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24 Abstract 

25 Ca2+ imaging is a widely used microscopy technique to simultaneously study cellular activity in multiple 

26 cells. The desired information consists of cell-specific time series of pixel intensity values, in which the 

27 fluorescence intensity represents cellular activity. For static scenes, cellular signal extraction is 

28 straightforward, however multiple analysis challenges are present in recordings of contractile tissues, 

29 like those of the enteric nervous system (ENS). This layer of critical neurons, embedded within the 

30 muscle layers of the gut wall, shows optical overlap between neighboring neurons, intensity changes 

31 due to cell activity, and constant movement. These challenges reduce the applicability of classical 

32 segmentation techniques and traditional stack alignment and regions-of-interest (ROIs) selection 

33 workflows. Therefore, a signal extraction method capable of dealing with moving cells and is insensitive 

34 to large intensity changes in consecutive frames is needed.

35 Here we propose a b-spline active contour method to delineate and track neuronal cell bodies based on 

36 local and global energy terms. We develop both a single as well as a double-contour approach. The latter 

37 takes advantage of the appearance of GCaMP expressing cells, and tracks the nucleus’ boundaries 

38 together with the cytoplasmic contour, providing a stable delineation of neighboring, overlapping cells 

39 despite movement and intensity changes. The tracked contours can also serve as landmarks to relocate 

40 additional and manually-selected ROIs. This improves the total yield of efficacious cell tracking and 

41 allows signal extraction from other cell compartments like neuronal processes. Compared to manual 

42 delineation and other segmentation methods, the proposed method can track cells during large tissue 

43 deformations and high-intensity changes such as during neuronal firing events, while preserving the 

44 shape of the extracted Ca2+ signal. The analysis package represents a significant improvement to 

45 available Ca2+ imaging analysis workflows for ENS recordings and other systems where movement 

46 challenges traditional Ca2+ signal extraction workflows.

47
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48 Introduction

49 In order to understand how complex cellular systems operate and interact with each other, it is essential 

50 to be able to record activity from many individual cells simultaneously. Fluorescent calcium (Ca2+) 

51 imaging, either with small organic Ca2+ indicators or with genetically encoded Ca2+ indicators (GECI), 

52 (1, 2) is a widely used method to study large amounts of cells simultaneously and examine their network 

53 activity. Since cytosolic Ca2+ changes are tightly linked to action potential firing (and thus activity) in 

54 excitable cells like neurons, this imaging technique allows inferring neuronal activity of a large cellular 

55 population in both the central and peripheral nervous systems (3). Recent improvements in Ca2+ 

56 indicator quality (higher quantum efficiency and therefore better signal to noise) and imaging 

57 technologies allow monitoring larger populations of neurons at higher spatiotemporal resolution. 

58 An extra complexity with live imaging of cells is that they may not be stationary in the microscopic field 

59 of view, either because they traffic themselves or the tissue, in which they are embedded, is contractile. 

60 Recordings in the central nervous system and acute brain slices can be assumed to have static scenes 

61 where the only movements present are motion artifacts such as drift, as in brain slices, or cyclic 

62 movements, as induced by breathing in intravital recordings. However, recording activity from tissues 

63 with a predominantly contractile function, such as the heart or the intestine, or from in vivo imaging of 

64 awake animals (zebrafish, C. elegans, etc) presents unique challenges due to the drastically high level 

65 of movement caused by muscle contractions. 

66 In the intestine, all motor activity is controlled by a continuous network of neurons and glia cells 

67 embedded in between two concentric muscle layers. This enteric nervous system (ENS) regulates gut 

68 functions such as motility, secretion, and absorption (4,5). To understand how the complex circuits in 

69 the ENS operate to produce functional output, it is necessary to record and analyze the activity of large 

70 populations of ENS cells. 

71 A traditional analysis workflow in Ca2+ imaging starts with image registration of the recorded frames to 

72 correct for motion artifacts and slight underlying movements aiming to attain a completely static scene 

73 where each pixel represents the same physical location throughout all frames (6). This step, if successful, 
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74 is followed by signal extraction, where the different cells of interest are delineated and their pixel 

75 intensity profiles are extracted. For the large majority of Ca2+ imaging experiments, this workflow is 

76 sufficient to efficiently analyze cellular activity profiles and has been used extensively in ENS Ca2+ 

77 imaging provided that contractions are restrained either pharmacologically, physically, or in 

78 combination (7,8). 

79 Multiple different software packages have been developed to automate the signal extraction process and 

80 efficiently analyze the ever-longer recordings and ever-increasing Ca2+ imaging datasets (9,10). 

81 However, these automated analysis workflows also rely on an image registration step and assume that 

82 all objects in the image are spatially static after this step, in order to extract their signals. Contractile 

83 movements, as those in the intestine, can include complex deformations that cannot be compensated 

84 with rigid registration techniques. More advanced non-rigid registration techniques, which offer 

85 registration with a high degree of freedom to accommodate more complex deformations, can be used 

86 but they are susceptible to high noise levels and artifacts, two regularly occurring problems in Ca2+ 

87 imaging. The tight packing of neurons in small groups (ganglia), with their apparent overlap in optical 

88 recordings (Fig. 1A), is a first challenge that eliminates the use of classic segmentation workflows. 

89 Moreover, the rapidly oscillating fluorescence of active neurons in Ca2+ imaging (Fig. 1B) has a negative 

90 impact on the success rate of registration algorithms as these rely on pixel intensity or image feature 

91 matching and thus have endogenous problems with changes in intensity (7,11,12). ENS Ca2+ imaging 

92 combines the aforementioned challenges and thus urges the development of an alternative analysis 

93 workflow to delineate and track individual cells in moving tissues, and extract their signals throughout 

94 the recordings. 

95

Figure 1: General features of Ca2+ imaging in the ENS. A) The appearance of an individual GCaMP 
expressing enteric neuron when not surrounded by other neurons (Left).  The overlapping appearance of enteric 
neurons (arrow) and lack of clear borders (arrowhead) (Right). Scale bar represents 50 µm. B) an example of 
the fluorescence signal increases between a neuron at rest (left, and marked with a dashed line) and during 
activity (right). C) ENS ganglion (left) containing approximately 20 neurons. Imposed images of different 
timepoint (colorcoded in green and magenta) in an ENS Ca2+ recording (1 sec. interval between frames). The 
mismatch in colors indicates the amount of movement that can be present between 2 frames. 
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96 A viable alternative to registration in these complex scenarios is cell tracking. While tracking techniques 

97 have been extensively used in cell migration analysis and lineage tree construction (13–15), the low 

98 level-based segmentation techniques (15,16) that are normally used in these applications perform poorly 

99 in ENS recordings since they are prone to noise, variability in the edge intensity due to overlap, and 

100 cannot adapt to the blinking cell appearance between different frames (17). The existing region-based 

101 tracking techniques are not sufficient to segment complex structures based on their texture information 

102 (18,19). Moreover, they are ineffective when dealing with nonhomogeneous and overlapping objects, 

103 such as cells with bright cytoplasm and dark nuclei (Fig. 1A) as is the case with the expression of the 

104 common Ca2+ indicator GCaMP. Only one report, by Hennig et. al. (20) was published, in which nucleus 

105 tracking of ENS neurons was used, by means of edge detection where dark nuclei were identified and 

106 segmented in each frame to extract fluorescent GCaMP signals from their surrounding pixels. 

107 Practically, manual region-of-interest (ROI) selection remains the most commonly used approach to 

108 analyze ENS recordings, at least for those in which motion can be easily corrected. Recordings that rigid 

109 registration cannot stabilize are routinely disregarded.

110 Due to its ease of application and flexibility in handling cell division, the main method used in the cell 

111 tracking field is segmentation, based on implicit functions such as level-sets (21–23).  However, the 

112 large flexibility in this implicit topological representation can easily produce incorrect results (24) 

113 especially in low signal to noise ratio (SNR) recordings. In these situations, explicit functions such as 

114 explicit active contours (25) perform better as they depend on parameters and therefore their evolution 

115 is more restricted and faster to calculate (26). The main disadvantage of explicit active surfaces is the 

116 inability in handling cell division, which is not relevant in the specific context of tracking neurons (16). 

117 In this paper, we implement B-spline-Explicit Active Surfaces (BEAS) as developed by Barbosa et. al. 

118 (27) which allows the application of local and global region-based energy terms in segmentation, as 

119 originally developed for level-set segmentation (28), while controlling contour smoothness and keeping 

120 the computational cost low (27,29). This method is suitable to segment heterogeneous objects (such as 

121 cells with dark nuclei, with varying degrees of brightness and edge clarity, Fig 1B) and to apply multiple 

122 local and global energy terms to reach that goal.
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123 In this paper, we use the BEAS framework on 2D microscopy recordings to track and analyze multiple 

124 cells within a contractile and moving ENS tissue. Apart from employing multiple global and local energy 

125 terms to direct contour evolution, we also use a competition penalty to limit and manage overlap between 

126 neighboring cells. Furthermore, we develop ‘double contour (DC)’ tracking, a novel method that couples 

127 the development of two contour layers and takes advantage of the typical appearance of GCaMP 

128 expressing cells. Due to the nuclear exclusion of GCaMP, these cells present in Ca2+ imaging recordings 

129 with a dark nucleus and a bright cytoplasm, the edges of which are respectively tracked by the two 

130 layers. This DC method enables accurate cell tracking even in the absence of visible external borders. 

131 We describe the elements in the Ca2+ imaging and cell tracking algorithm developed and make this 

132 information freely available for external use.

133 In conclusion, we aimed to develop a set of techniques to better extract cellular activity levels from Ca2+ 

134 imaging recordings of non-static moving cells (Fig. 2). To this end, we used the ENS as a model system 

135 harboring fairly complex movement and activity-dependent intensity changes. The resulting workflow 

136 is however flexible and can be used to analyze other cellular recordings by tweaking the contour 

137 parameters to match the specific application.

138 Methodology 

139 The workflow for the proposed cell tracking approach starts by drawing an ellipse around the cell to 

140 initialize the contour. This step is followed by deforming the contour iteratively by applying forces on 

141 individual contour control points until the functional energy minimum is reached as an initial 

142 segmentation step, which theoretically overlays the contour with the cell’s boundary. The initialization 

143 is followed by the cell tracking loop, which consists of a series of consequent segmentation tasks on 

144 individual frames, where each contour in a frame is used to initialize the contour’s segmentation on the 

145 following frame. During an intermediate step, parametric information about the contour is calculated 

146 and the contour center is also recalculated to be in the geometric centroid of the produced contour shape 

147 to ensure that the new center is inside the cell in each next frame, even if there was movement between 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422837doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422837
http://creativecommons.org/licenses/by/4.0/


7

148 frames (Suppl. Fig. 1). By stringing the segmentation results together, we acquire both the location of 

149 individual cells as well as their contours throughout the entire recording (Fig. 2 B).

150 The goal of this approach is to use these dynamic contours as regions-of-interest (ROIs) from which the 

151 mean intensity signal is extracted to accurately represent Ca2+ activity of cells in a non-static setting. 

152 These contours are then evaluated by the user. Furthermore, the tracked cell locations can also be used 

153 as landmarks to optionally track or displace additional and manually created ROIs, in cases where a 

154 tracked cell’s contour was not satisfactory or when tracking additional ROIs posthoc is desired (Fig. 2 

155 A).

156 B-Spline Explicit Active contours algorithm (BEAS)

157 We implement the B-Spline Explicit Active Surfaces (BEAS) (30) framework developed and optimized 

158 for segmenting and tracking heart chambers in echocardiography (29–31). The method uses an explicit 

159 function to represent the boundary of an object, where coordinates of the contour points are explicitly 

160 given as a function of the remaining coordinates i.e., 𝑥1 = 𝜓(𝑥2,…,𝑥𝑛) where 𝜓 is defined as a linear 

161 combination of B-spline basis functions

𝑥1 = 𝜓(𝑥2,…,𝑥𝑛) = 𝜓(𝐱∗) =
𝐤∈ℤ𝑛―1

c[𝐤]𝛽𝑑(
𝐱∗

ℎ ― 𝐤) Eq. 1

162 where 𝛽𝑑(.) is the uniform symmetric B-spline of degree d. The knots of the B-splines are located on a 

163 rectangular grid, with a regular spacing given by h. The coefficients of the B-spline representation are 

164 gathered in c[k]. For this 2D segmentation problem, a polar coordinate system was chosen.

165 The evolution of the contour is governed by the minimization of the energy term E. This energy has two 

166 elements, the image data term Ed and an internal energy Er. 

𝐸 = 𝐸𝑑 + 𝐸𝑟 Eq. 2

167

Figure 2: A) diagram of the processing workflow including the main steps of cell tracking (Blue) and the 
optional ROI tracking (grey). B) Example of the performance of the cell tracking procedure of multiple cells 
in ENS recordings, using one-layer tracking (left) and double contours (right)
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168 Data attachment

169      One-layer Contour

170 The data attachment energy term can be defined, following the BEAS formulation, as:

171 where 𝐹cyt(𝐲) is the energy criterion driving the evolution of the contour and 𝐵(𝐱,𝐲) is a mask function 

172 in which the local parameters that drive the evolution are estimated. 𝛿𝜙cyt(𝐱) is the Dirac operator applied 

173 to the level set function 𝜙(𝐱) = Γ(𝐱∗) ― 𝑥1 which is defined over the image domain Ω. The mask 

174 function 𝐵(𝐱,𝐲) for a node (neighborhood radius) is specified as a column of pixels of length ρ in the 

175 normal direction centered around a contour node. The value of ρ is chosen a priori, based on the expected 

176 margin (frontier) size between objects and the rate of movement between frames. When segmenting 

177 GCaMP expressing cells, it is logical to set this parameter to be slightly smaller than the approximate 

178 radius of cells, to avoid detecting the cytoplasm-nucleus edge instead of the intracellular interface. The 

179 degree of visibility of a cell’s border in Ca2+ imaging is quite variable as its strength is based on the Ca2+ 

180 concentration inside the cell of interest as well as that of adjacent cells. Moreover, the imaging 

181 conditions and imaging system chosen also impact the cell’s appearance (Fig. 1A). Therefore, we chose 

182 a flexible localized energy term introduced by Yezzi et al. (32) (Eq. 4), to maximize the difference of 

183 mean intensity inside and outside each contour node. 

𝐹cyt = ―(𝑢cyt ― 𝑢out)2 Eq. 4

184 Where 𝑢cyt and 𝑢out are the mean intensity values in the cytosolic region (inside the cell) and the region 

185 outside of the cell, respectively.

186      Double Contour

187 In live fluorescent imaging (eg. in Ca2+ imaging), the interface between the bright cytoplasm, which can 

188 be dim if intracellular Ca2+ concentrations are low, and the heterogeneous background may lack contrast 

𝐸𝑑 =  
Ω

𝛿𝜙cyt(𝐱)
Ω

𝐵(𝐱,𝐲) ⋅ 𝐹cyt(𝐲)𝑑𝐲𝑑𝐱 Eq. 3
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189 and as such limit cell tracking capability. GCaMP expressing cells have a bright cell body and a dark 

190 nucleus because the GCaMP molecule molecules do not enter the nucleus. Therefore, a second, and 

191 often sharper interface, between the dark nucleus and the bright cytoplasm emerges. This interface is 

192 stable and has a predictable (dark) inner side and (bright) outer side. Therefore, we developed a coupled 

193 two-layer active contour segmentation of cells. The two layers delineate the nucleus-cytoplasm and the 

194 cytoplasm-background interfaces, respectively. The inner layer 𝜙nuc is delineating the stable shape of 

195 the nucleus while the outer contour 𝜙cyt attempts to delineate cell outer borders forming a “double 

196 contour”. The image-data energy term can then be defined as:

𝐸𝑑 =
Ω

𝛿𝜙nuc(𝐱)
Ω

𝐵(𝐱,𝐲) ⋅ 𝐹nuc(𝐲)𝑑𝐲𝑑𝐱

                                 +
Ω

𝛿𝜙cyt(𝐱)
Ω

𝐵(𝐱,𝐲) ⋅ 𝐹cyt(𝐲)𝑑𝐲𝑑𝐱
Eq. 5

197 with 𝐹nuc following 𝐹cyt in its definition (Eq. 4). The double contour produces a more stable contour 

198 progression and keeps the contour attracted to cells in the event of non-visible cellular borders (Fig. 3). 

199 It also allows the extraction of the signal that originates from the cytoplasm pixels only, which improves 

200 the signal to noise ratios of the extracted mean fluorescence. 

201

202 Data regularization

203 The energy term Er relates to curvature, size, and size difference compared to the previous frame. We 

204 use prior knowledge about the properties of ENS neurons to impose local and global penalties to guide 

205 the contours and ensure that segmentation results and contour shapes will be plausible in their curvature, 

206 size, and size differential between timesteps. The regularization term Er is defined as:

𝐸𝑟 = 𝑤𝜅𝐸𝜅 + 𝑤𝐴𝐸𝐴 +  𝑤𝐴𝑆𝐸𝐴𝑆 Eq. 6

Figure 3: The effect of a competition term on neighboring contours (top) The contour of a cell using 1-layer 
vs double contour in a GCaMP expressing neuron (bottom)
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207 The curvature energy term Eκ limits the negative local mean curvature since cell bodies mostly have 

208 positive curvature. The local curvature gradient term is given by:

∂𝐸𝜅

∂𝑐𝑊𝑃[𝐤𝑖]
=

Γ
𝜅(𝐱∗)𝐻( ― 𝜅(𝐱∗))𝛽𝑑(

𝐱∗

ℎ ― 𝐤𝑖)𝑑𝐱∗ Eq. 7

209 Where 𝜅 is the local mean curvature which is calculated efficiently as reported within the BEAS 

210 framework (29,33) and H is the Heaviside function. 

211 The area energy term EA keeps the size of the contour within a reasonable range, where A represents the 

212 area within the contour. The parameters Amin and AMax ensure that the contour does not engulf bigger 

213 image regions. The equation for local energy calculation is governed by:

∂𝐸𝐴

∂𝑐𝑊𝐴
[𝐤𝑖]

= (𝐴 ― 𝐴𝑀𝑖𝑛)𝐻(𝐴𝑀𝑖𝑛 ― A) + (𝐴𝑀𝑎𝑥 ― A)𝐻(A ― 𝐴𝑀𝑎𝑥) Eq. 8

214 Next, we add the area stability energy term EAS, which is a global energy term that attempts to minimize 

215 the change of the area within the contour keeping its size in a reasonable range for a cell, since apparent 

216 size changes are not real but are due to intensity variations or edge contrast changes and not caused by 

217 actual cell size changes. 

𝐸𝐴𝑆 =
‖𝐴𝑡 ― 𝐴𝑡―1‖

𝐴𝑡―1
Eq. 9

218 The weights 𝑤𝜅, 𝑤𝐴 and 𝑤𝐴𝑆 in Eq. 6 are chosen by the user based on image dimensions and cell types.

219 Contour Competition 

220  It is common for cells in microscopy recordings to appear overlapping, as an image is a projection of 

221 all fluorescent elements in the focus of the objective lens. Especially in widefield microscopy recordings 

222 where images result from many different in- and out-of-focus planes (34). This effect is minimized in 

223 confocal and multiphoton excitation approaches, but optical overlap remains an issue due to limited 

224 optical resolution. While banning overlap completely can facilitate interpretation of the extracted data, 

225 it does not represent the scene correctly and can lead to tracking errors. Therefore, we impose a 
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226 competition penalty that allows a slight contour overlap to account for the optical overlapping effect 

227 while preventing contours from jumping between cells or engulfing multiple cells. We opted to impose 

228 a proximity penalty between neighboring contour nodes, as implemented previously in BEAS (35), to 

229 limit contour expansion into neighboring contours and reduce overlap (𝐸𝑑𝑖𝑠𝑡), 

𝐸𝑑𝑖𝑠𝑡
𝑖→𝑗 (𝒙∗) = (𝑑𝑇 ― 𝝍𝑖→𝑗).𝐻(𝑑𝑇 ― 𝝍𝑖→𝑗) Eq. 10

230 where   𝑑𝑡ℎ𝑟𝑒𝑠ℎ represents the minimal distance parameter, ψ is a signed distance map between each node 

231 of the contour i against all nodes of contour j (and vice-versa), and H is the Heaviside operator. Note 

232 that H equals one only in nodes with ψ lower than  𝑑𝑡ℎ𝑟𝑒𝑠ℎ and zero in the remaining nodes. Therefore, it 

233 only applies penalties in the neighboring regions of the contours (35). 

234 We also added a stronger penalty for actual overlap on both contours (𝐸𝑜𝑣𝑒𝑟𝑙𝑎𝑝) producing a cell 

235 competition effect controlled by the cell competition weight parameter 𝑤𝑐 (Fig. 3) that is a priori chosen.

𝐸𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑖,𝑗) =  { 𝑤𝑐 𝐴𝑐(i,j)  ,         D1 ∩ D2 ≠ ∅
0                   ,          D1 ∩ D2 = ∅ Eq. 11

236 With D1, D2 being the pixels belonging to contour i and j, respectively and 𝐴𝑐 is the area of overlap 

237 between two cells. Then Eq. 6 for contour i with a neighboring contour j can be rewritten to include the 

238 competition terms: 

𝐸𝑖
𝑟 = 𝑤𝜅𝐸𝜅 + 𝑤𝐴𝐸𝐴 +  𝑤𝐴𝑆𝐸𝐴𝑆 +  𝐸𝑑𝑖𝑠𝑡(𝑖,𝑗) + 𝐸𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑖,𝑗) Eq. 12

239 Landmark-based geometrical transformation and ROI tracking

240 While we aim at effective cell tracking in every scenario using BEAS cell tracking, there are known 

241 challenges that can constrain tracking using active contour methods. These challenges include parameter 

242 sensitivity causing the algorithm to be suboptimal for some cells in the field of view, despite being 

243 successful for other cells. Therefore, we introduce a robust optional step that uses the tracked locations 

244 of 𝑁 cell contours using the BEAS approach as landmarks to find the optimal geometrical transformation 

245 T that represents the movement in the recorded scene between frames. The optimal parameters 𝜃∗ of T 
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246 are estimated by minimizing the similarity measure d (36, 37) which represents the Euclidian distance 

247 of the cell contour coordinates between two frames:

𝜃∗ =  𝑎𝑟𝑔𝑚𝑖𝑛 𝜃d(f𝑇,f + 1) = 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑁

𝑖=1

‖𝑥𝑓+1
𝑖 ― 𝑇(𝑥𝑓

𝑖 )‖2 Eq. 13

248 With 𝑥𝑓
𝑖 being the centroid coordinates 𝑥 of the contour 𝑖 in frame 𝑓. This geometrical transformation 

249 allows us to move additional ROIs selected manually by the user posthoc throughout the recording 

250 frames by performing the geometrical transformation T (38) on the positions of the ROIs. 

251 Implementation details

252 Initialization is done by manually selecting ellipses that roughly overlap with the targeted cell bodies. 

253 These ellipses are fed as initial contours to the first frame segmentation step. The result of contour 

254 segmentation in a frame is then used for contour initialization in the next frame. Practically, the 

255 neighborhood radius ρ determines the range of cell movement between frames that is detectable by the 

256 segmentation step. ρ is chosen empirically to detect large movements without extending far off the cell 

257 edge and losing its ability in finding local cell edges and relies on multiple parameters including image 

258 resolution and relative movement (Suppl. data). During the initialization step, overlap was not allowed 

259 to simplify the initial contour interactions and limit entanglement in later segmentation steps.

260 We choose to represent the B-spline contours in polar coordinates because cell bodies appear as closed 

261 ellipses. Therefore, the geometry functions took the form of r=ψ(θ). The geometrical center of the 

262 contour shape is calculated and the pole of the contour coordinates translated to this point after each 

263 time step (Suppl. Fig. 1). This step is essential as contours cannot be represented as a polar curve if the 

264 pole (coordinates’ origin) is outside of the cell contour. 

265 The angular discretization factor denoting contour boundary nodes was set empirically to 32 nodes with 

266 regular angular interval dθ. When applied to the experimental recordings, this setting was found to 

267 provide a good balance between shape flexibility and representation at a reasonably low computational 

268 cost. We measured its effect and that of other parameters in a dedicated parameter sensitivity test. New 
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269 contour nodes were resampled after the translation step to preserve the accuracy levels of the 

270 discretization and maintain the regular interval dθ. This was done by using linear interpolation of the 

271 contour nodes’ coordinates (r`, θ`) for polar angles θ` with a regular dθ interval. 

272 A modified gradient descent with feedback step-adjustment was used to perform the energy criterion 

273 minimization as explained in previous BEAS implementations (11,30). Runtime was linearly dependent 

274 on the number of cells and the image size. The geometrical transformations T used in landmark-based 

275 ROI tracking is implemented in the form of a polynomial affine transformation (39).

276

277 Results

278 A. Segmentation strategy evaluation 

279 To objectively evaluate the presented segmentation strategies, we created an artificial dataset that 

280 simulates the Ca2+ imaging scenes, featuring movement at rates similar to what is measured in ENS 

281 recordings, several intensity-change patterns that represent Ca2+ activity, overlapping neighboring cells 

282 with similar baseline intensities, and multiple blurred frames to mimic out-of-focus imaging frames (Fig. 

283 4). 

284

285 We analyzed the signals in this dataset using four different approaches and compared how the extracted 

286 signals matched the ground truth signals. Using one-layer segmentation which targets the cytoplasmic 

287 border only, without the competition term, expectedly yields poor results, with contours overlapping 

288 significantly as the contour nodes cannot find clear edges or intensity gradients (Fig. 4A, left). As a 

289 result, the extracted signals are contaminated with information from neighboring cells. On the other 

290 hand, using the competition term in addition to the fixed global curvature term anchors the contours and 

Figure 4: Tracking of overlapping cells with the same base intensity level during rest and different intensity 
levels during activity using A) one-layer contours without a competition parameter (left) and with a competition 
penalty added (right) and B) double contours without a competition parameter (left) and with a competition 
penalty added (right) C) Extracted signals from a cell using one-layer contours (top) and double contours 
(bottom)
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291 restricts their shapes to prevent them from taking over neighboring cells (Fig. 4 A, right), which 

292 improves the extracted signal quality drastically. In contrast, the double contour segmentation maintains 

293 the general shape even without a competition penalty due to the coupling between the two segmentation 

294 layers although a slight overlap can be observed. The small overlaps, in this case, are alleviated when 

295 the competition term is added (Fig. 4 B).

296 Signals extracted from the artificial dataset confirm that one-layer contour tracking, without 

297 competition, is not reliable in extracting the original signal. This is shown in Fig. 4 C top, where the 

298 activity from the neighboring cell appears in the activity trace of the measured cell (Fig. 4 C, top row, 

299 red trace). Double contour segmentation and one-layer contours with competition terms, have no such 

300 issues and allow extraction of an accurate signal shape. This is especially the case for double contour 

301 segmentation, where the raw fluorescence level is closer to the original because now the dark nucleus 

302 pixels can be excluded from the calculation of the cytoplasm intensity (Fig. 4 C, bottom).

303 B. Parameter sensitivity analysis in an artificial dataset

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422837doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422837
http://creativecommons.org/licenses/by/4.0/


15

304 The impact of each of the selected parameters on segmentation and tracking results using active contours 

305 in both one-layer and the double contour methods are shown in Fig. 5. The first parameter ρ, the 

306 neighborhood radius (Fig 5A), expectedly has, for smaller values, a big influence on the tracking results. 

307 Afterwards, the tracking is stable for several values until the radius is too large and tends to encounter 

308 multiple edges simultaneously. The second parameter, the matrix size, which determines the number of 

309 discretized contour nodes negatively affects the tracking at smaller matrix sizes (fewer number of nodes) 

310 for both one- and double contour tracking, with failure to track cells in case of double contour 

311 segmentation with the lowest (only sixteen) number of nodes (Fig. 5B). This indicates that due to its 

312 extra complexity, double contour segmentation is more sensitive to the number of nodes. While the 

313 curvature term does not affect the accuracy of segmentation (Fig. 5C), the addition of a competition 

314 term does improve segmentation, especially for the one-layer segmentation option. The effect of a 

315 competition term with double contour segmentation is negligible in this dataset (Fig. 5 D).

316

317 C. Experimental results

318 When applied to actual recordings, we find that the proposed approach successfully tracks cells 

319 throughout significant tissue movements (Fig. 6, Top panel), allowing us to reliably resolve Ca2+ peaks 

320 from the extracted signals (Fig. 6, bottom panel). 

321

Figure 6: Contours of multiple cells and cell movement (top). Pixel intensity signal from the one tracked cell 
in the top panel and the contour appearance at multiple time points before, during and after a peak in Ca2+ 
activity. 

Figure 5: Parameter sensitivity analysis: comparison between one-layer vs. double contours where the 
Y-axis is the normalized RMSE of the extracted signals compared to the raw signals: (top left) effect of 
radius length values on segmentation sensitivity, double contour segmentation has less segmentation error for 
all values in the relevant range > 3. (top right) effect of the number of contour nodes: higher RMSE for one-
layer segmentation for all values, note the segmentation failure of double contour method at low (e.g. sixteen) 
contour nodes number, as indicated with x.  Curve regulation term (bottom left).  Competition term (bottom 
right): lack of competition term causes high normalized-RMSE for one-layer segmentation. 
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322 To compare with traditional analysis methods, we analyzed recordings with both the new contour 

323 tracking method as well as with manual routines, involving motion correction and rectangular ROI 

324 selection by a blinded expert. For that purpose, we used datasets of 3 recordings to compare the degree 

325 of similarity of the signals extracted by the traditional method against the one-layer contour and double 

326 contour methods, respectively (Fig. 7 A, B). We found that Ca2+ profiles are very comparable in shape 

327 between extraction from tracked cells versus manually drawn ROIs, with a normalized root-mean-square 

328 error (RMSE) of 0.093 and 0.114 for one-layer or double contours respectively (Fig. 7 B).  

329 True validation of our analytical approach is not straightforward as it requires assessing the quality of 

330 signal extraction against a ground truth signal. Since the latter should be fully known, yet embedded in 

331 a context that holds all the biological, optical, and experimental complexity, we generated artificial Ca2+ 

332 peaks in real Ca2+ recordings in the cytoplasm of multiple moving cells (Suppl. movie 1). Then we used 

333 the contour cell tracking method to re-extract the Ca2+ signals and compared the extracted signals to the 

334 original planted signal. We found that the Ca2+ peak shape was preserved in most cells (Figure 7 C), and 

335 the median RMSE in the one-layer and double contour approach to be 0.1216 and 0.1738 (based on 22 

336 tracked cells) to be comparable to that of the manually selected ROIs with an RMSE of 0.1212 (Fig. 7 

337 D). The higher RMSE values of DC tracking are simply due to a few complete tracking failures, see 

338 Discussion.

339 Finally, we used the newly developed tracking approach on actual recordings of ENS tissue (Suppl. 

340 movie 2, 3) including movement in x and y and out-of-focus frames. We found that with optimized 

341 parameters one-layer segmentation, proves reliable to track many cells in the field of view. Notably, the 

342 segmentation procedure performs well despite the presence of blurry out-of-focus frames (Fig. 7), which 

343 is an important advantage compared to edge-based segmentation techniques (40). In double contour 

344 segmentation, we observed less overlap of contours without a competition penalty resulting in good 

345 reliability in cells with non-visible edges. However, this method had more difficulties in scenes with 

Figure 7: A) Contours of tracked cells and manual rectangular ROIs which are moved based on the contours 
tracked. B) RMSE of signals extracted using 1 layer (red) and double contour (blue) versus manually selected 
ROIs by an expert. C) Comparison of the extracted signals (red/blue mean, light red/blue standard deviation) 
against a ground truth artificial peak (dotted green) using 1-layer contour tracking (left) and double contours 
(right) based on 22 cells. D) RMSE of signals extracted from 22 cells injected with the artificial peak using 
manual ROIs (left), 1 layer (center) and double contour (right) versus the ground truth. 
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346 faster movement and was expectedly not robust in cells without contrast between the nucleus and 

347 cytoplasm.  While this new approach performs well, it is unavoidable that cell tracking fails to resolve 

348 some cells with challenging appearance or location in the image. The developed landmark ROI-tracking 

349 exploiting the known trajectory of successfully-tracked cells proved to be a useful and robust tool to 

350 overcome this challenge with minimal computational power needed (Suppl. movie 4). In addition, it 

351 gives the researcher the additional ability to extract signals from smaller structures, like cell processes 

352 or glial cells (Fig. 7 A).

353 Discussion 

354 Given the complexity of Ca2+ imaging in the contractile ENS tissues, where a scene not only contains 

355 moving cells but these cells also display irregular fluorescence intensity changes (6), traditional methods 

356 based on image registration and ROI selection are cumbersome and prone to failure during signal 

357 extraction and quantitative analysis (3, 41–43). Additionally, low-level cell tracking techniques cannot 

358 function reliably in this scenario due to multiple reasons, including low signal-to-noise ratio (often the 

359 case in live imaging), cellular overlap and variable cellular edges, which depend both on the imaging 

360 system and the labeling approach, as well as on the activity of the cell (44). In this paper, we developed 

361 a cell tracking algorithm targeted specifically to track neurons in such a challenging contractile scenario, 

362 with the additional complexity that cells in Ca2+ imaging have blurry borders and constantly change 

363 fluorescence intensity. Our method successfully tracks blinking cells in moving ENS tissue, without the 

364 need for non-rigid image registration. The extracted temporal signals are comparable in quality to 

365 manual, expert-selected ROIs. Furthermore, the tracked cell coordinates allow additional rectangular 

366 ROI tracking and add robustness and flexibility to the workflow to process the most challenging 

367 recordings. 

368 A. Comparison of segmentation strategies

369 In an artificial dataset that was created to simulate cell shape and behavior, specifically having moving 

370 cells without clear borders, we found the competition term to be important in one-layer cell tracking as 

371 the contours overlap and the contour nodes do not find edges to adhere to in their absence. The addition 
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372 of a competition term and a significant curvature term prevents them from taking over neighboring cells 

373 resulting in good signal extraction.

374 The performance of cell segmentation in this simulated dataset is consistently improved by using the 

375 novel double contour method. The double contour uses the inner nucleus contours as a natural anchor 

376 that restricts the outer contour from taking over neighboring cells. It can conserve the shape with low, 

377 or even without, competition and curvature terms. However, the advantage of the coupled double 

378 contour approach is limited in recordings with large cell displacement between frames as it depends on 

379 tracking the smaller nucleus from its position in the previous frame. In this case, higher image 

380 acquisition rates are required, which adds complexity to the imaging setup, generates bigger datasets, 

381 and causes longer processing times. Nevertheless, we consider the double contour approach to be 

382 powerful in its application to GCaMP based recordings, as the reporter is genetically prevented from 

383 entering the nucleus, leaving the nucleus dark and thus enabling accurate tracking of cells and signal 

384 extraction selectively from the cytoplasm.

385 B.  Parameter sensitivity analysis

386 Active contours are heavily reliant on multiple parameters and can be sensitive to parameter values 

387 limiting their robustness (45). We quantified the effects of the global penalty terms on the algorithm’s 

388 performance in both the one-layer and double contour strategies, by extracting and comparing the signals 

389 from simulated data. We observed general similarity in sensitivity to the studied parameters, except for 

390 the inability to track cells when using only a few contour nodes in the double contour, which is at odds 

391 with the increased complexity of this strategy. The introduction of the cell competition term improved 

392 cell tracking when using one-layer contours, reduced the error rate to similar values as obtained by 

393 double contours in this dataset. Although the curvature term did not increase the accuracy of the 

394 extracted signal in the simulated dataset, it plays an important stabilizing role to the cell contours in real 

395 recordings, especially in blurred images or in frames where segmentation is struggling to delineate cells 

396 returning to baseline fluorescence. We found that tracking is generally insensitive to a wide range of 

397 parameter values in the simulated dataset despite our efforts to introduce the most challenging 

398 conditions, which all together indicate that the performance of the algorithm is robust. 
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399 In general, the global penalty terms are valuable to limit segmentation failure, which is a drawback of 

400 active contour segmentation (28). However, they do not show significant effects on tracking results of 

401 cells that are already well within the means of the method, as shown in Fig. 5.

402 C.  Experimental results

403 As the aim of the new approach was to extract accurate Ca2+ signals from experimental data, we 

404 compared contour tracking to the traditional extraction method and found a high similarity of the 

405 extracted signals between the two methods. We used an artificially embedded Ca2+ peak to measure the 

406 similarity to the ground truth and found that these planted peaks were indeed detected in most cells, 

407 demonstrating the applicability of the contour tracking workflow. The artificially embedded Ca2+ peaks 

408 were then used to compare the quality of the signal extraction using the two contour types against the 

409 traditional extraction method. Results from the one-layer contours were highly similar to those of the 

410 traditional method in their error between the extracted signal and the ground truth values of the artificial 

411 peak (Fig. 7). We observed slightly lower average similarity between the ground truth signal and double 

412 contour method, which was mainly due to instances where the method failed to track those neurons 

413 without contrast between the nucleus and cytoplasm, which we, in order to be as close to reality as 

414 possible, also included in the dataset. This is easily mitigated by using the additional ROI tracking 

415 option, which we introduced to extract signals from cells for which contour tracking is inaccurate (Fig. 

416 2A). 

417 Practically, we find one-layer tracking to be robust in recordings with blurry out-of-focus frames and its 

418 stability largely depends on the neighborhood radius ρ in relation to movement intensity in-between 

419 frames. Furthermore, the introduction of a cell competition term improves cell tracking and reduces the 

420 error in experimental recordings. Double contour tracking on the other hand is useful when the recording 

421 is not blurry and the movement in-between frames is generally less than the nucleus diameter. The latter 

422 limits the applicability in recordings with substantial displacement due to rapid muscle contractions, 

423 especially when fast image acquisition is not feasible. Its main advantage, which results from the inner 

424 nucleus contour acting as an anchor to the outer cellular contour, is the ability to track overlapping cells 

425 without clearly visible borders, a common sight for ENS neurons in the submucosal layer (4). The 
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426 landmark-based ROI tracking possibility for manually-added ROIs provides a useful addition that 

427 allows tracking challenging cells, which the active contours method fails to correctly segment. It is a 

428 useful tool as it does not require re-running the tracking workflow and is applied post-hoc, providing a 

429 robust option fully controlled by the user.

430

431 Conclusion

432 To satisfy the need for a robust analysis tool for Ca2+ imaging in moving and contractile tissues, we 

433 introduced an efficient hybrid approach to track cell bodies relying on local region-based terms in 

434 evolving the contour, avoiding the disadvantages of region-based segmentation (Fig. 2). We further 

435 developed a novel ‘double contour’ or coupled-layers tracking algorithm that takes advantage of the fact 

436 that cells in genetically encoded Ca2+ imaging techniques appear with dark nuclei. We quantified the 

437 method’s performance in an artificial dataset that simulates experimental challenges under different 

438 parameter values and compared the two tracking algorithms. We then tested the algorithm’s robustness 

439 in tracking neurons in various ENS tissue Ca2+ recordings and demonstrate, using embedded artificial 

440 Ca2+ spikes, that the method reliably captures these spikes and represents them in the extracted signals. 

441 We expanded the analysis possibilities by implementing land-mark based ROI tracking, which increases 

442 the robustness of the workflow for challenging datasets. Finally, we packaged the workflow as a 

443 MATLAB GUI to enable efficient analysis of Ca2+ imaging datasets with a non-static scenery. The 

444 technique can be used on other cellular recordings by tweaking the contour parameters to match the 

445 specific application.

446
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587 Supplementary movies:

588 Movie 1: The artificial dataset used for parameter sensitivity analysis: 7 overlapping cells with bright 

589 cytoplasm and dark nuclei representing moving and overlapping neurons in a noisy and blurry scene.

590 Movie 2: Example of the one-layer contours approach to track multiple neurons in ENS tissue   

591 Movie 3: Example of the double contours approach to track overlapping neurons, with similar 

592 intensity baselevels in ENS tissue during stimulation. 

593 Movie 4: Example of the one-layer contours approach in combination with ROI tracking to track 

594 multiple neurons during large deformation in ENS tissue.
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