nuclear complex of CPSF and CstF proteins (Danckwardt et 

al., 2008; Elkon et al., 2013). A canonical polyadenylation sequence is positioned in cis 

15-30bp upstream of the polyadenylation site (polyadenylation signal, PAS), and is 

composed of an AAUAAA consensus sequence or variants thereof (MacDonald & 

Redondo, 2002; Tian & Graber, 2012). APA affects various aspects of RNA 

metabolism, mRNA stability, nuclear export, cellular localization and translation 

efficiency. Furthermore, 3ʹUTR isoforms directly affect the presence of miRNA 
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recognition sites (Danckwardt et al., 2008; Elkon et al., 2013; Fu et al., 2018; Tian & 

Manley, 2017). 

The secreted glial cell derived neurotrophic factor (GDNF) drives neurotrophic 

signaling that is important for axonal outgrowth, synapse maturation and neuron 

survival (Airaksinen & Saarma, 2002; Baudet et al., 2008; Bonanomi et al., 2012; 

Enomoto et al., 2001; Honma et al., 2010; Kramer et al., 2006; Pachnis et al., 1993; 

Runeberg-Roos & Saarma, 2007; Tuttle et al., 2019). Ret proto-oncogene is a tyrosine 

kinase receptor for GDNF (Romei et al., 2016) that is highly expressed in motor neurons 

(Baudet et al., 2008; Cintron-Colon et al., 2020; Pachnis et al., 1993). GDNF 

stimulation triggers RET autophosphorylation on distinct tyrosine residues, and 

intracellular activation of phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-

activated protein kinase (MAPK) pathways, which contribute to neuronal survival 

(Airaksinen & Saarma, 2002; Kaplan & Miller, 2000). Two RET isoforms RET9 and 

RET51, differ in the C-terminus sequence (Ibanez, 2013; Rossel et al., 1997). Both 

shorter RET9 and longer RET51 are phosphorylated on Tyr1062, but an additional 

tyrosine residue at position 1096, is present only at RET51 and can drive activation of 

GRB2 (Airaksinen & Saarma, 2002; Ibanez, 2013). The two isoforms differ in 

expression, intracellular trafficking and stability Consequently, RET9 and RET51, 

convey distinct signaling properties (de Graaff et al., 2001; Heanue & Pachnis, 2008; 

Lee et al., 2003; Richardson et al., 2012; Tsui & Pierchala, 2010; Wong et al., 2005). 

Interestingly, RET is differentially expressed and phosphorylated in amyotrophic 

lateral sclerosis (ALS) models (Kramer & Liss, 2015; Ryu et al., 2011; Zhang & Huang, 

2006), highlighting a biomedical interest in elucidating the regulation of RET neuronal 

isoforms. 

Here, we describe a novel function of AGO2 in the nuclear control of alternative 

polyadenylation, by using unbiased approaches and molecular tools. Our results 

indicate the involvement of AGO2 in alternative polyadenylation (APA) in neurons, 

including in control of the motor neuron-enriched GDNF receptor Ret. 
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Results 

AGO2 is abundant in the nucleus of neuronal cells 

To evaluate the nuclear localization of AGO2 in primary mouse motor neurons, 

we performed an immunofluorescence study, which revealed substantial AGO2 

enrichment in motor neuron nuclei (Figure 1A). This unexpected abundance of AGO2 

drove us to explore potential nuclear functions for AGO2. We have used a western blot 

(WB) analysis of a simple neuroblastoma cell line, NSC-34, and discovered that AGO2 

was comparably abundant in nuclear and cytoplasmic fractions (Figure 1B). 

Accordingly, mass spectrometric (MS) profiling of cellular compartments, revealed that 

AGO2 abundance in the nucleus of NSC-34 cells, approximated cytoplasmic levels 

(Figure 1C, Supplementary Table 4, Supplementary Figure 1A, B). Therefore, 

AGO2 is particularly abundant in the nucleus of primary motor neurons and of a 

neuronal cell line. 

 

Figure 1. AGO2 is abundant in the nucleus of neuronal cells. (A) Micrographs of mouse 

primary motor neurons, stained with AGO2 antibody (red), neuron-specific microtubule 

associated protein MAP2 (green) and DAPI (blue). Scale bar - 10µm. Mouse primary motor 

neurons harvested on embryonic day E13.5 and cultured for 7 days before fixation and 

immunofluorescence analysis. (B) A diagram of NSC-34 subcellular fractionation protocol, and 

WB analysis of cytoplasmic ‘C’ or nuclear ‘N’ fractions. Input – lysates, or proteins co-

immuno-precipitated with AGO2 or with IgG-control antibody. GAPDH/LAMIN A/C are 

cytoplasmic/nuclear markers, respectively. (C) Bar graph, depicting AGO2 mass spectrometry 

in cytoplasmic or nuclear fractions, identified by 24 unique peptides. Student’s t-test (S0=0.1) 

FDR p-value =0.00546.  
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Identification of AGO2 nuclear interactors  

To isolate nuclear AGO2-interacting proteins, we immunoprecipitated 

endogenous AGO2 (AGO2-IP) from nuclear NSC-34 fractions and analyzed by mass 

spectrometry. Data are available via ProteomeXchange with identifier PXD023112. We 

identified 472 AGO2-interacting proteins, which were enriched in nuclear AGO2-IP by 

at least two-fold, relative to non-specific IgG-control (q-value ≤0.05, using 

permutation-based false discovery rate (FDR)). Among AGO2 nuclear interactors, we 

report the three paralog co-factors TNRC6A, B and C, heterogeneous nuclear 

ribonucleoproteins (HNRNPs), nuclear paraspeckle components, ribosomal proteins, 

RNA helicases and RNA-splicing factors (Figure 2A, Supplementary Table 5). 

Interestingly, FUS, TDP-43, and HNRNPA2B1, whose mutated form is associated with 

motor neuron diseases also co-immunoprecipitated with AGO2. 

Next, we tested if AGO2-interactors are identified in previously-characterized 

protein networks. The 472 AGO2 interactors are predicted by STRING (Franceschini 

et al., 2013) to create a dense protein-protein network, that is more prevalent than could 

be expected at random, when the full nuclear proteome (~2000 proteins) from the same 

cells is taken as background (p-value <1x10-16). Many nuclear AGO2 interactors are 

functionally annotated as RNA-binding proteins and involved in a variety of 

ribonucleoprotein complexes (DAVID Bioinformatics Resources 6.7 (Huang da et al., 

2009), Figure 2B). Therefore, nuclear AGO2 in neuronal cells is associated with RNA-

binding protein networks. 

AGO2 is involved in alternative polyadenylation 

AGO2-nuclear interactors are enriched with proteins that are involved in 

alternative polyadenylation including direct APA factors CSTF1, CPSF7, , NUDT21, 

PABPN1, RBBP6; and regulators PTBP1, PTBP2, PTBP3, ELAVL1, ELAVL2, 

ELAVL4, SRSF3, SRSF7, FUS, TDP-43 and HNRNPA2B1. This enrichment, that is 

more than can be expected at random, suggests potential functional association of 

AGO2 and the APA machinery (p-value = 0.0074 by hypergeometrical distribution 

test). We could also demonstrate the co-immunoprecipitation of at least two of the 

proteins with AGO2, PTBP1 and HNRNPA2B1, by WB analysis (Figure2C). 
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Figure 2. Identification of AGO2 interacting proteins in NSC-34 nuclei. (A) Scatter plot 

depicting proteins co-immunoprecipitated with AGO2 and identified by MS analysis. x- axis: 

log2 fold change of label-free peptide quantification values in AGO2-IP versus the IgG-control; 

y axis: log10 of one-tailed Student’s t-test p-value. Grey–non-specifically bound proteins; Black 

–proteins specifically-bound by AGO2; Green TNRC6 A/B/C are AGO2 co-factors; Red –

proteins with function in alternative polyadenylation. (B) Gene ontology analysis (DAVID 6.7 

bioinformatic database, (Huang da et al., 2009)) of 472 nuclear AGO2 interacting proteins, 

shown as −log10(Bonferroni corrected p-value) of pathway enrichment (logarithmic scale). 

Dashed red line indicates a p-value of 0.05. (C) Western blot study of AGO2, PTBP1 and 

HnRNPA2B1, in cytoplasm ‘C’ and nucleus ‘N’ of NSC-34 after immunoprecipitation with 

antibody against AGO2 or non-specific IgG isotype control. Inputs are subcellular fraction 

lysates without immunoprecipitation.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422806


 

8 

 

To explore the hypothesis that AGO2 regulates APA, we performed next 

generation sequencing (NGS) of 3ʹ mRNA from NSC-34 cells, in which AGO2 was 

knocked-down by siRNA (Supplementary Figure 2). We computed molecular 

switches, as in (Rot et al., 2017), whereby a proximal (/distal) polyadenylation 

preference, is reciprocated by a new predominant polyadenylation signal that is 

positioned more distally (/proximally). A new proximal (/distal) APA site preference 

results in upregulation of shorter (/longer) 3ʹUTR, concomitant with downregulation of 

longer (/shorter) mRNA isoform (Figure 3A, B). We identified a total of 26,816 

poly(A) sites, which were annotated to 11,157 mRNAs with at least one 3ʹ end isoform. 

Of these, 1952 pairs displayed proximal-over-distal polyadenylation preference switch 

in response to knockdown of AGO2, whereas 2933 pairs displayed a reverse distal-

over-proximal preference (Supplementary Table 6). A global transcriptome-wide 

change in polyadenylation preference was observed (Chi-squared test for the 

probability of a shift from proximal-to-distal preference or vice versa, p-value < 2.2E-

16, Figure 3C), suggesting that APA regulation is a new and broad function of nuclear 

AGO2. Next, we focused our attention on 72 candidate transcripts, whose 

polyadenylation switches was the most significant after correction to multiple 

hypothesis (Benjamini-Hochberg based FDR adjusted p-value <0.05). Only nine 

Gencode annotated mRNAs (Frankish et al., 2019), displayed an AGO2-dependent 

polyadenylation switch and further harbor an AGO2-binding site at the vicinity (± 

100bps) of the regulated poly-A site (AGO2-CLIP data from (Moore et al., 2015), 

Table 1).  

We tested the polyadenylation switches of these 9 mRNAs by PCR-based 3ʹ 

rapid amplification of cDNA ends (3ʹ RACE; Supplementary Figure 3). This study 

revealed two polyadenylated isoforms for four mRNAs, out of the nine studied. 

Whereas AGO2 favors the proximal polyadenylation isoform of Fam3c, Zwint and Ret, 

and its knockdown resulted in preference towards the distal (longer) isoform, AGO2 

activity contributes to distal Gatad2a polyadenylation (Figure 3D). Taken together, the 

involvement of AGO2 in APA regulation is evident via unbiased NGS study and 

analysis of specific targets.  
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Gene 

name 

Proximal 

feature 

Distal 

feature 

Proximal 

FC 

Distal 

FC 

Proximal 

p-adj 

Distal 

p-adj 

UTR 

length 

difference 

Cxxc5 utr3 utr3 2.34 0.84 0.04496 0.03753 -789 

Fam3c utr3 utr3 0.58 1.31 0.0223 0.00496 +1369 

Gatad2a utr3 utr3 1.28 0.63 0.02205 0.00949 -1581 

Klc1 utr3 utr3 0.69 1.31 0.00019 0.00019 +11818 

Map6 utr3 utr3 0.66 1.26 0.00587 0.00178 +16918 

Pdlim7 utr3 exon 0.59 1.65 0.00001 0 +8360 

Ret utr3 utr3 0.80 1.44 0.01754 0.01793 +2819 

Trp53bp2 utr3 utr3 0.65 1.51 0.04462 0.00177 651 

Zwint utr3 utr3 0.787 2.24 0 0.00001 5798 

Table 1. AGO2-mediated alternative polyadenylation switches. Nine top hits exhibiting 

proximal/distal switch after knockdown of AGO2 with mRNA region wherein the PAS reside; 

Proximal/Distal FC – fold change of the usage of the chosen PAS between AGO2-KD and 

control; Proximal/Distal padj – adjusted p-value (correction for multiple hypothesis, FDR-

based), for the AGO2-KD vs control comparison of the usage of the chosen PAS; UTR length 

difference – the difference (in base-pairs) between the proximal and distal PAS chosen as 

switch, +/- represent lengthening or shortening. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422806


 

10 

 

 

Figure 3. AGO2 activity controls alternative polyadenylation. Diagrams of (A) proximal to 

distal polyadenylation switch and (B) of data distribution over a scatter plot of proximal (x-

axis) and distal (y-axis) polyadenylation ratio inferred from 3ʹ mRNA-sequencing. (C) Scatter 

plot of next generation RNA sequencing data, revealing polyadenylation ratio after AGO2 

knockdown (siAGO2) vs non-targeting siRNA (siNT). mRNAs elongated/shorted their 3ʹUTR 

or were below statistical significance (red/ blue, grey respectively) by FDR-corrected p-values 

≤0.05. (D Rapid amplification of cDNA ends (RACE), analysis of 3ʹ RNA polyadenylation 

preference by gel electrophoresis of RACE-PCR products and bar graph quantification. AGO2 

knockdown (siAGO2) vs a non-specific siRNA control (siNT). Band densitometry normalized 

to controls. Average and SEM, two-tailed Student’s t-test p-value *≤0.05, **≤0.01, ***≤0.001. 

Fam3c – p-value = 0.00097; Ret – p-value = 0.0035; Zwint – p-value = 0.0217; Gatad2a – p-

value = 0.05. 
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AGO2 mediates RET isoform expression via APA-regulation 

Motor neuron-enriched Ret is a tyrosine-kinase receptor, activated by GDNF 

ligands (Airaksinen & Saarma, 2002; Arce et al., 1998; Baudet et al., 2008; Ibanez & 

Andressoo, 2017). In response to binding of GNDF, RET dimerizes and 

autophosphorylates several tyrosine residues at its intracellular domain, which docks 

downstream effectors (Airaksinen & Saarma, 2002; Ibanez & Andressoo, 2017). 

GDNF-RET signaling promotes motor neuron survival and is essential for 

neuromuscular junction development (Baudet et al., 2008; Zahavi et al., 2015).  

We describe two Ret transcript variants, which correspond to the annotated Ret9 

and Ret51 (Carter et al., 2001; Lee et al., 2003), with AGO2 binding sites (Moore et al., 

2015), adjacent to Ret polyadenylation sequence (Figure 4A, blue).  

To test if AGO2 directly binds Ret in the nucleus, we co-immuno-precipitated 

AGO2 with associated RNA (AGO2-RIP) from nuclear NSC-34 fraction. We 

demonstrated comparable levels of Ret, Vimentin and Ptbp1 mRNAs, bound to AGO2 

in the nucleoplasm, by quantitative PCR (qPCR, Figure 4B). Furthermore, AGO2-

dependent isoform preference is evident in both nuclear and cytoplasm. Because 

mRNA undergoes directional nucleo-cytoplasmic export, the upregulation of Ret 

mRNA in the nucleus, in response to knocking down AGO2, is consistent with APA 

taking place in the nucleus (Figure 4C). 

Next, we quantified the relative usage of two Ret APA cis-regulatory sequences 

in response to AGO2 levels, by using a bicistronic luciferase-reporter, similar to the 

one reported in (Deng et al., 2018). The reporter, which harbors the APA cis-regulatory 

sequences of Ret mRNA 3ʹ, excludes many other potential regulatory elements that may 

reside on the transcript. The APA reporter assay in N2A cells, revealed that proximal 

Ret polyadenylation depends on AGO2 and that AGO2 knockdown resulted in 

preference of the distal Ret polyadenylation site (Figure 4D, E).  

Finally, we used single-molecule fluorescent in-situ hybridization (smFISH) to 

test the cellular distribution of the Ret mRNA isoforms in NSC-34 cells and in mouse 

primary motor neurons (Supplementary Figure 4A, B). smFISH indicated the 

presence of both Ret mRNA variants in the soma and proximal neurites of the neurons. 

AGO2 knockdown resulted in a significant increase in total transcript copies and in 
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upregulation of the long Ret mRNA variant mRNA, relative to all mRNA forms, 

(Figure 4F, G). Therefore, AGO2 regulates Ret mRNA alternative polyadenylation. 

 

Figure 4. AGO2 controls Ret polyadenylation in a neuronal cell line. (A) Two annotated 

mRNA variants of the mouse Ret gene, depicted by 3ʹ next generation RNA sequencing reads 

at the proximal/distal polyadenylation site under basal conditions (siNT) or knockdown of 

AGO2 (siAGO2), with fold-change for each site (FC). The longer ENSMUST00000032201.7 

encodes for Ret51 protein isoform, whereas the shorter, ENSMUST00000088790.8, encodes 
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for Ret9. Position of AGO2 binding, at the 3ʹUTR of Ret mRNA, juxtaposed to the proximal 

polyadenylation site is based on CLEAR-CLIP data (Moore et al., 2015). (B) Real-time PCR 

quantification of mRNAs co-immunoprecipitated with AGO2 (AGO2-RIP). Ret, Vimentin and 

Ptbp1 are associated with AGO2 in the nucleus of NSC-34 cells in a comparable manner. 

Average ± SEM, of data normalized to non-specific IgG isotype control. Two-tailed Student’s 

t-test p-value *≤0.05, **≤0.01, ***≤0.001. Ret – p-value = 0.01343; Vimentin – p-value = 

0.00301; Ptbp1 – p-value = 0.03803. (C) Gel electrophoresis of Ret mRNA isoforms in 

cytoplasm and nucleus, after AGO2 knockdown (siAGO2) and quantification of isoform 

densitometry ratio, normalized to control (siNT). Average ± SEM of 3 repeats, two-tailed 

Student’s t-test (p-value*≤0.05, **≤0.01, ***≤0.001). Cytoplasm – p-value = 0.11645; Nucleus 

– p-value = 0.00689. (D) Schematic diagram of the bicistronic reporter vector, adapted from 

(Deng et al., 2018). The vector contains Renilla luciferase protein ORF (hRluc) and firefly 

luciferase ORF (Luciferase) connected with one IRES, containing at the end of each ORF the 

proximal or distal PAS of Ret, correspondingly. The relative, activity of the proximal and distal 

Ret mRNA polyadenylation sites dictates the ratio between the two reporters. (E) AGO2 

knockdown (siAGO2) resulted in preference of the distal polyadenylation site. Control reporter, 

lacking Ret polyadenylation sites (psiCHECK2-IRES), was unchanged. Average ± SEM of 5 

repeats, two-tailed Student’s t-test (p-value*≤0.05, **≤0.01, ***≤0.001). psiCHECK2-Ret – p-

value = 0.00378; psiCHECK2-IRES – p-value = 0.274293748. (F) Representative micrographs 

of Ret mRNA smFISH performed on NSC-34 cells previously subjected to AGO2-KD 

(siAGO2), or control (siNT) treatment 72hrs before fixation. smFISH was performed to detect 

only the long Ret variant (cy5, red) or both long and short Ret variants (Alexa 594, green). 

DAPI – nuclear DNA (blue). (G) Quantification of long and short Ret smFISH signal, 33 

images per condition, 3 biological repeats. Average ±SEM, normalized to controls (siNT). 

Two-tailed Student’s t-test p-value for siAGO2 vs siNT. p-value * ≤0.05; **≤ 0.01, *** ≤0.001. 

Long/Short – p-value = 1.07394E-08; Long/Cell – p-value = 1.20772E-09.  
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GDNF signaling is implicated by AGO2-mediated Ret APA-regulation 

Ret mRNA isoforms give rise to RET9 and RET51, which differ in their c-

terminus (Ibanez, 2013; Rossel et al., 1997), and differentially activate downstream 

signaling pathways in response to GDNF (Hickey et al., 2009; Lian et al., 2017; Tsui-

Pierchala et al., 2002).  

To test whether AGO2-dependent control of Ret mRNA isoform switching is 

controlling the two protein isoforms, we performed WB analysis on lysates from NSC-

34 cells, using an antibody that specifically binds to the longer RET51. We 

demonstrated that knockdown of AGO2 results in ~3-fold increase in the expression of 

RET51 (Figure 5A, B). 

Next, we evaluated the changes in activation, of the GDNF-RET intracellular 

signaling, following AGO2 knockdown by following the phosphorylation state of AKT 

(pAKT) in mouse primary motor neurons (De Vita et al., 2000; Hayashi et al., 2000; 

Ibanez, 2013; Segouffin-Cariou & Billaud, 2000). WB analysis demonstrated an 

increase in pAKT in response to GDNF, relative to controls, and AGO2 knockdown 

resulted in dampening of AKT phosphorylation (Figure 5C, D). Therefore, AGO2 

regulates both RET isoform expression and the propagation of GDNF signal into 

pAKT. Together, we propose that AGO2-dependent control of alternative 

polyadenylation broadly impacts the neuronal transcriptome and specifically controls 

the balance between two translated isoforms of the GDNF receptor, RET, affecting 

intracellular signaling in motor neurons (Figure 5E). 
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Figure 5. AGO2 controls Ret polyadenylation and GDNF signaling. (A) WB analysis and 

(B) band densitometry of AGO2 and RET protein isoforms, from NSC-34 cells, treated with 

siAGO2, normalized to Tubulin and to non-specific siRNA pool as control (siNT). Average ± 

SEM based on three biological repeats. Two-tailed Student’s t-test p-value * ≤0.05; *** ≤0.001. 

AGO2 – p-value = 2.05254E-05; RET long – p-value = 0.01888; RET total – p-value = 0.01512. 

(C) WB analysis of AGO2, AKT, pAKT, Tubulin and GAPDH in primary motor neurons, 

treated with GDNF for 2.5min or 10min. Representative image of three biological repeats. (D) 

Band densitometry of Akt and pAkt, normalized to Tubulin/GAPDH and to the untreated 

control. GDNF induces Akt phosphorylation. AGO knockdown (siAGO2 treatment) abolishes 

increased Akt phosphorylation. Average ± SEM based on three biological repeats. Two-tailed 

Student’s t-test p-value ** ≤0.01 p-values for AKT: siNT – GDNF 2.5min = 0.97736, GDNF 

10min = 0.53249; siAGO2 – GDNF 2.5min = 0.19325, GDNF 10min = 0.25572. p-values for 

pAKT: siNT – GDNF 2.5min = 0.00445, GDNF 10min = 0.00361; siAGO2 – GDNF 2.5min = 

0.4527, GDNF 10min = 0.92769. (E) A model for AGO2-mediated regulation of Ret 

polyadenylation in neurons. Nuclear AGO2 directs polyadenylation complex at the proximal 
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poly(A) site of Ret mRNA, leading to the generation of RET9, whereas the distal 

polyadenylation site leads to the biogenesis of longer, RET51. RET9 and RET51 differs in 

signaling downstream of GDNF.  
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Discussion 

In this study, we demonstrate that AGO2 is highly abundant in the nucleus of 

neurons and plays an unexpected role in broadly regulation of alternative 

polyadenylation. Ret mRNA, which encodes a tyrosine kinase receptor for GDNF, is 

probably among several mRNAs that are most sensitive to changes in AGO2 levels. 

Normally, the shorter RET9, is the predominant variant expressed in motor neurons 

(Lee et al., 2003). However, our data shows that AGO2 contributes to the preference of 

the short variant, Ret9, by actively controlling polyadenylation. Reduction in the 

expression of AGO2 changes the balance between the two Ret mRNA isoforms and 

attenuated intracellular signaling. 

AGO2 is the main effector protein of miRNA-mediated silencing and more 

recently, nuclear AGO2 has been suggested to function in splicing and transcriptional 

regulation (Ameyar-Zazoua et al., 2012; Benhamed et al., 2012; Sarshad et al., 2018). 

Alternative polyadenylation leads to the generation of 3ʹ mRNA variants (Di 

Giammartino et al., 2011; Elkon et al., 2013; Fu et al., 2018; Tian & Manley, 2017) that 

diversify the transcriptome expressed in the nervous system (Fontes et al., 2017; 

MacDonald, 2019; Miura et al., 2013; Ulitsky et al., 2012). APA contributes to 

differential mRNA localization (Mansfield & Keene, 2012; Taliaferro et al., 2016) and 

translation (Ainsley et al., 2014; Terenzio et al., 2018). Several RNA-binding proteins 

have been linked to APA regulation in the nervous system, including TDP-43 (Rot et 

al., 2017), FUS (Masuda et al., 2015; Schwartz et al., 2012), HnRNPA2/B1 (Martinez 

et al., 2016) and NOVA (Hwang et al., 2017; Licatalosi et al., 2008; Ule et al., 2003). 

Mutations in some of these APA regulators are associated with neurodegenerative or 

neuro-oncological diseases. In one such example, decreased levels of TDP-43, uncovers 

a cryptic polyadenylation site leading of STMN2 mRNA, which leads to a truncated 

non-functional STMN2 and eventually to the pathology of ALS (Melamed et al., 2019). 

Furthermore, global shortening of 3ʹUTRs was observed in ALS patients with 

C9ORF72 G4C2-repeat expansion (Prudencio et al., 2015), the most common genetic 

cause associated with ALS and frontotemporal dementia. 

AGO2 associates with proteins that are directly involved in APA (CSTF1, 

CPSF2, CPSF3, NUDT21, PABPN1, RBBP6 and PTBP1), or regulate the process 
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(ELAVL1, ELAVL2, SRSF3, SRSF7, FUS, TDP-43 and HNRNPA2B1) (Avendano-

Vazquez et al., 2012; Elkon et al., 2013; Martinez et al., 2016; Rot et al., 2017; Tian & 

Manley, 2017). Accordingly, the global shift in polyadenylation preference in response 

to AGO2 manipulation, suggests that APA regulation is a novel broad function of 

nuclear AGO2.  

RET, the receptor for the neurotrophic factor GDNF, is expressed in the 

developing and in the mature nervous systems, and is important for axonal growth and 

synapse development (Baudet et al., 2008; Bonanomi et al., 2012; Enomoto et al., 2001; 

Gould et al., 2008; Honma et al., 2010; Kramer et al., 2006; Pachnis et al., 1993; Tuttle 

et al., 2019), including the neuromuscular junction (Baudet et al., 2008). The formation 

of the short and long versions of RET protein, RET9 and RET51, seems to be the 

translational consequence of the two alternative mRNA isoforms, downstream of 

AGO2 activity. The balance between RET51 and RET9 determines the signaling output 

once activated downstream of GDNF (Besset et al., 2000; Coulpier et al., 2002; 

Crowder et al., 2004; Grimm et al., 2001; Hayashi et al., 2000; Lundgren et al., 2006; 

Perrinjaquet et al., 2010; Richardson et al., 2012; Segouffin-Cariou & Billaud, 2000; 

Tsui & Pierchala, 2010). We suggest that continuous AGO2 activity is required for 

maintaining RET9 predominance in motor neurons (Lee et al., 2003) which is needed 

for motor neuron survival (Airaksinen & Saarma, 2002).  

It was previously shown that GDNF acts differently on motor neuron axons, 

facilitating growth and muscle innervation at axon terminals and survival pathways in 

the soma (Zahavi et al., 2015), which may be associated with differential Ret isoform 

distribution along the neuron.  

Finally, the relevance of AGO2 to neurons and neurodegenerative diseases, 

including ALS, underscores the motivation to explore AGO2 neuronal functions but 

requires further studies to be elucidated. 

Limitations: The abundance of AGO2 in the nucleus of neurons may be 

responsible for its involvement in APA. Therefore, we cannot rule out that in other cell 

types APA is also regulated by AGO. Furthermore, while direct AGO2 interactors are 

APA regulators, some of the effects may be indirect, for example by miRNA-based 

silencing of APA factor expression in the cytoplasm.  
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Materials and Methods 

Cell culture and induction of cellular stress 

NSC-34 cells (Cashman et al., 1992) were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM, Biological Industries, 01-050-1A) supplemented with 10% Fetal 

Bovine Serum (FBS, Biological Industries, 04-001-1A), 1% penicillin-streptomycin 

(Pen-Strep, Biological Industries, 03-031-1B) and 1% L-glutamine (Biological 

Industries, 03-020-1B). Cells were grown at 37°C, 5% CO2. N2A cells were cultured 

in DMEM supplemented with 10% FBS and 1% Pen-Strep. Cells were grown at 37°C, 

5% CO2. 

Culture of primary motor neurons 

All experiments were performed in accordance with relevant guidelines and regulations 

of the Institutional Animal Care and Use Committee at Weizmann Institute of Science. 

Primary motor neurons (pMNs) were isolated and cultured as previously described 

(Milligan & Gifondorwa, 2011). Briefly, wild type (WT) ICR timed-pregnant females 

were sacrificed at mouse embryonic day 13.5 (E13.5), and spinal cords were dissected 

from embryos and dissociated enzymatically with papain (2mg/ml, Sigma, P4762). 

Motor neurons were separated over a gradient of Optiprep (Sigma, D1556) and plated 

on tissue culture plates pre-coated with 3µg/ml poly-Lysine (Sigma, P4707) and 3µg/ml 

laminin (Gibco, 23017015). Motor neurons were cultured with Neurobasal medium 

(Gibco, 211030-49) supplemented with 2% B27 (Gibco, 17504-044) 2% horse serum 

(Sigma), X1 Glutamax (Gibco, 35050-061), gentamycin 1 µg/ml (Sigma, G1272) and 

1ng/ml CNTF (Peprotech, 450-50-25) and GDNF (Peprotech, 450-51-10). For GDNF 

treatment assay, cells were changed to starvation medium (Neaurobasal medium with 

antibiotics only) for 16hrs, then treated with 100ng/ml GDNF for 2.5min and 10min.  

Whole cell lysates and subcellular fractions 

The protocol was adjusted to neuronal cells by harvesting cells using a low detergent-

concentration lysis buffer supplemented with protease inhibitors and phosphatase 

inhibitors. One confluent 15cm NSC-34 culture dish was used per experimental repeat. 

Cells were washed ice-cold PBS prior to nuclear and cytosolic fractionation. All buffers 

used were prepared on the same day and supplemented with Protease Inhibitor Cocktail 

(Roche, 04693132001) and Phosphatase Inhibitor Cocktail (Roche, 04906837001). For 

WCL preparation, cells were harvested in ice-cold RIPA [50mM Tris-HCl, pH 7.5, 
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150mM NaCl, 1% NP-40, 0.5% deoxycholate (DOC), 0.1% SDS] and thoroughly 

mixed by vortex. The supernatant was collected after 10min incubation on ice, and 

10min centrifugation at 15,871xg, 4°C. For nuclear and cytosolic fractionation, cells 

were harvested in ice-cold Lysis Buffer A [10mM Tris-HCl, pH 7.5, 10mM NaCl, 3mM 

MgCl2, 0.5% NP-40], incubated for 10 min on ice while vortexing every other minute. 

The cytoplasmic fraction was the collected supernatant after centrifugation for 10min 

at 15,871xg, 4°C. The nuclei were further pelleted, washed three times with ice-cold 

lysis buffer A by pipetting and then centrifuged for 10min at 15,871xg, 4°C. To gain 

the nuclear fraction, nuclei were resuspended in ice-cold RIPA, sonicated on ice at 30% 

power for three cycles of 10 sec with 20 sec intervals and centrifuged for 10min at 

15,871xg, 4°C. The supernatant collected at this step was defined as the nuclear 

fraction. Protein concentrations were determined using Bio-Rad Protein Assay Dye 

Reagent (Bio-Rad, 500-0006). Fresh extracts were used for immunoprecipitation (IP) 

experiments, mass spectrometry (MS) or Western Blot (WB) analysis.  

Immunoprecipitation 

50µl of Dynabeads Protein G (Novex by Life Technologies, 10004D) were mixed with 

5µg of antibody (mouse-anti-AGO2; or mouse-IgG-isotype control), diluted in 200μl 

PBS + 0.1% TWEEN-20 (0.1% PBST) per sample, incubated by tilting at room 

temperature (RT) for 10min and washed three times with 0.1% PBST. Then, 300µl of 

protein extract (~1.5mg protein) was added to the bead-antibody complexes and 

incubated with rotation over-night (O.N.) at 4°C. For RNase treated samples, protein 

lysate was treated with RNase A/T1 (Thermo Scientific, EN0551, 18µg RNase A and 

45U of RNase T1) for 30min at 37° with tilt prior to incubation with the antibody-beads 

complex. The following day, beads-antibody-antigen complexes were washed three 

times with PBS, resuspended in 150μl PBS and stored at -80°C until further analysis. 

For AGO2-RNA-Immunoprecipitation (AGO2-RIP), 25% of the precipitate was used 

for protein analysis, and 75% for RNA extraction, and was stored in 700µl QIAzol 

Lysis Reagent (Qiagen, 79306) until RNA purification step.  

Western blot 

Cell extracts or IP-purified proteins were denatured by boiling (95°C) in X5 sample 

buffer (60mM Tris-HCl pH 6.8, 25% glycerol, 2% SDS, 14.4mM β-mercaptoethanol, 

0.1% bromophenol blue) for 5min and resolved by 8%-10% SDS-PAGE, 100-120V, 
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70min. Proteins were transferred to a nitrocellulose membrane (Whatmann, 10401383) 

at 250mA, 70min. Membranes were stained with Ponceau (Sigma-Aldrich, P7170) to 

assess transfer quality, blocked for 1 hour at RT with 5% milk protein in PBS + 0.05% 

TWEEN-20 (0.05% PBST) and incubated, rocking, with primary antibodies O.N. at 

4°C in Antibody-Solution [5% Bovine Serum Albumin, 0.02% sodium azide, 5 drops 

of phenol red in 0.05% PBST]. Following primary antibody incubation, membranes 

were washed three times for 5min at RT with 0.05% PBST and incubated for 1 hour at 

RT with horseradish peroxidase (HRP)-conjugated species-specific secondary 

antibodies. Membranes were washed three times for 5 min in 0.05% PBST at RT and 

protein bands were subsequently visualized by ImageQuant™ LAS 4000 (GE 

Healthcare Life Sciences) using EZ-ECL Chemiluminescence detection kit for HRP 

(Biological Industries, 20-500-120).  

Affinity Purification coupled to Mass Spectrometry proteomics (AP-MS) 

Study design for the identification of AGO2-interacting proteins included four 

independent biological repeats, in each NSC-34 cell lysate from four confluent 10cm 

culture plates. Immunoprecipitated samples were subjected to AP-MS. Quantification 

was performed using MS1 based, label-free quantification (Shalit et al., 2015). The 

mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium (Deutsch et al., 2020) via the PRIDE (Perez-Riverol et al., 2019) partner 

repository with the dataset identifier PXD023112. 

Sample preparation: For whole lysates samples were subjected to in-solution tryptic 

digestion using the suspension trapping (S-trap) as previously described (Elinger et al., 

2019). Briefly, 50 ug of total protein was reduced with 5 mM dithiothreitol and 

alkylated with 10 mM iodoacetamide in the dark. Each sample was loaded onto S-Trap 

microcolumns (Protifi, USA) according to the manufacturer’s instructions. After 

loading, samples were washed with 90:10% methanol/50 mM ammonium bicarbonate. 

Samples were then digested with trypsin (1:50 trypsin/protein) for 1.5 h at 47°C. The 

digested peptides were eluted using 50 mM ammonium bicarbonate. Trypsin was added 

to this fraction and incubated overnight at 37°C. Two more elutions were made using 

0.2% formic acid and 0.2% formic acid in 50% acetonitrile. The three elutions were 

pooled together and vacuum-centrifuged to dryness. Samples were kept at−80°C until 

further analysis. 
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For AGO2-IP, samples were subjected to on-bead tryptic digestion. Proteins were first 

reduced by incubation with dithiothreitol (5mM; Sigma-Aldrich) for 30 min at 60°C, 

and alkylated with 10 mM iodoacetamide (Sigma-Aldrich) in the dark for 30 min at 

21°C. Proteins were then subjected to trypsin digestion (Promega; Madison, WI, USA) 

at trypsin:protein ratio of 1:50 at 37°C. Digestion was inhibited with trifluroacetic acid 

(1%) after 16 h, supernatant was isolated, desalted using solid-phase extraction columns 

(Oasis HLB, Waters, Milford, MA, USA) and stored in -80˚C until further analysis. 

Liquid chromatography: ULC/MS grade solvents were used for all chromatographic 

steps. For whole lysates, dry digested samples were dissolved in 97:3% 

H2O/acetonitrile + 0.1% formic acid. For all smaples (whole lysates and AGO2-IP), 

each sample was loaded using split-less nano-Ultra Performance Liquid 

Chromatography (10 kpsi nanoAcquity; Waters, Milford, MA, USA). The mobile phase 

was: A) H2O + 0.1% formic acid and B) acetonitrile + 0.1% formic acid. Desalting of 

the samples was performed online, using a Symmetry C18 reversed-phase trapping 

column (180µm internal diameter, 20mm length, 5µm particle size; Waters). The 

peptides were then separated using a T3 HSS nano-column (75µm internal diameter, 

250mm length, 1.8µm particle size; Waters) at 0.35µL/min. Peptides were eluted from 

the column into the mass spectrometer using the following gradient: whole lysates - % 

to 20%B in 135 min, 20%-30% in 17 min, 30% to 90%B in 10 min, maintained at 90% 

for 5 min and then back to initial conditions; AGO2-IP -  4% to 30%B in 50 min, 30% 

to 90%B in 5 min, maintained at 90% for 5 min and then back to initial conditions. 

Mass Spectrometry: For whole lysates - The nanoUPLC was coupled online through a 

nanoESI emitter (10 μm tip; New Objective; Woburn, MA, USA) to a Orbitrap Fusion 

Lumos mass spectrometer (Thermo Scientific) using a FlexIon nanospray apparatus 

(Proxeon). Data was acquired in data dependent acquisition (DDA) mode, using a 3-

second cycle time method. MS1 resolution was set to 120,000 (at 200m/z) in the 

Orbitrap, mass range of 300-2000m/z, AGC of 4e5 and maximum injection time was 

set to 50msec. MS2 was performed in the ion trap, quadrupole isolation 1m/z, AGC of 

1e4, dynamic exclusion of 30sec and maximum injection time of 50msec.  

For AGO2-IP - The nanoUPLC was coupled online through a nanoESI emitter (10μm 

tip; New Objective; Woburn, MA, USA) to a quadruple orbitrap mass spectrometer (Q 

Exactive Plus, Thermo Fisher Scientific) using a FlexIon nanospray apparatus 
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(Proxeon). Data was acquired in DDA mode, using a Top10 method.  MS1 resolution 

was set to 70,000 (at 200m/z) and maximum injection time was set to 60msec, 

automatic gain control (AGC) target of 3e6. MS2 resolution was set to 17,500 and 

maximum injection time of 60msec, AGC target of 1e5. Quadrupole isolation window 

was set to 1.7m/z. 

Raw Data processing: Raw data was processed with MaxQuant v1.6.0.16 (Cox & 

Mann, 2008), searched with the Andromeda against mouse (mus musculus) protein 

database as downloaded from Uniprot (www.uniprot.com) and appended with common 

lab protein contaminants. Enzyme specificity was set to trypsin and up to two missed 

cleavages were allowed. Fixed modification was set to carbamidomethylation of 

cysteines and variable modifications were set to oxidation of methionines, and 

deamidation of glutamines and asparagines. Peptide precursor ions were searched with 

a maximum mass deviation of 4.5 ppm and fragment ions with a maximum mass 

deviation of 20 ppm. Peptide and protein identifications were filtered at an FDR of 1% 

using the decoy database strategy (MaxQuant’s “Revert” module). The minimal peptide 

length was 7 amino-acids and the minimum Andromeda score for modified peptides 

was 40. Peptide identifications were propagated across samples using the match-

between-runs option checked. Searches were performed with the label-free 

quantification (LFQ) option selected. 

Proteomics Statistical Analysis: ProteinGroups output table was imported from 

MaxQuant to Perseus environment v1.6.0.2 (Tyanova et al., 2016). Quality control 

excluded reverse proteins, proteins identified by a single peptide, and contaminants. 

For lysate input analysis, quantitative comparisons were calculated based on log2-

transformed LFQ values. Protein groups required ≥3 valid values/group. Missing data 

were replaced using imputation, assuming normal distribution with a downshift of 1.6 

standard deviations and a width of 0.4 of the original ratio distribution. Student’s t-test 

with S0=0.1 was performed with FDR p-value≤0.05 for pairs of cytoplasmic fraction 

and nuclear fraction samples in each condition.  

For AGO2-pull down analysis, non-specific IgG-isotype control binders were excluded 

by log2-transformed LFQ values.  Protein groups required ≥3 valid values/group. 

Missing data were replaced using imputation, assuming normal distribution with a 

downshift of 1.6 standard deviations and a width of 0.4 of the original ratio distribution. 
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Enriched AGO2 interactors were called by Student’s t-test (AGO2-IP vs corresponding 

IgG-control) with S0=0.1 and FDR p-value≤0.05 and fold-change threshold of 2-fold 

enrichment.  

Immunofluorescence 

NSC-34 cells were seeded at a density of 75,000cells/cm2 on 13mm glass cover-slips 

(Thermo Fisher Scientific), precoated with 0.002% poly-L-lysine (Sigma-Aldrich, 

P4707) and cultured for 2 days at 37°C and 5% CO2. pMNs were seeded 200,000 cells 

per coverslip, precoated as described. Cells were then washed with PBS, fixed with 4% 

paraformaldehyde (PFA) for 15min at RT, permeabilized with PBS containing 0.2% 

(vol/vol) Triton X-100 and blocked using CAS block (Invitrogen, 008-120) for 10min 

at RT. After incubation with primary antibodies O.N., 4°C, cells underwent three 

washes with PBS (5min each) and incubated for 1 hour at RT with secondary antibodies 

conjugated with Cy2, Cy3 or Cy5 diluted in CAS block. Glass cover slips were mounted 

on Superfrost microscope slides (Thermo Fisher Scientific) with Fluoroshield mounting 

media containing DAPI (Sigma-Aldrich, F6057). Fluorescence images were captured 

using a Zeiss LSM780/800 Laser Scanning confocal microscope system. 

siRNA knockdown 

Dharmacon siGenome SMARTpool siRNAs against mouse AGO2 (M-058989-01-

0005) was used at a final concentration of 20nM to knockdown AGO2 in NSC-34 cells, 

N2A cells or primary MNs. siRNAs were transfected into NSC-34 or N2A cells using 

Lipofectamine RNAiMAX Reagent (Thermo Fisher Scientific, 13778-075) according 

to the manufacturer’s instructions. For pMNs, Dharmafect 4 (Dharmacon, T-2004-02) 

reagent was used for siRNA transfection. Dharmacon siGENOME Non-targeting pool 

#2 (siNT, D-001206-14-05) were used as controls. Knockdown efficiency was assessed 

by RNA extraction followed by quantitative Real-time PCR (qRT-PCR). 

Quantitative Real-time PCR 

Total RNA from cultured NSC-34 cells or primary motor neurons was isolated using 

DirectZole RNA Purification Kit (Zymo Research, R2052), and reverse transcribed 

using qScript cDNA Synthesis Kit (Quanta Biosciences, 95047-100). Quantitative real-

time PCR was performed using StepOnePlus real-time PCR instrument (Applied 

Biosystems), in >3 independent biological repeats and technical duplicates. KAPA 

SYBR FAST ABI Prism (KAPA Biosystems, KK4604) was used for detection of 
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mRNAs. Gapdh or TBP were used as reference genes for normalization of expression 

levels. Statistical analysis was performed using Student’s t-test. For AGO2-RIP 

experiments, RNA was extracted using miRNeasy micro Kit (Qiagen, 217084), and 

reverse transcribed using the miScript II RT Kit (Qiagen, 218161). Quantitative real-

time PCR was performed using StepOnePlus real-time PCR instrument, in >3 

independent biological repeats and technical duplicates. miScript SYBR Green PCR 

(Qiagen, 218073) and KAPA SYBR FAST ABI Prism kits were used for detection of 

miRNAs and mRNAs respectively. U6 and TBP were used as reference genes for 

normalization of miRNA and mRNA levels, respectively. All primer sequences are 

described in Supplementary Table 1. 

3ʹ-RNA sequencing 

cDNA Libraries Preparation: The poly(A)seq cDNA libraries were generated using the 

reverse QuantSeq 3′ mRNA-seq Library Prep Kit for Illumina (Lexogen). Libraries 

were prepared from 400ng of total RNA according to kit instructions. Single-end 

sequencing (60bp) was performed on Illumina HiSeq2500 with a Rapid Run flow-cell. 

RNA-seq data are available in the ArrayExpress (Athar et al., 2019) database 

(http://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-9907. 

Data Processing: Bioinformatic analysis pipeline was performed as described in (Rot 

et al., 2017). Briefly, all data sets were processed by aligning the reads to the reference 

mouse genome (mm10) using STAR aligner (Dobin et al., 2013) with default 

parameters and with the GTF annotations from Ensembl. The polyadenylation events 

were determined by tagging only one position per alignment (the first 5′ aligned 

nucleotide). Alignments containing stretches of six consecutive A or with 70% A 

coverage in any 10-nt sub-window in the region [–10..10] surrounding the 

polyadenylation events were filtered out. Polyadenylation events were ranked by read 

count in descending order and only the high-ranking events that are more than 125nt 

apart were considered as dominant poly(A) sites and therefore in the analysis. This 

resulted in the global poly(A) site database. To allow variation in cleavage precision, 

the per-experiment expression of each poly(A) site was computed by summing the read 

counts that identify any position in the region [–5..5] surrounding the polyA cleavage 

sites.  
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Statistical Analysis: DEXSeq algorithm was applied to identify regulated poly(A) sites 

in genes. Count values of all poly(A) sites remaining after filtering for all replicates for 

control and AGO2-KD 3′end sequencing experiments were input. The output was fold-

change (log2) and FDR adjusted p-value for each site. Genes in which no poly(A) site 

reached significance (p≤0.05) were classified as controls. In regulated genes with more 

than one poly(A) site, only two significantly changed sites (adjusted p-value ≤0.05) 

with highest difference in fold change were selected for each gene, additionally 

requiring that fold changes are of opposite direction. If a proximal site had fold change 

<0, the site was marked as repressed, and if fold change >0, marked as enhanced (the 

reverse holds for distal sites). In control genes, the two poly(A) sites with highest read 

count were considered for further analysis; the proximal and distal control poly(A) sites 

were further labeled as control-down and control-up (dependent on their fold change). 

The poly(A) site pairs were further classified into different types of alternative 

polyadenylation (same exon, composite exon, and skipped exon (Rot et al., 2017)), 

using the gene level annotation which was computed by linearizing the Ensembl gene 

annotation by merging the transcript annotation.  

Semi-quantitative PCR-based Alternative polyadenylation assay (3ʹRACE-like) 

RNA was extracted from the cells using DirectZole RNA MiniPrep (Zymo Reseach, 

R2052) according to kit instructions. cDNA was produced from 500ng of RNA using 

the high-capacity reverse transcription kit (Applied Biosystems, 4374966), and 

Oligo(dT)-VN primers with an adapter sequence according to the manufacturers’ 

instructions. To evaluate alternative polyadenylation (APA) events, a semi-quantitative 

RT-PCR reaction was performed using Q5 Hot Start High-Fidelity DNA polymerase 

(NEB, M0493S) in a LabCycler thermocycler (SensoQuest). 5ng cDNA was used for 

PCR and amplified using 29 cycles. RT–PCR products were separated on 1.5% agarose 

gel and visualized using MiniBIS Pro (DNR Bio-Imaging Systems). Quantification of 

APA band intensities were determined using ImageJ software and an average of three 

biological replicates was plotted. Forward primers for each gene were designed to be 

in the last exon or one upstream. Reverse primer was designed for the adapter sequence 

used in the cDNA generation step. All primers are listed in Supplementary Table 1. 
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Single-molecule Fluorescent in-situ Hybridization (smFISH) 

Probe library construction, hybridization procedure and imaging conditions were 

previously described (Farack et al., 2019; Itzkovitz & van Oudenaarden, 2011; 

Lyubimova et al., 2013; Raj et al., 2008). Probe libraries were designed using the 

Stellaris FISH Probe Designer (Biosearch Technologies) and consisted of 41-48 probes 

each of length 20 bps, complementary to the mRNA sequence of either both Ret variants 

(Ret-all, Ret9, Ret51), or a unique sequence in the long Ret variant (Ret-long, Ret51). 

Ret-all probe library was coupled to Alexa594 (CAL Fluor Red 610, Stellaris, 

Biosearch Technologies); Ret-long probe library was coupled to Cy5 (Quasar 670, 

Stellaris Biosearch Technologies). NSC-34 cells were seeded 500,000 cells per 

coverslip on 22x22mm glass coverslips (Thermo Fisher Scientific), coated with 0.002% 

poly-L-lysine (Sigma-Aldrich, P4707). pMNs were seeded 500,000 cells per coverslip, 

precoated as described. Cells were transfected with siAGO2 or siNT (as described) and 

cultured for 72hrs at 37°C and 5% CO2. Cells were then washed with nuclease-free 

PBS, fixed with 4% paraformaldehyde (PFA) for 10min at RT, washed again with PBS 

and incubated in 70% ethanol for 1-3 days at 4°C. Formamide concentration of the 

washing and hybridization buffers was 25%. Fixed cells were washed twice in 2xSSC, 

then incubated for 1.5hrs with the washing buffer before hybridizing with the probe 

libraries. Probes were diluted in hybridization buffer and cells were incubated O.N. at 

30°C. The following day, cells were washed twice with washing buffer for 30min at 

30°C. Next, cells were washed with GLOX buffer (2xSSC, 10% glucose, 10mM Tris) 

for 5min at RT. Nuclei were stained with DAPI (Sigma-Aldrich, D9542), then washed 

again with GLOX buffer twice, 5min each wash. Slides were mounted using ProLong 

Gold (Molecular Probes, P36934). 

Imaging: smFISH imaging was performed using a Nikon-Ti2 Eclipse inverted 

fluorescence microscope equipped with a 100×oil-immersion objective and a 

Photometrics iXon Ultra 888 EMCCD camera using NIS-Elements Advance Research 

software (Nikon Instruments Inc.). Quantification was performed on stacks of optical 

sections with Z spacing of 0.3 μm. 

Image Analysis, quantification and statistics: Imaris Cell Imaging Software 9.2.1 

(Oxford Instruments Group), was used to analyze images, including detection and 

quantification of smFISH signal of each probe and colocalization of the signals from 
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both probes. Cell number for each image was calculated based on DAPI signal using 

ImageJ v1.52n (Schindelin et al., 2012) software for per-cell quantification. Images 

were visualized and processed using ImageJ v1.52. Statistical analysis was performed 

using Student’s t-test. 

Cloning of APA reporter vector 

Construction of the Luciferase-based APA reporter vector was performed based on 

(Deng et al., 2018) using Restriction-Free Cloning (Unger et al., 2010) upon the 

psiCHECK-2 dual luciferase assay vector. All amplification reactions were performed 

using Q5 Hot Start High-Fidelity DNA polymerase (NEB, M0493S) in a LabCycler 

thermocycler (SensoQuest).  The HSV-TK promoter was replaced with IRES sequence 

to allow the transcription of a bicistronic mRNA. The vector created following this step 

was used as control (psiCHECK-2-IRES). For evaluation of Ret APA (psiCHECK-2-

Ret), the generic poly(A) signal at the end of the first ORF was replaced with Ret 

proximal poly(A) site and with Ret distal poly(A) site for the second ORF (cleavage 

site +/- 200bps for each poly(A) site). All vectors were verified by sequencing. Primers 

used for cloning are listed in Supplementary Table 2.  

Dual Luciferase Activity Assay Hela 

N2A cells were co-transfected using Lipofectamine 2000 Transfection Reagent 

(Thermo Fisher Scientific, 11668019) with either the control luciferase vector 

(psiCHECK-2-IRES) or Ret construct (psiCHECK-2-Ret), combined with either 

siAGO2 or siNT. Cells were harvested 72hrs post-transfection. The resulting lysates 

were used to measure the humanized renilla (hRluc) and firefly (hluc) luciferase 

activities with the Dual-Luciferase Reporter Assay kit (Promega, E1960) according to 

the manufacturer’s instructions. Luminesce was read using Veritas luminometer 

(Turner BioSystems, CA, USA). Statistical analysis was performed using Student’s t-

test for 5 replicates for each condition. 

Antibodies 

All Antibodies used in this study are listed in Supplementary Table 3.  
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Supplementary Figures 

 

 

Supplementary Figure 1. A platform for characterizing AGO2 protein-interactions in 

neuronal nuclei. (A) Volcano plot depicting the distribution of all proteins identified by MS 

analysis of cytoplasmic and nuclear fractions lysates. x- axis: log2 fold change of label-free 

peptide quantification values in cytoplasmic fraction versus nuclear fraction; y axis: log10 of 

two-tailed Student’s t-test p-value. Grey–all proteins; Red/Blue –cytoplasmic/nuclear marker 

proteins obtained from protein atlas (Thul et al., 2017). (B) Gene ontology analysis of proteins 

that are enriched in either nuclear (top panel) or cytoplasmic (lower panel) fractions (>100 

fold), shown as −log10(Bonferroni corrected p-value) of pathway enrichment (logarithmic 

scale). Dashed red line indicates a p-value of 0.05. Analysis performed with DAVID 6.7 

bioinformatic database(Huang da et al., 2009). Categories enriched in each fraction provide 

further support of efficient nuclear-cytoplasmic separation.  
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Supplementary Figure 2. Quantitative Validation of AGO2-KD using siAGO2. Real-time 

PCR quantification of Ago2 mRNA in NSC-34 cells treated with siAGO2 vs siNon-Targeting 

(siNT) as control. Average ± SEM of 3 repeats, data normalized to siNT. Two-tailed Student’s 

t-test p-value *≤0.05, **≤0.01, ***≤0.001; p-value = 0.000013854.   

 

 

Supplementary Figure 3. 3ʹRACE-like PCR demonstration of APA. An oligo(dT)-VN 

primer mix (V- any nucleotide but T, N- any nucleotide) planned to capture transcript 3ʹ end 

was used to generate cDNA with an adapter sequence subsequently downstream of the poly(A) 

tail. Gene-specific PCR reaction was then performed and analyzed by gel electrophoresis depict 

differential usage of PAS, and hence different poly(A) tail length.  
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Supplementary Figure 4. Ret APA isoforms smFISH study in mouse neurons. smFISH 

probes detect only the long variant (cy5, red) or both long and short variants (Alexa 594, green) 

of Ret. Arrowheads and arrows depict the long variant in NSC-34 cells (A) and in soma and 

neurites, respectively, in mouse primary motor neurons (B). scale bar - 10µM. 
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